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Unifying Semantic Foundations for
Automated Verification Tools in Isabelle/UTP

Simon Foster*, James Baxter, Ana Cavalcanti, Jim Woodcock, Frank Zeyda

Department of Computer Science, University of York, Deramore Lane, Heslington, York YO10 5GH, United Kingdom

Abstract

The growing complexity and diversity of models used for engineering dependable systems implies that a
variety of formal methods, across differing abstractions, paradigms, and presentations, must be integrated.
Such an integration requires unified semantic foundations for the various notations, and co-ordination of a
variety of automated verification tools. The contribution of this paper is Isabelle/UTP, an implementation
of Hoare and He’s Unifying Theories of Programming, a framework for unification of formal semantics.
Isabelle/UTP permits the mechanisation of computational theories for diverse paradigms, and their use in
constructing formalised semantics. These can be further applied in the development of verification tools,
harnessing Isabelle’s proof automation facilities. Several layers of mathematical foundations are developed,
including lenses to model variables and state spaces as algebraic objects, alphabetised predicates and relations
to model programs, algebraic and axiomatic semantics, proof tools for Hoare logic and refinement calculus,
and UTP theories to encode computational paradigms.

Keywords: Theorem Proving, Lenses, Unifying Theories of Programming, Hoare Logic, Isabelle/HOL

1. Introduction

Unifying Theories of Programming [57] (UTP) is a framework for capturing, unifying, and integrating
formal semantics using predicate and relational calculus. It aims to provide a “coherent structure for com-
puter science” [57], by characterising the various programming languages it has produced, their foundational
computational paradigms, and different semantic flavours. Along one axis, UTP allows us to study compu-
tational paradigms, such as functional, imperative, concurrent [57, 67], real-time [74], and hybrid dynamical
systems [38, 37, 33]. In another axis, it allows us to characterise and link different presentations of semantics,
such as axiomatic semantics [54, 61, 6, 71], with operational semantics and also algebraic semantics. UTP
thus unites a diverse range of notations and paradigms, and so, with adequate tool support, it allows us to
answer the substantial challenge of integrating formal methods [68, 44, 16].

The contribution of this paper is the theoretical and practical foundations of a tool for building UTP-
based verification tools, called Isabelle/UTP, which draws from the strongest characteristics of previous
implementations [66, 26, 79, 42, 80]. Our framework can unify the different paradigms and semantic models
needed for modelling heterogeneous systems, and provides facilities for constructing verification tools. Is-
abelle/UTP is a shallow embedding [46, 78] of UTP into Isabelle/HOL [64], and so has access to Isabelle’s
proof capabilities. Isabelle is highly extensible, provides efficient automated proof [12], and has facilities
needed to develop plugins for performing analysis on mathematical models of software and hardware.

Isabelle/UTP uses lenses [32, 31] to algebraically characterise mutation of a program state using two
functions, similar to Back and von Wright’s work [6, 4], and to support semantic reasoning facilities used in
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program verification and refinement. Lenses were originally developed to support bidirectional programming
languages for solving the “view-update problem” in database theory [10]. Here, we apply lenses to the
modelling of state mutation and extend it with novel operators and laws.

Lenses allow us to generalise Back and von Wright’s approach [6] since we can abstractly model “regions”
of the observable state. These regions may correspond to individual variables, sets of variables, and also
hierarchies. We develop several novel relations on lenses that allow us to relate these regions, including
notions for independence, containment, and equivalence. We also provide operators for composing regions in
a set-theoretic manner, which allows us to model alphabets of variables. Thus, lenses allow us to characterise
syntax-related aspects of program verification, such as free variables, substitution, frames, and aliasing. We
mechanise an algebraic structure for lenses in Isabelle/HOL, and show how it unifies a variety of state
space models [73]. We draw comparisons with Back and von Wright’s variable axioms [6, 4] and separation
algebra [19]. Our account of lenses is a unifying algebra for observation and mutation of program state.

Upon our algebraic foundation of observation spaces, we construct UTP’s relational program model. We
develop a “deep” expression model [80], which is technically shallow, and yet has explicit syntax constructors
supporting inductive proofs. We develop UTP predicates and binary relations [53], and provide a rich set
of mechanically verified algebraic theorems, including the famous “laws of programming” [58], which form
the basis for axiomatic semantics. Crucially, lenses allow us to express meta-logical provisos that involve
syntax-related properties, such as whether two variables are different or whether an expression depends on
a particular variable, without needing a deep embedding [42, 80].

We then develop several semantic presentations, including operational semantics, Hoare logic [54, 46, 57],
and refinement calculus [61], with linking theorems showing how they are connected. From these, we also
develop tactics for symbolic execution of relational programs [47], verification using Hoare logic [57], and an
example verification of a find-and-replace algorithm. This illustrates the practicability and extensibility of
our tool, which is not hampered by our deep expression model and other meta-logical machinery.

Finally, we demonstrate the mechanisation of UTP theories within the relational model, which allows us
to support a hierarchy of advanced computational paradigms, including reactive programming [36], hybrid
programming [33, 62], and object oriented programming [72]. Our work significantly advances previous
contributions [79] with UTP theories whose observation spaces are typed by Isabelle, and which link to
established libraries of algebraic theorems [9, 3] that facilitate efficient derivation of programming laws.

This paper is an extension of two conference papers [43, 35]. We extend and refine the material on
lenses from [43], including a precise account of the algebra, a substantial body of novel theorems for each
operator, a novel command for constructing lens-based state spaces, and additional motivating examples.
We extend [35] with additional theorems that can be derived for UTP theories, a complete example based on
timed relations with its mechanisation, and the use of frames in refinement calculus. On the whole, we simply
present the core theorems without proofs, and therefore refer the interested reader to a number of companion
reports [40, 41] and our repository!. All the definitions, theorems, and proofs in this paper are mechanically
validated in Isabelle/HOL, and usually accompanied by an icon (&) linking to the corresponding resources
in our repository. Though our work is primarily based on Isabelle/HOL, we prefer to use more traditional
mathematical notations [75, 57] in this work?, since we believe this makes the results more accessible.

In summary, our contributions are as follows: (1) mechanisation of lens theory in Isabelle/HOL, includ-
ing fundamental algebraic theorems, and extension with novel relations and combinators; (2) facilities for
automating construction of observation spaces; (3) an expression model, founded on lenses, providing both
efficient proof and syntax-related queries, such as free variables and substitution; (4) a generic relational
program model and proven laws of programming; (5) application to development of unified verification cal-
culi, such as operational semantics, Hoare logic, and refinement calculus, including treatment of aliasing and
frames; (6) characterisation of mechanised UTP theories to support various computational paradigms.

In §2 we motivate Isabelle/UTP, and review foundational work. In §3 to §6, we describe our contributions.
The paper overview given in Figure 1 shows how the foundational parts of Isabelle/UTP are connected, and

Tsabelle/UTP Repository: https://github.com/isabelle-utp/utp-main
2The precedence of operators in this paper, from highest to lowest, is : 1, 1=, ®, ;, Q- &, =, =, A, V, =, <, {.
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Figure 1: Roadmap of the Isabelle/UTP Foundations

the sections in which they are documented. In §3 we describe how state spaces and variables in a program can
be modelled algebraically using lenses. In §4 we describe the core of Isabelle/UTP, first defining its expression
model in §4.1, predicates in §4.2, meta-logical facilities in §4.3 and §4.4, and the relational program model in
§4.5 with proof support and mechanised laws of programming. In §5 we use this relational program model to
build tools for symbolic evaluation, verification using Hoare calculus with several examples in Isabelle/UTP,
and also Morgan’s refinement calculus [61]. In §6 we describe how different computational paradigms can be
captured and mechanised using Isabelle/UTP theories, illustrating this using a UTP theory for concurrent
and reactive programs. In §7 we survey related work, and in §8, we conclude.

2. Preliminaries and Motivation

In this section we motivate the contributions in our paper and briefly survey foundational work. We
first introduce UTP (Section 2.1) and Isabelle/HOL (Section 2.2). In Section 2.3 we briefly survey work
on semantic embedding to support verification. This leads to the conclusion that the state space modelling
approach is the main consideration, and so in Section 2.4 we survey and critique different approaches. Finally
in Section 2.5 we explain how Isabelle/UTP advances the state of the art.

2.1. Unifying Theories of Programming

Several authors consider integration of formal methods, notably Broy [16] and Paige [68]. These authors
emphasise the centrality of unified formal semantics [52, 50]. Specifically, if diverse formal methods are to
be coordinated, then their various semantic models must be reconciled to ensure consistent verification [68,
44]. An important development is Hoare and He’s Unifying Theories of Programming (UTP) [56, 57, 21]
technique, which fuses several intellectual streams, notably Hehner’s predicative programming [49, 52, 55],
relational calculus [76], and the refinement calculi of Back and von Wright [6], and Morgan [61].

The goal of UTP is to find the fundamental computational paradigms that underlie programming and
modelling languages and characterise them with unifying denotational and algebraic semantics. A significant
precursor to UTP is a seminal paper entitled Laws of Programming [58], in which nine prominent computer
scientists, led by Hoare, give a complete set of algebraic laws for GCL [23]. The purpose of the laws of
programming, however, is much deeper: it is to find laws that unify different programming languages.

UTP uses binary relations to model programs as predicates [49, 50]. Relations map an initial value of
a variable, such as z, to its later value, . These might model program variables or observations of the
real world. For example, clock : N records the passage of time. It makes no sense to assign values to clock
that reverse time. Healthiness conditions constrain observations using idempotent functions on predicates.
For example, application of HT(P) £ (P A clock < clock’) gives a predicate that forbids reverse time
travel. If P is unhealthy, for example clock’ = clock — 1, then application of HT changes its meaning:
HT (clock = clock! + 1) = false.

The choice of observational variables and healthiness conditions defines a UTP theory. It characterises the
set of relations whose elements are the fixed points of the healthiness conditions; HT (P) = P for our example.
An algebra gives the relationship between theory elements, which supports the laws of programming for a
particular paradigm [58]. UTP theories can be combined by composing their healthiness conditions, which
allows multi-paradigm semantics [67].



Reactive processes [57, chapter 8] is a UTP theory for event-driven programs. It includes observational
variables wait : B and tr : seq FEvent, which represent, respectively, whether a program is quiescent (i.e.
waiting for interaction), and the sequence of observed events (drawn from Event). An example healthiness
condition is RI(P) £ tr < tr', where < is the prefix order on sequences. RI states that the interaction
history must be retained — we may not undo past events.

A mechanisation of UTP in a theorem prover, like Isabelle [64, 26, 42], allows us to develop verification
tools from UTP theories. Here, there are two goals that must be balanced: (1) the ability to engineer UTP
theories and express the resulting algebraic laws; and (2) support for efficient automated verification [46,
78, 2]. In addition, the UTP is not about one programming language, or even one intermediate verification
language (IVL) [11, 29], but unification of diverse modelling and program paradigms through algebraic laws.
For example, our mechanisation should permit the algebraic law below [6, page 96].

Example 2.1 (Commutativity of Assignments).
(r:=e;y:=f)=(y:=f;x:=e€) provided z and y are independent, z is not free in f, y is not free in e.

This law states that two assignments, x := e and y := f, can commute provided that they are made to
distinct variables, z and y, and they are not mentioned in f and e, respectively. Now, such a law is intuitive
and holds in a variety of languages, which makes it a useful artefact for unification. Mechanising a law like
this requires that variables are modelled as first-class citizens, so that they are objects of the logic, with
which we can formulate the side conditions. In Section 2.3 we consider approaches to semantic embeddings,
and motivate the approach we have chosen, but first we consider Isabelle/HOL.

2.2. Isabelle/HOL

Isabelle/UTP is a conservative extension of Isabelle/HOL [64], which is a proof assistant for Higher Order
Logic (HOL). It consists of the Pure meta-logic, and the HOL object logic. Pure provides a term language,
a polymorphic type system, a syntax-translation framework for extensible parsing and pretty printing, and
an inference engine. The jEdit-based IDE allows XTEX-like term rendering using Unicode.

Isabelle theories consist of type declarations, definitions, and theorems. We prove theorems in Isabelle
using tactics. The simplifier tactic, simp, rewrites terms using equational theorems. The auto tactic combines
simp with deductive reasoning. Isabelle also has the powerful sledgehammer proof tool [12] which invokes
external first-order automated theorem provers on a proof goal, verifying their results using tactics like simp
and metis, which is a first-order resolution prover.

HOL implements a functional programming language founded on an axiomatic set theory. This object
logic gives us a principled approach to mechanised mathematics. We construct definitions and theorems by
applying axioms in the proof kernel. HOL provides inductive datatypes, recursive functions, and records.
It provides basic types, including sets (P 4), total functions (A — B), numbers (N, Z, R), and lists. These
types can be parametric: [nat]list.> Specialisation unifies two types if one is an instantiation of the type
variables of the other. For example, [nat]list specialises [a]list, where « is a type parameter.

2.8. Verification and Semantic Embedding

In this section we consider different approaches to developing verification tools and outline the previous
approaches to UTP mechanisation [65, 66, 26, 79, 42, 80] in this context.

Development of verification tools is usually conducted by means of a semantic embedding, where the
language and deductive reasoning laws are embedded in a proof assistant such as Isabelle/HOL or Coq.
Building on Gordon’s work seminal work [46], Boulton et al. [14] identify the two fundamental categories
of semantic embedding: deep embeddings and shallow embeddings. In a deep embedding, the syntax tree
of the language is embedded into the host logic (such as HOL) as a datatype, and this acts as the basis for
deductive verification calculi. In contrast, in a shallow embedding, the syntax tree is implicit, and the goal
is to directly reuse host logic reasoning facilities.

3The square brackets are not used in Isabelle; we add them for readability.
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Figure 2: Overview of previous UTP semantic embeddings

Boulton et al. note that deep embeddings allow reasoning over the syntactic structure of programs;
for example we can calculate the set of free variables in an expression. Consequently, a deep embedding
can certainly support Example 2.1, since syntax is first-class. The deep embedding technique is used, for
example, by Nipkow and Klein in their book Concrete Semantics [63]. Nevertheless, deep embeddings have
the substantial disadvantage that they restrict the use of host logic proof facilities, which hampers efficient
verification. While we can mechanise Example 2.1, it is not clear how we can efficiently apply it. Moreover,
a particular requirement for a UTP mechanisation is that the syntax tree is extensible, so that additional
programming operators can be defined, which is thwarted if we opt for a deep embedding.

In contrast to deep embeddings, shallow embeddings have been very successful in supporting program
verification [46, 78, 2, 26, 3, 45]. As a prominent example, the seL.4 microkernel verification project uses a
shallow embedding called Simpl [2], which illustrates its scalability. Moreover, most of the previous UTP
mechanisations are also shallow embeddings [66, 26, 79, 42]. The exceptions are Nuka and Woodcock [65],
who follow the deep embedding approach, and Butterfield [17, 18], who develops a bespoke proof tool called
U-(TP)?. Within the shallow embeddings, broadly there are two streams, begun by Oliveira et al. [66, 79, 42)]
and Feliachi et al. [26, 27, 28], as illustrated in Figure 2. Both streams have HOL as the host logic, though
Oliveira et al. [66] use a dialect called ProofPower-Z*, whereas Feliachi et al. [26] use Isabelle/HOL. We will
consider further differences in Section 2.4, but note that Isabelle/UTP [43] results from the confluence of
the ideas from the streams [26, 42].

Isabelle/UTP is developed as a shallow embedding. All shallow embeddings follow roughly the same
basic approach [46, 5]. First, we fix a state space S, to describe states of a program. Afterwards, we can
model predicates using the type S — B, and programs using S X § — B, which are binary relations. From
this foundation, the programming language operators can be defined using the predicative programming
approach [49], where programs are represented as below.

Definition 2.2 (Programs as Predicates).
P;Q = (\(s,s) e (Iso e P(s,5) A Q(s0,5)))

z:=e = (Ns,s)esax=c(s)ANsypp=sy A A5y, =89)
if bthen Pelse Qfi = (\(s,s") o (b(s) A P(s,8)) V (=b(s) A Q(s,5)))

(1>

[I>

These predicates effectively describe whether a given input-output pair, (s,s') : S x S, is an observation
of the program. Sequential composition P ; @ is a predicative version of relational composition [76]. It
requires that there exists a middle state sy such that P and () have this as a possible final state and initial
state, respectively. Assignment z := e states that z in the final state s’ has the value e, and every other
variable (y;) retains its value. If-then-else conditional admits the behaviours of P when b is true, and the

4ProofPower: http://www.lemma-one.com/ProofPower/index/
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behaviours of @ when b is false. We can also denote the partial correctness Hoare triple operator [46]:

{p} Q{r} £ (v(s,5) o p(s) A Q(s,8) = r(s))

A Hoare triple is valid if, for any (s, s’) where the precondition p is satisfied by s, and @ has a final state
s’ when started from s, the postcondition r is satisfied by s’. From this definition, we can prove many
of the Hoare logic axioms as theorems [54, 46]. Other axiomatic verification calculi [23, 61, 6, 56] can be
characterised in a similar way — this is the standard shallow embedding approach.

However, not all laws are straightforward to express. In shallow embeddings, variables are often not
first-class citizens [78, 2, 26]. That being the case, they are not objects of the logic, and so it is not possible
to express Example 2.1. Moreover, consider the following variant of the forward assignment law:

{p} T:=c¢e {a: =eA p} provided z is not free in p and e

This is certainly a useful law, as it allows us, for example, to push initial assignments with constants
forward, such as z := 1. However, it requires that we can determine whether the variable z is free in p. This
is seemingly a property that can only be expressed if e and p are syntactic objects. Example laws of this
kind exist in many axiomatic calculi [23, 61, 6]. Now, to be clear, the absence of this law does not prevent a
particular program from being verified, and so it may not seem important. However, if the goal is unification
by characterising such laws abstractly, as is the case in UTP, then this is a significant question. Adequately
answering this is key to ensure that Isabelle/UTP is truly a unifying framework. In Definition 2.2, we use
the notation s.z to represent the value of variable z in state s. How this operator is represented depends on
how we model state spaces, the crucial question for shallow embeddings, which we consider next.

2.4. State Space Modelling

The principal difference between the shallow embeddings in Section 2.3 is their approach to modelling the
observation space S. Schirmer and Wenzel provide a helpful discussion on modelling state spaces [73], and
so we employ their framework for comparison and critique. They identify four common ways of mechanising
the modelling of state: using (1) functions; (2) tuples, (3) records, and (4) abstract types.

The first approach models state as a function, S £ Var — Value, for suitable value and variable types,
and so s.z = s(z). Gordon [46], Back and von Wright [5], Oliveira et al. [66], and the successor UTP mech-
anisations [79, 42, 80], follow this approach. It requires a deep model of variables and values. Consequently,
it has similarities with deep embeddings, since concepts such as names and typing are first-class citizens.
This provides an expressive model with few limitations on possible manipulations of variables in the state
space [42]. However, Schirmer and Wenzel highlight two obstacles [73]. First, the machinery required for
deep reasoning about values is heavy and a priori limits possible value constructions, due to cardinality
restrictions in HOL. Second, explicit variable naming means the embedding must tackle syntactic issues,
like a-renaming.

Zeyda et al. [80] mitigate the first issue by axiomatically introducing a value universe ( Value) in Isabelle.
This universe has a higher cardinality that any HOL type, and so all normal types can be injected into
it. The cost of this approach is the extension of HOL with additional axioms. Moreover, the complexities
associated with the second issue remain. Once names and types are first-class citizens, it becomes necessary
to replicate a large part of the underlying meta-logic, such as a type checker. This requires great effort and
can hit proof efficiency. Even so, the functional state space approach seems necessary to model the dynamic
creation of variables, as required, for example, in modelling memory heaps in separation logic [19, 24], so
we do not reject it entirely.

The second approach [73] uses tuples to represent state; for example Z x B x Z can represent a state
space with three variables [78]. The value of each variable can be obtained by decomposing the state using
pattern matching, or using projection functions so that s.z = m,(s). The main issue with this approach is
that variable names are not automatically represented by the state space.

The third approach uses records to model state: a technique often used by verification tools in Is-
abelle [2, 26, 27, 3]. It is similar to the second approach, since records are simply tuples. However, records
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come with bespoke selection and update functions for each index; this makes manipulating the state space
straightforward. Thus, we have s.z = z(s), with z being a field selector function. Feliachi et al. use this
approach to create their semantic embedding of the UTP in Isabelle/HOL [26]. A record field represents a
variable in this model. These can be abstractly represented using pairs of field-query and update functions,
fi and f;-upd. We do not need to encode the set of variable names ( Var) in this approach.

The record state space approach greatly simplifies automation of program verification [26, 27, 28, 3, 45].
This is through directly harnessing, rather than replicating, the polymorphic type system and automated
proof tactics. The expense, though, is a loss of flexibility compared to the functional approach, particularly
in the decomposition of state spaces. Moreover, a field of a record is not a first-class citizen because it is
not an object of the logic in Isabelle. This means that record fields lack the semantic structure necessary
to capture their behaviour and thus manipulate or compare them — f; and f; are simply different functions.
Consequently, implementations using records seldom provide general support for syntactic concepts like free
variables and substitution.

The previous approaches all use concrete models (types) for S. The fourth approach [73] uses an abstract
type to represent a state space, with axiomatised projection functions for each of the variables. In this
model we have again that s.z 2 z(s), but  : S — V is simply an abstract function without an explicit
implementation. This approach is employed by Back and von Wright [6], who use two functions val.z : § — V
and set.z : V - § — &, to characterise each variable, together with five axioms that characterise their
behaviour (see Definition 7.1). However, as indicated by both Schirmer and Wenzel [73], and Back and
Preoteasa [4], this approach requires us to a priori fix the number of variables available and their axioms.
This hampers modularity in mechanisation, since it is difficult to add new variables to grow a state space.

Schirmer and Wenzel’s solution [73] is to adopt the state as functions approach, but improve its flexibility
using locales [8]. An Isabelle locale allows the creation of a local theory context, with fixed polymorphic
constants and axiomatic laws [9]. Rather than fixing concrete types for Var and Val, Schirmer and Wenzel
characterise these abstractly, and use locale constants to characterise injection and projection functions.
This is very similar to the approach adopted in our earlier version of Isabelle/UTP [42], except that the
latter uses type classes to assign injections to a polymorphic value universe.

This approach imposes limitations that make it unsuitable for UTP, because it limits polymorphism in
variable types®. For example, in the UTP theory of reactive processes, a trace variable ¢r can be given
the polymorphic type [e]list for some event type e. When we hide events in a process, the event type can
change, since some events are no longer visible. Yet, in a locale, constants have a fixed type and so tr is not
truly polymorphic. In comparison, if we define a record with a field ¢r : [e]list then we can assign it different
types. We conclude that there is a need for a different approach to state space modelling.

2.5. Our Approach

Our approach is closest to the abstract type approach, though we aim is to unify all four. For UTP,
we need to treat variables as first-class citizens. We see merits both in modelling state as a function, and
also as a record. Indeed, we recognise that there is often a need to blend these two representations, as we
illustrate using the running example below:

Example 2.3 (Stores Variables and Heaps). Consider a state space with three variables z : int, y : int,
and hp : addr — int. The variables x and y represent program variables in the store, and hp represents a
heap mapping addresses to integer values. It can be modelled as a record with three fields. However, we
will likely want to perform assignments directly to elements of function hp, for example hp[loc] := 7, and so
we see the two state representations, functions and records, co-existing. O

Isabelle/UTP generalises the various state-space approaches by abstractly characterising variables alge-
braically using lenses [32, 31, 59, 69]. A lens consists of two functions: get : & — V that extracts a value
from a state, and put : S — V — S that puts back an updated view. We characterise lenses as algebraic

5This fact was first pointed out to us by Prof. Burkhart Wolff. Constants fixed in the head of an Isabelle locale have fixed
types and cannot be polymorphic. In contrast, constants introduced at the global theory level can be fully polymorphic.
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structures to which different concrete models can be assigned, which allows us to unify the various state
space approaches. Lenses allow characterisation of both individual variables and also state space regions that
can encompass several variables. We consider, for example, that the heap location hp[loc] is semantically a
part of the heap hp, and therefore changes to hp also effect hp[loc]. Moreover, in an object oriented program
the state is hierarchical: the attribute variables are all part of the object variable.

Since lenses can characterise sets of variables, we can also use them to model frames, as required, for
example, by Morgan’s refinement calculus [61]. We define operators that allow us to compare and manipulate
lenses, including independence (z 1 y), sublens (z < y), and summation (z + y), which effectively allows
execution of two lenses in parallel, but differently to Pickering’s operator [69], which acts on a product
space. We also implement N. Foster’s lens composition operator (z §y) [31], which supports hierarchical
state spaces.

Isabelle/UTP, therefore, has a high level of proof automation because it is a shallow embedding [78,
26, 27], and we avoid the requirement to explicitly characterise names and values. Like any other object in
Isabelle, we can assign a name to a particular lens, but this name is meta-logical. Such globally named lenses
can also be polymorphic, which helps us to model observational variables. At the same time, even though
Isabelle/UTP is a shallow embedding, the lens axioms provide us with sufficient structure to characterise
syntax-like queries, like substitution and free variables. Consequently, lenses allow us to develop a program
model that exhibits benefits of both deep and shallow embeddings.

3. Algebraic Observation Spaces

In this section, we present our theory of lenses, which provides an algebraic semantics for state and
observation space modelling in Isabelle/UTP. Although some core definitions like the lens laws and com-
position operator are well known [32, 31, 30], we introduce several novel operators, including summation,
and relations like independence and equivalence. We prove several algebraic properties for these operators,
which are foundational for our mechanisation of UTP.

All definitions, theorems, and proofs in this section may be found in our Isabelle/HOL mechanisation [40].

3.1. Signature

A lens is used, intuitively, to view and manipulate a region (V) of a state space (S), as illustrated in
Figure 3. The view, V, corresponds to the hatched region of S. A region may model the contents of one or
more variables, whose type is V. We introduce lenses as two-sorted algebraic structures.

Definition 3.1 (Lenses). A lens is a quadruple (V|S|get: S — V|put:S -V — S), where V and S are
non-empty sets called the view type and state space®, respectively, and get and put are total functions’.
The view V corresponds to a region of the state space S. We write V = S to denote the type of lenses
with state space S and view type V, and subscript get and put with the name of a particular lens. &

This follows the standard definition given by N. Foster [31], though other works [32] employ partial functions.
The get function views the current value of the region, and put updates it. Intuitively, we use these structures
to model sequences of queries and updates on the state space S in §4. Each variable in a program can be
represented by an individual lens, with operators like assignment utilising get and put to manipulate the
corresponding region of memory. For the purpose of example, we describe lenses for record types.

Definition 3.2 (Record Field Lens). We consider the definition of a new record type, R = (fy : 71, fu : Tnl),
with n fields, each having a corresponding type. Each field yields a function f; : R — 7;, which queries the
current value of a field. Moreover, we can update the value of field f; in r : R with &k : 7; using r(f; := k).

We can construct a lens for each field using recf;z L2 (1| R|fi]| Xsv e s(fy:=)).

61n the lens literature [31, 30, 69] this is referred to as the “source”. We refer to it as the state space and observation space,
a more general concept, interchangeably, depending on the context.

"N. Foster [31] also introduces a function called create: V — S that creates an element of the source. We omit this because
it can be defined in terms of put and is not necessary for this paper.
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The field lens allows us to employ the “state as records” approach [73, 26|, as discussed in Section 2.4. We
also consider a second example. Many state spaces are built using the Cartesian product type S; x So, and
consequently it is useful to define lenses for such a space. We therefore define the fst and snd lenses.

Definition 3.3 (Product Projection Lenses). &

fst552 2 (818 % Sy | Ma,y) @ x| Nz, ) 2 ® (2, 1))
snd®%2 2 (S8 x Sy| Nz, y) e y| Mz, y) z e (z,2))

The superscripted state spaces are necessary in order to specify the product type; we omit them when they
can be determined from the context. Lenses fst and snd allow us to focus on the first and second element of a
product type, respectively. Their get functions project out these elements, and the put functions replace the
first and second elements with the given value z. An application of these lenses is the “states as products”
approach [73] (see Section 2.4): we can directly model a state space with two variables, for example z £ fst?B
and y £ snd™® give a state space with z : Z and y : B. A final example is the total function lens.

Definition 3.4. fun?’B L2 (B|A— B|\fef(k)[A\fve(Azxeifz=kthenvelsef(z))) &b

The total function lens fun,?’B views the output of a function f : A — B associated with a given input value

k : A. The get function simply applies f to k, and the put function associates a new output v with k. The

function lens allows us to also employ the “state as functions” approach [66, 73]. We can also use it to model
. . N,Z .

an array of integer values with fun,’”, as used in Example 2.3.

3.2. Axiomatic Basis
The use of lenses to model variables depends on get and put behaving according to a set of axioms.

Definition 3.5 (Total Lenses). A total lens obeys the following axioms: &
get(putsv) =wv (PutGet)

put(putsv') v = putswv (PutPut)

puts(gets) =s (GetPut)

We write V == S for the set of total lenses with view type V and state space S, and x = S for the set of
total lenses with any view type, whose state space is S.

We mechanise this algebraic structure in Isabelle using locales, following the pattern given by Ballarin [8]®.
Total lenses are usually called “very well-behaved” lenses [32, 31], but we believe “total” is more descriptive,
since it is always possible to meaningfully project a view from a state. Axiom PutGet states that if a state has
been constructed by application of put s v, then a matching get returns the injected value, v. Axiom PutPut
states that a later put overrides an earlier one, so that the previously injected value v’ is replaced by wv.
Finally, Axiom GetPut states that for any state element s, if we extract the view element and then update
the original using it, then we get precisely s back.

We now demonstrate that every field of a record yields a total lens.

8We are not using locales to characterise state spaces, like Schirmer and Wenzel [73], but simply to fix the algebra of lenses.
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Lemma 3.6. For any field f; of a record type R, the record lens rec]{f forms a total lens.

Proof. For illustration, we prove each lens axiom in turn.

1. PutGet: get(putsv) = f; (s(f; :==v)) = v
2. PutPut: put(putsv')v= (Asves(fi:=v)) (s(fi:=v))v=_Aves(fi:=v)(fi :=v))v=putsv
3. GetPut: puts(gets) = (Asves(fi:=v))s(fis)=s(fi:=fis)=s

Consequently, the record lens is indeed a total lens. O

We can similarly show that fst, snd, and fun are total lenses®.

Lemma 3.7. For any A,B, and k € A, fst*5, snd® 5, and funf’B are total lenses. &

While both PutGet and PutPut are satisfied for most useful state-space models we can consider, this is not
the case for GetPut. For example, if we consider a lens that projects the valuation of an element z : A from
a partial function f : A -» B, then get is only meaningful when z € dom(f). Since get is total, it must
return a value, but this will be arbitrary and therefore placing it back into f alters its domain. We do not
consider lenses that do not satisfy GetPut in this paper, but simply observe that total lenses are a useful,
though not universal solution for state space modelling.

3.8. Independence

So far we have considered the behaviour of individual lenses, but programs reference several variables and
S0 it is necessary to compare them. One of the most important relationships between lenses is independence
of their corresponding views, which is illustrated in Figure 4. We formally characterise independence below.

Definition 3.8 (Independent Lenses). Lenses X : V; = S and Y : V, = S are independent, written

X 1 Y, provided they satisfy the following laws: &
puty (puty sv)u = puty (puty su)v (L11)

gety (puty sv) = gety s (LI12)

gety (puty su) = gety s (LI3)

Lenses X and Y, which share the same state space but not necessarily the same view type, are independent
provided that applications of their respective put functions commute (LI1), and their respective get functions
are not influenced by the corresponding put functions (LI2, LI3). In the encoding of Example 2.3, we have
that z <y, < hp, and y <t hp: these are distinct variables. Nevertheless, lens independence captures
a deeper concept, since lenses with different types are not guaranteed to be independent, as they might
represent a different view on the same region.

Independence can, for example, be used capture the condition for commutativity of assignments. If x
and y are variables, then we can characterise the following law

(z:=e;y:=f)=(y:=f;z:=e) provided z < y, and e and f are constants

which partly formalises Example 2.1. Such assignment laws will be explored further in Section 4. We can
show that fst < snd using the calculation below.

Lemma 3.9. fst > snd &
Proof. We first prove that putg, commutes with put,,s (LI1) by evaluation, assuming s = (s1, $2):
purfst<pUtsnd s U) u = purfst(pUtsnd (51’ 52) ’U) u

= putgg (s1,0) u = (u,0) = putgy(u, s2) v

= putgng (pUtfst (517 52) u) vV = puts,q (pUtfst $ U) v

9 All omitted proofs can be found in our Isabelle/HOL mechanisation [40].
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Similarly, we can also prove LI2 by evaluation:

Betpy (Putgng s v) = getpy (PUlsng (51,52) V) = Getpy (s1,v) = s1 = getpy (s1,52) = getpy s
Finally, LI3 follows by a symmetric proof. O
A further, illustrative result is the meaning of independence in the total function lens:
Lemma 3.10. fun, > fun, < a # b &

Two instances of the total function lens are independent if, and only if, the parametrised inputs a and b are
different. This reflects the intuition of a function — every input is associated with a distinct output.

We can actually show that axioms LI2 and LI3 in Definition 3.8 can be dispensed with when X and Y
are both total lenses. Consequently, we can adopt a simpler definition of independence:

Theorem 3.11. Iflenses X : V1 = S and Y : Vo = S are both total then &
XY & V(u,v,s) e puty (puty sv)u = puty (puty su) v

However, the weaker definition of independence is still useful for the situation when not all three axioms of
total lenses are satisfied [34].

3.4. Lens Combinators

Lenses can be independent, but they can also be ordered by containment using the sublens relation
X =< Y, which orders lenses. The intuition is that Y captures a larger region of the state space than X.
One interpretation is a subset operator for relating lens sets. Before we can get to the definition of this <,
we first need to define some basic lens combinators.

Definition 3.12 (Basic Lenses). 05 = ({0} | S| Ase (| Asves) 1s 2 (S|S|Ases|Asveun) &
Lemma 3.13 (Basic Lenses Closure). For any S, O0s and 1g are total lenses. &

The 0 lens has a unitary view type, {(}. Consequently, for any element of the state space, it always views
the same value (). It cannot be used to either observe or change a state, and it is therefore entirely ineffectual
in nature. It can be interpreted as the empty set of lenses. Conversely, the 1 lens, with type S = §, views
the entirety of the state. It can be interpreted as the set of all lenses in the state space. We sometimes omit
type information from these basic lenses when this can be inferred from the context.

It is useful in several circumstances to chain lenses together, provided that the view of one matches the
source of the other. For this, we adopt the lens composition operator, originally defined by J. Foster [31].

A

Definition 3.14. X3Y = (Vx|Sy|gety o gety |Asv e puty s(puty (gety s)v)) if Sx = Vy &b
Lemma 3.15 (Composition Closure). If X and Y are total lenses, then X §Y is a total lens. &

A lens composition, X § Y, for X : A = B and Y : B = C chains together two lenses. It is illustrated
in Figure 5. When X characterises an A-shaped region of B, and Y characterises a B-shaped region of C,
overall lens X ¢ Y characterises an A-shaped region of C. It is useful when we have a state space composed
of several individual state components, and we wish to select a variable of an individual component.

Example 3.16. In an object oriented program we may have m € N objects whose states are characterised
by lenses o; : O; = S, for i € {1..m}, where each O; characterises the respective object state. An object
o, has n € N attributes, characterised by lenses z; : 7; = Oy, for j € {1..n}. We can select one of these
attributes from the global state context by the composition z;§ oy : 7; = S. O
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Composition is also useful for collections, such as the heap array in Example 2.3. If hp : (addr — Z) = S,
that is, a lens which views a function in S, then we can represent a lookup, hp[loc], by the composition
funlaodcdr’Z s hp'0.

Lens composition obeys a number of useful algebraic properties, as shown below.

Theorem 3.17 (Composition Laws). If X : A= B, Y : B= C, and Z : C = D are total lenses then
the following identities hold: &b

X3(YVsZ) = (X3Y)5Z  Xslp = 143X=X  0,3X = 03

Lens composition is associative, since the order in which lenses are composed is irrelevant, and it has 1 as
its left and right units. Moreover, 0 is a left annihilator, since if the view is reduced to {{} then no further
data can be extracted.

While composition can be used to chain lenses in sequence, it is also possible to compose them in parallel,
which is the purpose of the next operator.

Definition 3.18 (Lens Sum). &
X+Y 2 (Vx xVy|Sx|Ase (getys, gety s)|Ns(vi,v2) e puty (puty svy) va) if Sy =Sy

Lens sum allows us to simultaneously manipulate two regions of S, characterised by X : V; = S and
Y : V, = S. Consequently, the view type is the product of the two constituent views: V; x V5. The
get function applies both constituent get functions in parallel. The put function applies the constituent put
functions, but in sequence since we are in the function domain. We can prove that total independent lenses
are closed under lens sum.

Lemma 3.19 (Sum Closure). If X and Y are independent total lenses, then X + Y is a total lens. &

We require that X < Y, since manipulation of two overlapping regions could have unexpected results, and
then also the order of the put functions is irrelevant.

Lens sum can characterise independent concurrent views and updates to the state space. For example,
we can encode a simultaneous update to two variables as (z + y) := (e, f). Moreover, lens sum can also be
used to characterise sets of independent lenses. If we model three variables using lenses z, y, and z which
share the same source and are all independent, then the set {z, y, 2z} can be represented by z + y + 2.

With the help of lens composition, we can now also prove some algebraic laws for lens sum.

Lemma 3.20. If X and Y are independent total lenses then the following identities hold: &
fst3(X+Y)=X snds(X+Y)=Y (X+Y)iZ=(X32)+(Ys32)

The first two identities show that fst and snd composed with + yield the left- and right-hand side lenses,
respectively. If we perform a simultaneous update using X+ Y, but then throw away one them by composing
with fst and snd, then the result is simply X or Y, respectively. The third identity shows that § distributes
from the right through lens sum. It does not in general distribute from the left as such a construction is not
well-formed. We next show some independence properties for the operators introduced so far.

Lemma 3.21 (Independence). If X, Y, and Z are total lenses then the following laws hold: &
0 X

XY eV xX
Y<Z=>(XsY)=Z

(X3Z)=(YV32) XY
X<ZAY™XZ=>(X+Y)=xZ

10Here, loc is a constant value, though this can be relaxed to an expression that can depend on other state variables [34].

12



The 0 lens is independent from any lens, since it views none of the state space. Lens independence is
a symmetric relation, as expected. Lens composition preserves independence: if Y <1 Z then composing
X with Y still yields a lens independent of Z. Referring back to Example 2.3, if z > hp, then clearly
also z > hp[loc]. X and Y composed with a common lens Z are independent if, and only if, X and Y
are themselves independent. Combining this with Lemma 3.10, we can deduce that hp[h] and hp[k] are
independent if and only l; # . Finally, lens sum also preserves independence: if both X and Y are
independent of Z, then also X + Y is independent of Z. Thus, if z <t hp and y 1 hp, then also = + y < hp.

3.5. Observational Order and Equivalence

We recall that a lens X can view a larger region than another lens Y, with the implication that Y is
fully dependent on X. For example, it is clear that in Example 3.16 each object fully possesses each of its
attributes, and likewise each attribute lens z; § oy, is fully dependent on lens o. We can formalise this using
the lens order, X < Y, which we can now finally define.

Definition 3.22 (Lens Order). (X X Y)2 (Sx =Sy A(3Z: Vx= Vy e X =735Y)) &

Alens X : V3 = S is narrower than a lens Y : Vo5 = S provided that they share the same state space,
and there exists a total lens Z : V7 = V5, such that X is the same as Z§ Y. In other words, the behaviour
of X is defined by firstly viewing the state using Y, and secondly viewing a subregion of this using Z. An
order characterises the size of a lens’s aperture: how much of the state space a lens can view. For example,
we can prove that z; § op = o, by setting Z = =; in Definition 3.22. For the same reason, we can also show
that hp[loc] < hp. The lens order relation is a preorder, as demonstrated below.

Theorem 3.23. For any S, (x = S, X) forms a preorder, that is, <X is reflexive and transitive. Further-
more, the least element of x => S is Og, and the greatest element is 1g. &

Clearly, O is the narrowest possible lens since it allows us to view nothing, and 1 is the widest lens, since it
views the entire state. This is consistent with the intuition that 0 represents the empty set, 1 represents the
set of all lenses, and = is a subset-like operator. We can prove the following intuitive theorem for sublenses.

Lemma 3.24. If X, Y are total lenses and X <Y, then the following identities hold: &
puty (putyx sv) u = puty su (LS1)
gety (puty sv) = gety (puty s’ v) (LS2)

Law LS1 is a generalisation of Axiom PutPut: a later put,- overrides an earlier puty when X < Y. Law LS2
states that when viewing an update on Y via a narrower lens X we can ignore the valuation of the original
state, since the update replaces all the relevant information. We can now use these results to prove a number
of ordering lemmas for lens compositions.

Lemma 3.25 (Lens Order). If X, Y, and Z are total lenses then they satisfy the following laws: &

XY =Y
XIYANY™NZ=>XZ
XZANY=Z=(X+Y)=(X+2)

A XY=X+Y Y+ X
X YANXNZIANYNZ=>X+(Y+2)2(X+Y)+2Z

N N N N /N
=
o O
o

222

LO5

As we observed, composition of X and Y yields a narrower lens than Y (LO1): Ap[loc] < hp. Independence
is preserved by the ordering, since a subregion of a larger independent region is also clearly independent
(LO2) — hp[loc] <t z when hp > x. Lens sum also preserves the ordering in its right-hand component (LO3).
Moreover, lens sum is commutative with respect to < (LO4), and also associative, assuming appropriate
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independence properties (LO5). From these laws, and utilising the preorder theorems, we can prove various
useful corollaries, such as
AIxY=X=<(X+Y)

which shows that X is narrower than X+ Y the latter is an upper bound. Thus, if we intuitively interpret <
as C, then + corresponds to U, and we can combine independent lens sets: {a, b} U{c,d} = (a+b)+ (c+d).
We can also show that

X<XZANY=RZANX Y= (X+Y)<Z

which shows that sum provides the least upper bound: U preserves C. Finally, we can also induce an
equivalence relation on lenses using the lens order in the usual way:

Definition 3.26 (Lens Equivalence). (X ~ V)2 (X < Y A Y < X) &
We define = as the cycle of a preorder, and consequently we can prove that it forms an equivalence relation.

Corollary 3.27 (Lens Equivalence Relation). For any S, (x = S,~) forms a setoid, that is, ~ is an
equivalence relation on the set x => S — it is reflexive, symmetric, and transitive. &

Proof. Reflexivity and transitivity follow by Theorem 3.23, and symmetry follows by definition. O

Lens equivalence is a heterogeneously typed relation that is different from equality (X = Y), since it requires
only that the two state spaces are the same, whilst the view types of X and Y can be different. Consequently,
it can be used to compare lenses of different view types and show that two sets of lenses are isomorphic.
This makes this relation much more useful for evaluating observational equivalence between two lenses that
have apparently differing views, and yet characterise precisely the same region. For example, in general we
cannot show that z 4+ y + 2 = 2z 4+ y + =, since these constructions have different view types: V, x V, x V,
and V, x V, x V,, respectively, and so the formula is not even type correct. We can, however, show that
x4+ y+ 2z~ z+ y+ z. This is reflected by the following set of algebraic laws.

Theorem 3.28. If X, Y, and Z are all total lenses then they satisfy the following identities: &
X+(Y+2) =(X4+Y)+Z XY, X=<Z, Y7
X4+0 ~X
X+Y =Y+ X if XY

Lens summation is associative, has 0 as a unit, and commutative, modulo =2, and assuming independence of
the components, which is consistent with the lens set interpretation. Lenses thus form a partial commutative
monoid [24], modulo =2, also known as a separation algebra [19], where X + Y is effectively defined only
when X <1 Y. Independence corresponds with separation algebra’s “separateness” relation, which means
that there is no overlap between two areas of memory. We can also use = to determine whether two
independent lenses, X and Y, partition the entire state space using the identity X + Y & 1 [34]. Finally,
we can prove the following additional properties of equivalence.

Theorem 3.29. If X7, X5, Y1, Y5, and Y are total lenses then the following laws hold: &
e If Xy Y and X; =~ X5 then Xy < Y;
o If X1~ Xy, Yim Yy, and Xy > Yy then X3 + Y1 = Xo + Yoy
o IfSx;, =Vy and X; = Xo then X15Y =~ Xa5 Y.

Independence is, as can be expected, preserved by equivalence. Equivalence is a congruence relation with
respect to +, provided the summed lenses are independent. It is also a left congruence for lens composition.
We can neither prove that it is a right congruence, nor find a counterexample.
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3.6. Mechanised State Spaces

Lenses allow us to express provisos in laws with side conditions about variables. Manual construction of
state spaces using the lens combinators is tedious and so we have implemented an Isabelle/HOL command
for automatically creating a new state space with the following form: &

alphabet [y, ,0]S = ([B1, B TH) @1 71 -+ @y i T

We name the command alphabet, since it effectively allows the definition of a UTP alphabet (see Section 2.1),
which in turn induces a state space. The command creates a new state space type S with k type parameters
(a, for 1 < i < k), optionally extending the parent state space T with m type parameters (3;, for 1 < ¢ < m),
and creates a lens for each of the variables z; : 7;. It can be used to describe a concrete state space for a
program. For brevity, we often abbreviate the alphabet command by the syntax

[Oél,"' 7O‘k}S = [/817"' aﬂrﬂ]T+ [-Z‘l FC PR ) :TTL]
when used in mathematical definitions. Internally, the command performs the following steps:

generates a record space type S with n fields, which optionally extends a parent state space T
generates a lens z; for each of the fields using the record lens recg;

automatically proves that each lens z; is a total lens;

automatically proves an independence theorem z; > z; for each pair ¢,j € {1--- n} such that 7 # j;
generates lenses baseg and moreg that characterise the “base part” and “extension part”, respectively;

automatically proves a number of independence and equivalence properties.

IR S o e

We now elaborate on each of these steps in detail.

The new record type S yields an auxiliary type [aq,- -+ , g, ¢]S-ext with additional type parameter ¢
that characterises future extensions. In particular, the non-extended type [, - - , ]S is characterised by
[a1, -, g, unit] S-ext, where unit is a distinguished singleton type. This extensible record type is isomorphic
to a product of three basic component types:

([ﬂla'”aﬁm]TX(Tlx"'XTn))Xd)

These characterise, respectively, the part of state space described by T, the part described by the n additional
fields, and the extension part ¢. In the case that the state space does not extend an existing type, we can
set [B1,-++, Bm] T = unit.

For each field, the command generates a lens z; : 7, = [, -+ , ay, @] S-ext using the record lens, and
proves total lens and independence theorems. Each of these lenses is polymorphic over ¢, so that they can
be applied to the base type and any extension thereof, in the style of inheritance in object oriented data
structures. As we show in §6, this polymorphism allows us to characterise a hierarchy of UTP theories.

In addition to the field lenses, we create two special total lenses:

o bases : [y, -, ;]S = |1, -+, ay, @] S-ext, which characterises the base part; and
e moreg : ¢ = oy, ,ay, ¢]S-ext, which characterises the extension part.

The base part consists of only the inherited fields and those added by S. We automatically prove a number
of theorems about these special lenses:

e basegs <t moreg: the base and extension parts are independent;
e bases + moreg ~ 1: they partition the entire state space;
o for i€ {1---n}, 2; < baseg: each variable lens is part of the base;

e baseg ~ baser + <Zi€{1'hn} a:l> the base is composed of the parent’s base and the variable lenses;
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e morer ~ (Zie{lmn} xl) + moreg: the parent’s extension is composed of the variable lenses and the

child’s extension part.

These theorems can help support the Isabelle/UTP laws of programming, which we elaborate in the next
section. We emphasise, though, that the alphabet command is not the only way to construct a state space
with lenses, and nor do the results that follow depend on the use of this command. We could, for example,
axiomatise a collection of lenses, including independence relations over an abstract state space type, following
Schirmer and Wenzel [73]. However, the alphabet command is a convenient tool in many circumstances.

4. Mechanising the UTP Relational Calculus

In this section we describe the core of Isabelle/UTP, including its expression model, meta-logical opera-
tors, predicate calculus, and relational calculus, building upon our algebraic model of state spaces. A direct
result is an expressive model of relational programs which can be used in proving fundamental algebraic
laws of programming [58], and for formal verification (§5). Moreover, the relational model is foundational
to the mechanisation of UTP theories, and thus advanced computational paradigms, as we consider in §6.
An overview of the Isabelle/UTP concepts and theories can be found in Fig. 12 at the end of the paper.

4.1. Ezpressions

Expressions are the basis of all other program and model objects in Isabelle/UTP, in that every such
object is a specialisation of the expression type. An expression language typically includes literals, variables,
and function symbols, all of which are also accounted for here. We model expressions as functions on the
observation space: [A,SJuexpr = (S — A)'!, where A is the return type, which is a standard shallow
embedding approach [78, 6, 26]. However, lenses allow us to formulate syntax-like constraints, but without
the need for deeply embedded expressions. A major advantage of this model is that we need not preconceive
of all expression constructors, but can add them by definition.

We diverge from the standard shallow embedding approach, because we give explicit constructors for
expressions. Usually shallow embeddings use syntax translations to transparently map between program
expressions and the equivalent lifted expressions, for example,

e+ (f—g)~ Asee(s)+ (f(s) — g(s))
Here, we prefer to have expression constructors as first-class citizens.

Definition 4.1 (Expression Constructors). Assume types A, B, C, and §. We declare the constants: &
var: (A = 8) — [4, S|uexpr
varz = \s e get, s
lit: A = [A, S]uexpr
litk= Xsek
cond : [B, S|uexpr — [A, S|uexpr — [A, S|uexpr — [A, S|uexpr
condbuy uy & X s e if b(s) then uy (s) else up(s)
uop: (A— B) — [A, Sluexpr — [B, S]uexpr
wopfu e Xs e f(u(s))
bop: (A—B— C) — [A, Sluexpr — |B, Sluexpr — [C, S]uexpr
bopguv = \s e g(u(s)) (v(s))

where z : A = S isalens; k: A is a HOL constant; f : A — B and g: A — B — C are functions; and
b: [B, Sluexpr, u, uy, us : [A, SJuexpr, and v : [B, S|uexpr are expressions.

H'We use a typedef to create an isomorphic but distinct type. This allows us to have greater control over definition of
polymorphic constants and syntax translations, without unnecessarily constraining these for the function type.
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typedef ('t, 'a) uexpr = "UNIV :: ('a = 't) set" ..

setup_lifting type definition_uexpr

lift_definition var :: "('a = 's) = ('a, 's) uexpr" is "X\ x s. getsxes s" .

lift_definition lit :: "'a = ('a, 's) uexpr" ("« »") is "A v s. v" .

lift_definition uop :: "('a = 'b) = ('a, 's) uexpr = ('b, 's) uexpr" is "A f us. f (u s)" .
lift_definition bop :: "('a = 'b = 'c) = ('a, 's) uexpr = ('b, 's) uexpr = ('c, 's) uexpr"

is "Afuvs. f (us) (vs)".

lift_definition cond :: "(bool, 's) uexpr = ('a, 's) uexpr = ('a, 's) uexpr = ('a, 's) uexpr"
("(3 <« »/ )" [52,0,53] 52)
is "A b u1 uz s. if (b s) then u: s else uz s" .

Figure 6: UTP Expression Model in Isabelle/HOL

The mechanisation of the core expression language is shown in Fig. 6, which uses Isabelle’s lifting package [60]
to create each of the expression constructors. The operator varz is a variable expression, and returns the
present value in the state characterised by lens z. For convenience, we assume that z, y, z, and decorations
thereof, are lenses, and often use them directly as variable expressions without explicitly using var. We also
use v to denote the 1 lens; this is effectively a special variable for the entire state.

The operator litk represents a literal, or alternatively an arbitrary lifted HOL value, and corresponds
to a constant function expression. We use the notation <k> to denote a literal k. As well as lens-based
variables, which are used to model program variables, expressions can also contain HOL variables, which are
orthogonal and constant with respect to the program variables. HOL variables in literal constructions («x»)
correspond to logical variables [61], also called “ghost variables”, which are important for verification [54, 61].
We use the notations x, y, and z to denote logical variables in expressions.

Operator cond b u; us denotes a conditional expression; if b is true then it returns wu;, otherwise us. It
evaluates the boolean expression b under the incoming state, and chooses the expression based on this. We
use the notation u; < b> uy adopted in the UTP as a short hand for it.

Operators vop and bop lift HOL functions into the expression space by a pointwise lifting. With them
we can transparently use HOL functions as UTP expression functions, for instance the summation e + f
is denoted by bop(+)ef. Moreover, it is often possible to lift theorems from the underlying operators
to the expressions themselves, which allows us to reuse the large library of HOL algebraic structures in
Isabelle/UTP. For instance, if we know that (4,4,0) is a monoid, then also we can show that for any S,
([A, S]uexpr, bop (+), lit0) forms a monoid. For convenience, we therefore often overload mathematically
defined functions as expression constructs without further comment. In particular, we often overload = as
both equivalence of two expressions (e = f), and an expression of equality within an expression (z = 5).

This deep expression model allows us to mimick reasoning usually found in a deep embedding: the
constructors above are like datatype constructs, but are really semantic definitions. We can then prove
theorems about these constructs that allow us to reason in an inductive way, which is central to our approach
to meta-logical reasoning. At the same time, we have developed a lifting parser in Isabelle/UTP, which allows
automatic translation between HOL expressions and UTP expressions. We also have a tactic, rel-auto, that
quickly and automatically eliminates the expression structure, resulting in a HOL expression.

The rel-auto tactic performs best when S is constructed using the alphabet command of §3.6, because
we can enumerate all the field lenses. Given a state space [z : 71, - Z,7n], We can eliminate the s state
space variable in a proof goal by replacing it with a tuple of logical variables (x; - - - x;,). This, in turn, means
that we can eliminate each lens and replace it with a corresponding logical variable, for example:

(z+y)—2>3~(x+y)—z>3

The result is a simpler expression containing only logical variables, though of course with the loss of lens
properties. This means that we have both the additional expressivity and fidelity afforded by lenses, and
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the proof automation of Isabelle/HOL.

4.2. Predicate Calculus

A predicate is an expression with a Boolean return type, [S]upred £ [B, S]uexpr, so that predicates are a
subtype of expressions. The majority of predicate calculus operators (-, A, V, =) are obtained by pointwise
lifting of the equivalent operators in HOL. We also define the indexed operators ;. , P (i) and \/,. , P(i)
similarly. The quantifiers are defined below. In order to notationally distinguish HOL from UTP operators,
in the following definitions we subscript them with a H.

Definition 4.2 (Predicate Calculus Operators). &

JreP=Xse3 v:V, e P(put,sv)
Ixe P(x) £ Ase 3, xe P(x)(s)
[P]2VveP
(PEQ)= (Y59 (Q=P)s)

Existential quantification over a lens z quantifies possible values for the lens v : V,, and updates the state
with this using put. Universal quantification is obtained by duality. The emboldened existential quantifier,
3, quantifies a logical variable in a parametric predicate P(x) by a direct lifting of the corresponding HOL
quantifier. We emphasise that 9 and 3 are semantically very different: in a lens quantification, 3z e P, the
lens £ must be an existing lens or expression. This lens is not bound by the quantification, unlike 3 x ® P(x)
where x becomes a logical variable bound in P. Lens quantification is elsewhere called liberation [25, 22]
since it removes any restrictions on the valuation of z.

The universal closure, [P], universally quantifies every variable in the alphabet of P using the state
variable v. The refinement relation P C (@ is then defined as a HOL predicate, requiring that @ implies P
in every state s.

Since the definitions are by lifting of the underlying HOL operators, we obtain the following theorem.

Theorem 4.3. For any S, ([S]upred,\/, false, \, true, =) forms a complete Boolean algebra, that is: &
o ([Slupred, v, false, A\, true, =) is a Boolean algebra, and
o ([Slupred,C) is a complete lattice with infimum \/, supremum A, top element false, and bottom true.

As usual, via the Knaster-Tarski theorem, for any monotonic function F : [S]upred — [S]upred we can
describe the least and greatest fixed points, p F' and v F', which in UTP are called the weakest and strongest
fixed points, and obey the usual fixed point laws. We can also algebraically characterise the UTP variable
quantifiers using Cylindric Algebra [53], which axiomatises the quantifiers of first-order logic.

Theorem 4.4. For any S, ([S|upred,V, A, —, false, true,3,=) forms a Cylindric Algebra, meaning that the
following laws are satisfied for total lenses x, y, and z:

(z o false) = false (C1)
(JzeP)C (C2)
Bze(PA(FzeQ))) = ((onP) (Jz e Q) (C3)
(JzeJdye P)=(JyeJz e P) (C4)

(z =)= tru (C5)

(y=2)=(3 oy:ac/\arzz) ifr >y, <z (C6)

x
3 =yAP)A .
false = Eﬂi:izz/\ﬁ})) ) ifzay (C7)
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From this algebra, the usual laws of quantification can be derived [53]. These laws illustrate the difference in
expressive power between HOL and UTP variables. For the former, we cannot pose meta-logical questions
like whether two variable names x and y refer to the same region, such as may be the case if they are aliased.
For this kind of property, we can use lens independence z < y, as required by laws C6 and C7. We also
prove the following laws for quantification.

Theorem 4.5. If A and B are total lenses, then the following identities hold: &
(HA+ BeP)=(dJAe3BeP) if A B (Ex1)
(HBeJAeP)=(JAeP) ifB=<A (Ex2)

(FAe P)=(3BeP) ifA~ B (Ex3)

Here, lenses A and B can be interpreted as variable sets. Ex1 shows that quantifying over two disjoint sets of
variables equates to quantification over both. Disjointness of variable sets is modelled by requiring that the
corresponding lenses are independent. Ex2 shows that quantification over a larger lens subsumes a smaller
lens. Finally Ex3 shows that if we quantify over two lenses that identify the same subregion then those two
quantifications are equal. We now have a complete set of operators and laws for the predicate calculus.

4.3. Meta-Logic

Lenses treat variables as semantic objects that can be checked for independence, ordered, and composed
in various ways. As we have noted, we can consider such manipulations as meta-logical with respect to the
predicate. We add further specialised meta-logical queries for expressions.

Often we want to check which regions of the state space an expression depends on, for example to support
laws of programming and verification calculi, like Example 2.1. In a deep embedding, this is characterised
syntactically using free variables. However, lenses allow us to characterise a corresponding semantic notion
called “unrestriction”, which is originally due to Oliveira et al. [66].

Definition 4.6 (Unrestriction). &

-f- : (A= S) — [B, Sluexpr — B
(rie) = (V(s, k) e e(put, sk) = e(s))

Intuitively, lens z is unrestricted in expression e, written z § e, provided that e’s valuation does not depend
on z. Specifically, the effect of e evaluated under state s is the same if we change the value of z. For example,
z §(y+ 2 > y) is true, provided that z < y, since the truth value of y + 2 > y is unaffected by changing
x. Unrestriction is a weaker notion than free variables: if z is not free in e then z e, but not the inverse.
For example, zf (z = true V z = false) for = : B is true, since this expression is always true no matter the
valuation of z. As we shall see, unrestriction is a sufficient notion to formalise the provisos for the laws of
programming. Below are some key laws for establishing whether an expression is unrestricted by a variable.

Lemma 4.7 (Unrestriction Laws). If z and y are total lenses, then the following laws hold:

— >y rhu zfu zfv — =y ylu zy zhu yhu
i litk xzfvary zhuopf u xibopfuwv 0fu Thu (z+y)tu
xr =y 1y zfP Ty xy zfP

zf(Ty e P) zi(Jye P) zf(Vy e P) zf(Vye P)

These laws are formulated in the style of an inductive definition, but in reality they are a set of lemmas in
Isabelle over our deep expression model. Expression /it k does not depend on the state since it always returns
k: any lens z is unrestricted. Any lens y that is independent of x is unrestricted varxz. The laws for uvop and
bop require simply that the component expressions have lens z unrestricted. The 0 lens is unrestricted in
any expression u, since it characterises none of the state space.
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Unrestriction is preserved by the lens order <. The summation of lenses z and y is unrestricted in
provided that x and y are independent, and both are unrestricted in u. Again, we note that + can effectively
be used to group lenses in order to characterise a set of variables. Following a lens quantification over v,
any sublens z of y becomes unrestricted. On the other hand, the restriction of any lens independent of z is
unchanged. The final two laws are the dual case for the universal lens quantification.

We can also prove the following correspondence between predicate unrestriction and quantification.

Lemma 4.8. If z is a total lens then (x4 P) < (3z o P) = P. &

We can alternatively characterise unrestriction of z by showing that quantifying over z in e has no effect (it is
a fixed point), which is a well-known property from Cylindric Algebra [53] and also Liberation Algebra [25,
22]. Specifically, quantification liberates the lens z so that it is free to take any value. Nevertheless,
Lemma 4.8 cannot replace Definition 4.6, as it applies only if P is a predicate, and not for an arbitrary
expression. We can prove a number of useful corollaries for quantification.

Corollary 4.9. If x4 P then (3z e P)=P and (3ze PA Q)= (PN (Jze Q). &

The cases for universal quantification (V) also hold by duality.

Aside from checking for use of variables, UTP theories often require that the state space of a predicate
can be extended with additional variables. An example of this is the variable block operator that adds
a new local variable. In Isabelle/UTP, alphabets are implicitly characterised by state-space types, rather
than explicitly as sets of variables. Consequently, we perform alphabet extensions by manipulation of the
underlying state space using lenses. We define the following operator to extend a state space.

Definition 4.10 (Alphabet Extrusion). &
-B- : [A, Siuexpr — (S1 = S2) — [4, Sa]uexpr
e®a 2 (Asee(get,s))

Alphabet extrusion, e & a, uses the lens a : S = S to alter the state space of e : [A, S1|uexpr to become
Sy. The lens effectively describes how one state space can be embedded into another. The operator can be
used either to extend a state space, or coerce it to an isomorphic one. For example, if we assume we have
a state space composed of two sub-regions: S £ A x B, then, a predicate P : [A]upred, which acts on state
space A, can be coerced to one acting on S by an alphabet extrusion: P @ fst : [S]upred. Naturally, we know
that the resulting predicate is unrestricted by the B region.

Lemma 4.11 (Alphabet Extrusion Laws). &b
litk®a = litk vart®a = var(zga)
uopfu®a = uopf(u®a) bopguv®a = bopg(uda)(vda)

Alphabet extrusion has no effect on a literal expression, other than to change its type, because it refers to
no lenses. A variable constructor has its lens augmented by composing it with the alphabet lens a. The
extrusion simply distributes through unary and binary expressions.

4.4. Substitutions

Substitution is an operator for replacing a variable in an expression with another expression: e[f/z].
Like free variables, it is often considered as a meta-logical operator [46]. However, shallow embeddings
can support a similar operator at the semantic level [46, 4], for which the substitution laws can be proved
as theorems. Here, we generalise this using lenses, and treat substitutions as first-class citizens that can
contain multiple variable mappings, and also conditional substitutions. This allows us to unify substitution
and multiple variable assignment, which we demonstrate in Theorem 4.21 (LP4) and Corollary 4.24.

Substitutions can be modelled as total functions o,p : & — S that transform an initial state to a
final state. However, it is more intuitive to consider a substitution as a set of mappings from variables to
expressions: [z s e,y s f]. The simplest substitution, id = (Az e z), leaves the state unchanged. We
define operators for querying and updating our semantic substitution objects below.
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Definition 4.12 (Substitution Query and Update). &
(0)ew 2 (Aseget, (0() (o) 2 (As e put, (o(s)) (e(5))

Substitution query (o)sx : [4, S]uexpr returns the expression associated with z: A = Sino:S — S by
composition of the latter with get,. Substitution update assigns the expression e : [A, S]uexpr to the lens z
in 0. The definition constructs a function of type S — S that inputs the state s, evaluates e with respect
to s, calculates the state space updated by o, and then uses put to update the value of z in o(s) with the
evaluated expression. We can then introduce the short-hands

U(xl s €1, , Tp s en) = (xl s 61)"'(5571 s en)

[Il Frs €1, , T s en] £ ld(l’l Frs €1, , Tp Fos en)
which, respectively, update a substitution ¢ in n variables by assigning e; to each variable z;, and construct
a new substitution from a set of maplets. If we have z; > z; for each such variable, then these updates
are effectively concurrent, regardless of the expressions. Otherwise, a syntactically later assignment (z;)
can override an earlier one (z; with ¢ < j). This allows us to model multiple variable assignment, and also
evaluation contexts for programs and expressions.

We also prove a number of laws about substitutions constructed from maplets.

Lemma 4.13. If x and y are total lenses, then the following identities hold: &
(oc(x—=se))szx=ce (SB1)
o(x—=s (0)sx) =0 (SB2)

[z —s x] =1id (SB3)
oclx—=seys f)=oc(y—s f,z—s€) ifz>ay (SB4)
oz e, y—s f)=o0(y—sf) ifx <y (SB5)

Law SB1 states that looking up z in a constructed substitution returns its associated expression, e. It
essentially follows from lens axiom PutGet. Law SB2 is an n-conversion principle, which follows from GetPut.
Law SB3 states that updating a variable to itself has no effect. Law SB4 states that two substitution maplets,
z —s e and y — f, commute provided that z and y are independent. Similarly, SB5 states that a later
assignment for y overrides an earlier assignment for z when y is a wider lens than z. This is, of course, true
in particular when z = y, which reduces to lens axiom PutPut.

Substitutions can be composed in sequence using function composition. Conditional substitutions can
be expressed using the following construct.

Definition 4.14 (Conditional Substitution). o € b» p = (\s e if b(s) then o (s) else p(s)). &

A conditional substitution is equivalent to o when b is true, and p otherwise. The definition evaluates b
under the incoming state s, and then chooses which substitution to apply based on this. Substitutions can
be applied to an expression using the following operator.

Definition 4.15 (Substitution Application). &

—t— (8§ = S) — [A, SJuexpr — [A, S|uexpr
cte2 (Asee(a(s)))

Application of a substitution o to an expression e simply evaluates e in the context of state o(s). We can
also model the classical syntax for substitution, P[v/z] £ [z ++ v] T P, and prove the substitution laws [4].
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Lemma 4.16 (Substitution Application Laws). &

ofvary = (o)sz (SA1)
olz—se)Tu=octu if zfu (SA2)
otuopfv=uopf(ofv) (SA3)
otbopfuv=bopf(ciu)(ctv) (SA4)

@y Pefs) =Gy Ple) frvayyte  (SAD)

idfe= (SA6)

otpte =( o)te (SAT)
plzse)oo=(poo)(zrsoTe) (SAS)
o(x—se) 4bw p(zrs f)= (0 4«bp p)(z—s(e<b>f)) (SA9)

Application of o to a variable z is the valuation of z in o (SA1). A substitution maplet for an unrestricted
variable can be removed (SA2). Substitutions distribute through both unary (SA3) and binary (SA4) oper-
ators. A singleton substitution for variable z can pass through an existential quantification over y provided
that = and y are independent, and e is unrestricted by y (SA5), which prevents variable capture. Application
of id has no effect (SA6), and application of two substitutions can be expressed by their composition (SAT).
SA8 shows that when o is composed with another substitution composed of maplets (z — e), it is simply
applied to the expression e of every such maplet. SA9 shows how two substitutions with matching maplets
can be conditionally composed, by distributing the conditional.

We can also use substitutition and unrestriction to prove the one-point law [50] from predicate calculus,
as employed in Hehner’s classic textbook on predicative programming [51].

Theorem 4.17. If z is a total lens and zf e then (3z e P N x = e¢) = Ple/1] &
As for expressions, we define an operator to extend the alphabet of a substitution.
Definition 4.18 (Substitution Alphabet Extrusion). o @, a = (\s e put, s (o(get, s))) &

We use the lens a : S; = S5 to coerce o : S — 51 to the state space Ss. The resulting substitution first
obtains an element of S from the incoming state s : S2 using get,, applies the substitution to this, and then
places the updated state back into s using put,. This is the essence of a framed computation; the parts of
s outside of the view of a are unchanged.

4.5. Relational Programs

A relation is a predicate on a product space S; X S, specifically, where S; and S are the state spaces
before and after execution, respectively. All laws that have been proved for expressions and predicates
therefore hold for relations. We define types for both heterogeneous relations, [Sy, So]urel 2 [S; x Sy]upred,
and homogeneous relations [S]hrel £ [S, S]urel. Operators true and false can be specialised in this relational
setting, and stand for the most and least non-deterministic relations. Due to their special role, we use the
notation true and false to explicitly refer to these relational counterparts.

In common with formal languages like Z [75] and B [1], UTP [57] uses the notational convention for
variables that z is the initial value and 2’ is its final value. The former can be denoted by the lens composition
x § fst, and the latter by z § snd, where z is actually the name of a lens of type 7 = S. In this presentation
we define the operators below for lifting variables, expressions, and substitutions into the product space.

Definition 4.19 (Pre- and Postcondition Lifting). &

<« b » A

*Ersfst 1" 2zssnd e Ledfst e 2edmsnd o E2o@.fst 0" 2o, snd

The * and * lift a lens, expression, or substitution, into the first and second components of a product state

[1P %)

space S1 X Sy. We deviate from the standard notation to avoid the ambiguity between “z” meaning an
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expression variable or an initial relational variable. Operator e* lifts an expression e : [A, S;]uexpr to an
expression on the product state space S; X So, for any given S,. If e is a predicate on the state variables,
then e* is a predicate on the initial state, that is a precondition. Similarly, e constructs a postcondition
with state space 81 x Sy from e : [A, So]uexpr. The analogous operators o* and o* lift a substitution to the
product space.

We can now define the main programming operators of the relational calculus.

Definition 4.20 (Programming Operators). &

(P; Q)

(Fvo e Plvg/v"] A Q[vo/v'])
I = (v=v")

(o) = (v" =a(v))

These broadly follow the common definitions given in relational calculus and the UTP book [57], but with
subtle differences due to our use of lenses. Relational composition P ; @ existentiality quantifies a logical
variable vy that stands for the intermediate state between P and (. It is substituted as the final state of
P (using v*), and the initial state of @); the resulting predicates are then conjoined. This definition yields
a homogeneous composition operator, though in Isabelle/UTP composition is heterogeneous and has type
[S1, So|urel — [Sa, S3]urel — [Sy, Ss]urel'?.

Relational identity (I), or skip, equates the initial state with the final state, leaving all variables un-
changed. (o) is a generalised assignment operator, originally proposed by Back and von Wright [6, page 2]
using a substitution o : § — S. Its definition states that the final state is equal to the initial state with o
applied. The substitution o can be constructed as a set of maplets, so that a singleton assignment x := v can
be expressed as (z s v), and a multiple variable assignment as (z; s v1,- -+ , T, s Up). Since x can be
any lens in an assignment, we can use it to assign any part of the state hierarchy that can be so characterised,
for example an element of the heap (Example 2.3) or the attribute of an object (Example 3.16).

Conditional P < b @ states that if b is true then behave like P, otherwise behave like @. In the UTP
book [57] the fact that b acts on initial variables is a syntactic convention, whereas here this wellformedness
condition is imposed by construction using b*. For completeness, we use this operator, and the fact that all
predicates, including relations, form a complete lattice, to define the while loop operator b ® P. We use the
strongest fixed-point, v, since we use it for partial correctness verification in §5.

We now have all the operators of a simple imperative programming language, and can prove the laws of
programming [58, 57], but with a generalised presentation.

>

PabeQ = (0*AP)V (- A Q)
b®Q 2 vXeP; XbT

lI>

(1>

Theorem 4.21 (Generalised Laws of Programming). &

(P;Q);R=P;(Q;R) LP1
I;P=P,I=P LP2 LP7

(LP1) LP6)
(LP2) )
false ; P = P ; false = false (LP3) Pfalses> Q= Q P8)
(LP4) )
(LP5) )

(P;(b@P))be>I=0b®P
Ptruec> Q=P

=

(
(
(
(o) ; P=0"}{P LP4 Po-bCQ=Q<b>P (LP9
()b (p) = (o 4 bw p) LP5 (P9be>Q); R=(P;R)9b>(P;R) (LP10

The majority of these are standard, and therefore we select only a few for commentary. LP4 is a generalisation
of the forward assignment law: an assignment by o followed by relation P is equivalent to o applied to the
initial variables of P. The more traditional formulation [58, 57],  := e ; P = P[e/z], is an instance
of this law. Similarly, LP5 is a generalised conditional assignment law which combines ¢ and p into a

12Technically, in Isabelle/UTP we obtain ; by lifting the HOL relational composition operator, and so the equation in
Definition 4.20 is actually a special case theorem. Nevertheless, it gives adequate intuition for this paper, and avoids the
introduction of a further layer of abstraction.
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single conditional substitution. All the other assignment laws can be proved, but we need some additional
properties for relational substitutions, which are shown below. LP10 would normally require as a proviso
that b is an expression in initial variables only, but in our setting this fact follows by construction.

Lemma 4.22 (Relational Substitutions and Assignment). &b
o f(P; Q)= (0"1P); Q (RSI) o 1{p) =(pooa) (RS3)
o 1(P; Q) =P;(c"1Q) (RS2 g H(PRbE Q)= (071 P)Q(a1b) >(0*1 Q) (RS4)

RS1 shows that a precondition substitution applies only to the first element of a sequential composition, and
RS2 is its dual. RS3 shows that precondition substitution applied to an assignment can be expressed as a
composite assignment. RS4 shows that o+ applied to a conditional distributes through all three arguments.
The precondition annotation is removed when applied to b since this is a precondition expression already.
Combining Theorem 4.21 with Lemma 4.22 we can prove the following corollaries of generalised assignment.

Corollary 4.23. (id) =T (o) ;{p) =(poo) (0); (Pbe Q)= ({0); P)<Qotbe((0); Q)

Moreover, with Lemma 4.16, Theorem 4.21, and Lemma 4.22 we can prove the classical assignment laws [58].

Corollary 4.24 (Assignment Laws). &
zi=e;y:=f = x,y:=e fle/1] z,y,z:=¢f9 =y, z,z2:=feg
x:=x =T z:=e;(PbQ) = (z:=¢; P)Qble/z]c(z:=¢; Q)
Ly=6Y =T:=¢€ r=ebCr:=f = z:=(eqb>f)

With these laws we can collapse any sequential and conditional composition of assignments into a single
assignment [58]. We illustrate this with the calculation below.

Example 4.25 (Assignment Calculation). Assume z, y, and z are independent total lenses, then:

z:=3;y=2"4+4;2:=2-y+z = (2:3); (y—s 2> +4); (252 y+ 1) [Definition]
=(ly—sa®+4ofz—3]); (zrs2-y+a) [4.23]
= ((id o[z s 3])(y s [z 3] T 2% +4) ; (25 2-y +2) [SAS)
= (zrs3,y 32 +4); (2 2y + 1) [4.16)
= ([zsz-y+a]o[rrs3,yr—s 9+4]) [4.23]
= (z+3s3,yr>s 13,2 2-13+ 3) O

The result is a simultaneous assignment to the three variables, z, y, and z. The value of z depends on its
initial value, which is unknown, and so the variable is retained.

We have shown in this section how lenses and our mechanisation of UTP support a relational program
model that satisfies the laws of programming. In the next section we use them to derive operational semantics
and verification calculi in Isabelle/UTP.

5. Automating Verification Calculi

In this section we demonstrate how the foundations established in §3 and §4 can be applied to auto-
mated program analysis. We show how concrete programs can be modelled, symbolically executed, and
automatically verified using mechanically validated operational and axiomatic semantics, including Hoare
logic and refinement calculus. Though the mechanisation of such calculi has been achieved several times
before [46, 78, 63, 3], the novelty of our work is that lenses allow us to (1) express the meta-logical provisos
of variables for the various calculi, (2) unify a variety of state space models, and (3) reason about aliasing
of variables using independence and containment. We illustrate this with a number of standard examples,
and a larger verification of a find-and-replace algorithm that utilises lenses in modelling arrays.

We consider the encoding of programs in Isabelle/UTP in §5.1, symbolic execution in §5.2, Hoare logic
verification in §5.3, and finally refinement calculus in §5.4.
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alphabet sfact = x::pat y::nat

definition pfact :: "nat = sfact hrel" where
"pfact X =
X=X,y :=1;;
while x > 1 invr y * fact(x) = fact(X)
doy:=y *x;; x :=x-1od"

Figure 7: Factorial Program in Isabelle/UTP

5.1. Encoding Programs

Imperative programs can be encoded using the operators given in §4, and a concrete state space with
the required variables. We can describe the factorial algorithm as shown in the following example.

Example 5.1 (Factorial Program). We define a state space, sfact = [z : N,y : N], consisting of two lenses
z and y. We can then define a program for computing factorials as follows: &

pfact : N — [sfact]hrel

r:=X;y:=1;

while x > 1 do
yr=y*xzr;r:=c—1

od

pfact(X) £

Constant pfact is a function taking a natural number X as input and producing a program of type [sfact]hrel
that computes the factorial. The given value is assigned to UTP variable z, and 1 is assigned to y. The
program iteratively multiplies y by z, and decrements z. In the final state, y has the factorial. O

This program can be entered into Isabelle/UTP using almost the same syntax as shown above. This is
illustrated in Figure 7, where we use the alphabet command to create the state space, and then define the
algorithm over this space using the definition command. Our parser automatically distinguishes whether a
variable name is a lens, such as z, or logical variable, such as X, using type inference.

Although in this case we have manually constructed a state space, we can also pass the program variables
as parameters to the program. Specifically, we can instead define

pfact(X:N,z: N= S,y N=8) 2 ...

which takes z and y as parameters, mimicking the pass-by-reference mechanism, and hence have a program
of type [S]hrel that is polymorphic in the state space S. This is possible because lenses model variables as
first-class citizens with the specific implementation abstracted by the axioms. This is in contrast to other
mechanisations where variables either must have explicit names [46, 78, 66] or are unstructured entities [26, 3].

As usual, the algorithm includes an invariant annotation [3] that will be explained shortly. We use this
as a running example for the Isabelle/UTP symbolic execution and verification components.

5.2. Operational Semantics

Operational semantics are commonly assigned to a programming language by means of an inductive set
of transition rules [63]. UTP [57, chapter 10], however, takes a different approach. As usual it characterises
a small-step operational semantics for imperative programs using a step relation, (s, P) — (¢, @), meaning
that program P, when started in state s, can transition to program @, with state ¢. However, instead of
characterising this relation using an inductive set, it gives a denotational semantics to the transition relation,
and then proves transition rules as theorems. This has the benefit that linking operational and axiomatic
semantics is straightforward.

Here, we adopt a similar idea to describe a reduction semantics for relational programs, and use it
to perform symbolic execution, following the pattern given by Gordon and Collavizza [47]. We begin by
describing the execution of a program P started in a state context I.
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Definition 5.2 (Program Evaluation). (T, P) £ (I') ; P where P : [S]hreland I': S — S. &

The meaning of (', P) is that program P is executed in the variable context I'; which gives assignments to
a selection of variables in S, for example [z —5 5, y > true]. The expression (I', I) denotes a program that
has terminated in state I'. The definition above of this operator is very simple, because of our encoding
of variable contexts as substitutions: we apply I' as an assignment, and compose this with the program P.
Using this definition we can prove a set of reduction theorems.

Theorem 5.3 (Operational Reduction Rules). &

C,P;Q—(,P); Q@ (0,I; P—=(T,P) (U, (o)) = (ool )

(T'1b) — true (T'1b) — false
. PobeQ) = (IL,P)  (L.P<bcQ) - (T,Q)
(T'tb) — true (T'1b) — false
{T,o® P) — (T, P; (b® P)) (T,b® P) — (T, )
The arrow P — @ actually denotes an equality predicate (P = @); we use the arrow notation to aid

in comprehension, and to emphasise the left-to-right nature of semantic evaluations. The first two rules
on the top line handle sequential composition. The first pushes an evaluation into the first argument of
a composition P ; @. The second rule states that when the first argument of a sequential composition
has terminated (I), execution moves on to the second argument (P). The third rule handles assignments,
creating a new context by precomposing the assignment ¢ with the current context.

The second and third lines deal with conditional and while-loop iteration, respectively. In all these rules,
the context I' is applied to the condition b as a substitution. If the result is true, the conditional chooses
the first branch P, and the while loop makes a copy of the loop body. If the result is false, the conditional
chooses the second branch ), and the while loop terminates.

Using these theorems, we can perform symbolic execution of programs in Isabelle/UTP. To achieve this
we load the Isabelle simplifier with the equations of both Theorem 5.3 and Lemma 4.16, the latter of which
allows us to apply substitutions. We also utilise the pointwise-lifted semantics given in §4.1 to evaluate
expressions using the builtin HOL functional definitions and simplification laws.

In addition, we need the equations of Lemma 4.13 to evaluate and normalise substitutions. However,
Law SB4, which allows reordering of subsitution maplets, is symmetric and therefore cannot be directly used
as it would cause the simplifier to loop. The issue is that lenses do not apriori have a total order that can be
used to reorder them. Nevertheless, Law SB4 is important to enable a canonical representation of concrete
substitutions. Consequently, we extend the simplifier with a “simproc” [64], a specialised meta-logical
simplification procedure that sorts substitution maplets lexicographically using the syntactic lens names.
Thus, during symbolic evaluation the variable context will always order the variables lexicographically.

Applying the Isabelle simplifier with these laws, we can symbolically execute programs. Below, we give
an example execution of the factorial program from Example 5.1. We do this by using the simplifier to
evaluate the term (id, pfact(4)), where id encodes an arbitrary initial assignment for all the variables.
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Example 5.4 (Factorial Symbolic Execution). &

id, pfact(4))
idye:=4;y:=1;(z>1)®(y:=y*xz;z:=z—1))

rsd]y=1;z>)@®(y:=yxz;z:=z—1))

zsd iy 1], (z>1)@ (y:=y*xz;z:=2—1))

zsdys 1), (yi=yxz;z=c—-1);z>)@(y:=yxz;z:=0—1))

T3y d, (z>1)®(yi=y*xz;z:=12—1))

T2,y —=s 12, (e > 1) ® (y:=y*xz;2:=2—1))

(
(
(
(
(
(
(
(
(

s ly—s24], (e >1)® (y:=y*xz;z:=2—1))

[

[ 1]

[ 1]
[z—=sdy—sdlzi=z—1;(z>1)®(y:=y*z;z:=1z—1))
[ 4]

[

[

[

= ([z s 1,y —s 24], I) O

In this case, the program terminates in final state [z —5 1,y —5 24], but in the case of a non-terminating
program the simplifier will loop. Such a symbolic execution engine is a useful tool for simulation of programs.
Next, we show how we can mechanise the rules of Hoare logic and apply them to verification.

5.3. Hoare Logic

A Hoare triple {b} P {c} is an assertion that, if program P is started in a state satisfying predicate
b, then all final states satisfy predicate ¢. The UTP book [57, chapter 2] shows how this assertion can be
encoded using a refinement statement. Their definition is mechanised in Isabelle/UTP as given below.

Definition 5.5 (Hoare Triple). {0} P{c} £ ((b* = ¢*) C P) &

This states that the Hoare triple is valid when P is a refinement of the specification b* = ¢~. The specification
states that when b is satisfied initially, then c is satisfied finally. This is a statement of partial correctness
since P could satisfy this condition by not terminating, for example if P = false, since @) C false for any Q.
Definition 5.5 is equivalent to the standard definition for partial correctness [46] illustrated in Section 2.3:

Theorem 5.6. {b} P{c} < (V(s,5) ® b(s) A P(s,8") = ¢(s')) &
An equivalent characterisation is given in terms of our reduction relation below.
Theorem 5.7. If {b} P{c} then V(I'1,T2) o [(T1 1) A (T'y, P) = (9, I) = (T2 1 ¢)] &

This is an example of a UTP linking theorem [57] that relates two semantic presentations, in this case how
the Hoare triple is related to the operational semantics. The satisfaction of {b} P {c} implies that, for any
initial state assignment I'; satisfying precondition b, if P terminates with final state assignment I'y, then I’y
satisfies ¢. Thus we have formally related the operational and axiomatic semantics for relational programs.
From Definition 5.5 we can also prove, as theorems, the following Hoare calculus laws:

Theorem 5.8 (Hoare Calculus Laws). &

p=otd  {py@{s} {s}@{r} {oap}s{q} {-bAp}T{q} {p A b} S{p}
{p} (o) {a} {r}@; @ {r} {p}s<beT{q} {pto® P{-bAp}

The majority of these laws are standard [54]. However, the formulation of the assignment law is more general
than the standard law, {p[e/ az]} ri=e {p} It avoids the aliasing problem of classical Hoare logic since
substitution depends on semantic independence of lenses, rather than syntactic inequality of variable names.
We can model aliased names by giving a lens two (meta-logical) names in Isabelle, z and y. We can also
consider the situation when z and y are different constructions and yet not independent, such as hp and
hp[0], from Example 2.3. We illustrate this with the following example.
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lemma pfact correct: "{true} pfact X {y = fact(X)}"
unfolding pfact def
apply (hoare_auto)
apply (metis diff Suc Suc diff zero fact diff Suc less SucI mult.assoc)
apply (metis fact 0 fact Suc 0 less SucO linorder_neqE _nat mult.right neutral)
done

Figure 8: Verification of Factorial Algorithm

Example 5.9 (Aliasing). We consider the triple {y = 3} =2 {y = 3}. If we attempt its proof using the
rules above, and the substitution laws (Lemma 4.16), the result is the predicate (y = 3) = (y[2/z] = 3). If
z and y are identical (z = y) then this reduces to (y = 3) = false, which is not provable. If z # y, and yet
either z ~ y, < y, or y < z, then the conjecture is also not provable; indeed we can use nitpick [13, 12] to
find a counterexample. If, however, z < y, then we obtain (y = 3) = (y = 3), which is true. O

Similarly, from Definition 5.5 we can also represent derived laws, like the forward assignment law, by making
use of unrestriction.

Lemma 5.10. {p}a}::e{w:e/\p} ifcie xfp &

We can use these laws to automatically verify our factorial program, following the pattern of previous
works [2, 63, 3], though using our lens-based Hoare logic laws. We require, as usual, that the program is
annotated with loop invariants. This is shown in Figure 7, with loop invariant y*z! = X!, which is syntactic
sugar to help the proof strategy [3]. The proof strategy, implemented in the Isabelle/UTP tactic hoare-auto,
executes the following steps:

1. Combine all composed assignments using Corollary 4.24.

2. Apply the Hoare logic laws of Theorem 5.8 as deduction rules.

3. Perform any substitutions in the resulting predicates using Lemma 4.13 and Lemma 4.16.
4. Apply the rel-auto tactic of §4.1 to each resulting predicate.

The result is a set of HOL predicates that characterise the verification conditions for the program. We
exemplify this with the factorial program below.

Example 5.11. {true} pfact(X) {y = X!} &

Proof. Application of hoare-auto yields the following verification conditions:

Lx>1AysxX=Xl=yxx*x(x—1)!=X
2. x<1Ayxxl=XI=y=X

In this case, both proof obligations can be discharged using sledgehammer [12]. This is illustrated in Figure 8,
with calls to metis for each proof obligation. O

As a further example we consider a program for the find and replace functionality in a text editor.

Example 5.12 (Find and Replace). &
function find-replace(arr : [stringlarray, len : nat, mtc : string, rpl : string) : nat =

var i, occ : nat e

1:=0;0cc:=0;

while i < len do
if arr[i] = mtc then arr[i] := rpl ; occ := occ + 1 else arr[i] := arr[i]fi ;
t:=1+1

od ;

return occ
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alphabet ss = arr::"nat = string" occ::"pat" i::"nat"

definition find replace ::
"(nat = string) = nat = string = string = ss hrel" where
"find replace A len mtc rpl =
arE :=A -0 .1 3= 0 - oec 3= @ 3
while i < len
invr arr = (A k. if k <i A A k = mtc then rpl else A k)
A occ = length (filter ((=) mtc) (map A [0..<i])) A i < len

do
if (arr i = mtc) then arr[i] := rpl ;; occ :=occ + 1
else arr[i] := arr i
fi s d i=d £11

Dd“

Figure 9: Find and Replace in Isabelle/UTP

In this program, we have an array of strings that represents a sequence of words in a text buffer, and we
wish to replace every occurence of a particular string, mtc, with another string rpl. The specified function
takes four parameters: an array of strings, arr, the length of the array len, and the two strings mic and rpl.
It returns the number of occurences for which it has made a replacement.

We first create local variables 7 and occ, using the var construct, and initialise them, for iterating over
the list and recording occurrences. We then have a while loop that iterates over the length of the array.
At each step, if the ith element of the array equals mic, then this element is replaced with rpl, and the
number of occurences is incremented. Otherwise, the element of the array is left unchanged. Finally, i is
incremented and the loop continues. Once the loop exits, the value of occ is returned. Variables occ and i
are modelled in Isabelle/UTP using record lenses, and the array arr using a total function lens.

The algorithm is mechanised in Isabelle/UTP as shown in Figure 9. We first create the state space ss
with variables arr, occ, and i. We represent the variables len, mtc, and rpl as logical variables, since they
are not changed by the algorithm. Moreover, we include an explicit parameter A that represents the initial
state of the array. This is need to represent the invariant annotations, which we explain below.

There are at least two desirable properties for this program, both of which are postconditions: (1) arr
should have all occurrences of mic replaced with rpl; and (2) the value of occ returned should be number of
occurrences in arr initially. The first can be represented by the following triple:

{arr = A} find-replace(arr, len, mtc, rpl) { Vi < len o Ali] = (mtc < arr[i] = rpl & Al4]) }

This states that if the array is initially A, then following execution of find-replace, for every index 7 in A
that has mtc, the array contains rpl, and all other elements remain the same. This can be proved using the
invariants shown in Figure 9. It has two parts corresponding to properties (1) and (2). The first invariant
states that at the ith iteration, arr is identical to A, except that every instance of mic up to index 7 is
replaced with rpl. The second invariant states that the number of occurrences is equal to the number of
instances of mtc filtered out of the function before index 7. The third invariant is that 7 < len. With these
three invariants, we can verify the two properties; this is illustrated in Figure 10.

Thus we have shown how Isabelle/UTP can be applied to practical verification of relational programs,
which can contain complex state space structures afforded by lenses. We can unify different variants of
assignment, such as to multiple variables and collections, using the generalised assignment law. Moreover,
the verification infrastructure is semantic and thus efficient in nature, without the need for deep syntax,
and yet can utilise meta-logical concepts like substitution and unrestriction, which are not present in other
shallow embeddings.

In the next section we consider the mechanisation of Morgan’s refinement calculus.

5.4. Refinement Calculus

In this section, we show how lenses can support a Morgan-style refinement calculus [61], extending our
previous results on frames in UTP [35]. The refinement calculus is a technique for stepwise development of
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lemma find replace propl:
"{true} find replace A len mtc rpl {V i < len. arr(i) = (rpl « A(i) = mtc » A(1)) }"
unfolding find replace def by (hoare auto, metis less Suc eq)

lemma find replace prop2:
"{true} find replace A len mtc rpl {occ = length (filter ((=) mtc) (map A [0..<len]))}"
unfolding find replace def by (hoare auto, metis less Suc eq)

Figure 10: Find and Replace verified in Isabelle/UTP

programs, by refining abstract specifications in increasingly concrete programs. The specification statement,
w:[pre, post], is a contract asserting that (1) only the variables in w may change, and (2) the postcondition
(post) should be established when the precondition (pre) holds. We use lenses and our relational program
model to mechanise a partial correctness specification statement, and prove several laws relating to frames.
Ordinarily, Morgan’s calculus specified total correctness, but here we focus on the laws relating to frames,
rather than termination of programs. A total correctness calculus can be obtained straightforwardly by
combining our results here and in Section 6 with the UTP theory of designs [57, 20].
For this, we first define a notion of equivalence modulo a lens that is needed to characterise frames.

Definition 5.13 (Observation Equivalence). We assume s1, 82 : S and X : V = S, and define: &

§1 ~x 8 2 (s1 = puty s2 (gety s1))

This operator states that two states s; and sy are the same everywhere outside of the region described by
X. For example, if we have three variables z, y, z : Z, then we can show that

[z—=1,y— 2,23~ [ 2,y — 2,2 3]

since the two states differ only in the value of z. Lenses can represent sets of variables, using +, and so we
can group several independent variables in a frame, as the following equivalences illustrate:

Lemma 5.14. Assume s1, 82 : S then the following identities hold: &
(51 ™15 S2) = true and (51 ~os S2) = (51 = 52)

This theorem demonstrates the intuition that 1 and 0 characterise the entirety and none of the state space,
respectively. The state space outside of 1 is empty, and outside of 0 is the whole state. We can also show
that ~x is an equivalence relation.

Lemma 5.15. If X is a total lens then ~x is an equivalence relation on states. &
We now use observation equivalence to define the specification statement.

Definition 5.16 (Specification Statement). &
w:[pre, post] £ ((pre* = post™) A v ~, v*)

A specification statement states that the precondition implies the postcondition, and in addition the initial
state is the same as the final state, modulo w. The semantics is similar to the partial correctness Hoare
triple in Definition 5.5, except that it only includes the specification. Indeed, we can prove the following
well-known correspondence [57, 45].

Theorem 5.17. {pre} P{post} < (v:[pre, post] C P) &

A Hoare triple can be re-expressed as a specification statement refinement. The standard triple does not
include a frame, and consequently all variables are permitted to change, indicated by the frame being v (i.e.
1). Moreover, from Definition 5.16 we can derive many of the refinement calculus laws [61] as theorems.
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Theorem 5.18 (Refinement Calculus). If z and w are total lenses, then the following laws hold: &

8

w:[pre, post] C w:[pre, post'] if post’ = post (1)
w:[pre, post] C w:[pre’, post] if pre = pre’ (2)
w:[pre, post] T w:[pre, post] if x> w (3)
w:[pre, post]| C I if pre = post (4)
w:[pre, post] C x if £ < w, pre = postle/z] (5)
(w:= e) = w:[true,w = €] if wie (6)
w:[pre, post] T w:[pre, mid] ; w:[mid, post) (7)
(8)

]
w:[pre, post] C w:[b A pre, post] < b > w:[(—=b) A pre, post]
These laws use the lens operators as side conditions. Laws (1) and (2) allows strengthening and weakening
of a post- and precondition, respectively. Law (3) shows that a variable can be removed from a frame in a
refinement, because this effectively adds 2> = z* as a conjunct. Laws (4) and (5) show the circumstances
under which a specification may be refined to a skip (I) or assignment (z := e¢). For the latter, z must
be in the frame w, represented by z < w. Law (6) shows that an assignment w := e can be written as a
specification statement when e does not depend on w. Law (7) shows how a specification can be divided
into two sequential specifications by inserting a midpoint condition. Finally, (8) shows how a conditional
can be introduced, by conjoining the precondition with predicate b.

These results illustrate how lenses support modelling of frames. The theorems can be applied to derivation
of algorithms by stepwise refinement in Isabelle/UTP. We have therefore shown in this section how our lens-
based semantic foundation allows us to support a selection of verification calculi and linking theorems
between them. In the next section we consider mechanisation of UTP theories.

6. Mechanising UTP Theories

In this section we apply Isabelle/UTP to the mechanisation of UTP theories. The relational program
model in §4 is powerful, but not without limitations. It is well known, for instance, that simple relational
programs, which capture only the possible initial and final values of program variables, cannot adequately
differentiate terminating and non-terminating behaviour [21]. Furthermore, several programming paradigms,
such as real-time, concurrency, and object orientation, require a richer semantic model with more observable
information [21, 72, 74, 33].

This semantic enrichment can be facilitated by UTP theories. Semantic information is expressed by
adding special observational variables, which encode quantities of a program or model, and invariants that
restrict their domain, called healthiness conditions. The observational variables can be used to define
specialised operators for a particular computational paradigm, such as a delay or deadline operator for a real-
time language. For example, a clock variable, clock : N can be added to record to passage of time, or a trace
variable tr : [Event]list can be added to record events [21]. The healthiness conditions allow us to impose
well-formedness invariants over these observational variables, and allow us to prove algebraic theorems that
characterise the healthy elements. As usual, healthiness conditions are represented as idempotent predicate
transformers, that is, functions on relations over the observational variables. The pay-off here is that
general properties of elements of the UTP theory can often be reduced to properties of the healthiness
conditions [57, 36].

We characterise UTP theories in Isabelle/UTP as follows.

Definition 6.1. An Isabelle/UTP theory is a pair (S, H), where S is an observation (i.e. state) space,
H : [S]hrel — [S]hrel is a healthiness condition, and H is idempotent: H o H = H.
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We mechanise this algebraic structure in Isabelle using locales [8]. S characterises the observations that can
be made of the model. An observation space can be constructed using the alphabet command (§3.6), in
which case it defines a set of lenses, xy - - - x,, which provide the observational variables. The healthiness
conditions are encoded as total endofunctions on homogeneous relations parameterised by S. If a theory
has multiple healthiness conditions, then these can be composed function-wise. The simplest UTP theory
is the relational theory, Rel, = (o, A X @ X). Any type is an instance of a, and any relation is a fixed-point
of A\ X e X.

We say that a relation P : [S]hrel is H-healthy, written P is H, when P is a fixed-point of H: H(P) = P.
Moreover, we characterise the healthy elements of a theory by the set [H], £ {P | P is H}. Idempotence
of H guarantees the existence of at least one fixed point. This ensures that the UTP theory is non-empty
since, for any relation P, H(P) € [H]u since H(H(P)) = H(P). To illustrate, we formalise the UTP theory
for timed relational programs introduced in §2.1.

Example 6.2 (Timed Relations). &
The parametric observation space [S]rt = [clock : N, st : S] has lenses clock : N, which denotes the passage
of time, and st : S, which denotes the user state. Healthiness function

HT(P) = (clock* < clock™ A P)

ensures that time advances. HT is clearly idempotent, since conjunction is idempotent. We define the
following operator for introducing a delay for timed relations:

wait : N — [[S]rt]hrel
wait(n) 2 (clock” = clock® +n A st* = st*)

Here, clock is advanced by n, and the state is unchanged. We can prove that wait(n) is HT-healthy, since
it advances time. Conversely, the predicate clock™ = clock* — 1 is not healthy, since it tries to reverse time.
The mechanisation of the theory in Isabelle/UTP is shown in Figure 11. O

As in previous work [26, 79], our theories form “families”: they characterise relations on several obser-
vation spaces, since the observation type is potentially polymorphic, and thus extensible with additional
variables. For example, our theory in Example 6.2 is parametric in S. We can characterise a subtheory
relation between UTP theories.

Definition 6.3. ([8]73,H2) is a subtheory of (S1,H;) when [8]73 specialises Sy, and [Ha]u C [H1]n-

Subtheories allow us to arrange theories in a hierarchy with descendants that specialise the observation
space with additional variables and constraints.
UTP theories also include a signature: a set of operators that construct healthy elements of the theory.
We say that an operator
F . [S]hrel™ — [S]hrel

in n parameters, is in the signature if [H], is closed under F. Formally, we require that:
VP, - ,P, @ PrisHAN---ANP,isH = F(P1, - ,P,) isH

The function F' can either denote a new operator defined on &, or an existing operator defined over a
parent observation space. For example, nondeterministic choice P M @ and sequential composition P ; @
often inhabit the signature of several theories, since they are typed by arbitrary relations and so can be
instantiated by any observation space. This also means that the corresponding algebraic laws for a parent
operator F' can be directly applied to elements of a new subtheory. For example, sequential composition is
always associative, since every theory is a subtheory of Rel,.

We exemplify this by giving the signature of our theory of timed relations.

Lemma 6.4. [HT], is closed under the following relational operators: I ;, <QbC>, and z := v when
z X clock, and so these are also within the theory signature, as demonstrated by the laws below: &
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alphabet 's rt = clock :: nat st :: 's

type_synonym 's time rel = "'s rt hrel"
utp_def Wait :: "nat = 's time rel" where "Wait(n) = ($clock” = $clock + «n» A $st” = $st)"
utp_def HT :: "'s time rel = 's time rel" where "HT(P) = (P A $clock < $clock’)"

theorem HT idem: "HT(HT(P)) = HT(P)" by rel auto

theorem HT _mono: "P C Q = HT(P) C HT(Q)" by rel_auto

lemma HT Wait: "HT(Wait(n)) = Wait(n)" by (rel auto)

theorem Wait Wait: "Wait(m) ;; Wait(n) = Wait (m + n)" by (rel auto)

Figure 11: Timed Relations in Isabelle/UTP

— PisHT QisHT PisHT Qis HT z > clock —
Iis HT (P;Q)is HT (Pbe> Q) is HT  (z:=wv) is HT  wait(n) is HT

Once the signature operators have been established, the final step is to prove the characteristic algebraic
theorems for them. These laws effectively provide an algebraic semantics for the UTP theory, and can be
used to aid in the construction of program verification tools. There are three ways to obtain such theorems
in Isabelle/UTP. Firstly, we can inherit them from a parent theory by utilising Definition 6.3. Secondly, we
can import them from an algebraic structure by proving the algebra’s axioms. Thirdly, we can prove them
manually using Isabelle/UTP’s proof tactics.

We exemplify the third approach for the new delay operator, using our rel-auto proof tactic (§4.1).

Theorem 6.5 (Delay Laws). &
wait(0) = I
wait(m) ; wait(n) = wait(m + n)
wait(m) ; (P9bC Q) = (wait(m) ; P) < b (wait(m) ; Q) if clock b
wait(m) ; z := v = x:= v ; wait(m) if clockt v, z > clock

Waiting for a zero length duration is simply a skip operation (I), sequential composition of two delays, by
m and n time units, is equivalent to a single m+n delay. A delay distributes through a conditional provided
that b does not refer to the clock variable. A delay commutes with an assignment (z := v) provided that
the delay expression does not depend on z and v does not depend on clock.

Algebraic theorems for UTP theories can also be obtained by linking to a variety of mechanised algebraic
structures. The HOL-Algebra library [9], for example, characterises the axioms of partial orders, lattices,
complete lattices, Galois connections, and the myriad of theorems that can be derived from them. A
substantial advantage of the UTP approach is that algebraic theorems can often be reduced to proving
properties of the underlying healthiness conditions, which allows us to obtain laws with minimal effort. We
exemplify this by restricting ourselves to a particular subclass of continuous UTP theories.

Definition 6.6. # is continuous provided that H([],c 4 P(7)) = [1;c 4 H(P (7)) whenever A # §. &

In a continuous theory, the healthiness condition distributes through arbitrary non-empty relational infima.
A corollary of this definition is that  is also monotonic: P C @ = H(P) C H(Q). So, by the Knaster-
Tarski theorem, also part of HOL-Algebra, we can show that [H]y forms a complete lattice under refinement
C. This allows us to import theorems for recursive and iterative programs into a UTP theory.

From the induced complete lattice, we obtain the following operators: infimum [, supremum | |, top
element T, bottom element 1., and least fixed-point p1._, which are all in the theory’s signature, and for
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which the usual complete lattice and fixed-point calculus theorems [7] hold. Moreover, in a continuous UTP
theory, these operators can be calculated using the equational theorems given below.

Lemma 6.7 (Continuous Theory Properties). &

T, = H(false)

1, = H(true)
[, A=(T-<A=0c[14) if AC [H].
pr F=pX e F(H(X)) if F:[H]w — [H]w and F is monotonic

These lemmas demonstrate the relationship between the theory operators, and the relational ones defined
in §4. The theory top and bottom elements are the relational top and bottom with # applied. The theory
infimum []_ A is T, when A is empty, and otherwise the relational infimum. Moreover, the least fixed-point
operator can be expressed as the relational least fixed-point by precomposition of H. The utility of these
theorems is that we can construct nondeterministic choices and recursive programs using the relational
operators N and p, which again allows reuse of their algebraic laws.

We now demonstrate how we can obtain such theorems for timed relations.

Theorem 6.8. HT is continuous, since conjunction distributes through disjunction ([']). We therefore
obtain a complete lattice, and can calculate the top and bottom element:

T+ = HT(false) = false 1 ,, = HT(true) = (clock < clock’)

We also obtain a least fized-point operator for constructing and reasoning about iteration, u,, and can use
it to denote a timed loop operator: b ®, P = (H, X oP; XbC 1.

From these theorems, we can proceed to define a timed Hoare calculus and proof tactics following the
template given in §5. A concrete timed program can be modelled by creating a suitable state space,
vars £ [z1 : Ty -+ &, : Ty, defining the program P : [[vars]rt] hrel using the signature operators, and proving
that P ¢s HT. Finally, the proven Hoare logic deduction rules can be used for program verification.

In this section, we have demonstrated how a UTP theory can be mechanically validated, a set of signature
operators verified, and algebraic theorems for these operators proved. Though the example of timed relations
is simple, it illustrates the basic concepts that we have used for more complex theories in Isabelle/UTP.
Notably, we have applied our approach to the mechanisation of a hierarchy of UTP theories for reactive
programs that uses five observational variables and seven healthiness conditions [36]. This UTP theory
has been applied to the development of a verification tool for the Circus language [39], which extends our
imperative programming language with concurrency and communication [67].

7. Related work

There have been several previous works on application of algebraic semantics to modelling mutation of
state. Back and von Wright [6] use two functions val.z : § — V and set.z : ¥V — & — S, to characterise each
variable, together with five axioms that characterise their behaviour.

Definition 7.1 (Back and von Wright’s Variable Axioms [6, 4]).

val.z.(set.z.a.0) = a 9)
x # y = val.y.(set.z.a.0) = val.y.o (10)
set.z.a ; set.z.b = set.z.b (11)
T #1y = set.z.a;set.y.b =set.y.b;set.z.a (12)
set.z.(val.z.o).c =0 (13)
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The dot operator (f.z) denotes function application in Back and von Wright’s work. From these axioms, and
a predicate transformer semantics, they are able to prove the laws of programming [6], including Example 2.1.
The lens functions put and get correspond to the variable functions set and val, and have almost the same
axioms [30]. Specifically, the axioms of total lenses in Definition 3.5 correspond to Back and von Wright’s
axioms (9), (11), and (13) in Definition 7.1. The other two axioms, (12) and (10), are captured by lens
independence (Definition 3.8). In fact, Theorem 3.11 demonstrates that only four of Back and von Wright’s
variable axioms are necessary [6]; axiom (10) can be proved from the others and so is redundant.

We have based our work on lenses rather than Back and von Wright’s approach, which is also the reason
for the different order in the parameters of put [32, 31]. Nevertheless, we effectively use lenses to relax Back
and von Wright’s axioms so that we can characterise, not only independence of variables, but also when
one variable is “part of” another. Specifically, in Definition 7.1, z and y are individual variables, but with
lenses they can equally refer to a set or hierarchical structure. Variable sets are also supported by Back and
Preoteasa [4] by lifting these axioms over a list, for instance to support multiple assignment. Our approach
has more generality since it allows hierarchy and does not require formalising variable names. Also similar
to our work, Back and Preoteasa [4] use their set variable operator to characterise substitution.

J. Foster et al. [31] created lenses as an abstraction for bidirectional programming and solving the view-
update problem in database theory [10], which seeks to propagate changes to a computed view table back
to the original source table. Fischer et al. [30] give a detailed study of the algebraic laws for get and put,
which is the starting point for our work. Foster et al. provide combinators for composing abstract lenses
and concrete lenses based on trees [32, 31]. They have been practically applied in the Boomerang language!3
for transformations on textual data structures, such as XML databases. There is also a substantial Haskell
library'# that can be used to develop generic data type transformations. Pickering et al. [69] extend this
library to support modular data accessors by introducing various additional combinators, including a form of
parallel composition. Our lens sum operator (Definition 3.18) share similarity with the parallel composition
operator defined by Pickering et al. [69]. It is different, however, because the latter acts on an explicitly
separated state space of the form A x B, whereas lens sum acts on an arbitrary state space.

Variables are also given an algebraic semantics by Dongol et al. [25], through the development of Cylindri-
cal Kleene Algebra, that extends their previous work [3, 45]. The core of their approach is a cylindrification
operator, C, R, that liberates the variable z in relation R. Their work contains a comprehensive investiga-
tion of the algebraic properties of this operator in an algebraic program model. They apply this algebra to
characterise assignment, substitution, and frames. They use a functional model of state [73], and thus need
to fix types for both variables and values, as explained in Section 2.4. We hope in the future to apply their
algebraic structures and generalise them in the context of lenses, building on our previous results [43, 35].
For comparison, relational cylindrification can effectively be implemented using our lens summation and
quantifier operators as C, R £ 3 (z* + 2”) o R.

8. Conclusions

In this paper we have given a comprehensive exposition of the foundations of our verification framework,
Isabelle/UTP. As we have demonstrated, Isabelle/UTP provides a unified semantic foundation for a variety
of computational paradigms and programming languages, with the ability to formulate machine-checked
semantic models. These models can then be used in constructing verification tools that harness the powerful
automated proof facilities of Isabelle/HOL.

We have described how variables can be modelled as algebraic objects using lenses. This allows us
to unify and compose a variety of variable models, and define generic operators for their comparison and
manipulation. The lens-based model, in particular, allows us to avoid dependence on syntactic concepts like
naming, and instead build upon semantic properties like independence and containment.

We used this algebraic foundation to develop a flexible shallow embedding of UTP, including expressions,
predicates, and relations. We provided proof tactics for relational conjectures, and a library of algebraic

13Boomerang home page: http://www.seas.upenn.edu/~harmony/
MTenses, Folds and Traversals. https://hackage.haskell.org/package/lens
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theorems. In contrast to previous work, our expression model additionally supports syntax-like manipula-
tions, including substitution and unrestriction, without the need for explicit modelling of variable names. A
particularly pleasing result is the semantic unification of assignment and substitution, which leads to several
elegant algebraic laws. Our mechanisation therefore offers both efficient automated proof and expressivity.

We have used this relational model to develop programming operators, and prove the “laws of program-
ming” [58] as theorems, along with the axioms of several algebraic structures, like complete lattices and
cylindrical algebra. We have then used this body of laws in §5 to provide symbolic execution, Hoare logic
verification, and refinement calculus components for relational programs. We show how lenses allow us to
perform symbolic evaluation, reason about aliasing of different variables, and model frames and Morgan’s
specification statement [61]. Though we use UTP notation throughout, different syntactic flavours can easily
be accommodated using Isabelle’s powerful syntax processing facilities [77].

Finally we have described how the relational model can be applied to mechanised UTP theories. We
have shown how UTP theories are represented, in terms of observation spaces and healthiness conditions.
Our theory model supports reuse of algebraic laws by a notion of inheritance, whereby a UTP theory can
be extended with additional observational quantities and refined by further healthiness conditions. We have
shown how further laws can be obtained with links to algebraic structures.

In conclusion, we have made the first steps toward realising the UTP vision [57, Chapter 0] of integrated
formal methods, underpinned by unifying semantics, with mechanised support. In many ways, this is only
the beginning, as there remains a large number of computational paradigms that are not yet represented in
Isabelle/UTP. A major item for future work is the mechanisation of the various pen-and-paper UTP theories
that have been developed by the UTP community over the past twenty years [57, 20, 72, 74, 15]. We are
currently working on various UTP theories to support verification of low-level code, hybrid programs [33, 62],
control law block diagrams [38], and state machines [35]. Moreover, we also plan to analyse the efficiency of
the various proof tactics described here and see if they scale to larger models.

With respect to verification of low-level code, one of the major features needed is a model of dynamically
allocated memory addressed by pointers. We have hinted back in §3.2 that we can weaken the axioms of
total lenses to describe “partial lenses”. These are only defined for a subset of the possible states, which
can be used to distinguish allocated and dangling pointers. We are currently using this idea to mechanise
separation logic [71] in Isabelle/UTP, by combining lenses and separation algebra [19, 24, 34]. In tandem
with this, we plan to study the algebraic structure of lenses in more depth and from the perspective of
category theory, due to heterogeneous nature of the equivalence operator. In particular, we will explore the
links between lenses and recent work on cylindrical Kleene algebra [25].

With respect to verification of hybrid dynamical systems, we have previously described an extension of
the relational calculus with continuous variables [38, 37]. The generic trace model of reactive designs [37] and
our extensible mechanisation of UTP theories means that we can specialise the reactive design hierarchy in
a different direction to describe hybrid reactive systems, where the trace is a piecewise continuous function.
This can be applied, for instance, to assign a UTP semantics to a language like Hybrid CSP [48], which
integrates continuous evolution with discrete CSP-style events and concurrency. Proof support for such
a language depends on the ability to reason about invariants of differential equations, and so we are also
integrating Platzer’s differential induction technique [70, 62], as employed by the KeYmaera tool'®, into
Isabelle/UTP. Moreover, we have previously given a UTP semantics to the dynamical systems modelling
language Modelica [38], and so we will also develop proof facilities for this.
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