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2)York Plasma Institute, Genesis 1&2, York Science Park, University of York, Church Lane, Heslington,
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Extended-magnetohydrodynamics transports magnetic flux and electron energy in high-energy-density exper-
iments, but individual transport effects remain unobserved experimentally. Two factors are responsible in
defining the transport: electron temperature and electron current. Each electron energy transport term has
a direct analogue in magnetic flux transport. To measure the thermally-driven transport of magnetic flux
and electron energy, a simple experimental configuration is explored computationally using a laser-heated
pre-magnetised under-dense plasma. Changes to the laser heating profile precipitate clear diagnostic signa-
tures from the Nernst, cross-gradient-Nernst, anisotropic conduction and Righi-Leduc heat-flow. With a wide
operating parameter range, this configuration can be used in both small and large scale facilities to bench-
mark MHD and kinetic transport in collisional/semi-collisional, local/non-local and magnetised/unmagnetised
regimes.

I. INTRODUCTION

Extended-Magnetohydrodynamics (extended-MHD) is
a theoretical framework used to evaluate the trans-
port of energy and magnetic flux in a plasma. The
electrons typically move at a higher speed than the
ions, dominating the transport. Additional terms in-
troduced by extended-MHD above resistive-MHD in-
clude temperature-gradient-driven transport (such as the
Nernst term moving magnetic fields down electron tem-
perature gradients) and electric-current-driven transport
(such as the Hall term moving magnetic fields with the
flow of charge). For each magnetic transport term there
is a corresponding transport of electron energy; for exam-
ple, the analogue of Nernst in energy transport is thermal
conduction, which moves thermal energy down tempera-
ture gradients.
Extended-MHD terms are anticipated to be important

in a wide range of high energy-density physics (HEDP)
experiments. The Nernst effect limits the performance
of magnetised liner inertial fusion (MagLIF) implosions
by demagnetising the pre-heated fuel1. The design of
laser-driven pre-magnetised inertial confinement fusion
(ICF) targets2,3, also requires the consideration of these
additional effects4. Even initially unmagnetised ICF con-
figurations can be affected by extended-MHD phenom-
ena, with self-generated fields growing through the Bier-
mann battery process. Simulation studies have found
the Nernst (magnetic fields moving down temperature
gradients) and Righi-Leduc (heat-flow deflected by the
magnetic field) terms to change plasma properties in
hohlraums (increasing the temperature of the hohlraum
gas fill5), direct-drive ablation fronts (changing the per-
turbation growth6) and at the compressed fusion-fuel
edge (modifying the cooling process7). In addition to
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ICF, extended-MHD affects laboratory astrophysics ex-
periments, such as the measurement of magnetic fields
generated around laser-foil interactions8,9 and are antic-
ipated to also affect 2-spot magnetic reconnection10.
While the impact of extended-MHD is widespread in

laboratory HEDP, many of the effects are yet to be mea-
sured directly. Without experimental verification of the
extended-MHD model, uncertainties remain in the design
and analysis of ICF and laboratory astrophysics stud-
ies. A notable exception is the Biermann battery term,
with time-dependent magnetic field generation measured
around a laser-foil interaction8, in addition to systems ex-
hibiting Rayleigh-Taylor instability growth11. In both of
these examples the Nernst term significantly alters the
magnetic field distribution, but the experimental com-
plexity prohibited direct inference of a Nernst velocity
to compare with simulations. Other key properties of
Nernst advection, such as suppression of the effect at
large magnetisations, also remain unverified.
This paper uses simulations to investigate experi-

mental configurations where thermally-driven extended-
MHD terms (Nernst, cross-gradient-Nernst, anisotropic
thermal conduction and Righi-Leduc heat-flow) could be
measured unambiguously for the first time. An under-
dense laser-driven magnetised plasma is used, allowing
for the thermally-driven transport to dominate over the
hydrodynamic motion. Clear diagnostic signatures are
sought for each term through simple modifications to the
laser profile. A similar set-up has been used before with-
out the diagnosis of magnetic field distribution to mea-
sure non-local heat-flow suppression12, with subsequent
kinetic simulations suggesting that both Nernst and non-
locality are important13. Non-local transport is outside
the scope of this paper, with the plasma treated using
an MHD framework. Changes to the experimental set-
up can then be used to explore different regimes, such as
the transition from extended-MHD to kinetic transport
for each of the terms.
This paper is organised as follows. The appendix re-

writes the traditional Braginskii extended-MHD equa-
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tions into a form that is both physically intuitive and
simple to implement into an MHD code. This is then
summarised in section II, with each of the relevant trans-
port terms clearly formed. Section IIIA then outlines an
experiment to measure Nernst cavitation of a magnetic
field in an under-dense plasma, showing simulation re-
sults as well as synthetic diagnostics. This set-up pro-
vides a baseline configuration, which is modified to ex-
plore other extended-MHD terms. By changing the laser
focus, the cross-gradient-Nernst twists the magnetic field,
as shown in section III B. Anisotropic thermal conduc-
tion is then demonstrated in section III C by using an
applied magnetic field perpendicular to the beam rather
than parallel. Finally, section IIID takes the Nernst ex-
periment but uses a non-circular laser spot to elucidate
the Righi-Leduc heat-flow in the form of a rotation of the
thermal profile.

II. EXTENDED-MAGNETOHYDRODYNAMICS

Magnetic transport in an extended-MHD plasma is ex-
plored in the appendix, beginning with Braginskii’s for-
mulation of Ohm’s Law14. The following equation is de-
rived for the change of magnetic field strength:

∂B

∂t
= −∇×

α‖

µ0e2n2
e

∇×B+∇×(vB×B)+∇×
∇Pe

ene
(1)

There are only 3 terms: one for magnetic field diffu-
sion, one for advection of the magnetic field at velocity
vB and the Biermann Battery term as the only source of
magnetic flux. The magnetic field advection velocity vB
is given by:

vB = v−γ⊥∇Te−γ∧(b̂×∇Te)−
j

ene
(1+δc⊥)+

δc∧
ene

(j× b̂)

(2)
i.e. the advection is based on the bulk plasma velocity,
as well as the electron temperature gradient and electric
current. The γ⊥ term is called the Nernst term, which
moves magnetic field down temperature gradients. The
γ∧ term is then the cross-gradient-Nernst, moving the
field perpendicular to both the temperature gradient and
the magnetic field. Both γ⊥ and γ∧ simply decrease with
magnetisation ωeτe (see figure 8).
The electron temperature gradient and electric current

also cause transport of electron energy. To make the
physical connection between magnetic and energy trans-
port clear, the magnetic field advection velocity due to
electron temperature gradients are shown alongside the
heat-flow due to electron temperature gradients:

vN = −γ⊥∇⊥Te − γ∧b̂×∇Te (3)

q
κ

=− κ‖∇‖Te −κ⊥∇⊥Te − κ∧b̂×∇Te (4)

where there is no field advection parallel to the field
lines, as this does not change the magnetic flux. The

thermal conduction perpendicular to magnetic field lines
κ⊥ is seen here to be associated with the Nernst γ⊥
term. Comparably, the Righi-Leduc heat-flow κ∧ acts to
move electron energy in the same direction as the cross-
gradient-Nernst γ∧ moves magnetic flux.
In a similar way, the electric-current-driven magnetic

field advection velocity and energy advection velocity can
be written:

vjB = −(1 + δc⊥)
j
⊥

ene
+ δc∧(

j

ene
× b̂)

(5)

vjUe
=− (1 + βc

‖)
j
‖

ene
−(1 + βc

⊥)
j
⊥

ene
+ βc

∧(
j

ene
× b̂)

(6)

In these simplified forms, a non-dimensional number
can be used to assess if temperature gradients or elec-
tric currents dominate the transport. Assuming that the
magnetic field varies over the same length-scale as the
temperature:

Ξ =
|vN⊥|
∣

∣vjB⊥

∣

∣

=
γc
⊥τeTeeneµ0

|B|me
∼

γc
⊥T

5

2

e

|B|
(7)

Where the δc⊥ factor is dropped as it is only a small
correction to the collisionless current-driven magnitude
(Hall). In a regime where thermally-driven terms domi-
nate (Ξ ≫ 1) both the thermally-driven magnetic trans-
port and thermally-driven electron energy transport will
be significant. In a regime where current-driven terms
dominate (Ξ ≪ 1) both current-driven magnetic trans-
port and current-driven electron energy transport will be
significant.
The appendix studies more closely the different mag-

netic field and electron energy transport terms, compar-
ing the coefficients and outlining simply how to include
these terms in an extended-MHD code.

III. THERMALLY-DRIVEN TRANSPORT

EXPERIMENTS

This section outlines a set of simple experiments to
verify the thermally-driven magnetic and electron energy
transport in equation 3 and 4. Section IIIA outlines the
baseline configuration for measuring the Nernst velocity,
which is then modified in the subsequent sections in order
to allow the other terms to be measurable.
The parameters used in this publication are:

• Gas density ρ0 = 0.065kg/m3

• Gas composition = deuterium

• Laser energy = 50J with wavelength of 1.055µm



3

FIG. 1. 2-D cylindrical simulations of the Nernst configura-
tion at 0.5ns with a 1T applied field. a) electron temperature
with Nernst included. b) magnetic field magnitude with the
Nernst effect included. c) magnetic field magnitude without
the Nernst effect included. The magnetic field cavitation is
strongly driven by Nernst advection.

• Laser spot spatial profile = Gaussian with standard
deviation of 75µm

• Laser time profile = 0.5ns with a 0.1ns linear rise

• Applied magnetic field magnitude B0 = 0− 10T

These parameters are realisable in a relatively small-scale
facility and give a reasonable signal for the extended-
MHD terms considered here. There is ample room for
moving into different regions of parameter space, thereby
modifying the transport rates and providing additional
tests against theory. Lower laser energies (< 1J) are also
expected to give appreciable signals.

The ionised electron density relative to the laser crit-
ical density is small ne/ncr = 0.0190, i.e. the gas is
under-dense. The low density allows for the laser to pass
through without depositing significant amounts of en-
ergy; laser energy coupling into the simulation domains
shown here are between 1-5% over 1.5mm. Increasing
the coupling (e.g. using a higher density gas) would al-
low for even lower laser energies, although this would
decrease temperature uniformity along the laser axis and
increase laser refraction effects.
For the parameters chosen, thermally-driven transport

terms dominate, i.e. Ξ is large (from equation 7).
The extended-MHD code Gorgon7,15 is used to sim-

ulate the configurations, with distinct diagnostic signa-
tures anticipated for each of the effects. Gorgon is a 2-
temperature Eulerian code with laser ray tracing and ab-
sorption by inverse Bremsstrahlung. The magnetic trans-
port is treated as in equation 1, using operator splitting
between the advection, diffusion and generation compo-
nents. The electron heat-flow is fully anisotropic, as in
equation 34, using a centred-symmetric algorithm16. For
the configurations in this paper the spatial resolution is
0.5µm.
Synthetic proton deflectometry is used here to diag-

nose magnetic field transport. A D3He exploding pusher
is taken as the source, producing mono-energetic pro-
tons at 14.7MeV17. Target-normal sheath acceleration
(TNSA)18,19 could also be used. The source offset is
taken as 6.3mm with the image plate 120mm from the
interaction region. The source is assumed to be infinitely
small, thereby reducing blurring. Electric field contribu-
tions to the proton images are estimated to be small.

A. Nernst

A uniform under-dense (ne ≪ ncrit) plasma is used,
with a uniform magnetic field applied along the direction
of laser propagation.
Simulations are conducted in 2-D cylindrical geome-

try (r − z). The laser and magnetic field are applied
in the direction −z, which assumes the laser is uniform
azimuthally (in θ).
The laser-heated plasma becomes more transparent to

the laser as the temperature increases, resulting in rel-
atively uniform heating along the laser axis. Figure 1
shows the electron temperature at 0.5ns using the base-
line parameters described in section III and a 1T applied
field.
Thermal conduction transports heat radially away

from the laser into the cold gas. Nernst advection, which
is analogous to magnetic field moving with the heat-flow,
reduces the field intensity in the laser-heated region. The
demagnetising effect of the Nernst term is compounded
by the increase in Nernst velocity as magnetisation de-
creases, further enhancing the demagnetisation rate. The
magnetic field intensity is plotted in figure 1. In the
regime shown, near complete magnetic cavitation is ob-
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FIG. 2. Time-dependent synthetic proton radiographs for the
Nernst configuration with an initial magnetic field of 1T. The
Nernst velocity could be measured for the first time using this
technique. While the distance between the edges (λ) gives the
cavitation rate, there is also information within the individ-
ual edges. The background magnetic field deflects protons to-
wards the right of this image. The distance has been re-scaled
to the interaction region using the set-up magnification.

FIG. 3. Synthetic proton radiographs for the Nernst config-
uration at 0.5ns for 1T, 5T and 10T applied magnetic fields.
Nernst suppression for higher magnetisations could be mea-
sured for the first time using this technique. The background
magnetic field deflects protons towards the right of this image.
The distance has been re-scaled to the interaction region us-
ing the set-up magnification and each field strength has been
re-centred for comparison purposes.

served. The thermal wave corresponds with a discrete
step in magnetic field intensity. The field is compressed
at the edge of the heat front and can resistively diffuse
away depending on whether or not the plasma is ini-
tialised as cold in the simulations.

Magnetic fields also move with the bulk plasma motion
(so-called frozen-in-flow). As the laser-heated region ex-
pands, the magnetic field strength decreases. A definitive
measure of the Nernst effect is simpler if the Nernst ve-
locity is much larger than the hydrodynamic expansion.

Figure 1 quantifies the relative impact of Nernst advec-
tion by also showing the magnetic field profile for a sim-
ulation without the Nernst term included. In this case,
the Nernst term is clearly dominating over the hydrody-
namic motion. For the case without Nernst, the magnetic
field strength |B| = ρB0/ρ0. Significant hydrodynamic
motion does not strictly prohibit a measurement of the
Nernst velocity; a simultaneous density measurement can
be used to infer that the magnetic field is not frozen into
the flow.
Experimentally, the key measurements to constrain the

Nernst effect involve measuring the field cavitation rate
and the decrease in cavitation with a larger applied field.
The field cavitation is diagnosed synthetically using pro-
ton radiography with protons traversing the system per-
pendicular to the initial magnetic field axis. Figure 2
shows proton deflectometry evolution with time. An av-
erage over the length of z in figure 1 is used. While
all protons are deflected by the background magnetic
field, the protons passing through the cavity are deflected
less. This creates distinct regions with higher and lower
proton counts at the cavity edge. The separation dis-
tance of these regions, λ, indicates the cavitation region
size, which increases with time. The Nernst velocity can
then be inferred through measurement of ∂λ/∂t. Struc-
ture in the proton image at each of the cavitation edges
could then provide more information on the compressed
field profile, although this measurement requires higher
resolution. Further information can be extracted from
the proton radiographs by using a grid and assuming
small proton deflections20; cylindrical symmetry allows
the path-integrated magnetic field to be calculated.
Combining proton radiographs with Thomson scatter-

ing and interferometry diagnostics can be used to con-
strain the electron temperature and density; experimen-
tal and theoretical Nernst advection rates can then be
compared without the need to estimate plasma proper-
ties from simulations.
The separation distance on the proton radiograph, λ,

can be related to the cavitation radius rc by assuming a
uniform completely cavitated cylinder (i.e. fully demag-
netised from initial magnetic field strength B0 to 0T )
probed by protons of initial velocity vp undergoing only
small deflections, with the distance from the cylinder to
image plate as D:

λ =
eB02rcD

mpvp
(8)

For an increased background magnetic field, the above
relation predicts that the offset distance increases for a
given cavitation radius. Synthetic proton radiographs at
0.5ns for varying magnetic field strengths are shown in
figure 3. Instead of λ increasing, the offset distance de-
creases due to Nernst suppression by magnetisation. The
proton deposition structure at each cavity edge is more
apparent for larger applied magnetic fields, allowing for
a finer resolution of the magnetic field profile. In par-



5

ticular, an experimental measurement of the non-local
’pre-Nernst’ may be possible21 in these regions. If the
gas outside of the heat front remains cold and unionised,
then the magnetic field can diffuse away, removing the
small-scale structure within the cavity edges in the pro-
ton radiographs.

An assessment of whether Nernst or hydrodynamic ad-
vection demagnetises the plasma can be explored more
generally using a simple comparison of characteristic
velocities. The Nernst velocity (from equation 20) is
−γc

⊥τe∇Te/me. Unlike the near-instantaneous Nernst
velocity, the bulk plasma has inertia and takes time to be
accelerated to a significant velocity by the pressure im-
balance. From simple hydrodynamics this velocity can
be taken as ∆t∇P/ρ. By using the fact that the density
is initially uniform (overestimating the impact of hydro-
dynamics) the relative magnitude of hydrodynamics to
Nernst advection can be estimated:

∣

∣vHydro

∣

∣

|vN⊥|
=

∆t

τe

Zme

mi

1

γc
⊥

(9)

Zme/mi varies little between the choice of gas, al-
though deuterium gives larger Nernst velocities than hy-
drogen. γc

⊥ is larger (factor of 10) for high-Z material
(see figure 8) and decreases with magnetisation; the more
magnetised the plasma, the more hydrodynamic motion
will play a role (until magnetic pressure becomes impor-
tant). ∆t/τe is a measure of the experiment collisionality,
i.e how many electron-ion collisions a typical electron un-
dergoes in the time since the laser was switched on ∆t.
Therefore, the more collisional (and as a consequence the
more MHD-like) the experiment, the more hydrodynamic
motion will also play a role in de-magnetising the laser-
heated plasma.

Further variations in the experiment can be used to
test theoretical predictions. Increasing the laser energy
increases the temperature gradients, which is expected
to increase the cavitation rate. Using a higher Z plasma
can increase the Nernst coefficient. In the regime shown
here, increasing the initial density increases the Nernst
cavitation rate, primarily because the plasma magnetisa-
tion lowers.

The transition from MHD-like transport to kinetic-like
transport could be probed by decreasing the laser spot
size while keeping the intensity constant, thereby lower-
ing the spatial scale relative to the mean-free path. The
experiment times should be kept constant to maintain
the same balance of Nernst to hydrodynamics (equation
9). While the cavitation rate will increase due to larger
temperature gradients, the proton images only measure
the path-integrated change in field strength. A proton
image scaled in size with the laser radius is expected,
with any differences due to non-local effects.

B. Cross-Gradient-Nernst

The cross-gradient-Nernst is a magnetic transport ve-
locity acting perpendicular to both the temperature gra-
dient and the magnetic field (equation 21). Figure 8
demonstrates that the cross-gradient-Nernst velocity is
large whenever the Nernst velocity is large. However, this
does not necessarily mean that the cross-gradient-Nernst
significantly alters the magnetic field profile. In the pre-
vious Nernst configuration, the cross-gradient-Nernst al-
ters the field profile indistinguishably, as the plasma pro-
file is effectively 1-D (not changing in θ or along the field
lines).
In this section the laser focus is changed such that the

beam decreases with intensity along its path, giving a
hotter plasma further along the cylindrical axis (high z)
and cooler plasma occupying a larger radius at low z.
One standard deviation from the centre of the laser spot,
the rays are at an angle of 3.6 degrees to the axis. The
electron temperature profile at 0.5ns is shown in figure
4, with labels for the Nernst and cross-gradient-Nernst
directions.
As before, the Nernst effect moves magnetic field radi-

ally outwards. The cross-gradient-Nernst, however, acts
perpendicular to the 2-D simulation plane, moving the
field azimuthally. The equation for the magnetic field
advection velocity vN∧ affects the magnetic field profile
can be expanded from the form in equation 1 to:

[

∂B

∂t

]

N∧

+(vN∧ ·∇)B = −B(∇·vN∧)+(B ·∇)vN∧ (10)

The term on the left-hand side is now the convective
derivative, i.e. how the magnetic field intensity changes
moving with the flow. The first term on the right-hand
side is then the field being compressed/rarefied by con-
verging/diverging flows. Both the convective and com-
pressive terms are zero for the cross-gradient-Nernst in
these 2-D simulations, as both the field and velocities are
uniform around θ.
The final term in equation 10 represents the twisting of

the magnetic field and is non-zero here. To demonstrate
this, a magnetic field line is considered in isolation, pass-
ing between the heated (low z in figure 4) and unheated
regions (large z). At large z, the cross-gradient-Nernst
velocity acting on this field line is zero, as there is no tem-
perature gradient. At low z, cross-gradient-Nernst acts
to advect the field line azimuthally. Between these two re-
gions there is necessarily a twist in the field line, creating
a θ component. In reality the dependence of the cross-
gradient-Nernst velocity on magnetisation in the twisted
region results in both a field component into and out of
the page at different regions.
Figure 4 shows the Bz and Bθ magnetic field compo-

nents at 0.5ns. The Nernst advection still occurs, low-
ering the axial field strength in the laser-heated region.
A Bθ field develops, up to a peak of 0.8T. While this is
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FIG. 4. Electron temperature and axial/azimuthal mag-
netic field components for the cross-gradient-Nernst config-
uration. Along the labelled magnetic field line the cross-
gradient-Nernst moves out of the page at low Z and is zero
at high Z, resulting in a twisted field component.

small compared to the 5T applied field, the twisting oc-
curs in the same region depleted of axial field by regular
Nernst advection, resulting in a peak twisting angle of 15
degrees.
The cross-gradient-Nernst velocity changes sign when

the magnetic field is applied in the opposite direction,
but the resulting Bθ component is independent of the
initial applied magnetic field.
While Nernst and cross-gradient-Nernst are significant

in the same configuration, it is possible to measure Bθ

independently of the cavitated field by probing with pro-
tons along the laser axis. Figure 5 shows the synthetic
proton radiograph with source situated at +z. The rel-
ative path-integrated strengths of the positive/negative
Bθ could be determined by looking at the outer/inner
portions of the radiographs.

C. Anisotropic Thermal Conduction

A configuration is now explored to assess the transi-
tion from unmagnetised thermal conduction to highly-
magnetised conduction. The same conditions as the
Nernst configuration are used (uniform under-dense
laser-heated plasma with a background magnetic field),
but with the magnetic field applied perpendicular to laser
propagation. In Cartesian geometry, the laser is along
−z and the magnetic field is in the x direction. The
radial thermal conduction wave from the laser core is
anisotropic, with thermal conduction in y suppressed due
to magnetisation and heat-flow in x uninhibited.

Figure 6 shows 2-D x− y slices of the electron temper-
ature profile at 0.5ns for various applied field strengths.
The laser-heated region is hotter for the 5T case (340eV
compared with 260eV for 1T), as thermal cooling along

FIG. 5. Synthetic proton image at 0.5ns for the cross-
gradient-Nernst configuration using a proton source at +z.
The images have been re-scaled to the interaction region us-
ing the magnification.

y is reduced. The peak magnetisation at this time is only
ωeτe ≈ 1 for the 1T case, corresponding to thermal con-
ductivity suppression κ⊥/κ‖ ≈ 1/3. For the 5T case the
peak magnetisation is ωeτe > 10, with κ⊥/κ‖ ≈ 0.01.
While magnetisation does not directly change the ther-
mal conductivity along field lines (κ‖), the hotter core
plasma results in greater heat-flows along x for higher
magnetisations, increasing the heating radius. At 0.5ns
the aspect ratio of the outer heat front is only 1.04 for
1T, increasing to 1.51 for 5T.
The anisotropic temperature profile can be diagnosed

through self-emission (if the density remains relatively
unperturbed) or by Thomson scattering. The relative
extent of the heated region along y and x (along with
a measurement of the peak temperature) will help con-
strain the analytic form for thermal conductivity mag-
netisation.
As with the Nernst configuration, a clear diagnostic

signature here is aided by lack of hydrodynamic motion.
A relation similar to 9 can be derived by comparing the
hydrodynamic speed to the thermal conduction speed
(rearranging perpendicular thermal conduction into the
form ∂Ue/∂t = ∇· (Uevκ⊥), where vκ⊥ = κc

⊥τe∇Te/me):

∣

∣vHydro

∣

∣

|vκ⊥|
=

∆t

τe

Zme

mi

1

κc
⊥

(11)

This is a variant on the Péclet number, relating advec-
tive and diffusive effects. It is no surprise that equations
9 and 11 give near-identical constraints on the experi-
ment for hydrodynamics to be of secondary significance,
as the thermal conduction and Nernst are inherently re-
lated. In fact, it is important to note that the Nernst
effect will play a significant role in this configuration. If
Nernst advection is larger than simulations anticipate,
the plasma will become less magnetised, allowing larger
perpendicular thermal conductivities. This could be er-
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FIG. 6. Electron temperature profiles at 0.5ns with laser
propagating into the page and a magnetic field applied along
x. As the applied magnetic field is increased, the heat-flow
anisotropy increases.

roneously interpreted as a different dependence of κc
⊥ on

ωeτe. Therefore, further proton measurements in this
configuration are valuable to avoid such misunderstand-
ings. The Nernst configuration in section IIIA is pre-
ferred for diagnosing magnetic transport, as it avoids the
complications of anisotropy by keeping the plasma uni-
form around the laser axis.

Kinetic effects will also play a role in this configura-
tion. In the Nernst experiment heat-flow can be kept
in the MHD regime through magnetisation (as measured
under similar experimental conditions12). Here the heat-
flow along the field lines will be dominated by electrons
with a mean-free-path on the order of the temperature
scale length, requiring kinetic modelling. For a more ap-
propriate MHD comparison, the laser radius can be in-
creased while keeping the intensity constant (to give the
same ∆t/τe for equation 11).

D. Righi-Leduc

Righi-Leduc heat-flow is in the same direction as the
cross-gradient-Nernst velocity; for an applied magnetic

FIG. 7. Electron temperature profile in x− y with laser and
magnetic field (3T) applied out of the plane. A square laser
spot is used to enforce a temperature variation around θ,
which allows the Righi-Leduc heat-flow to modify the tem-
perature distribution. The standard deviation of the square
laser spot is shown with a dashed white line.

field in the same direction as the laser propagation, it acts
around the azimuthal direction. In the cross-gradient-
Nernst configuration (section III B) no azimuthal vari-
ations in plasma/magnetic field profile is required, as
the magnetic field can twist. The heat-flow, however,
only changes the electron temperature profile for varia-
tions in θ. Therefore, a non-circular laser spot is required
to bring about a clear diagnostic signature from Righi-
Leduc. Here a square spot is considered.
Figure 7 shows a 2-D x−y slice of the electron temper-

ature profile at 0.5ns with the laser and magnetic field
propagating out of the page. The square laser spot edges
are aligned with x and y, with ray powers set to a Gaus-
sian of the maximum between x and y. The Righi-Leduc
heat-flow rotates the electron energy profile. The rotated
profile could be measured using self-emission or Thom-
son scattering. Reversal of the applied magnetic field
direction swaps the rotation direction.
To further understand the rotation, an analytic form

for the change in electron energy due to Righi-Leduc can
be derived. Assuming magnetic field direction is constant

(e.g. b̂ = (0, 0, 1) here) and with Z = constant, the rate
of change of electron energy density is given by22:

[∂Ue

∂t

]

κ∧

= b̂ ·
[

∇Te ×∇ωeτe
] ∂κc

∧

∂ωeτe

neTeτe
me

(12)

For initially uniform density and field, frozen-in-flow
gives |B|/ne = constant. Therefore, if the mag-
netic field is frozen into the flow (i.e. ignoring Nernst
and cross-gradient-Nernst), this relation is zero (as
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ωeτe ∼ T 3/2|B|/ne). In reality, the movement of mag-
netic field relative to the bulk plasma allows gradi-
ents in ωeτe. These magnetisation gradients then re-
duce/enhance the Righi-Leduc heat-flow and result in
accumulation/rarefaction of electron energy. The re-
sponse of Righi-Leduc heat-flow to the magnetisation de-
pends on the sign of ∂κc

∧/∂ωeτe, with ∂κc
∧/∂ωeτe > 0 for

ωeτe <
∼ 0.1 and ∂κc

∧/∂ωeτe < 0 for ωeτe >
∼ 0.1. In the

highly magnetised plasma simulated here, Righi-Leduc
heat-flow reduces when it enters more magnetised re-
gions.
Assuming uniform ne (i.e. looking at time-scales over

which the thermal evolution dominates over the hydro-
dynamic motion):

[∂Ue

∂t

]

κ∧

= b̂ ·
[

∇Te ×∇ |B|
] ∂κc

∧

∂ωeτe

neTeτ
2
e e

m2
e

(13)

For a square laser pulse, the temperature initially
peaks in θ along y = x and y = −x. This results
in Nernst demagnetisation of those regions, increasing
the Righi-Leduc heat-flow. With the prevailing heat-flow
travelling clockwise, the upstream heat-flow from the de-
magnetised region is increasing, while the downstream
heat-flow is slowing down. This rotates the temperature
profile clockwise, and the process continues.
The interplay between Righi-Leduc and Nernst have

been studied theoretically and computationally for a sim-
ilar regime23, although the cross-gradient-Nernst was not
included. While figure 7 predominantly shows rotation
of the temperature profile, higher applied magnetic field
strengths result in instability growth, which is in agree-
ment with conditions for the onset of the magnetothermal
instability23.

IV. CONCLUSION

A magnetised under-dense platform has been outlined
for the measurement of extended-MHD effects. The di-
verse operating range, low laser energies and relatively
symmetric behaviour makes the base configuration suit-
able for measuring the Nernst velocity and its suppres-
sion at larger magnetisations for the first time. Magnetic
field cavitation down the laser axis grows with time and
can be diagnosed using proton deflectometry. In a regime
where the Nernst velocity is much larger than the hydro-
dynamic motion, the proton measurement alone can be
used to estimate the effect. Otherwise, a simultaneous
measurement of plasma density and temperature can be
used to give a Nernst estimate independent of simula-
tions.
The laser spatial profile was then modified to show

the effect of other extended-MHD terms. By allowing an
angle between the heating beam and the applied mag-
netic field, the cross-gradient-Nernst can twist the field,
allowing diagnosis independently of the regular Nernst
by proton probing down the laser axis.

Anisotropic thermal conduction can then be demon-
strated by using a magnetic field perpendicular to the
heating beam, with heat flowing faster along the field
lines. By modifying the applied field strength, the
transition between unmagnetised and highly-magnetised
regimes can be investigated.

Finally, Righi-Leduc heat-flow was shown to be im-
portant when using a square laser spatial profile, with
azimuthal heat-flows rotating the electron energy profile.
Applying the magnetic field in the opposite direction then
reverses the rotation direction. This regime could also be
used to observe the magnetothermal instability for the
first time23.

Laser plasma instabilities could hinder the measure-
ment of extended-MHD terms. The regime in this paper
is estimated to be a factor of 20 above the ponderomotive
filamentation threshold24. Filamentation could create lo-
cally hot regions where Nernst transport is high. The lo-
cal spikes in temperature could slow the cavitation rate,
as field can be trapped between two hot regions. The
strong axial gradients will also increase the twisting of
field by the cross-gradient-Nernst term. Ponderomotive
filamentation could be mitigated by lowering the laser
wavelength24, while changes to the laser intensity and
resultant plasma temperature must ensure that Nernst
transport still dominates over hydrodynamic expansion.
Magnetisation of under-dense plasmas is also expected to
increase thermal filamentation25, but in all regimes tried,
the simulations remained unaffected.

By changing the laser spot radius and keeping the in-
tensity constant, the experiment could be scaled into the
non-local transport regime, increasing the relevance of
the measurements to laser-plasma interaction regimes in
ICF drive5,6,26 and MagLIF pre-heat1. A further inves-
tigation of this transition will be the subject of a further
publication comparing kinetic and MHD results.

The configuration outlined could also be modified to
study the current-driven transport terms (equations 5
and 6). By comparing the Nernst velocity and Hall ve-
locity (equation 7) it is clear that a larger magnetic field
would be suitable, which both suppresses the Nernst and
increases the electron current. While recent advances in
magnetic field generation would allow for access to this
regime27–29, an initially uniform magnetic field does not
result in an electric current. Hydrodynamic motion is
required to first perturb the magnetic field distribution,
increasing the experiment complexity. While the laser
drive will naturally change the field distribution to cause
an electric current, the further perturbation of this field
by the current-driven transport terms will have to be
disentangled from the hydrodynamic motion by a com-
parison with the density profile.
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APPENDIX

A. Magnetic Transport

The transport of magnetic flux in a plasma is typically
written as an induction equation of the form14:

∂B

∂t
= ∇× (v ×B)−∇×

j ×B

nee
−∇×

α · j

n2
ee

2

+∇×
β · ∇Te

e
+∇×

∇Pe

nee
(14)

Where the terms on the right-hand side represent bulk
fluid advection, the Hall term, resistivity, thermally-
driven transport and Biermann battery generation. The
tensor transport coefficients α and β are those defined by

Epperlein and Haines30, with components parallel and
perpendicular to the magnetic field.
While equation 14 fully describes the transport of

magnetic fields in an extended-MHD plasma, the conse-
quences of the equation are not immediately clear. Here
the equation is re-written into a physically intuitive form,
where each term acts to either advect, diffuse or generate
magnetic field. This form is also simpler to implement
into a code, with clearly defined stability criteria.
The thermally-driven magnetic transport term is ex-

panded as:

[

∂B

∂t

]

β

= ∇×(β‖b̂(b̂·∇Te)+β⊥b̂×(∇Te×b̂)+β∧b̂×∇Te)

(15)

Where b̂ is the magnetic field unit vector. This equa-
tion can be rearranged using the vector triple product

[b̂(b̂ · ∇Te) = ∇Te − b̂ × (∇Te × b̂)] and the fact that
∇× β‖∇Te is zero (β‖ is constant for a given ionisation)

to give4:

[

∂B

∂t

]

β

= ∇×

(

−
β∧

e |B|
∇Te×B−

β‖ − β⊥

e |B|
(b̂×∇Te)×B

)

(16)
These terms are now in the common advection velocity

form ∇× (v×B). Therefore, the thermally-driven mag-
netic transport can be completely described as an advec-
tion of the magnetic field with velocity vN = vN⊥+vN∧.
Using a tensor transport coefficient γ further simplifies

the equations, where:

γc
⊥ =

β∧

ωeτe
(17)

γc
∧ =

β‖ − β⊥

ωeτe
(18)

γc = γ
me

τe
(19)

The superscript c represents the dimensionless form
of the coefficient, which is only dependent on the Hall
parameter (ωeτe) and the plasma ionisation state Z. The
magnetic field advection velocities are then:

vN⊥ = −
β∧

e |B|
∇Te = −γ⊥∇Te (20)

which is called the Nernst velocity, and:

vN∧ = −
β‖ − β⊥

e |B|
(b̂×∇Te) = −γ∧(b̂×∇Te) (21)

which is the cross-gradient-Nernst velocity4. The

Nernst velocity can equally be written as vN⊥ = −γ⊥b̂×

(∇Te × b̂) (i.e. removing the component parallel with
the magnetic field). Note the change in subscripts from
β to γ, which is to make clear that the Nernst veloc-

ity (⊥) acts perpendicular to the magnetic field (in the

b̂× (∇Te × b̂) direction), while the cross-gradient-Nernst
(∧) acts perpendicular to both the driving term (in this
case ∇Te) and the magnetic field. A clear benefit of re-
writing the transport coefficients is the simple compari-
son of term magnitudes. As only the advection velocity
component perpendicular to the magnetic field changes

the field (
[∂B

∂t

]

v
N

= ∇× (vN ×B) = 0 for vN parallel to

B), both terms are only significant when the temperature
gradient has a component perpendicular to the magnetic
field. The ratio of the Nernst and cross-gradient-Nernst
velocity magnitudes is simply:

|vN⊥|

|vN∧|
=

γ⊥
γ∧

(22)

Figure 8 plots the Nernst and cross-gradient-Nernst co-
efficients against magnetisation for Z = 1 and ∞, show-
ing that the cross-gradient-Nernst coefficient is similar
in magnitude at low magnetisations (≈ 30% lower for
Z = 1) and is larger at high magnetisations30. This sug-
gests that in all cases where the Nernst velocity is large,
the cross-gradient-Nernst velocity should also be evalu-
ated. Another advantage of the γ formulation is the sim-

ple monotonically-decreasing behaviour of the two coef-
ficients with magnetisation.
The resistive magnetic transport term in equation 14

is typically expanded as:

[

∂B

∂t

]

α

= −∇×

(

α‖

e2n2
e

b̂(b̂·j)+
α⊥

e2n2
e

b̂×(j×b̂)−
α∧

e2n2
e

b̂×j

)

(23)
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FIG. 8. The dependence of the γ magnetic transport coeffi-

cients on ωeτe for Z = 1 (solid line) and Z = ∞ (dashed).
γ∧, the cross-gradient-Nernst transport coefficient, is approx-
imately equal to or larger than the regular Nernst coefficient,
γ⊥ for all magnetisations. Data from30.

Using the same methodology as for the thermally-
driven terms, this can be re-arranged into the form of
magnetic field advection velocities. In this case, how-
ever, the parallel term contains an additional resistive
component, as ∇× (α‖/µ0e

2n2
e)j 6= 0:

[

∂B

∂t

]

α

=−∇×

(

α‖

µ0e2n2
e

∇×B

)

+∇×

((

α⊥ − α‖

e2n2
e |B|

j × b̂−
α∧

e2n2
e |B|

j

)

×B

)

(24)

where the first term on the right is diffusive. The lat-
ter two terms become collisional current-driven transport
velocities vjB = vjB⊥ + vjB∧. A new tensor transport
coefficient δ is also used here to simplify the equations:

δc⊥ =
αc
∧

ωeτe
(25)

δc∧ =
αc
⊥ − αc

‖

ωeτe
(26)

δ = δc
1

ene
(27)

The magnetic field advection velocities are then:

vjB⊥ = −
α∧

e2n2
e |B|

j = −δ⊥j (28)

vjB∧ =
α⊥ − α‖

e2n2
e |B|

j × b̂ = δ∧j × b̂ (29)

FIG. 9. The dependence of the δ magnetic transport coeffi-

cients on ωeτe for Z = 1 (solid line) and Z = ∞ (dashed).
Note the similarity with the γc coefficients in figure 8. Data
from30.

The collisionless Hall term from equation 14 can also
be manipulated into a velocity:

vHall = −
j

ene
(30)

i.e. the magnetic field moves with the bulk electron
motion rather than the ion population. The resistive
advection velocities from equations 28 and 29 are clearly
related to the Hall term, and will be referred to as the
collisonal corrections to the Hall term. Figure 9 compares
the magnitude of δc⊥ and δc∧ for Z = 1 and ∞, with both
monotonically decreasing for increasing magnetisation.
Overall, the magnetic transport equation can be re-

written as in equation 2.
In this rewritten form, each term is simple to imple-

ment in an MHD code, where advection and diffusion op-
erations are commonplace. The stability limits are also
clear, with the CFL condition for the advection in 1-D31:

∆tadvection ≤
∆x

|vB |
(31)

and the Von Neumann stability limit for the diffusion:

∆tdiffusion ≤
∆x2µ0e

2n2
e

2α‖
(32)

It is interesting to note that the remaining transport
coefficients in the re-written induction equation have a
simple dependence: increasing with Z, maximum at zero
magnetisation and monotonically decreasing for increas-
ing ωeτe (apart from the α‖ term, which is constant).

B. Thermal Transport

The electron heat-flow equation is14:
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[

∂Ue

∂t

]

q

= −∇· q
e
= −∇·

(

−κ ·∇Te−
Ue

ene
β · j−

Ue

ene
j

)

(33)
The first term on the right-hand side represents ther-

mal conduction, then electro-thermal terms and finally
the heat-flow associated with the flow of charge. The
thermal diffusion component can be expanded as:

q
κ
= −κ‖b̂(b̂.∇Te)−κ⊥b̂× (∇Te × b̂)−κ∧b̂×∇Te (34)

The first term represents the heat-flow along magnetic
field lines, which remains unchanged by magnetisation.
The second term is the heat-flow perpendicular to the
field and decreases monotonically with magnetisation.
The final term is the Righi-Leduc heat-flow, which rep-
resents heat-flow deflected by the magnetic field into the
direction perpendicular to both the magnetic field and
the temperature gradient.
By using simplified operators the connection between

thermally-driven electron energy transport and magnetic

transport can be made clear. Here ∇‖Te = b̂(b̂.∇Te) and

∇⊥Te = b̂ × (∇Te × b̂) are used. The magnetic field
advection velocity due to temperature gradients can be
re-written alongside the flow of electron energy due to
temperature gradients, as in equations 3 and 4.
The current-driven heat-flows are best understood by

using the velocity of the electron population relative to
the ions, −j/ene. The change in electron energy due to
the current (last two terms in equation 33) can then be
written:

[

∂Ue

∂t

]

j

+ vj · ∇Ue = −Ue∇ · vj (35)

vj = −
j

ene
− β‖b̂(b̂ ·

j

ene
)− β⊥b̂× (

j

ene
× b̂)− β∧b̂×

j

ene
(36)

i.e. the electron energy moves with the electron pop-
ulation relative to the ions, with collisional corrections.
The comparison with the magnetic transport becomes

even more clear by using j
‖
= b̂·(b̂·j) and j

⊥
= b̂×(j×b̂).

The current-driven velocities transporting the magnetic
field and electron energies are then written as in equa-
tions 5 and 6.
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