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Abstract 

Vocalizations linked to emotional states are partly conserved among phylogenetically related 

species. This continuity may allow humans to accurately infer affective information from 

vocalizations produced by chimpanzees. In two pre-registered experiments, we examine 

human listeners’ ability to infer behavioural contexts (e.g., discovering food) and core affect 

dimensions (arousal and valence) from 155 vocalizations produced by 66 chimpanzees in 10 

different positive and negative contexts at high, medium, or low arousal levels. In 

Experiment 1, listeners (n = 310), categorised the vocalizations in a forced-choice task with 

10 response options, and rated arousal and valence. In Experiment 2, participants (n = 3120) 

matched vocalizations to production contexts using Yes/No response options. The results 

show that listeners were accurate at matching vocalizations of most contexts in addition to 

inferring arousal and valence. Judgments were more accurate for negative as compared to 

positive vocalizations. An acoustic analysis demonstrated that, listeners made use of 

brightness and duration cues, and relied on noisiness in making context judgements, and 

pitch to infer core affect dimensions. Overall, the results suggest that human listeners can 

infer affective information from chimpanzee vocalizations beyond core affect, indicating 

phylogenetic continuity in the mapping of vocalizations to behavioural contexts. 
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When we hear a hissing cat or a person laughing, we may be able to infer information 

from these vocalizations, including both the individual’s affective state and the kind of 

situation they are in. In 1872, Darwin [1] hypothesised that emotional vocal expressions have 

ancient evolutionary roots and that they are based on shared mechanisms across mammalian 

species. In the research on phylogenetic continuity of emotional vocalizations that has 

followed since then, researchers have primarily focused on vocal production; this work has 

established considerable similarities in the acoustic features linked to affective information in 

different animal groups. In an extensive review, Briefer [2] notes consistent acoustic 

correlates of core affect dimensions such as arousal (physiological alertness or attentiveness 

[3]) and valence (degree of positivity or negativity [3]) in vocalizations across mammalian 

species. Across species, there is thus consistency in the acoustic features that characterise 

arousal and valence.  

In inferring affective information from vocalizations, perceivers might be able to 

make use of consistencies in affective vocalizations. When listening to conspecific or 

heterospecific vocalizations, accurate perception of the producer’s affective state is beneficial 

for the perceiver in many contexts [4]. Indeed, inferring affective states from conspecific 

vocalizations can be essential for the perceiver in contexts including parental behaviour and 

sexual partner selection. Going beyond conspecific vocalizations, listening to heterospecific 

vocalizations can be used to gather information about the producer’s inner state which can 

facilitate adaptive behaviour in various contexts, like being attacked by a predator. This 

ability might be based on inherent capacities to perceive phylogenetically conserved acoustic 

regularities [4].  

Human perception of affective information from heterospecific vocalizations 

Most of what we know about human listeners’ perception of affective information in 

heterospecific vocalizations comes from studies on core affect. This work has showed that 



humans can accurately infer arousal and valence from vocalizations of many different species 

[5-13]. However, acoustic features of mammalian vocalizations vary systematically across 

different types of behavioural contexts such as threats, food, and play, that do not only vary 

in terms of arousal and valence [14,15]. Perceptual mechanisms may exist that allow human 

listeners to infer richer affective information from particular types of behaviours than 

inferences of core valence [16]. For instance, humans associate cats’ purring with 

contentment and dogs’ yelping with distress. However, it is not straightforward to map the 

affective information in heterospecific expressions onto human emotion categories, and there 

is a clear risk of anthropomorphising those species. An alternative approach is to examine 

mappings between vocalizations and behavioural contexts as an indirect route to inferring 

affective states.  

Only a few studies to date have tested human listeners’ perception of behavioural 

contexts from heterospecific vocalizations. The results have shown that listeners can 

correctly classify the production context of dogs’ barks [17], cats’ meows [18], and the 

vocalizations of pigs [19]. However, previous studies are limited to domesticated animals that 

are distantly related to humans. Here, we seek to examine human listeners’ ability to infer 

behavioural context and core affect dimensions from vocalizations of chimpanzees (Pan 

troglodytes), one of the genetically closest living relatives to humans.  

In studies comparing animal vocalizations produced in positive and negative contexts, 

humans have consistently been found to be better at identifying affective information 

produced in negative contexts [8,17-19]. For instance, listeners correctly identified arousal 

levels in silver fox vocalizations only when they were produced in negative contexts [8]. In 

the current study, we therefore examine whether human listeners’ perception of behavioural 

context and core affect dimensions is more accurate for negative as compared to positive 

chimpanzee vocalizations. 



 The Present Study 

Drawing on two complementary approaches to phylogenetic continuity in emotional 

expressions, we sought to test the hypotheses that 1) human listeners can accurately infer the 

type of behavioural context in which chimpanzee vocalizations were produced [16]; and that 

2) human listeners can correctly judge arousal and valence from chimpanzee vocalizations 

[12]. We included chimpanzee vocalizations produced in a wide range of different positive 

and negative behavioural contexts at high, medium, or low arousal levels. 

In Experiment 1, participants were asked to complete a forced-choice context 

categorisation task for each vocalization, and to rate arousal and valence. We predicted that 

listeners would be able to categorise the behavioural contexts and to judge the arousal level 

and valence from the vocalizations at better-than-chance levels. However, the 10-way forced-

choice context categorisation task was challenging for participants, and so Experiment 2 

employed a simpler paradigm. It tested whether participants could match the vocalizations to 

a corresponding behavioural context when selecting from two options (match vs. no match). 

We predicted that listeners would be able to match vocalizations to their respective 

production contexts at better-than-chance levels. Finally, in both experiments we expected 

that accuracy would be better for vocalizations produced in negative, as compared to positive, 

contexts.  

In order to investigate the features shaping human listeners’ perception of affective 

information from chimpanzee vocalizations, we conducted an acoustic analysis. First, we 

examined whether behavioural context, arousal level, and valence would be reflected in the 

acoustic structure of the vocalizations. Second, we tested which acoustic features would 

predict humans’ perceptual judgements. The hypotheses, methods (including exclusion 

criteria), and data analysis plan for both experiments were preregistered on the Open Science 

Framework (osf.io/mkde8) before data collection was commenced.  



 Experiment 1: Categorisation of Behavioural Contexts and Judgements of Arousal 

Level and Valence  

In Experiment 1, we tested whether human listeners would be able to accurately 1) 

categorise the behavioural context in which the chimpanzee vocalizations were produced by 

selecting from 10 context categories; and 2) judge the arousal level (high, medium, low) and 

valence (positive, negative) of these vocalizations. 

Participants 

The sample size was predetermined by a power analysis using G*Power 3.1 [20] for a 

t-test given d = 0.2, power = 0.80, α = 0.005. The power analysis was conducted based on the 

context categorisation task, since we expected it to be the most difficult for participants. This 

categorisation task included separate tests for 10 behavioural context categories; thus 

Bonferroni-corrected alpha level was used (α = 0.005 [0.05/10]), and so 296 participants were 

required to detect a small effect size. To ensure that the study was not underpowered, data 

was collected from 14 additional participants to allow for potential exclusions (see Statistical 

Analyses for exclusion criteria). Consequently, 310 participants (195 female, Mage = 22.08, Sdage 

= 3.39, range = 18-38 years old) took part in the experiment. All reported having no hearing 

impairments and no experience working with or studying chimpanzees. Participants were 

recruited via the University of Amsterdam, Department of Psychology’s research pool, and 

flyers distributed across the university campus. The average duration of the main experiment 

was 27.43 minutes (Sd = 9.75), and participation was compensated with monetary reward or 

course credit.  

 Materials and Procedure 

Stimuli. In the practice trials, two chimpanzee vocalizations taken from 

findsounds.com were used as stimuli. In the main task, the stimuli were 155 vocalizations 

produced by 66 individual chimpanzees in 10 types of behavioural contexts including 



positive and negative contexts at high, medium, and low arousal levels (see Table 1). The 

behavioural contexts were recorded by author K.E.S. in real time, alongside the sound 

recordings of vocalizations, and K.E.S., an expert in chimpanzee vocal communication, 

provided classifications of the arousal levels and valence of each call type (see Table 1). 

Descriptions of behavioural contexts and classification of each context based on arousal level 

and valence, together with number of stimuli, are listed in Table 1; details of the recording 

setups are provided in Supplementary Materials Text 1S. A representative vocalization for 

each context can be found in Supplementary Materials Audio 1S. All recordings were 

normalized for peak amplitude using AudaCity software (http://audacity.sourceforge.net) 

before the experiment.  

Table 1. Behavioural contexts and core affect dimensions of chimpanzee vocalizations 

Note. For each context, vocalizations were obtained from between 4 and 21 individual chimpanzees. 

*copulation calls may be associated with either positive (pleasure) or negative (fear/pain) valence, 

thus no specific valence is attributed to the vocalizations produced during copulation. 

Experimental procedure. On arrival at the laboratory, each participant was led to a 

silent individual cubicle. After completing two practice trials, participants listened to the 155 

 Positive (n = 80) Negative (n = 75) 
No specific valence 

(n = 11) 

High 

arousal 

(n = 62) 

Pant hoots when discovering 

a large food source (n = 12) 

Waa barks while threatening an 
aggressive chimp or predator (n 

= 16) 

 

 
Victim screams when attacked 

by another chimpanzee (n = 21) 
 

 
Alarm calls when discovering 

something scary (n = 13) 
 

Medium 

arousal 

(n = 71) 

Rough grunts while eating 

high value food (n = 19) 

Tantrum screams when refused 

access to food (n = 15) 

*Copulation calls 

while having sex (n 
= 11) 

Laughter while being tickled 

(n = 16) 

Whimpers by juveniles when 

separated from mother (n = 10)  

Low 

arousal 

(n = 22) 

Rough grunts while eating 

low value food (n = 22) 
  



chimpanzee vocalizations and for each were asked to 1) make a forced-choice context 

categorisation, selecting from 10 categories, 2) indicate the level of arousal on a 5-point scale 

(1 = very low, 5 = very high, and 3) indicate the emotional valence on a 5-point scale (1 = 

very negative, 5 = very positive). Finally, participants reported their familiarity with each 

behavioural context (How familiar are you with the chimpanzees in the context of X from 

zoo settings or media?), and a representative vocalization from each context (How familiar 

are you with this chimpanzee vocalization from zoo settings or media?) on a 5-point scale (1 

= not at all, 5 = extremely). 

 The presentation order of vocalizations, scales, and context categories were 

randomized separately for each participant. Participants could replay each vocalization as 

many times as needed to make their judgments. The stimuli were presented through 

headphones (Monacor MD-5000DR) connected to a computer, and the sound level was held 

constant across participants. The experimental interface was created using PsychoPy [21].  

Statistical Analyses  

Before analysis, the data set was checked for outliers, defined as performance of three 

Sd or more below the mean on the categorisation task. No participants had to be excluded. 

 To test whether human listeners would perform better than chance in the 

categorisation of contexts, the proportion of correct responses was calculated for each 

participant for each context category. Unbiased hit rates (Hu scores, [22]) were calculated to 

control for individual biases in the use of particular context categories. These were arcsine 

transformed before the analysis to stabilize variance [22]. Following this transformation, all 

variables were checked for normality using Shapiro-Wilk test, which indicated that they were 

not normally distributed (ps < 0.001). We therefore employed paired sample Wilcoxon 

Signed-Rank tests. Chance levels were calculated for each context per individual following 

Wagner’s formula [22]: the product of the column and row marginals, divided by the squared 



number of observations. The corrected chance level takes the number of stimuli for each 

context category into account. Arcsine transformed Hu scores were then compared to chance 

using a paired sample Wilcoxon-Signed Rank test for each category, Bonferroni corrected for 

multiple comparisons (0.05/10).       

To assess how accurately human listeners judged the arousal level and valence of the 

vocalizations, ratings on the 5-point scales were transformed into -2 (very low), -1 (low), 0 

(medium), 1 (high), 2 (very high); and -2 (very negative), -1 (negative), 0 (neutral), 1 

(positive), 2 (very positive). A response was considered correct if 1) arousal ratings were 

significantly higher (lower) than zero for high (low) arousal vocalizations, 2) arousal ratings 

were not significantly different from zero for medium arousal vocalizations, 3) valence rating 

were significantly higher (lower) than zero for emotionally positive (negative) vocalizations. 

Based on these criteria we calculated arcsine-transformed Hu scores for statistical tests. 

Using separate Wilcoxon-Signed Rank tests, we tested whether performance was better than 

chance level for high, medium, and low arousal and for positive and negative vocalizations. 

Finally, we tested separately for context categorisation, arousal and valence ratings whether 

perception accuracy was higher for vocalizations produced in negative as compared to 

positive contexts using paired sample Wilcoxon Signed-Rank tests with the arcsine-

transformed Hu scores. 

Results  

Confusion matrices for average recognition percentages are shown in Figure 1. The 

results show that participants were not able to accurately categorise any of the behavioural 

contexts (ps > 0.005, Bonferroni corrected; Figure 1a). However, judgments of core affect 

were significantly better than chance for high (z = 14.734, p < 0.001), low (z = 13.567, p < 

0.001), and medium (z = 8.745, p < 0.001) arousal levels (Figure 1b), as well as positive (z = 

14.805, p < 0.001) and negative (z = 14.713, p < 0.001) valence (Figure 1c). 



In the analysis comparing listeners’ performance for vocalizations produced in 

negative vs. positive contexts, the judgements of behavioural contexts were not employed, 

since participants were unable to identify any of the contexts at better-than-chance levels. 

The results showed that, consistent with our prediction, participants were more accurate at 

identifying high arousal from vocalizations produced in negative contexts than in positive 

contexts (z = 14.374, p < 0.001). However, listeners were more accurate at inferring medium 

arousal levels from positive as compared to negative vocalizations (z = 14.852, p < 0.001). 

Since the low arousal context category consisted of only one context, vocalizations from 

negative and positive contexts could not be compared. In terms of valence, listeners were 

better at judging the valence of vocalizations produced in negative as compared to positive 

contexts (z = 15.146, p < 0.001). To assess whether participants tend to perceive 

vocalizations as more negative or positive in general, we calculated the average of valence 

ratings across positive and negative vocalizations per participant (M = -0.29, Sd = 1.11). 

When the valence ratings were compared against zero, they show a bias towards judging the 

vocalizations as negative (z = -14.787, p < 0.001). Human listeners tend to perceive 

chimpanzee vocalizations as more negative in general. 

On average, participants rated both behavioural contexts (M = 1.86, Sd = 0.89) and 

representative vocalizations (M = 2.14 Sd = 0.98) as unfamiliar. Because of the large number 

of stimuli and judgements, we checked for evidence of fatigue by comparing the accuracy in 

early (the first 30) and late (the last 30) trials. Pairwise comparisons showed that participants’ 

performance on the arousal judgement task was high in both the early (M = 46.74, Sd = 0.10) 

and late trials (M = 44.92, Sd = 0.11), although participants performed better in the early 

trials (z = 2.552, p = 0.011). No difference in accuracy was found for early and late 

judgments of context categorisation and valence (see Supplementary Materials Table 1S for 



details). It is therefore unlikely that participants’ performance was adversely affected by 

possible fatigue. 

 

Figure 1. Heatmap of confusion matrices (%) for behavioural context categorisation data (A) and 



arousal (B) and valence (C) judgments. The x-axes represent stimulus types and the y-axes indicate 

responses. c1 = Eating high value food, c2 = Eating low value food, c3 = Copulating (having sex), c4 

= Being separated from mother, c5 = Discovering a large food source, c6 = Being refused access to 

food, c7 = Being tickled, c8 = Being attacked by another chimp, c9 =  Threatening an aggressive 

chimp, c10 = Discovering something scary.  

Experiment 2: Matching Chimpanzee Vocalizations to a Single Behavioural Context  

The ten-way context categorisation task used in Experiment 1 was challenging for 

participants because they were asked to choose from a substantial number of unfamiliar 

behavioural context categories. In Experiment 2, we therefore sought to test whether listeners 

would be able to match vocalizations to behavioural contexts in a simpler task involving a 

single behavioural context for each participant. 

Participants  

Each participant was given a context matching task for a single context with Yes/No 

response options on each trial. A power analysis (G*Power 3.1; [20]) based on a t-test given 

d = 0.2, power = 0.80, α = 0.05 showed that 156 judgments per stimulus were needed. To 

reduce the risk of learning effects, each participant heard half of the stimuli from the target 

behavioural context category. This yielded a total number of 312 participants per context 

category. Since we tested 10 behavioural contexts, the total sample size was set to 3120. 

Consequently, a total of 3120 participants (1570 females1, Mage = 34.032, Sdage = 10.34, range = 

18-75 years old) were recruited from Amazon Mechanical Turk to take part in the 

experiment. All reported having no hearing impairments or experience of working with or 

studying chimpanzees. Each session lasted around 10 minutes and participation in the 

experiment was compensated with monetary reward.  

 
1 Eight participants preferred not to indicate their gender. 
2 Three participants are excluded in the descriptive statistics on age because of birth date errors. 



Materials and Procedure  

Stimuli. Experiment 2 used the same stimuli as those in Experiment 1 for both the 

practice trials and the main task.  

Experimental procedure. The study was run online using the Qualtrics survey tool 

(Qualtrics, Provo, UT). Before commencing, participants were instructed to complete the 

experiment in a silent environment and use headphones. Participants were given two 

screening questions. On one they were played a doorbell and on the other a car horn sound. 

They were asked to indicate what they heard, with ‘doorbell’ and ‘car horn’ as response 

options. Participants who failed one or more screening questions were not able to continue to 

the main experiment.   

After the practice and screening trials, each participant was randomly assigned to one 

of the ten conditions, each focusing on a specific behavioural context. In each condition, 

participants were asked to give a match-to-context judgment (“Does this vocalization match 

context X?”), selecting from Yes and No options. The matching vocalizations were a 

randomly selected subset (half) of the vocalizations from that behavioural context. This 

constituted 1/4 of the stimuli heard by that participant; the other 3/4 were the non-matching 

stimuli randomly drawn from all of the other context categories. Only a quarter of the stimuli 

heard by a given participant were thus from the relevant behavioural context, again to reduce 

the risk of learning effects. The presentation order of vocalizations was randomized for each 

subject.  

Statistical Analyses  

The data set was checked for participants whose performance was three Sd or more 

below the context-specific mean, but none were and so all data were retained.   

We quantified participants’ ability to match behavioural contexts using the sensitivity 

index d-prime. D-prime controls for individual biases in the use of a particular response, and 



is calculated as z-transformed hit rates minus false alarm rates [23]. Hit and false alarm rates 

with extreme values (i.e., 0 or 1) return an error when z-transformed. Those cases are 

commonly adjusted by replacing rates of zero with 0.5/n (0.5/m) and rates of 1 with (n-0.5)/n 

([m-0.5]/m) where n (m) is the number of signal (noise) trials [24]. We calculated hit rates as 

the proportion of Yes trials to which participants responded Yes, false alarm rates as the 

proportion of No trials responded to as Yes. In order to test our hypothesis that human 

listeners would perform better than chance in matching vocalizations to context types, d-

prime scores for each participant were tested against chance (random guessing, reflected by a 

d-prime score of zero) using separate one sample t-tests for each context type at the 

Bonferroni corrected level α level (α = .005). 

Furthermore, we tested whether performance would be better for negative than for 

positive vocalizations. This was tested using an ANOVA comparing the mean accuracy from 

negative vs. positive behavioural contexts using d-prime scores.  

Results  

Mean accuracy levels (d primes) per behavioural context are shown in Figure 2. The 

statistical tests showed that participants were able to accurately match most of the 

vocalizations to behavioural contexts. Specifically, performance was significantly better than 

chance for eating high value food (t = 5.04, p < 0.001, d = 0.28, 95% CIs [0.15, 0.34]), eating 

low value food (t = 9.59, p < 0.001, d = 0.55, 95% CIs [0.49, 0.75]), discovering a large food 

source (t = 5.52, p < 0.001, d = 0.31, 95% CIs [0.17, 0.37]), being refused access to food (t = 

13.09, p < 0.001, d = 0.74, 95% CIs [0.63, 0.85]), being attacked by another chimpanzee (t = 

22.99, p < 0.001, d = 1.29, 95% CIs [1.06, 1.26]), and threatening an aggressive chimp or 

predator (t = 11.19, p < 0.001, d = 0.64, 95% CIs [0.37, 0.53]). Performance was not better 

than chance, however, for vocalizations of copulation (having sex) (t = -2.99, p = 0.003, d = 

0.17, 95% CIs [-0.04, 0.003]), being separated from mother (t = 2.81, p = 0.005, d = 0.16, 



95% CIs [0.04, 0.23]), being tickled (t = 1.77, p = 0.19, d = 0.10, 95% CIs [-0.01, 0.19]), and 

discovering something scary (t = -16.49, p = 0.003, d = 0.93, 95% CIs [-0.68, -0.53]). 

Accuracy levels for matching vocalizations produced in negative contexts were significantly 

better than those from positive contexts (negative: M = 0.43, Sd = 0.37, positive: M = 0.22, 

Sd = 0.47, F (1,631) = 38.938, p < .001). 

 

Figure 2. d-prime scores per behavioural context showing human listeners’ performance in matching 

vocalizations to production contexts. Bold indicates better than the chance level performance. 

Acoustic Analysis 

We performed an acoustic analysis to explore acoustic features shaping human 

perception of affective information in chimpanzee vocalizations. First, independently of 

perceptual responses of listeners, a classification analysis was conducted to test whether 

chimpanzee vocalizations differ by context, arousal level, and valence, in terms of acoustic 

features. We then examined which acoustic features, if any, would predict humans’ ability to 

accurately infer affective information from chimpanzee vocalizations in terms of correctly 

judging the arousal level and valence of the vocalizations (Experiment 1) and accurately 

matching the vocalizations to the corresponding behavioural context (Experiment 2). 



Method 

Extraction of acoustic features from chimpanzee vocalizations. We measured 

acoustic features of 155 vocalizations produced by 66 individual chimpanzees using PRAAT 

[27]. For each vocalization, we measured the following acoustic features: number of calls in 

a bout, duration of each call, time of the maximum peak frequency, relative position of the 

peak frequency within a call, percentage of voiced frames, jitter, shimmer, spectral centre of 

gravity (SCoG) as well as minimum, maximum, mean, and Sd of fundamental frequency (f0) 

and harmonics-to-noise ratio (HNR). We based the choice of parameters on previous findings 

on production and perception of affective mammalian vocalizations: duration, f0 and HNR are 

linked to the affective state of the caller across many animal species [4,14,26,27]. Peak 

frequency has been found to differ across dog barks recorded in different contexts [17]. In 

addition, the percentage of voiced frames was added as a tonality measure because in 

nonverbal human vocalizations such as laughter, voiced frames are typically more periodic, 

while unvoiced frames are noisier and more aperiodic [28]. Jitter and shimmer are important 

parameters for analysis of arousal in animal vocalizations [29], while spectral centre of 

gravity is associated with the perception of arousal in humans [6,7,30]. Means and Sds of all 

acoustic parameters can be found in Supplementary Table 2S. 

Further selection of acoustic features. To avoid multicollinearity, we performed a 

Principal Component Analysis (PCA) with varimax rotation on the 15 acoustic parameters to 

attempt to reduce the number of acoustic parameters. Based on the examination of the scree 

plot and selecting components that explain more than 10% of the variance, the first three 

components, together explaining 63% of the variance, were retained. Factor loadings on the 

three acoustic dimensions can be found in Supplementary Table 3S. Online interactive map 

showing the distribution of the 10 behavioural contexts is available in 

https://emotionwaves.github.io/context/, arousal levels in 



https://emotionwaves.github.io/arousal/, and valence in 

https://emotionwaves.github.io/valence/ on the first three acoustic dimensions. These 

visualisations demonstrate that the behavioural contexts, arousal levels, and valence are 

reflected in the acoustic structure of vocalizations. The first dimension mainly relates to 

HNR, which is a measure of clear vs. noisy components in the signal. The second dimension 

is primarily related to pitch, while the third mainly relates to temporal measures. The 

variance of inflation factor (VIF) was substantially greater than 1 for acoustic features 

loading on the second and third dimensions (duration: 4.62; f0 min: 30.42; f0 max: 64.16; f0  

mean: 37.86; f0 Sd: 21.05; time of the maximum peak frequency: 4.10) indicating that there 

was a collinearity problem [32]. We therefore selected the features with highest 

interpretability based on the previous literature in addition to the factor loadings on the first 

three components. This selection allowed us to choose acoustic features with low VIF and 

high factor loadings on the first three dimensions. The selected acoustic features for statistical 

analyses were thus: SCoG, duration, f0 mean, f0 Sd, HNR mean, and HNR max. Collinearity 

was not a problem for these features (VIF: SCoG: 1.67; duration: 1.47; f0 mean: 1.62; f0 Sd: 

1.25; HNR mean: 1.56; HNR max: 1.62). 

Statistical Analyses 

We sought to test whether behavioural contexts, arousal levels and valence could be 

differentiated based on the selected acoustic features. Multinomial Logistic Regressions 

(MLR) were performed in SPSS (Version 23, IBM Statistics) on the acoustic features to 

determine whether the acoustic parameters provide sufficient information to predict the actual 

behavioural contexts and arousal levels, and Binomial Logistic Regression (BLR) for 

valence.  

To assess which, if any, acoustic parameters of the vocalizations would map onto 

listeners’ ability to accurately perceive 1) behavioural context, 2) arousal levels, and 3) 



valence, we conducted three generalized linear mixed models (GLMMs). The dependent 

variable was a binary response (i.e., correct or incorrect response). Participant and 

chimpanzee IDs were entered as random factors, accounting for participant and chimpanzee 

variability. The selected acoustic parameters were set as fixed factors. We used Akaike’s 

information criterion (AIC) to select the most parsimonious model [34]. ∆AICs are calculated 

as the difference between the AICc of the fitting model and the best model to identify the 

models with the highest power to explain the variation in the dependent variable. Lower AIC 

values indicate improved support for each model [32,33], and each added variable is 

considered to improve the fit only if it increases the AIC value by more than two units [34]. 

GLMMs were implemented using lme4 package [35] with optimizer ‘bobyqa’ [36]. Binomial 

data and estimated odds were plotted as forest plots for fixed effects ‘sjplot’ package in R 

[37].  

Results 

Classification of behavioural contexts, arousal levels, and valence based on 

acoustic parameters. MLR on behavioural contexts showed that the overall model was 

significant χ2 (54) = 595.618, p < 0.001. All acoustic parameters, SCoG (χ2 (9) = 92.919, p < 

0.001), duration (χ2 (9) = 114.154, p < 0.001), f0 mean (χ2 (9) = 92.283, p < 0.001), f0 Sd (χ2 

(9) = 50.906, p < 0.001), HNR mean (χ2 (9) = 112.324), p < 0.001, and HNR max (χ2 (9) = 

22.620, p < 0.01) made significant unique contributions and the overall model showed 85.7% 

classification agreement on behavioural context classification.  

The results from the MLR on arousal levels revealed that the overall model was 

significant (χ2 (2) = 191.391, p < 0.001). Significant contributions were made by SCoG (χ2 

(2) = 28.990, p < 0.001), duration (χ2 (2) = 72.489, p < 0.001), and HNR mean (χ2 (2) = 

25.352, p < 0.001). Vocalizations with higher arousal levels were longer in duration 

compared to vocalizations with lower arousal levels. HNR mean was higher for high and 



medium arousal and lower for low arousal vocalizations, while the SCoG of low arousal 

vocalizations was lower than that of medium and high arousal vocalizations. The final model 

showed a classification agreement of 83.1%.  

Third, the binomial logistic regression on valence showed that the overall model was 

significant (χ2 (6) = 60,433, p < 0.001). Duration (χ2 (6) = 8.789, p < 0.01), f0 mean (χ2 (6) = 

19.797, p < 0.01), and HNR mean (χ2 (6) = 5.381, p < 0.05) made significant unique 

contributions. Duration was longer for negative vocalizations and f0 mean and HNR mean 

were higher for negative vocalizations than positive vocalizations. The final model had a 

classification agreement of 73.4%.  

Prediction of human listeners’ perceptual judgments from acoustic parameters. 

GLMMs revealed that SCoG (z = 6.59, p < 0.001), duration (z = 2.83, p < 0.01), f0 Sd (z = -

2.73, p < 0.01), HNR mean (z = -6.03, p < 0.001), and HNR max (z = 3.31, p < 0.001) 

significantly predicted accurate match-to-context responses in Experiment 2. SCOG is a 

measure of how high the frequencies in a spectrum are, which is perceptually connected with 

the impression of brightness of a vocalization. Duration refers to the total duration of calls in 

whole stimulus, while f0 is the lowest periodic cycle of the acoustic signal, which has the 

perceptual correlate of pitch. HNR is the degree of acoustic periodicity, which relates to 

human perception of noisiness. The model selection procedure based on the AIC identified 

the model excluding f0 mean as the strongest model for explaining variation in human 

listeners’ accurate responses in the match-to-context task. The best predictor of performance 

was SCoG, which was linked to participants’ ability to correctly match vocalizations to 

behavioural contexts (see Figure 3). 

GLMM predicting accurate arousal level judgments in Experiment 1 revealed 

significant effects of SCoG (z = 5.33, p < 0.001), duration (z = 2.91, p < 0.05), f0 mean (z = 

13.25, p < 0.001), and f0 Sd (z = 13.90, p < 0.001). Increases in those acoustic parameters 



predicted higher accuracy in listeners’ judgments of arousal level. The best predictor of 

arousal level judgments was f0 Sd. Specifically, decreases in this parameter (corresponding 

approximately to less pitch variability) predicted better listener accuracy in identification of 

arousal levels. For valence judgments, SCoG (z = 11.96, p < 0.001), duration (z = 8.24, p < 

0.001), f0 mean (z = 15.48, p < 0.001), and f0 Sd (z = -5.78, p < 0.001), showed significant 

effects on the prediction of listeners’ performance. Specifically, increases in SCoG, duration, 

and f0 mean predicted more accurate valence judgments, while increases in f0 Sd predicted 

lower accuracy. The best predictor of valence judgements was f0 mean, which predicted 

better accuracy in the identification of valence. In explaining variation in human listeners’ 

accuracy in identifying both arousal levels and valence from chimpanzee vocalizations, the 

model excluding HNR mean as well as the model without HNR max were the strongest 

models. The effects of each acoustic features on the accurate perception of behavioural 

context, arousal levels and valence are visualised in Figure 3. Full details of the GLMMs and 

model selection procedures are provided in Supplementary Tables 4S and 5S. 

 

Figure 3. Forest plots of estimates of the generalized linear mixed models. Estimates for fixed effects 

are given as log-odds. The vertical intercept indicates no effect. A) Behavioural context based on 

match-to-context task in Experiment 2, B) Arousal level judgment task in Experiment 1, C) Valence 

judgement task in Experiment 1.  



Discussion 

Two experiments tested human listeners’ ability to accurately 1) perceive behavioural 

contexts in which chimpanzee vocalizations were produced, using a 10-way context 

categorisation task and a Yes/No match-to-context task; and judge 2) arousal and valence 

from chimpanzee vocalizations. Human listeners failed to categorise production contexts of 

vocalizations when a 10-way forced-choice task was used. However, they were able to match 

vocalizations to most behavioural contexts in the simpler Yes/No match-to-context task. In 

addition, the arousal levels (high, medium, low) and valence (positive, negative) of the 

chimpanzee vocalizations were accurately inferred by human listeners. Overall, participants 

performed better with negative, as compared to positive, vocalizations.   

In Experiment 1, participants were asked to select the best matching context from 10 

unfamiliar behavioural context categories. Such tasks are difficult for listeners as it is more 

challenging to evaluate and compare contexts [4]. Moreover, 10 is a large number of options 

for a categorisation task. It has been suggested that even though increasing the number of 

alternatives in forced-choice tasks has advantages (e.g., reducing the guessing rate), for a 

given task, there is a point at which the number of options becomes too large for participants 

[38]. The present results suggest that for human listeners to be able to accurately map 

chimpanzee vocalizations to 10 unfamiliar behavioural contexts, participants may require 

additional information about the contexts, and/or information carried by other channels such 

as facial expressions.  

In Experiment 2, when a Yes/No match-to-context task was used, listeners accurately 

matched the vocalizations produced while eating high and low value food, discovering a 

large food source, being refused access to food, being attacked by another chimpanzee, and 

threatening an aggressive chimp or predator. Given that listeners in our experiment had 

minimal prior exposure to chimpanzees, they are unlikely to have learned to decode 



chimpanzee vocalizations. Rather, accurately mapping heterospecific vocalizations to 

behavioural contexts linked to affective states may draw on acoustic regularities that are 

conserved across related species. For instance, African elephants can differentiate between 

threatening and non-threatening human vocalizations [39], and Japanese sika deer uses the 

vocalizations produced by Japanese macaques when they discover a food source to locate 

fruit [40]. In these contexts, understanding heterospecific vocalizations clearly benefits the 

perceiver, and thus may confer a fitness advantage. To assess the effect of different degrees 

of acoustic regularities in vocalizations on perception of behavioural contexts from 

heterospecific vocalizations, future studies should aim at including vocalizations from 

multiple species differing in phylogenetic closeness. 

Listeners failed to match vocalizations of copulation, being separated from mother, 

being tickled, and discovering something scary. A possible explanation is that there may be a 

great deal of variability in the vocalizations produced in these contexts, depending on factors 

such as who potential perceivers are (e.g., kin vs. non-kin, allies vs. competitors). For 

instance, female chimpanzee copulation calls have been found to differ when copulating with 

high ranking males compared to low ranking males [41]. Thus, listeners might need 

additional contextual information to be able to specify vocalizations produced in certain type 

of contexts, or might not be able to identify certain contexts from vocalizations at all. 

In general, listeners’ judgments of negative behavioural contexts were more accurate 

than judgments of positive contexts. Similarly, high arousal vocalizations and valence were 

more accurately inferred from vocalizations produced in negative contexts. In particular, 

accuracy was especially high for highly aroused negative vocalizations, which might signal 

immediate, potentially dangerous situations. It has been proposed that stronger phylogenetic 

continuity for negative affective signals may be a result of a homologous signalling system 

that benefits species in dangerous contexts [8]. From this perspective, the acoustic structure 



of vocalizations produced in negative contexts may be more likely to have been conserved, 

since negative contexts involve risks. Survival might be facilitated by the ability to recognise 

vocalizations produced in negative contexts not only by conspecifics, but also by members of 

other species [42]. Indeed, cross-species “eavesdropping” on alarm calls has been suggested 

to increase chances of survival [43]. Thus, acoustic structure may have been preserved to a 

greater degree for negative as compared to positive vocalizations. 

Independently of listeners’ perceptual responses, acoustic features of chimpanzee 

vocalizations varied systematically across different behavioural contexts, arousal levels, and 

valence. Listeners utilized brightness, duration, pitch variation, noisiness, and maximum 

level of noisiness to make accurate classifications of vocalizations into behavioural contexts. 

Brightness, duration, pitch, and pitch variability predicted listeners’ ability to correctly infer 

both arousal levels and valence. Noisiness of vocalizations was a more useful acoustic feature 

in matching production contexts compared to other features, while more simple acoustic 

features like pitch mean and pitch variation were more effective in identification of arousal 

and valence. In line with our findings, Maruščáková and colleagues [11] found that simple 

acoustic features such as pitch were more useful in human judgments of valence than 

noisiness in piglet vocalizations. Similarly, Filippi and colleagues [7] have shown that 

humans mainly rely on pitch to identify high arousal vocalizations across nine vertebrate 

species. Furthermore, consistently with our findings, duration and brightness have also been 

suggested to be effective acoustic features in humans’ ability to identify arousal level from 

vocalizations [5, 7, 30]. In sum, acoustic analysis revealed that chimpanzee vocalizations 

differ by context, arousal, and valence based on acoustic features and allowed us to identify 

specific features contributing to human listeners’ perceptual judgments. 

In conclusion, the present study demonstrates that human listeners can accurately 

perceive affective information beyond core affect dimensions from the vocalizations of a 



closely related species, chimpanzees. These findings suggest phylogenetic preservation of 

acoustic features mapping onto specific behavioural contexts, as well as features 

characterising arousal levels and valence.  

Acknowledgements 

R.G.K. and D.A.S. are supported by ERC Starting grant 714977 awarded to D.A.S. 

We would like to thank Thibaud Gruber for his helpful suggestions for the second 

experiment. 

Ethics 

The School of Psychology Ethics committee, University of St Andrews gave ethical 

clearance for the non-invasive, behavioural studies that included the recording of chimpanzee 

vocalizations. Experiment 1 (project number 2018-SP-9517) and Experiment 2 (project 

number 2019-SP-10653) were approved by the Ethics Review Board of the Faculty of Social 

and Behavioural Sciences, University of Amsterdam. All participants provided informed 

consent before participation. 

References 

1.Darwin C. 1872 The expression of the emotions in man and animals. London, UK: John 

Murray. (doi:10.1037/10001-000) 

2. Briefer EF. 2012 Vocal expression of emotions in mammals: mechanisms of production 

and evidence. J. Zool. 288, 1–20. (doi:10.1111/j.1469-7998.2012.00920.x) 

3. Russell JA. 1980 A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178. 

(doi:10.1037/h0077714) 

4.  Andics A, Faragó T. 2018 Voice perception across species. In Oxford handbook of voice 

perception (eds S. Frühholz & P. Belin), pp. 363–39. Oxford, UK: Oxford University Press. 

(doi: 10.1093/oxfordhb/9780198743187.013.16) 



5. Congdon JV, Hahn AH, Filippi P, Campbell KA, Hoang J, Scully EN, Bowling DL, Reber 

SA, Sturdy CB. 2019 Hear them roar: a comparison of black-capped chickadee (Poecile 

atricapillus) and human (Homo sapiens) perception of arousal in vocalizations across all 

classes of terrestrial vertebrates. J. Comp. Psychol. 133, 520–541. (doi:10.1037/com0000187) 

6. Faragó T, Andics A, Devecseri V, Kis A, Gácsi M, Miklósi A. 2014 Humans rely on the 

same rules to assess emotional valence and intensity in conspecific and dog vocalizations. 

Biol. Lett. 10, 20130926. (doi:10.1098/rsbl.2013.0926) 

7. Filippi P et al. 2017 Humans recognize emotional arousal in vocalizations across all 

classes of terrestrial vertebrates: evidence for acoustic universals. Proc. R. Soc. Lond. B. Biol. 

Sci. 284, 20170990. (doi:10.1098/rspb.2017.0990) 

8. Filippi P, Gogoleva SS, Volodina EV, Volodin IA, Boer B de. 2017 Humans identify 

negative (but not positive) arousal in silver fox vocalizations: implications for the adaptive 

value of interspecific eavesdropping. Curr. Zool. 63, 445–456. (doi:10.1093/cz/zox035) 

9. Fritz T, Mueller K, Guha A, Gouws A, Levita L, Andrews TJ, Slocombe KE. 2018 Human 

behavioural discrimination of human, chimpanzee and macaque affective vocalizations is 

reflected by the neural response in the superior temporal sulcus. Neuropsychologia 111, 145–

150. (doi:10.1016/j.neuropsychologia.2018.01.026) 

10. McComb K, Taylor AM, Wilson C, Charlton BD. 2009 The cry embedded within the 

purr. Curr. Biol. 19, 507–508. (doi:10.1016/j.cub.2009.05.033) 

11. Maruščáková IL, Linhart P, Ratcliffe VF, Tallet C, Reby D, Špinka M. 2015 Humans 

(Homo sapiens) judge the emotional content of piglet (Sus scrofa domestica) calls based on 

simple acoustic parameters, not personality, empathy, nor attitude toward animals. J. Comp. 

Psychol. 129, 121–131. (doi:10.1037/a0038870) 



12. Scheumann M, Hasting AS, Kotz SA, Zimmermann E. 2014 The voice of emotion across 

species: how do human listeners recognize animals’ affective states? PLoS ONE 9, e91192. 

(doi:10.1371/journal.pone.0091192) 

13. Tallet C, Špinka M, Maruščáková I, Šimeček P. 2010 Human perception of vocalizations 

of domestic piglets and modulation by experience with domestic pigs (Sus scrofa). J. Comp. 

Psychol. 124, 81–91. (doi:10.1037/a0017354) 

14. Morton ES. 1977 On the occurrence and significance of motivation-structural rules in 

some bird and mammal sounds. Am. Nat. 111, 855–869. (doi:10.1086/283219) 

15. Rendall D, Owren MJ, Ryan MJ. 2009 What do animal signals mean? Anim. Behav. 78, 

233–240. (doi:10.1016/j.anbehav.2009.06.007) 

16. Adolphs R, Anderson DJ. 2018 The neuroscience of emotion: a new synthesis. Princeton, 

NJ: Princeton University Press. (doi: 10.2307/j.ctvc77b1j) 

17. Pongrácz P, Molnár C, Miklósi Á, Csányi V. 2005 Human listeners are able to classify 

dog (Canis familiaris) barks recorded in different situations. J. Comp. Psychol. 119, 136–144. 

(doi:10.1037/0735-7036.119.2.136) 

18. Nicastro N, Owren MJ. 2003 Classification of domestic cat (Felis catus) vocalizations by 

naive and experienced human listeners. J. Comp. Psychol. 117, 44–52. (doi:10.1037/0735-

7036.117.1.44) 

19. Scheumann M, Hasting AS, Zimmermann E, Kotz SA. 2017 Human novelty response to 

emotional animal vocalizations: effects of phylogeny and familiarity. Front. Behav. Neurosci. 

11, 204. (doi:10.3389/fnbeh.2017.00204) 

20. Faul F, Erdfelder E, Lang A-G, Buchner A. 2007 G*Power 3: A flexible statistical power 

analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 

39, 175–191. (doi:10.3758/bf03193146) 



21. Peirce JW. 2007 PsychoPy—Psychophysics software in Python. J. Neurosci. Methods. 

162, 8–13. (doi:10.1016/j.jneumeth.2006.11.017) 

22. Wagner HL. 1993 On measuring performance in category judgment studies of nonverbal 

behavior. J. Nonverbal. Behav. 17, 3–28. (doi:10.1007/bf00987006) 

23. Macmillan, NA. 1993 Signal detection theory as data analysis method and psychological 

decision model. In A handbook for data analysis in the behavioural sciences: methodological 

issues (eds G. Keren & C. Lewis), pp. 21–57. Hillsdale, NJ: Lawrence Erlbaum. 

24. Macmillan NA, Kaplan HL. 1985 Detection theory analysis of group data: estimating 

sensitivity from average hit and false-alarm rates. Psychol. Bull. 98, 185–199. 

(doi:10.1037/0033-2909.98.1.185) 

25. Boersma P, Weenink D. 2017 Praat: Doing phonetics by computer (version 6.0.30). 

Computer program. See  http://www.fon.hum.uva.nl/praat/. 

26. Taylor AM, Reby D. 2009 The contribution of source-filter theory to mammal vocal 

communication research. J. Zool. 280, 221–236. (doi:10.1111/j.1469-7998.2009.00661.x) 

27. Zimmermann E, Leliveld L, Schehka S. 2013 Toward the evolutionary roots of affective 

prosody in human acoustic communication: A comparative approach to mammalian voices. 

In Evolution of emotional communication (eds E. Altenmüller, S. Schmidt & E. 

Zimmermann), pp. 116–132. Oxford, UK: Oxford University Press. 

(doi:10.1093/acprof:oso/9780199583560.003.0008) 

28. Bachorowski J-A, Owren MJ. 2001 Not all laughs are alike: Voiced but not unvoiced 

laughter readily elicits positive affect. Psychol. Sci. 12, 252–257. (doi:10.1111/1467-

9280.00346) 

29. Li X, Tao J, Johnson MT, Soltis J, Savage A, Leong KM, Newman JD. 2007 Stress and 

emotion classification using jitter and shimmer features. In Proc. IEEE Int. Conf. Acoust. 



Speech Signal Process, Vol. IV, pp. 1081-1084, Honolulu, HI, USA, April 2017. IEEE, ISBN 

1-4244-0727-3. (doi:10.1109/icassp.2007.367261) 

30. Sauter DA, Eisner F, Calder AJ, Scott SK. 2010 Perceptual cues in nonverbal vocal 

expressions of emotion. Q. J. Exp. Psychol. 63, 2251–2272. 

(doi:10.1080/17470211003721642) 

31. Bowerman BL, O'connell RT. 1994 Linear statistical models: An applied approach. 

Monterey, CA: Brooks/Cole. 

32. Akaike H. 1974 A new look at the statistical model identification. In Selected papers of 

Hirotugu Akaike (eds E. Parzen, K. Tanabe & G. Kitagaw), pp. 215–222. New York, NY: 

Springer. (doi:10.1007/978-1-4612-1694-0_16) 

33. Golabek KA, Ridley AR, Radford AN. 2012 Food availability affects strength of seasonal 

territorial behaviour in a cooperatively breeding bird. Anim. Behav. 83, 613–619. 

(doi:10.1016/j.anbehav.2011.11.034) 

34. Burnham KP, Anderson DR. 2004 Multimodel inference. Sociol. Methods. Res. 33, 261–

304. (doi:10.1177/0049124104268644) 

35. Bates D, Mächler M, Bolker B. 2014 Walker S. Fitting linear mixed-effects models using 

lme4. arXiv preprint See https://arxiv.org/pdf/1406.5823.pdf. 

36. Powell MJ. 2009 The BOBYQA algorithm for bound constrained optimization without 

derivatives. Cambridge NA report, Cambridge, UK: Cambridge University Press.  

37. Lüdecke D. 2018 sjPlot: Data visualization for statistics in social science. R package 

version. See https://cran.r-project.org/web/packages/sjPlot/index.html  

38. Vancleef K, Read JCA, Herbert W, Goodship N, Woodhouse M, Serrano-Pedraza I. 2018 

Two choices good, four choices better: For measuring stereoacuity in children, a four-

alternative forced-choice paradigm is more efficient than two. PLoS ONE 13, e0201366. 

(doi:10.1371/journal.pone.0201366) 



39. McComb K, Shannon G, Sayialel KN, Moss C. 2014 Elephants can determine ethnicity, 

gender, and age from acoustic cues in human voices. Proc. Natl Acad. Sci. 111, 5433–5438. 

(doi:10.1073/pnas.1321543111) 

40. Koda H. 2012 Possible use of heterospecific food-associated calls of macaques by sika 

deer for foraging efficiency. Behav Process. 91, 30–34. (doi:10.1016/j.beproc.2012.05.006) 

41. Townsend SW, Deschner T, Zuberbühler K. 2008 Female chimpanzees use copulation 

calls flexibly to prevent social competition. PLoS ONE 3, e2431. 

(doi:10.1371/journal.pone.0002431) 

42. Nesse RM. 1990 Evolutionary explanations of emotions. Hum. Nat. 1, 261–289. 

(doi:10.1007/bf02733986) 

43. Magrath RD, Haff TM, Fallow PM, Radford AN. 2014 Eavesdropping on heterospecific 

alarm calls: from mechanisms to consequences. Biol. Rev. Camb. Philos. Soc. 90, 560–586. 

(doi:10.1111/brv.12122) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Materials  

Human Listeners’ Perception of Behavioural Context and Core Affect Dimensions in 

Chimpanzee Vocalizations 

 

 

  



Text S1: Recording of chimpanzee vocalizations 

The behavioural contexts as well as classifications based on arousal level (high, medium, 

low) and valence (positive, negative) were determined by author K.E.S., who is an expert on 

chimpanzee vocal communication. K.E.S. recorded the stimuli from individuals in the Sonso 

community of wild chimpanzees, Budongo Forest, Uganda, and captive chimpanzees housed 

at Edinburgh Zoo and the Wolfgang Kohler Primate Research Centre, Leipzig, Germany. 

Audio recordings were made with a Sennheiser K6/ME67 directional microphone using 

either (i) a Sony TCD-D8 portable digital audiotape (DAT) recorder (Budongo/Edinburgh), 

and the recordings were then digitized at a sampling rate of 44.1 kHz, 16 bits accuracy with 

Cool Edit Pro LE (1999), or (ii) a MARANTZ PMD660 solid state recorder (sampling rate of 

44.1 kHz, 16 bits accuracy) (Leipzig). The behaviour of the caller, the response of individuals 

in the group or party, and the general behavioural context were noted for each vocalization. 

Only vocalizations from single individuals whose identities were known used in this study. 

  



Audio 1S: Examples of chimpanzee vocalizations produced in 10 behavioural contexts 

Rough grunts while eating high value food: 

Rough grunts while eating low value food:  

Copulation calls while having sex:  

Whimpers by juveniles when separated from mother:  

Pant hoots when discovering a large food source:  

Tantrum screams when refused access to food:  

Laughter while being tickled:  

Victim screams when attacked by another chimpanzee:  

Waa barks while threatening an aggressive chimp or predator:  

Alarm calls when discovering something scary:  

 

Examples of chimpanzee vocalizations produced in 10 behavioural contexts can also be 

listened from https://emotionwaves.github.io/chimp/  



Table 1S 

 

Table 1S. Comparison of accuracy in early and late trials in Experiment 1 
 

 
Percentage accuracy (Mean 

and SD) 
Pairwise comparison (first 30 

trials vs last 30 trials) 

 First 30 trials  
Last 30 

trials 
Z p-value 

Behavioural 

Context 
10.30 (0.06) 10.22 (0.07) 0.560 0.576 

Arousal level 46.74 (0.10) 44.92 (0.11) 2.552 0.011 

Valence 51.84 (0.12) 53.50 (0.14) -1.898* 0.059 

Note. * t value. Wilcoxon signed-rank test is used for pairwise comparisons of accuracy in 
context categorisation and arousal judgements since data were not normally distributed while 
pair sampled t-test is used for comparisons of valence judgements since data was normally 
distributed.  
 
 
 
 
 
 



Table 2S 

Table 2S. Acoustic analysis of vocalizations of each behavioural context, arousal level and valence, as Means per stimulus category (separate 

rows), with Standard Deviations (separated by comma) 

 SCoG 

No. 

Call Dur. 

f0 

min 

f0 

max 

f0 

mean f0 Sd 

Time 

Max 

Peak 

Pos. %Voi Jitter 

Shimme

r HNR min 

HNR 

max 

HNR 

mean 

HNR 

Sd 

Eating 

high value 

food  

1161.

640, 

355.5

21 

2.737

, 

0.452 

0.142

, 

0.050 

633.

064, 

169.

215 

800.

896, 

197.

138 

734.4

91, 

186.6

46 

56.475, 

40.446 

0.155, 

0.054 

114.

753, 

30.4

28 

97.668, 

5.599 

0.000, 

0.000 

1.442, 

0.179 

-225.78, 

0.524 

28.907, 

6.067 

11.499, 

3.149 

5.579

, 

0.895 

Eating low 

value food  

482.7

56, 

400.8

73 

3.545

, 

1.011 

0.94, 

0.030 

462.

106, 

153.

080 

551.

556, 

192.

803 

501.6

49, 

164.4

76 

36.217, 

31.461 

0.143, 

0.029 

171.

512, 

53.8

26 

55.094, 

27.668 

0.002, 

0.005 

2.064, 

0.428 

-224.97, 

0.363 

21.095, 

5.874 

1.462, 

1.697 

4.490

, 

0.908 

Copulating 

(having 

sex)  

951.6

98, 

511.9

15 

2.273

, 

0.905 

0.261

, 

0.180 

711.

059, 

210.

167 

806.

838, 

236.

922 

757.4

36, 

217.2

21 

27.300, 

15.048 

0.184, 

0.165 

73.5

75, 

31.5

98 

100.000

, 0.000 

0.000, 

0.000 

1.356, 

0.241 

-226.02, 

0.465 

29.355, 

5.330 

13.803, 

3.073 

5.730

, 

1.062 

Being 

separated 

from 

mother  

1148.

748, 

740.6

22 

3.700

, 1.06 

0.242

, 

0.087 

583.

082, 

169.

378 

693.

122, 

256.

831 

632.0

62, 

191.1

37 

32.205, 

28.531 

0.185, 

0.052 

96.6

76, 

42.1

50 

96.928, 

6.314 

0.000, 

0.000 

1.465, 

0.236 

-225.58, 

0.384 

23.626, 

6.196 

9.010, 

5.097 

4.328

, 

0.958 



Discoverin

g a large 

food 

source  

1653.

112, 

617.5

30 

3.833

, 

0.937 

0.568

, 

0.237 

282.

587, 

116.

743 

771.

236, 

157.

211 

561.1

61, 

142.3

85 

154.17

5, 

85.360 

0.444, 

0.193 

90.0

54, 

17.4

48 

95.582, 

4.925 

0.001, 

0.001 

1.323 

0.248 

-226.068, 

0.409 

33.819, 

4.702 

12.974, 

4.726 

6.645

, 

1.114 

Being 

refused 

access to 

food 

3000.

796, 

493.8

14 

2.200

, 

0.414 

0.375

, 

0.099 

877.

821, 

355.

987 

140

8.32

7, 

242.

432 

1200.

024, 

234.6

28 

185.68

4, 

143.72

9 

0.308, 

0.115 

81.4

64, 

16.2

94 

87.578, 

22.024 

0.000, 

0.000 

1.626, 

0.248 

-225.446, 

0.319 

25.390, 

7.112 

5.824, 

2.806 

3.780

, 

0.816 

Being 

tickled  

1437.

125, 

1344.

207 

4.750

, 

1.915 

0.172

, 

0.113 

374.

973, 

250.

662 

610.

146 

298.

147 

456.1

49, 

242.0

61 

92.842, 

117.53

2 

0.213, 

0.096 

136.

606, 

47.7

63 

60.033, 

33.584 

0.002, 

0.002 

1.778, 

0.150 

-225.527, 

0.481 

25.515, 

5.684 

3.882, 

3.165 

3.384

, 

0.895 

Being 

attacked by 

another 

chimpanze

e  

2226.

703, 

604.8

72 

1.762

, 

0.625 

0.535

, 

0.237 

979.

130, 

383.

364 

143

0.97

4, 

172.

694 

1229.

112, 

247.3

89 

149.64, 

183.11

6 

0.371, 

0.156 

74.0

56, 

20.6

06 

99.350, 

1.317 

0.000, 

0.001 

1.497, 

0.252 

-225.686, 

0.368 

27.364, 

6.464 

9.559, 

3.670 

4.407

, 

1.423 

Threatenin

g an 

aggressive 

chimp or 

predator  

982.1

13, 

306.5

65 

1.375

, 

0.500 

0.314

, 0.70 

476.

619, 

197.

657 

893.

497, 

220.

929 

716.9

81, 

199.0

27 

127.86

1, 

68.784 

0.237, 

0.051 

77.0

19, 

17.9

15 

84.816, 

17.448 

0.001, 

0.001 

1.795, 

0.237 

-225.720, 

0.468 

29.947, 

6.239 

6.386, 

2.250 

4.754

, 

1.197 

Discoverin

g 

something 

scary  

758.8

91, 

146.8

10 

1.385

, 

0.506 

0.441

, 

0.197 

429.

200, 

139.

269 

630.

338, 

158.

077 

535.9

46, 

130.2

38 

59.533 

36.618 

0.289, 

0.186 

67.6

81, 

23.5

10 

100.000

, 0.000 

0.000, 

0.001 

1.140, 

0.324 

-225.681, 

0.613 

33. 

100, 

7.566 

16.294, 

4.198 

6.339

, 

1.674 



High 

Arousal 

1486.

734, 

767.9

27 

1.98, 

1.123 

0.465

, 

0.217 

599.

327, 

378.

920 

996.

704, 

370.

779 

822.3

27, 

357.1

73 

126.00

6, 

122.58

1 

0.333, 

0.167 

76.5

80, 

20.8

95 

95.006, 

10.905 

0.001, 

0.001 

1.465, 

0.349 

-225.768, 

0.474 

30.483, 

6.752 

10.813, 

5.115 

5.335

, 

1.652 

Medium 

Arousal 

1577.

933, 

1070.

613 

3.140

, 

1.457 

0.231

, 

0.136 

635.

323, 

291.

384 

875.

722, 

375.

458 

763.5

76, 

329.3

20 

83.904, 

104.56

9 

0.209, 

0.113 

103.

249, 

40.7

78 

87.312, 

24.282 

0.001, 

0.001 

1.546, 

0.252 

-225.665, 

0.480 

26.725, 

6.322 

8.590, 

4.925 

4.551

, 

1.320 

Low 

Arousal 

482.7

56, 

400.8

73 

3.550

, 

1.011 

0.941

, 

0.030 

462.

106, 

153.

080 

551.

556, 

192.

803 

501.6

49, 

164.4

76 

36.217, 

31.461 

0.143, 

0.029 

171.

512, 

53.8

26 

55.094, 

27.668 

0.002, 

0.005 

2.064, 

0.428 

-224.974, 

0.363 

21.095, 

5.874 

1.462, 

1.697 

4.490

, 

0.908 

Positive 

Valence 

1094.

538, 

862.9

70 

3.650

, 

1.359 

0.208

, 

0.204 

458.

973, 

214.

835 

672.

916, 

238.

367 

567.1

73, 

213.3

66 

75.184, 

81.349 

0.215, 

0.146 

133.

578, 

50.9

69 

75.004, 

29.944 

0.001, 

0.003 

1.699, 

0.410 

-225.517, 

0.600 

26.484, 

7.201 

6.789, 

5.784 

4.908

, 

1.451 

Negative 

Valence 

1717.

861, 

931.7

10 

1.960

, .965 

0.400

, 

0.189 

703.

538, 

363.

699 

107

4.62

556, 

401.

490 

914.2

84, 

362.1

93 

120.92

8, 

130.64

0 

0.291, 

0.140 

78.0

81, 

24.6

70 

93.685, 

14.174 

0.000, 

0.001 

1.520, 

0.330 

-225.632, 

0.435 

28.016, 

7.223 

9.229, 

5.008 

4.680

, 

1.490 

Note. Mean and standard deviations of the acoustic parameters. No. Call = number of calls in the stimulus (mean), Dur. = total duration of calls in whole 
stimulus (seconds), f0 = fundamental frequency, Time Max. = time of the maximum peak frequency within a call; Peak Pos. = relative position of the peak 

frequency in the call;  % Voi = percentage of voiced frames in the stimulus, HNR = harmonics-to-noise ratio, SCoG = spectral centre of gravity



Table 3S 

Table 3S. Rotated component-loadings of each acoustic feature for the three-dimensional 

principal components’ solution 

Note. Bold type indicates parameters with highest loadings

 
PCA1 

(% of variance = 23.51) 

PCA2 

(% of variance = 22.60) 

PCA3 

(% of variance = 16.42) 

ScoG -0.67 0.599 0.388 

duration 0.262 0.246 0.790 

f0  min   -0.006 0.901 -0.187 

f0  max   0.094 0.870 0.392 

f0 mean 0.078 0.956 0.152 

f0 Sd 0.062 0.092 0.735 

Time Max 0.094 0.087 0.887 

Peak Pos -0.514 -0.434 -0.242 

% Voi 0.658 -0.255 0.072 

Jitter -0.018 -0.250 0.025 

Shimmer -0.641 0.033 -0.162 

HNR min -0.780 0.094 -0.031 

HNR max 0.781 -0.035 0.153 

HNR mean 0.887 -0.024 0.054 

HNR Sd 0.640 -0.296 0.068 



Table 4S_A 

Table 4S_A. GLMMs testing the prediction of behavioural context, arousal and valence recognition from acoustic features 

Fixed Effect Behavioural Context Arousal Valence 

 Estimate SE Z Value Pr (>|z|) Estimate SE Z Value Pr (>|z|) Estimate SE 
Z 

Value 

Pr 

(>|z|) 

Intercept 0.669 0.89 7.495 <0.001 -0.08 0.170 -0.518 0.604 0.251 0.91 2.738 0.006 

SCoG 0.353 0.54 6.586 <0.001** 0.104 0.019 5.325 <0.001 0.232 0.019 11.958 <0.001 

duration 0.158 0.056 2.825 <0.01* 0.055 0.019 2.912 <0.05 0.161 0.019 8.242 <0.001 

f0 mean 0.080 0.462 1.740 0.082 0.255 0.019 13.252 <0.001 0.295 0.019 15.483 <0.001 

f0 Sd -0.103 0.38 -2.729 <0.01* 0.277 0.020 13.902 <0.001 -0.108 0.019 -5.777 <0.001 

HNR mean -0.281 0.047 -6.026 <0.001** 0.014 0.019 0.745 0.456 0 0.019 0.001 0.999 

HNR max 0.131 0.040 3.310 <0.001** 0.015 0.018 0.811 0.417 0.003 0.018 0.186 0.852 

Note. *p < 0.05; **p < 0.001. Recognition scores for arousal level and valence are obtained in Experiment 1 and for behavioural context in Experiment 2. All 
coefficients represent changes in the log-odds of recognised or not recognised responses as a function of the acoustic predictors. Bold type indicates 

statistically significant p values (p < 0.05). 
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Table 4S_B 

 

Table 4S_B. Random effects in prediction of behavioural context, arousal and valence recognition 

  
Context Arousal Valence 

 
Variance Std. Dev. Variance Std. Dev. Variance Std. Dev. 

Part ID 
3.284 1.812 0.071 0.267 0.176 0.419 

Chimpanzee ID 
0.272 0.522 1.879 1.370 0.462 0.680 

Note. Context recognition is based on context-matching task (see Experiment 2), arousal level and valance recognition are based on Experiment 1. 
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Table 5S 

Table 5S. Model selection procedure based on Akaike’s Information criterion 

 
Behavioural Context Arousal Valence 

Model Intercept AICs ∆AICs Intercept AICs ∆AICs Intercept AICs 
∆AIC

s 

Excluding SCoG 0.669 17932.6 37.7 -0.097 56155.9 27.7 0.229 54299.7 142.8 

Excluding duration 0.690 17899.8 4.9 -0.082 56136.1 7.9 0.759 54224.4 67.5 

Excluding f0 mean 0.665 17894.9 0.0 -0.058 56306.1 177.9 0.288 54398.5 241.6 

Excluding f0 Sd 0.667 17899.0 4.1 -0.070 56324.2 196 0.241 54190.5 33.6 

Excluding HNR mean 0.638 17927.7 32.8 -0.086 56128.2 0.0 0.251 54156.9 0.0 

Excluding HNR max 0.653 17902.4 7.5 -0.090 56128.3 0.1 0.250 54157.0 0.1 

Note. Context recognition is based on context-matching task (see Experiment 2), arousal level and valance recognition are based on Experiment 2. Bold type 

indicates models with the highest power to explain variation the dependent variable (i.e., correct or incorrect response0, based on lowest AICc. 

 


