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Comment on “The equivalence principle in the Schwarzschild geometry”
[Am. J. Phys. 62, 1037 (1994)]

Rafael P. Bernar,1, ∗ Lúıs C. B. Crispino,1, † Atsushi Higuchi,2, ‡ and Haroldo C. D. Lima Junior1, §

1Faculdade de F́ısica, Universidade Federal do Pará, Belém, Pará, 66075-110, Brazil
2Department of Mathematics, University of York, Heslington, York, YO10 5DD, United Kingdom

(Dated: 15 de junho de 2020)

In the article “The equivalence principle in the Schwarzschild geometry” [Am. J. Phys. 62,
1037-1040 (1994)], some manifestation of the equivalence principle in Schwarzschild spacetime was
studied. We point out that the result for the Riemann-tensor component in this article is incorrect
because only the first order terms in the metric expansion are taken into account. We show the
corrected result, illustrating the importance of the second order terms in the approximate metric in
computing curvature quantities.

PACS numbers:

In Ref. 1, the authors provide a concrete example of manifestation of the equivalence principle in General Relativity,
using the Schwarzschild solution. It is shown, by making a suitable coordinate transformation, that in the vicinity of a
displaced Cartesian coordinate system, the Schwarzschild line element is equivalent to the line element associated with
a uniformly accelerated observer in flat spacetime, except for some off-diagonal components. In order to show this
equivalence, the components of the metric tensor, written in displaced Cartesian coordinates, are expanded up to first
order in x/R, y/R and z/R, where R is the Schwarzschild radial coordinate of the origin of the displaced Cartesian
coordinates. The result is given in Eq. (7) of Ref. 1. Under the approximation considered, the off-diagonal terms in
the metric do not affect the motion along the acceleration direction.2 In Sec. IV of Ref. 1, the authors compute the
zeroth-order expression of the Riemann tensor using the results of Eq. (7), i.e., the components of the metric tensor
expanded up to first order. We point out that these results are not correct.

Although the off-diagonal terms may be linked to tidal effects by showing that they contribute to the Riemann
tensor and, thus, to the geodesic deviation equation, we note that, to correctly compute the zeroth-order terms of the
Riemann tensor, the second order terms in x/R, y/R and z/R of the metric components are needed. The components
of the Riemann tensor are mainly comprised of second derivatives of the metric. Hence, quadratic terms in x/R, y/R
and z/R will contribute to the zeroth order expression of the Riemann tensor. In Ref. 1, the (incorrect) component
R0

101 of the Riemann tensor was computed using the linear approximation, where (x0, x1, x2, x3) = (ct, x, y, z) labels
the displaced coordinate system. The z-direction is parallel to the radial direction pointing from the center of the
gravitational source to the origin of this displaced coordinate system, whereas the x- and y-directions are orthogonal
to it. The results are given in Eq. (17) of Ref. 1.
We compute the component R0

101 of the Riemann tensor using the second order approximation of the metric tensor.
We first find that the nonzero components of the metric tensor up to second order in x/R, y/R and z/R are given by
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where

F (R) =
1
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2m

R
, (8)

H(R) = RG′(R)− 2G(R) + 2. (9)

The correct3 zeroth-order expression of the Riemann-tensor component R0
101, computed with the metric-tensor

components up to second order in x/R, y/R and z/R, is given by

R0
1 0 1 = −

GM

c2R3
. (10)

We also note that the zeroth-order expression of the Ricci scalar vanishes, as expected for the Schwarzschild solution.
In summary, when computed in the first-order approximation of the metric-tensor components, the zeroth-order
expressions of the curvature quantities are incorrect due to missing information from the second order coefficients in
the metric. The Ricci scalar, for example, is nonvanishing in the linear approximation.
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2 The off-diagonal terms in this case are directly related to the geodesic deviation equation – we can think of x and y as being
related to the components of the separation vector between two nearby geodesics directed towards the source of gravity.

3 Although, in Ref. 1, they do not give details to the definition of the Riemann-tensor components used, our results here would
be different by, at most, a change of sign.


