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Abstract

We present the first application of a new approach, proposed in (2016 J. Phys.
G: Nucl. Part. Phys. 43 04LT01) to derive coupling constants of the Skyrme

energy density functional (EDF) from ab initio Hamiltonian. By perturbing the

ab initio Hamiltonian with several functional generators defining the Skyrme

EDF, we create a set of metadata that is then used to constrain the coupling

constants of the functional. We use statistical analysis to obtain such an ab
initio-equivalent Skyrme EDF. We find that the resulting functional describes

properties of atomic nuclei and infinite nuclear matter quite poorly. This may

point to the necessity of building up the ab initio-equivalent functionals from
more sophisticated generators. However, we also indicate that the current pre-

cision of the ab initio calculations may be insufficient for deriving meaningful

nuclear EDFs.
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1. Introduction

Different energy scales that appear in nuclear systems suggest a theoretical approach based

on effective field theories (EFT), which use relevant degrees of freedom adapted to a given

energy scale [1]. A remarkable example is the chiral effective field theory (χ-EFT) [2, 3]:
by using neutrons, protons, and pions as degrees of freedom, χ-EFT is able to provide con-

sistent description of numerous observables in atomic nuclei. Chiral interactions are used in

the framework of ab initio methods to solve the many-body Schrödinger equations, employ-

ing controlled approximations. The numerical solutions require huge computational resources;

for this reason, actual state-of-the-art ab initio calculations are limited to nuclei that are

not too heavy and/or close to (semi)magic systems [4–7]. In particular, the description of

open-shells nuclei has a recent history, started with the Gorkov–Green’s function approach

[8].

Another example of successful effective theory is the approach based on nuclear energy

density functionals (EDFs) [9, 10]. Nuclear EDF is a versatile tool that, at low computational

cost, allows us to describe properties of atomic nuclei across the entire nuclear chart from

drip-line to drip-line and from light to super-heavy nuclei. The underlying non-relativistic

functionals are usually obtained from phenomenological two-body potentials called func-

tional generators, which have radial form factors of zero-range, for Skyrme [11, 12], or

finite-range, for Gogny [13] implementations, with coupling constants adjusted to repro-

duce selected nuclear observables. In addition to finite nuclei, also infinite nuclear matter

properties can be addressed within the EDFs formalism [14–16], and included among the

observables.

In reference [17], it was shown that Skyrme EDFs have reached their best in terms of repro-

ducing the experimental observables. As a consequence, several groups are exploring new

forms of functional generators to improve precision of describing data [18–22]. The result-

ing functionals are then adjusted following standard procedures based on constraining the

coupling constants to a given set of nuclear observables [23, 24].

In this article, we aim to explore a complementary approach, which is based on explic-

itly bridging the ab initio methods with the nuclear EDFs. Formal connections between the

two approaches are the subject of recent studies [25, 26]. Furthermore, in reference [27] the

density matrix expansion formalism has been used to obtain a set of functionals microscop-

ically constrained from chiral effective field theory interactions. Here, we proceed by fitting

parameters that enter the energy functional directly to metadata generated by the ab initio
calculations, using the method suggested in reference [28]. In reference [28] this method

was applied adjusting the Skyrme coupling constants to metadata generated by the Gogny

functional. In this work, we perform a realistic application of the method by employing

full-fledged ab initio calculations that use self-consistent Green’s function (SCGF) [29]

methodology with the chiral interaction NNLOsat [30].

The paper is organised as follows: section 2 briefly recalls the SCGF (section 2.1) and EDF

(section 2.2)methods, and explains the formalism to derive the model functionals (section 2.3).

Results are discussed in section 3 and conclusions are given in section 4.
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2. Theoretical

2.1. Self-consistent Green’s function method

We separate the nuclear many-body Hamiltonian Ĥ = Ĥ0 + Ĥ1 into a noninteracting part

Ĥ0 = T̂ + Û, with the auxiliary one-body operator Û, and the interacting part defined as

Ĥ1 = −Û + V̂2B + V̂3B. We express the nuclear Hamiltonian in second quantisation as

Ĥ =
∑

α

ǫ0αa
†
αaα −

∑

αβ

〈α|Û|β〉a†αaβ +
1

4

∑

αβγδ

〈αβ|V̂2B|γδ〉a†αa
†
βaδaγ

+
1

36

∑

αβμγδν

〈αβμ|V̂3B|γδν〉a†αa
†
βa

†
μaνaδaγ , (1)

where ǫ0α are the single-particle energies of Ĥ0. By solving the corresponding Schrödinger

equation,

Ĥ|ΨA
0 〉 = EA0 |Ψ

A
0 〉, (2)

one obtains the ground-state energy EA0 and wave function |ΨA
0 〉 of the nuclear system. The

exact solution of equation (2) is very complicated and it is typically limited to systems with

very few number of nucleons [31]. Rather than calculating the full many-body wave function,

it is possible to expand the solution of the Schrödinger equation in terms of the propaga-

tion of single-particle excitations and the correlated density matrix of the system by using

SCGF method [29]. These excitations represent basic collective degrees of freedom of the

nucleus and they are described by the one-body Green’s function, or propagator Gαβ . Using

the Källén–Lehmann representation [32, 33], Gαβ takes the form

Gαβ(E) =
∑

n

〈ΨA
0 |aα|Ψ

A+1
n 〉〈ΨA+1

n |a†β|Ψ
A
0 〉

E − (EA+1
n − EA0 )+ iη

+
∑

k

〈ΨA
0 |a

†
β|Ψ

A−1
k 〉〈ΨA−1

k |aα|Ψ
A
0 〉

E − (EA0 − EA−1
k )− iη

.

(3)

Here the complete set of eigenstates |ΨA+1
n 〉, |ΨA−1

k 〉 with eigenvalues EA+1
n , EA−1

k introduce

the intermediate (A± 1)-body systems. Then, EA+1
n − EA0 and E

A
0 − EA−1

k are, respectively, the

excitation energies of the propagating quasi-particle (index n) and quasi-hole (index k) states.
The propagator given in equation (3) satisfies the Dyson equation

Gαβ(E) = G(0)
αβ(E)+

∑

γδ

G(0)
αγ(E)Σ

⋆
γδ(E)Gδβ(E), (4)

where G(0)
αβ(E) is the propagator for the noninteracting system Ĥ0, and Σ

⋆
γδ(E) is the irre-

ducible self-energy. The latter represents the nonlocal and energy-dependentpotential to which

each nucleon is subjected when interacting within the nuclear medium. The nonlinearity of

equation (4) in terms of Gαβ(E) requires an iterative procedure to reach convergence. The full
self-consistency is required to satisfy fundamental symmetries and conservation laws [34].

A crucial ingredient of equation (4) is the self-energy. This is composed of three parts as

Σ
⋆
γδ(E) = −〈γ|U|δ〉+Σ

(∞)
γδ + Σ̃γδ(E), (5)

which, respectively, are the auxiliary potential, static mean-field, and energy-dependent com-

ponent. To perform calculations of the energy-dependent component, in this work we employ

the algebraic diagrammatic constructionmethod [35, 36] up to third order, denoted by ADC(3).
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We refer to reference [37] for a more pedagogical introduction of the method. The accuracy

of ADC(3) can be estimated to be of the fourth order in Ĥ1, giving in practice an error of

1% of the total binding energy [37].

Another important aspect of the ab initio calculations is the presence of explicit three-

body interaction V̂3B. By means of the modified Migdal–Galitski–Koltun sum rule [38], we

can write the ground-state energy of the system as,

EA0 =
∑

αβ

1

2π

∫ ǫ−
0

−∞

dE
[

〈α|T̂|β〉+ Eδαβ
]

Im{Gβα(E)} −
1

2
〈ΨA

0 |V̂
3B|ΨA

0 〉, (6)

where ǫ−0 is the highest quasi-hole energy, namely ǫ−0 = maxk(EA0 − EA−1
k ). The determination

of the expectation value of the three-body interaction would require calculation of many-

body propagators. Instead, assuming that the magnitude of the three-body term is smaller than

that of the two-body term, we take the lowest order approximation for the Hamiltonian, leading

to

〈ΨA
0 |V̂

3B|ΨA
0 〉 ≈

1

6

∑

αβμγδν

〈αβμ|V̂3B|γδν〉 ργαρδβρνμ, (7)

where ραβ is the one-body density matrix.

2.2. Model energy density functionals and generators

Having defined the main theoretical aspects of the ab initio method employed in this article,

we now define the model energy density functional as

Ẽ[ρ] = T1B[ρ]+ VCoul[ρ]+
∑

j

C j V
gen
j [ρ]. (8)

The different terms correspond to average values, evaluated with respect to a Hartree–Fock

(HF) state, of the kinetic energy T1B[ρ] ≡ 〈Φ|T̂1B|Φ〉HF, Coulomb potential VCoul[ρ]
≡ 〈Φ|V̂Coul|Φ〉HF, and interaction components Vgen

j [ρ] ≡ 〈Φ|V̂gen
j |Φ〉HF. The operators V̂gen

j

represent our choice of the generators to build the functional, whereas Cj are the coupling

constants we need to adjust on (meta)-data.

In the present article, we define generators V̂gen
j , based on ten individual terms T̂ i and T̂σ

i

for i = 0, 1, 2, and T̂e, T̂o, T̂W0, and T̂3 of the Skyrme functional generator [12], that is,

V̂Skyrme
= t0

(

1+ x0P̂
σ
)

δ (r1 − r2)+
1

2
t1
(

1+ x1P̂
σ
)

[

k̂′2δ (r1 − r2)+ δ (r1 − r2) k̂
2
]

+ t2
(

1+ x2P̂
σ
)

k̂′ · δ (r1 − r2) k̂+ iW0 (σ̂1 + σ̂2) ·
[

k̂′ × δ (r1 − r2) k̂
]

+
te
2

{[

3
(

σ1 · k
′
) (

σ2 · k
′
)

− (σ1 · σ2) k
′2
]

δ (r1 − r2)

+ δ (r1 − r2)
[

3 (σ1 · k) (σ2 · k)− (σ1 · σ2) k
2
]}

+ to
{

3
(

σ1 · k
′
)

δ (r1 − r2) (σ2 · k)− (σ1 · σ2)
[

k′ · δ (r1 − r2) k
]}

+ t3δ (r1 − r2) δ (r2 − r3)A123

(

P̂σ , P̂τ
)

= t0T̂0 + t0x0T̂
σ
0 + t1T̂1 + t1x1T̂

σ
1 + t2T̂2 + t2x2T̂

σ
2

+ W0T̂W0 + teT̂e + toT̂o + t3T̂3, (9)

4
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where A123 is the antisymmetric operator for combinations of P̂σ = 1
2
(1+ σ1 · σ2) and

P̂τ = 1
2
(1+ τ 1 · τ 2). We refer to reference [39] for more details.

To determine the coupling constants of the interaction using ab initio methods, it is conve-

nient to transform the generators given in equation (9) to linear combinations that give specific

isoscalar/isovector terms of the functional [28]9. This is done by means of the followingmatrix

relation,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

V̂ρ
0

V̂ρ
1

V̂∆ρ
0

V̂∆ρ
1

V̂τ
0

V̂τ
1

V̂J1
0

V̂J1
1

V̂W0

V̂ t3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

8

3
−
4

3
0 0 0 0 0 0 0 0

0 −4 0 0 0 0 0 0 0 0

0 0 −
16

3

8

3

16

3
−
8

3
−
16

15

16

15
0 0

0 0 0 8 −
32

3

40

3

16

5

16

15
0 0

0 0
4

3
−
2

3
4 −2 −

8

15
0 0 0

0 0 0 −2 −8 10
8

5
0 0 0

0 0 0 0 0 0
8

5

8

5
0 0

0 0 0 0 0 0 −
24

5

8

5
0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

T̂0

T̂σ
0

T̂1

T̂σ
1

T̂2

T̂σ
2

T̂e

T̂o

T̂W0

T̂3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (10)

We explicitly included only the vector part V̂J1
T of the tensor term [40], which in the case

of spherical symmetry considered here gives the only non-zero contribution. Note that the

terms associated with the V̂W0 and V̂ t3 generators do not allow for the separation of isoscalar/

isovector terms, and thereforewe keep them identical to the corresponding terms of the Skyrme

generator in equation (9). The generators listed on the left-hand side of equation (10) are then

used as generators, V̂gen
j , j = 1–10, that define the functional in equation (8).

2.3. Derivation of the functionals

In the electronic density functional theory [41], one uses the Levy–Lieb constrained variation

[42–45] to obtain the ground state energy of the system. This procedure consists in a two-step

minimisation,

Eg.s. = min
ρ

{

min
|Ψ〉→ρ

[

〈Ψ|T̂ + V̂|Ψ〉
]

}

≡ min
ρ

E[ρ], (11)

where V̂ stands for the Coulomb potential and symbol min|Ψ〉→ρ denotes an inner (first-

step) minimisation over all correlated many-body states |Ψ〉 that have a common fixed

9 In this paper, we use terms isoscalar and isovector, which are used in the nuclear density functional theory to describe

parts of the functional that depend on the isoscalar or isovector densities, respectively. These terms are confusingly

identical to terms isoscalar, isovector, or isotensor, which pertain to the covariance of the total interaction or functional

with respect to rotations in the isospace. Both standards are now widely used in the literature, so it is probably too late

to propose less a confusing terminology.
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one-body density profile ρ(r). The outer (second-step) minimisation is then performed over all

possible profiles ρ(r), and, in such a way, the global minimum of energy, and thus the exact

ground-state energy Eg.s. is obtained.

The inner minimisation can be conveniently performed by an unconstrained minimisation

of the Routhian R̂ at fixed one-body external potential U(r) that plays a role of the Lagrange
multiplier,

R[U] = min
|Ψ〉

〈Ψ|R̂|Ψ〉 = min
|Ψ〉

〈Ψ|

[

T̂ + V̂ +

∫

drU(r)ρ̂(r)

]

|Ψ〉. (12)

This gives the energy E[U] = R[U]−
∫

drU(r)ρ(r) and density ρ[U] as functionals of the

potential U(r). Assuming that the inverse functional U[ρ] can be found, we obtain the exact

energy density functional,

E[ρ] ≡ E[U[ρ]], (13)

which after the outer (second-step) minimisation gives again the exact ground-state energy

Eg.s..

In the case of a nuclear system, we consider the analogous first-step variation consisting in

the minimisation of the Routhian R̂ab as

δΨ〈Ψ|R̂ab|Ψ〉 = δΨ〈Ψ|

[

Ĥab +

∫

drU(r)ρ̂(r)

]

|Ψ〉 = 0, (14)

where Ĥ
ab
is the Hamiltonian of the system, equation (1). We use the superscript ab to indicate

that it is the Hamiltonian of the ab initio theory, distinguishing it from the Hamiltonian used

to build the model functional. The minimisation gives us many-body states as functionals of

the external potential, |Ψ(U)〉.
The integrand on the right-hand side of equation (14) introduces a perturbation of the

ground-state |Ψg.s.〉. The response of the system to the perturbation causes a change in the

density ρ. If we were able to probe the system with all possible potentials U(r), we would

have obtained the functionalEab[U] ≡ 〈Ψ(U)|Ĥ
ab
|Ψ(U)〉, and then, as above, the exact energy

density functional Eab[ρ]. In the second step, the functional Eab[ρ] is minimised with respect

to ρ, which gives the exact ground-state energy Eab
g.s. and density ρg.s.(r).

Being unable to perturb the system with an infinite number of external potentials, let us

introduce a discrete finite set of pre-defined external potentials ui(r) and their corresponding

strengths λi, whereby the first-step minimisation (14) becomes,

δΨ〈Ψ|R̂ab|Ψ〉 = δΨ〈Ψ|

[

Ĥab +
∑

i

λi

∫

dr ui(r)ρ̂(r)

]

|Ψ〉 = 0. (15)

With this restriction, the ab initio energy and density, Eab(λi) and ρab(λi), become functions

(not functionals) of the finite set of strengths λi. Obviously, we now do not know what is

the full energy density functional Eab[ρ] in the infinite-dimensional space of all possible

one-body density profiles, however, we know it exactly on a finite-dimensional manifold of

densities parametrised by strengths λi. Recall that this manifold still contains the point λi = 0

that corresponds to the exact ground state. The second-step variation would now correspond

to the minimisation of function Eab(λi) in finite dimensions.

As proposed in reference [28], we now conjecture that a meaningful manifold of ab initio
densities ρab(λi) can be obtained not by pre-defining external potentials ui(r), but by perturbing

6
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the system with generators that are going to be used for modelling the functional, section 2.2,

that is,

δΨ〈Ψ|R̂ab|Ψ〉 = δΨ〈Ψ|

[

Ĥab +
∑

i

λiV̂
gen
i

]

|Ψ〉 = 0. (16)

Since the unrestricted minimisation of the Routhian is equivalent to finding its exact ground

state |Ψab(λi)〉 and eigenvalue Rab(λi), we have
[

Ĥab +
∑

i

λiV̂
gen
i

]

|Ψab(λi)〉 = Rab(λi)|Ψ
ab(λi)〉. (17)

Formally, by replacing minimisation (15) with minimisation (16), we do not make any

new assumptions. Indeed, the previously made assumption about the reversibility of the func-

tional ρ[U] suffices. It stipulates that for any density ρ(r) generated by the latter minimisation

there exists a potentialU(r) that would have generated it by the former minimisation. However,

when using minimisation (16) we do not have to pre-define any potential or, for that matter,

we do not have to know it at all.

Since our goal is to use the ab initio energies with perturbation λi as metadata to determine

the coupling constants of our model functional, we impose that the ab initio energy can be

expressed in the form of functional (8), that is,

Eab(λi) = T1B[ρab(λi)]+ VCoul[ρab(λi)]+
∑

j

C j V
gen
j [ρab(λi)]. (18)

Equation (18) constitutes the central point of our approach. At first glance, it looks like

an impossible miracle: it expresses the exact ab initio energy as a functional of the exact ab
initio one-body density profile ρ(r) only. However, this is, in fact, exactly the main statement

of the rigorous DFT [41, 46, 47]. Without repeating here the related arguments, at this point

it is nevertheless worth summarizing the three assumptions we did make when formulating

equation (18):

(a) We use a specific form of the density functional restricted to a few terms given by Skyrme

generators (9). Obviously, the exact functional of equation (13) does not have to have

such or a similar form. This is why in our approach we aim to derive a model functional

and not the exact one. Nevertheless, a successful phenomenology of modelling nuclear

phenomena by Skyrme-type functionals supports the idea of the model formulated in

equation (18).

(b) Skyrme functional depends not only on the local density profiles ρ(r) for neutrons and
protons, but also on a few second-order quasilocal densities [40, 48]. Although it can be

rigorously proved that any arbitrary local density profile can be modelled by a density

profile of a Kohn–Sham Slater determinant [49], a simultaneous modelling of local and
quasilocal densities is only an approximation.

(c) When matching left- and right-hand sides of equation (18), we use a specific finite set of

Lagrange multipliers λi. Had the form of functional on the right-hand side been exact,

we could have used any set of λi. However, for the specific model functional we use, the

results may depend on the specific values of the Lagrangemultipliers. Our choice of using

values around λi = 0 constitutes, therefore, another approximation.

In addition, considering that the Kohn–Sham kinetic energy represents a good approxima-

tion to the one-body kinetic energy, we assume that

〈Ψab(λi)|T̂
1B|Ψab(λi)〉 ≈ T1B[ρab(λi)]. (19)

7
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If in the ab initioHamiltonian the two-body center-of-mass correction T̂2B is included, it needs

to be removed from the left-hand side of equation (18).Moreover,we suppose that theCoulomb

contribution in the ab initioHamiltonian is close to the Hartree–Fock average in the functional,

namely,

〈Ψab(λi)|V̂
Coul|Ψab(λi)〉 ≈ VCoul[ρab(λi)]. (20)

Based on these two additional assumptions, we subtract the kinetic and the Coulomb

energies from both sides of equation (18), rewriting it as

〈Ψab(λi)|V̂
ab|Ψab(λi)〉 = 〈Ψab(λi)|Ĥ

ab − T̂ − V̂Coul|Ψab(λi)〉 =
∑

j

C j V
gen
j [ρab(λi)],

(21)

where V̂ab is the ab initio potential. The coupling constants Cj can now be obtained by linear

regression analysis to best match the ab initio results appearing on both sides of equation (21)
and determined for a meaningful set the strength parameters λi.

To evaluate the right-hand side of equation (21), we used standard expressions for

Hartree–Fock expectation values of two- and three-body generators, that is,

〈Ψ(λi)|V̂
gen
2B |Ψ(λi)〉HF =

1

2

∑

αβγδ

〈αβ|V̂gen
2B |γδ〉ρ

ab
γα(λi)ρ

ab
δβ(λi), (22)

〈Ψ(λi)|V̂
gen
3B |Ψ(λi)〉HF =

1

6

∑

αβμγδν

〈αβμ|V̂gen
3B |γδν〉 ρ

ab
γα(λi)ρ

ab
δβ(λi)ρ

ab
νμ(λi), (23)

where ρabαβ is the ab initio one-body density matrix, and 〈αβ|V̂gen
2B |γδ〉 and 〈αβμ|V̂

gen
3B |γδν〉 are

the antisymmetrized two- and three-body matrix elements.

To evaluate the left-hand side of equation (17), we have to take into account the fact that

the SCGF solver is not able to separate the different potential contributions to the Routhian

in equation (16), but it provides us with the total interaction energy, defined as

V tot(λi) = 〈Ψab(λi)|V̂
ab + V̂Coul +

∑

i

λiV̂
gen
i |Ψab(λi)〉. (24)

This gives equation (21) in the form

Vab(λi) ≡ V tot(λi)− 〈Ψab(λi)|V̂
Coul +

∑

i

λiV̂
gen
i |Ψab(λi)〉 =

∑

j

C j V
gen
j [ρab(λi)], (25)

that is, we have to evaluate the ab initio expectation values of the Coulomb potential and

functional generators.

For a generic two-body operator, the exact expectation value 〈Ô
2B
〉 ≡ 〈Ψ(λi)|Ô

2B
|Ψ(λi)〉

is given as infinite expansion in terms of the effective interaction and dressed propaga-

tors, as sketched in figure 1 (first line). From a practical point of view, such a summation

becomes computationally difficult, because the dressed propagators contain many poles that

multiply matrix elements of every interaction line. Therefore, we approximate the single-

particle propagator Gαβ(E) with an optimised reference state (OpRS) propagator [50, 51],

8
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Figure 1. Diagrammatic representation of the expectation value of the two-body

operator Ô
2B
, represented by zigzag lines. Double straight lines are used for dressed

propagators, single lines for OpRS propagators, and wavy lines for two-body effective
interactions. These are Feynman diagrams in the energy formulation, that is, they include
forward and backward propagation. In the right-hand side of the first line, we can recog-
nise the infinite expansion in term of dressed propagators. In the second line, we use
the ph-RPA and pp/hh-RPA insertions to estimate contributions from NNLO and higher
order terms.

defined as

GOpRS

αβ (E ) =
∑

n/∈F

(φnα)
∗φnβ

E − ǫOpRSn + iη
+
∑

k∈F

φkα(φ
k
β)

∗

E − ǫOpRSk − iη
. (26)

This is a model propagator for independent-particle states with energy ǫOpRS and wave func-

tion φ. Such a propagator contains a reduced number of poles compared to the dressed one,

while the energies and wave functions of the OpRS propagator are constrained to give the

same momenta of the dressed propagators. We estimate 〈Ô
2B
〉 using the dressed propagators

in the leading order (LO), or Hartree–Fock average, and the OpRS propagators in the next-to-

leading order (NLO) and in the all-orders re-summation diagrams, as depicted in the second

line of figure 1. We account for higher orders with the ph-, pp- and hh-RPA (random phase

approximation) insertions, respectively, in the ring and ladder re-summation diagrams. At the

cost of introducing a small error of the density, the use of the OpRS propagator allows us to

remarkably speed up calculation of 〈V̂Coul〉 and 〈V̂gen
i 〉, which, otherwise, would not have been

possible.

3. Results

In this section, we present our results obtained using SCGF with ADC(3) approximation.

We chose the interaction NNLOsat [30] for the two-body and three-body sector. We made

this choice since this interaction has been optimised to reproduce ground state energies and

radii for isotopes up to mass A = 24 and it has been shown to predict accurate saturation

properties also for larger isotopes and for infinite nuclear matter [52–55].

The SCGF calculations were performed using a basis of spherical harmonic oscillator wave

functionswith oscillator energy �ω= 20MeV. Themodel spacewas limited to states with prin-

cipal quantum numbers smaller or equal than Nmax. In terms of computational resources, even

if the present technology allows calculations up to Nmax = 13, this would require a too large

amount of CPU hours to complete the full set of perturbations required in the current analysis.

We thus decided to limit the model space to Nmax = 9. This model space may converge poorly

9
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Figure 2. Binding energies per nucleon E/A for different nuclei. Theoretical values cor-
respond to the unperturbed cases (λi = 0). Calculations were performed with NNLOsat

[30] interaction, �ω = 20 MeV, and model space specified by Nmax in the legend. Black
rectangles represent the experimental values taken from reference [56].

to the experimental values, but, in the first attempt at this approach, our attention focus on the

validity of the method rather than on the accurate prediction of the experimental masses. Note

that recent calculations in reference [55] showed that �ω = 20 MeV is optimal for converging
16,24O but only nearly optimal for the heaviest isotopes we consider here. However, this small

de-tuning has little effects when compared to our Nmax = 9 truncation. Therefore, we used the

same oscillator frequency for all computations in this work.

In figure 2, we show binding energies per nucleon, E/A, for seven nuclei 16O, 24O, 34Si,
36S, 40Ca, 48Ca, and 56Ni. Each nucleus is in the configuration corresponding to fully filled

spherical orbitals. These nuclei represent all available convergent ADC(3) calculations among

the magic systems between 16O and 56Ni.

Values of E/A are reported for three choices of the size of model space: Nmax = 7, 9,

and 11, to be compared with the experimental values taken from reference [56]. The conver-

gence in terms of Nmax is not fully achieved; nevertheless, with increasing Nmax, most binding

energies decrease towards the experimental values. The model space of Nmax = 7 appears to

be too small to reproduce experimental results. For Nmax = 11, the maximum difference with

experiment appears for 56Ni, with the difference of around 3% of the total energy. This dis-

crepancy is a combination of the 1% error on the correlation energy that is associated with

the ADC(3) truncation [37] and of the accuracy of state-of-the-art chiral nuclear forces [55,

57]. In absolute terms, the calculated binding energy of 56Ni is more than 10 MeV above

the measured value. Such a deviation is much larger than the standard deviation of typical

EDFs, which is of the order of 1 MeV [24, 58]. Clearly, with the model space truncation dis-

cussed below, the overall accuracy with respect to predicting the experiment is too poor to

obtain novel functionals capable of reducing the discrepancies between the EDF approach and

the experiment. However, our goal is to reproduce the ab initio energies, irrespective of their
detailed agreement with experiment.

Typical ab initio computations subtract the kinetic energy of the centre of mass to directly

access the intrinsic ground state energy [59]. This implies adding a one- and a two- body

10
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correction terms to the nuclear Hamiltonian [37, 60]. The result of retaining only the one-body

term is shown in figure 2 for Nmax = 9 as ‘1bodycm’ and it amounts to an overcorrection.

However, this additional discrepancy will not affect our goal of investigating the consistency

between microscopic results and the functionals that they generate. For our purposes, it is

technically simpler to drop the two-body center-of-mass correction because it avoids further

approximations in the way the kinetic energy is treated in the SCGF and EDF approaches.

Since the EDF results also depend on the number of oscillator shells included in the model

space [61], we fixed the model spaces of both approaches to be Nmax = 9 (1bodycm) for the

following analysis.

In the model functional, equation (8), we consider generators of zero-range contact interac-

tion (Skyrme-like) defined in equation (10), namely, V̂ρ
T , V̂

∆ρ
T , V̂τ

T , V̂
J1
T , V̂W0, and V̂ t3. Subscripts

T = 0 and 1 denote generators inducing terms of the functional that depend on isoscalar and

isovector densities, respectively. Such a link between generators and densities is valid only

on the EDF level; for the chiral interactions used in our SCGF computations, already at the

next-to-leading order in powers of the interaction, expectation values of generators contain

contributions from both isoscalar and isovector densities.

We perturbed ground states of each of the seven selected nuclei using four different inten-

sities of the perturbation strength λi, separately for each of the 10 generators. In this way,

we obtained 284 converged results10, which represent our full database of the perturbed and

unperturbed ground-state energies. The choice of using non-zero values of λi separately for

each V̂gen
i represents a compromise between the volume of calculations and a coverage of the

full manifold in the space of perturbations λi. Obviously, the larger the λi’s the wider is the
density space probed, however, if perturbations are too strong, the numerical SCGF solutions

may diverge. In practice, for each generator, we have found a most suitable range of values of

λi’s that were used in the final calculations.

3.1. Estimated errors on the SCGF calculations

Figure 3 shows the ab initio energies in function of λi calculated for different perturbations

V̂gen
i in 34Si. We had expected that the value at λ = 0 (black triangle) would be the one with

the lowest energy Eab(0), because for any state different than the exact ground state |Ψ(0)〉, the
variational principle stipulates that

Eab(λi) � Eab(0), (27)

assuming, of course, that the ab initio energies are calculated exactly. From the plot, it is

evident that there are cases of energies Eab(λi) smaller than Eab(0) in violation of the varia-

tional principle. For the perturbations induced by the three-body generator V̂ t3 (hexagons), the

energy does not present a minimum, but increases monotonically with λi. This effect can be

partially related to the way the contribution of the three-body interaction is extracted. In fact,

we can estimate only the leading order as in equation (7).

The violation of the variational principle must be traced back to a series of approximations

used to calculate the SCGF results. To make any sensible use of these metadata when fitting

the functional coupling constants, we thus have to estimate the uncertainties associated with

the SCGF calculations.

The major source of error in our calculation is probably related to the subtraction proce-

dure of the perturbation energies from solutions given by the minimisation of the Routhian.

10 For 36S, 3 data points did not converge.
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Figure 3. Perturbed ab initio energies compared with the unperturbed energy in 34Si.
Symbols shown in the legend correspond to different generators V̂gen

i . The full triangle
represents the unperturbed energy at λi = 0 and the dashed line shows the reference
value of Eab(0).

For simplicity, we further assume that only one perturbing potential contributes to this uncer-

tainty. The resulting subtraction error, ∆Eab
S (λi), associated with the value of Eab(λi) can be

estimated as

∆Eab
S (λi) = | 〈λiV̂

gen
i (λi)〉RL − 〈λiV̂

gen
i (λi)〉NLO | , (28)

where 〈〉RL, 〈〉NLO, indicates the truncation, respectively, up to ring and ladder RPA, to NLO

approximation. Such error can be viewed as a relative error between the perturbed solutions

and the unperturbed one. In figure 4, we show the subtraction errors ∆Eab
S (λi) calculated for

perturbations induced by the potential V̂J1
0 in 34Si. As expected, this error is zero for λi = 0

and grows rapidly with increasing values of the perturbation strength parameter λi.
We also found another way to estimate uncertainties of the SCGF calculations, which is

independent of the approximately calculated average values of the perturbation potentials

V̂gen
i . Indeed, we can determine such estimates by using the well-known Hellmann–Feynman

theorem [62]. For any Hamiltonian Ĥλ = Ĥ0 + λV̂pert that depends explicitly on the parameter

λ, the theorem states that

dEλ

dλ
≡

d

dλ
〈Ψ(λ)|Ĥλ|Ψ(λ)〉 = 〈Ψ(λ)|

∂Ĥλ

∂λ
|Ψ(λ)〉 = 〈Ψ(λ)|V̂pert|Ψ(λ)〉. (29)

Equation (29) is valid under the condition that |Ψ(λ)〉 is an eigenstate of Ĥλ,

Ĥλ|Ψ(λ)〉 = Eλ|Ψ(λ)〉, or an Hartree–Fock wave function [63], or a variational wave function
[64]. However, when the wave function is expanded in a truncated basis [65], or it is a solution

of a perturbative expansion [64], the Hellman–Feynman theorem is violated. The ground-state

wave function in the SCGF method is not variational because the ADC(3) approximation
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Figure 4. Examples of errors associated with the ab initio energies Eab(λi), estimated in
34Si for perturbations related to generator V̂J10 . The darker shadow represents the error
∆Eab

S given by equation (28). The lighter shadow represents the error ∆Eab
H–F extracted

from the Hellmann–Feynman theorem, equation (31).

is a truncated expansion. The degree to which the Hellman–Feynman theorem is violated

then illustrates the degree of violation of the variational principle.

The derivative at λ = 0 in the left-hand side of equation (29) can be, for small values of λ,
determined by the finite difference method,

dEλ

dλ
(0) ≈

E(λ)− E(−λ)

2λ
. (30)

In our numerical test, we studied the case of the perturbation given by V̂pert = V̂ab + V̂Coul,

that is, by the full potential V tot(0), equation (24), that defines Ĥ
ab
at λi = 0. This compares

the finite difference of the energy calculated for the perturbed cases (λ and −λ) with the

average value of the interaction energy in the unperturbed case (λ = 0). Such a comparison

offers an estimate of the difference between the approximated energy in the ADC(3) method

and the exact energy. Consequently, we define the error of the ab initio energy as

∆Eab
H–F =

∣

∣

∣

∣

dEλ

dλ
(0)− 〈Ψ(0)|V̂ tot(0)|Ψ(0)〉

∣

∣

∣

∣

, (31)

where subscript H–F stands for the error extracted from the Hellmann–Feynman theorem.

This error represents an absolute error of the total energy that is due to the approximated solu-

tion of the SCGF method. It depends on the nucleus, but we assume it is independent of the

perturbation, namely the value calculated at λ= 0 is attributed to all perturbed and unperturbed

total energies of a given nucleus.

In the case of Nmax = 9 (1bodycm), the violation of the Hellmann–Feynman theorem, as

defined in equation (31), is for lighter (heavier) nuclei studied in this paper equal to about

13



J. Phys. G: Nucl. Part. Phys. 47 (2020) 085107 G Salvioni et al

1% (3%–4%) of the total energy. This error is larger than the estimate provided in reference

[37], because it gives a cumulative effect resulting from the ADC(3) truncation and reduced

model space.

In figure 4, we also show the Hellmann–Feynman error ∆Eab
H–F determined in 34Si. We

see that for this particular generator, V̂J1
0 , ∆Eab

H–F is more than twice larger than ∆Eab
S . We

checked that in most cases considered in this paper∆Eab
H–F > ∆Eab

S , even in very light nuclei.

Given the very different magnitude and sources of the subtraction and Hellmann–Feynman

errors, we decided to keep them separate and perform two independent analyses of the coupling

constants.

In view of the identified uncertainties, we can now conclude that the explicit vio-

lation of the variational principle obtained for Eab(λi �= 0), see figure 3, can be con-

sidered acceptable consequences of the inherent imprecision encountered in the SCGF

approach.

3.2. Linear regression analysis to determine the coupling constants

From the set of ab initio calculations described in section 2.3, we obtained d = 284

equations (25) whose left-hand sides represent regression dependent variable yi, i = 1–284,

and whose p expectation values on the right-hand sides form the matrix of features, that is,

yi =
p

∑

j=1

Ji jC j, (32)

where each coupling constant Cj corresponds to a generator of the model functional given in

equation (8).

Introducing for compactness the vector notation:C = (C1, . . . ,Cp) and y= (y1, . . . , yd ), we
build the penalty function by of the least-square method as

χ2(C) =
1

d − p
(JC− y)TW (JC − y) , (33)

where the weight matrixW is a diagonal matrix with elementsWii = wi. We define the weight

of each data point as the inverse of the estimated error squared,

wi =
1

(∆yi)2
, (34)

where∆yi is composed of three contributions [66],

(∆yi)
2 = (∆yabi )

2 + (∆ynum)2 + (∆ymod)2. (35)

∆yabi is the error attributed to the SCGF approach, namely, we take it as ∆Eab
S (28) or ∆Eab

H–F

(31). ∆ynum is the numerical precision of the SCGF calculations, which is smaller that 5

×10−5 MeV and can be neglected.∆ymod represents the error associated with the model itself,

which is entirely unknown, and thus it has to be tuned to normalise the penalty function χ2.

Starting from an arbitrary value, ∆ymod can be increased iteratively up to the value at which

the χ2 approaches the value of 1. Then, the penalty function in equation (33) satisfies the

typical statistical normalisation condition χ2(C )→ 1 at the minimum, and ∆ymod acquires

interpretation of the Birge factor [67].

Minimisation of χ2 gives the solutionCmin, covariancematrixK, statistical error associated

with the parameters,∆Cmin, and propagated errors of observables [66, 68, 69].
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Figure 5. Residuals calculated for 56Ni with the parametrizations DS(10) (a) and
DH–F(10) (b). Shadows show the corresponding propagated errors. For clarity, in (b)
we only show the one corresponding to generator V̂W0.

3.3. Fitted coupling constants

We minimise the χ2 defined in equation (33) using the two types of errors discussed in pre-

vious section. We thus obtain two sets of results: the one labelled DS(10), that is, obtained

using the errors defined in equation (28) and that labelled DH–F(10)—using the errors defined

in equation (31).

Given the large uncertainties of the metadata and the fact that they could be obtained

only in fairly light nuclei with small isospin asymmetry, the resulting coupling constants are

poorly determined with quite large error bars. This is particularly evident for the DH–F(10)

set of parameters. The relative errors of the isovector coupling constants are often of the

order of 100%, meaning that the obtained values are compatible with 0. The very large errors

mean that the χ2 surface is fairly flat in these particular directions of the parameter space. As

a consequence, when used to calculate atomic nuclei, the obtained coupling constants often

immediately lead to finite-size instabilities [70].
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The quality of the fit can be easily judged by inspecting relative residuals of equation (25),

defined as

Residuals ≡

∑

jC j V
gen
j [ρab(λi)]− Vab(λi)

Vab(λi)
, (36)

and for 56Ni shown in figure 5(a) for DS(10) and (b) for DH−F(10). For a good-quality fit, we

would expect the residuals lie close to the dashed horizontal line, which indicates zero values.

Rapid departures of residuals from zero, especially for the second-order isovector coupling

constants, illustrate the fact that a reasonable description of the ab initio results in terms of

Skyrme functional generators could not be obtained.

For all nuclei and generators studied here, the residuals corresponding to the unperturbed

systems (λ = 0) are around zero, whereas when λi moves away from zero, the residuals

increase. In addition, they are not normally distributed, but they exhibit clear trends, meaning

that the hypothesis formulated in equation (25) is not correct. Shadows shown in figure 5(a)

represent the propagated errors of the corresponding observables obtained in the fit DS(10).

For DH–F(10), the propagated errors are much larger, so in figure 5(b), for clarity we only

show the one corresponding to generator V̂W0. We note that the propagated errors related to

the violation of the Hellmann Feynman theorem are much larger than those corresponding to

the subtraction errors, and thus they make it very hard to draw reasonable conclusions about

the structure of the residuals.

We tested the performance of the obtained coupling constants in the description of infi-

nite nuclear matter. For DS(10), we obtain a fairly reasonable energy per particle of E/A =

−14.6± 0.2MeV and saturation density of ρ0 = 0.132± 0.002fm−3. The DH–F(10) provides

slightly different values for the binding energy E/A = −16.0± 1.2 MeV and saturation den-

sity ρ0 = 0.128± 0.01fm−3, but with much larger error bars than in DS(10). For both sets,

the nuclear incompressibility K is also in the range of acceptable values [71]; in particular, we

have K = 380± 17 MeV for DS(10) and K = 393± 143 MeV for DH–F(10). Other properties

of infinite matter, such as the symmetry energy and its first derivative, are poorly determined,

probably because the set of nuclei used for the fit is not rich enough to describe isovector

properties of the nuclear medium sufficiently well. In particular, we find that the symmetry

energy has a value compatible with zero within the error bars.

Another major drawback of the derived coupling constants is an unrealistic value of the

effective mass. Although the effective mass is not strictly speaking an observable, we can

extract information about its value from other many-body methods [72]. For the isoscalar

effective mass, an acceptable range of values is m
∗
/m ∈ [0.7–0.9], although it is worth men-

tioning that also other values are found in the literature. Both sets of coupling constants, DS(10)

and DH–F(10), give effectivemasses that are off by roughly an order of magnitude (cf figure 7),

and this is probably the main reason why they do not lead to realistic results when used in

calculations of finite nuclei.

3.4. Constraints on the nuclear matter properties

Since a simple least-square minimisation does not provide us with satisfactory values of the

effectivemass, we also performeda constrained linear regression to drag the coupling constants

towards reasonable values of m∗/m. In this way, we want to test if the poor determination

of the coupling constants, reflected in their large errors, can be exploited to improve values

of the effective mass. Linear regression with constraints is a procedure in the spirit of the

Bayesian inference,where a prior information about the parameters is known.Herewe consider

it in the form of the Tikhonov regularisation [73] or ridge regression [74], which consists of

16



J. Phys. G: Nucl. Part. Phys. 47 (2020) 085107 G Salvioni et al

Figure 6. (a) Results obtained for the DH–F(10) coupling constants with m∗/m con-
strained to 0.70 using the Tikhonov regularisation. (b) Contributions of the data, χ2

data,
and constraint, χ2

constr, to the total penalty function χ2
T (37).

minimising the penalty function of the form

χ2
T(C) =

1

d − p+ f

[

(y− JC)TW(y− JC)+ λT(b− Q[C])T(b− Q[C])
]

.

(37)

The Tikhonov parameter λT is a real positive number and b = Q[C] represents a system of f
linear equations in parameters C with constant terms b. The final values of C will depend on

λT. As one can see, equation (37) is defined as a sum of two terms: χ2
data, which depends on

weights W, and χ2
constr, which depends on λT. Increasing the value of the Tikhonov param-

eter gives more importance to χ2
constr and eventually may deteriorate the description of data

represented by χ2
data.

We used one constraint, namely the definition of the in-medium isoscalar effective mass,

m∗

m
(ρsat) =

[

1+
2m

�2
Cτ
0ρsat

]−1

. (38)

It is important to note that m
∗

m depends explicitly only on one coupling constant, Cτ
0 , however,

implicitly, through the saturation density ρsat it non-linearly depends on all other coupling

constants. We set the target value of the effective mass to b1 ≡ m ∗ /m = 0.70 and in the

Tikhonov term we varied the value of log10λT from −4 to 2. As an example, in χ2
data we took

the inputs used for DH–F(10). By implementing the Tikhonov regularisation, we aim to distin-

guish between two possible scenarios, namely, whether at an expense of a small deterioration

of χ2
data, description of effective mass can or cannot be improved.
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Figure 7. Infinite nuclear matter properties: ρsat (a), E/A (b), m∗/m (c), and symmetry
energy J (d). Obtained by the Tikhonov regularisation of the DH–F(10) coupling con-
stants withm∗/m constrained to 0.70. Shadows show the propagated error bars and grey
regions indicate the ranges of empirical values.

In figure 6(a), we show the obtained evolution of the constrained parameters C in func-

tion of the Tikhonov parameter. As one can see, changes in the parameters happen around

log10λT ≈ −2. Beyond this region, their values are quite stable. C∆ρ
1 , CJ1

0 , CJ1
1 and Ct3 are

the coupling constants to which the constraint makes the largest impact. We already noted

that these coupling constants were poorly determined by the unconstrained regression. In

figure 6(b), we show relative contributions to the penalty function coming from the data

points, χ2
data, and from the constraint, χ2

constr, (see equation (37)). We see that the contribution

of the constraint increases with λT up to log10λT ≈ −1.8 and after that it quickly drops to zero.
At the peak of χ2

constr, the coupling constants begin to adjust to the requested value of m
∗/m. A

further increase of λT decreases χ
2
constr, because b1 − Q1[C]→ 0, whereas the reproduction of

the data points deteriorates and the differences y− JC increase.

In figure 7, we present nuclear matter properties ρsat, E/A, m∗/m, and symmetry energy

J obtained by the Tikhonov regularisation of the DH–F(10) coupling constants with m∗/m
constrained to 0.70. For small λT, the obtained values are equal to those corresponding to

the original DH–F(10) results. In the region of log10λT between −2 and 0, nuclear-matter

properties change abruptly, and effective mass is dragged towards the target value already
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at log10λT ≃ −1. In the region of log10λT � 0, nuclear-matter properties ρsat, E/A, and J
cross their empirical values of ρsat = 0.17± 0.03 fm−3, E/A = −16± 1 MeV, and J =
32.5± 2.5 MeV (shown in grey) [71]. Such a crossing occurs at slightly different values of λT

for the three quantities and before the effective mass reaches its empirical range. We note

here, that for the NNLOsat chiral interaction, the corresponding nuclear-matter values

read ρsat = 0.166 fm−3 and E/A = −14.5 MeV [30]. Beyond log10λT ≃ 0, nuclear-matter

properties settle at values far away from the standard nuclear-matter values. When the effec-

tive mass approaches the target value of 0.70, the energy per particle E/A becomes too low and

the symmetry energy becomes very large. We conclude that there is no region of the Tikhonov

parameter where all four nuclear-matter quantities would be in their expected domains, even

when the propagated errors (represented by shaded areas) are taken into account. In other

words, the obtained incorrect values of the effective mass cannot be corrected by a small

deterioration of the penalty function χ2
data.

4. Conclusions

Applying themethodology suggested in reference [28], we studied the link between the nuclear

Skyrme functional and the NNLOsat chiral interaction used within the ab initio self-consistent
Green’s function calculations in ADC(3) approximation. We performed the ab initio calcu-

lations in seven light closed shell nuclei by perturbing their ground states with ten func-

tional generators that define Skyrme functional. By employing the linear regression method,

the obtained metadata were used to derive the functional coupling constants. We analysed

two possible sources of uncertainties of the ab initio calculations: the first one related to

approximate determination of average values of two-body potentials and the second one

to an imprecise determination of nuclear ground states, for which we employed the Hell-

mann–Feynman theorem.

The obtained values of Skyrme coupling constants were very different than those typically

obtained in phenomenological adjustments to nuclear observables. We have identified several

possible reasons of such a result: first, it appears that a relatively high level of uncertainties

arising in the ab initio calculations induces large uncertainties of the derived coupling con-

stants, which then propagate to large uncertainties of the nuclear matter properties and to

instabilities when solving the self-consistent equations. Second, it appears that the ab ini-
tio energies are poorly reproduced by the terms in the functional generated by the Skyrme

zero-range potentials. Third, it appears that the information contents within the perturbed

ground-state energies of light semi-magic nuclei is insufficient to properly determine Skyrme

coupling constants, especially those corresponding to second-order terms depending on

isovector densities.

Certainly, future research may be focussed on applications of ab initio technologies with

improved overall precision, which would better correspond to the ambition of reducing dis-

crepancies between the phenomenological EDF results and experiment. Another promising

avenue would be to repeat present analyses by using finite-range functional generators. How-

ever, the most challenging aspect of the methodology proposed in reference [28] is the fact

that it is based, similarly as most other generic ab initio DFT approaches, on the Levy–Lieb

construction that essentially pertains to variational studies of ground-state energies. This

is in opposition to the methodology of adjusting functionals directly to experimental data,

where one uses not only ground-state energies, but also other essential observables like radii,

deformations, or transition probabilities.
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