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Abstract 

 

 This review surveys six classes of heterogeneous catalysts that have 

been used in the conversion of epoxides and CO2 into cyclic carbonates; metal 

organic frameworks (MOFs); silica-based catalysts; organic polymer supports; 

metal oxides; zeolites and carbon-based catalysts. Many of these catalysts are 

extremely active in the ring-opening of terminal epoxides, require fairly mild 

conditions and can be made in a sustainable manner. Some catalytic systems 

however require toxic and hazardous chemicals in their synthesis, and many 

struggle to ring-open the more sterically demanding and hindered internal 

epoxides. This review covers the most recent heterogeneous catalysts reported 

in the literature, not only from a catalytic efficiency perspective but also from a 

green chemistry and sustainable viewpoint. 

 

Keywords: carbon dioxide, catalysts, epoxides, cyclic carbonates, 

heterogeneous catalysis  

 

 

1. Introduction 

Carbon dioxide (CO2) is a major anthropogenic greenhouse gas, 

produced by the chemicals, thermoelectric and steel industries and by the 
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transportation sector. Global CO2 emissions have created many environmental 

issues, such as climate change and global warming. In order to try and reduce 

our emissions, many researchers are focused on performing sustainable carbon 

dioxide capture and storage (CCS) [1] and carbon dioxide utilisation (CDU) [2]. 

Carbon dioxide is an abundant, inexpensive and non-toxic chemical 

feedstock. However, CO2 is also thermodynamically stable  

(ΔHf = -393.5 kJ/mol) [3]. Research into developing efficient catalytic systems to 

overcome the large energy barriers often associated with reactions of CO2, in 

order to convert CO2 into commercially viable products for the chemical 

industry, is therefore an important area of research. One popular group of 

chemicals that can be made from CO2 are organic carbonates, and in particular 

cyclic carbonates.  

Cyclic carbonates are valuable industrial raw materials with a wide range 

of applications, including: alternative polar aprotic solvents, electrolytes in 

lithium-ion batteries, polymer precursors and fuel additives. They are also vital 

organic intermediates in the production of pharmaceutical, agricultural and fine 

chemicals, such as dialkyl carbonates, glycols, carbamates, pyrimidines and 

purines (Figure 1) [4,5].  

 

Figure 1. Important industrial applications of cyclic carbonates [5–7]. 

Cyclic carbonates can be produced directly by the catalyzed, 100% atom 

economical reaction between an epoxide and CO2. Alternatively they can be 



made by catalyzed or uncatalyzed condensation reactions between a diol and 

CO2, or an activated form of CO2 such as urea or dimethyl carbonate, both of 

which can in turn be prepared from CO2. The direct reaction between epoxides 

and CO2 is by far the more studied approach and many catalysts have been 

developed for this reaction. A large number of homogeneous catalysts, 

including phosphines, quaternary onium salts, transition metal complexes and 

alkali metal salts, have been used, as they can enable the reaction to occur 

under mild conditions, sometimes at room temperature and atmospheric 

pressure [8]. However, problems associated with homogeneous catalysts, such 

as removing the catalysts from the reaction mixture post-reaction, and recycling 

the catalyst, have encouraged researchers over the last few decades to develop 

heterogeneous catalysts. 

Recently, six classes of heterogeneous catalysts have been used to 

transform CO2 into cyclic carbonates: metal organic frameworks (MOFs); silica-

based catalysts; organic polymer supports; metal oxides; zeolites and carbon-

based catalysts. Each of these groups will be reviewed and discussed, with a 

special emphasis on the sustainability and “greenness” of the catalysts and 

reaction procedures. 

 

2. Heterogeneous catalysts 

2.1. Silica-based catalysts 

Amine-functionalized silica materials, possessing organo-basic sites on 

the surface and acidic metal or silanol groups with the material framework, have 

been researched as catalysts for cyclic carbonate formation. These species are 

attractive catalysts, as the presence of the acidic silanol hydroxyl groups can 

facilitate the ring-opening of an epoxide. Furthermore, many authors propose 

that the basic moieties (for example amine groups) may activate the CO2 

molecule, thus making it more reactive.  

In 2017, Ahmed and Sakthivel investigated the synthesis of organo-

amine functionalized chabazite (CHA)-type silicoaluminophosphate (SAPO-34) 

materials, via an in situ approach using hydrothermal conditions [9]. Ahmed and 

Sakthivel’s research studied the functionalization of CHA-type SAPO-34 (S-34-

xN) materials with different concentrations of 3-aminopropyltrimethoxysilane 



(0.16 to 0.64 M), which were called S-34-0.16N, S-34-0.24N, S-34-0.32N,  

S-34-0.40N and S-34-0.64N. These functionalized materials exhibited promising 

catalytic activity with high epichlorohydrin (ECH) conversions (>80%) and 

selectivity to cyclic carbonate (>94%), in 5 hours using 0.64 M of immobilized 

amine, 6 bar of CO2 at 85 °C and using 0.2 g of catalyst with 30 mmol of ECH. 

Furthermore, the S-34-0.64N catalyst showed the best catalytic activity and 

stability, and could be used up to four times in converting ECH into cyclic 

carbonate. The authors reported that incorporating basic amine sites into the 

catalysts overall played a crucial role in CO2 activation on the catalyst surface 

(Step I, Figure 2), while the acidic sites of the SAPO-34 framework accelerated 

epoxide ring-opening (Step II, Figure 2). This has also been reported for similar 

silica-based catalysts in the literature.  

 

 

Figure 2. Schematic proposal for cycloaddition of CO2 and epoxides 

using S-34-xN as catalyst [9]. 

 

In light of Ahmed and Sakthivel’s promising work, in 2018, Yamasaki et 

al. [10] synthesized a methylated nitrogen-substituted mesoporous silica SBA-

15 material (MeNSBA-15), which was a promising catalyst for the synthesis of 

cyclic carbonates from CO2 and propylene oxide (PO). This material could be 

used without a high temperature pretreatment/activation step. It was also 

discovered that methylation enhanced the nucleophilicity of the basic nitrogen 

atoms in the catalyst, increasing the Turn Over Frequency (TOF) considerably 

from 1.0×10−3 h−1, for the non-methylated nitrogen substituted catalyst (NSBA-



15), to 6.4 h−1, using MeNSBA-15 as the catalyst. The selectively to propylene 

carbonate (PC) was >99%, using 30 bar of CO2, 14 mmol of PO and 0.1 g of 

catalyst at 100 °C for 3 hours.  

Using kinetic analysis experiments, the authors showed that the 

methylated N-substituted heterogeneous catalyst (MeNSBA-15) reacts with 

epoxides and CO2 via a Langmuir–Hinshelwood mechanism. This mechanism 

suggests that the incorporation of epoxide occurs at a basic amine site, followed 

by the ring-opening step; whilst the CO2 is adsorbed on another amine site, 

followed by a bimolecular reaction occurring between the ring-opened alkoxide 

intermediate and carbamate over neighboring methylated nitrogen sites. In this 

case, both CO2 and the epoxide are adsorbed onto the active sites near the 

silanol group of MeNSBA-15, which will act as a weak Lewis acid site and 

synergistically stabilize the alkoxide intermediate.  

Following on from Yamasaki’s work, in 2019, Liu et al. [11] synthesized 

an amorphous mesoporous titanium silica-based material, using 

poly(diallyldimethylammonium) chloride (PDDA) as the mesopore template. The 

authors reported that this material acted as an efficient multi-functional catalyst 

for reacting CO2 with epoxides, as the organic species (PDDA) embedded in 

the mesoporous channels can act as a Lewis base, and cooperate 

synergistically with the Lewis acidic titanium ions (Ti4+) in the reaction 

mechanism. Thus, the presence of PDDA, which increased the number of basic 

sites in the catalyst, leads to an efficient heterogeneous bifunctional catalyst for 

cyclic carbonate formation, presenting both high ECH conversion (96.5%) and 

cyclic carbonate selectivity (95%), under the optimum reaction conditions (0.4 g 

of catalyst and 30 mmol of ECH at 16 bar of CO2 and 120 °C for 6 hours).  

It was proposed in the reaction mechanism (Figure 3), that the basic 

nitrogen groups activate the CO2 molecule (Step 1, Figure 3) and, analogously, 

an acidic metal Ti4+ site activates the oxygen atom of the epoxide (Step 2, 

Figure 3). The nucleophilic carbamate anion (Step 3, Figure 3) then attacks the 

less hindered carbon of the epoxide, leading to epoxide ring-opening, followed 

by generation of cyclic carbonate (Step 4, Figure 3). 

 



 

Figure 3. Proposed reaction steps for the cycloaddition of CO2 and ECH 

using Ti-mSiO2 as catalyst [11]. 

 

In the same year, Liu and co-workers developed zwitterionic 

nanocatalysts with imidazole-urea derived frameworks [12]. The imidazole-urea 

components were attached to mesoporous hybrid silica materials, and different 

versions of the catalyst with various nucleophilic anions were prepared (Figure 

4).  

 

Figure 4. Zwitterionic nanocatalyst. X= (Cl, Br, I, NO3) [12].  

 

The authors reported that the catalytic activity for synthesizing PC from 

PO and CO2 was influenced by anion nucleophilicity, with an activity trend of I > 

Br > Cl > NO3 [12]. By using 5 wt% of iodide as the anion in the catalyst (Im-Si-

I-5), PC was produced under mild conditions in high yield (96%) and selectivity 

(99%), without a co-catalyst or solvent. The recyclability of this catalyst was 

measured and no significant drop in cyclic carbonate yield was observed after 4 

uses using the optimum reaction conditions (110 °C and 25 bar of CO2 for 4 

hours using 7.5 wt% of Im-Si-I).  



As shown by Yamasaki et al. [10] in 2018, functionalized SBA-15 is an 

effective material for cyclic carbonate synthesis, due to its high surface area, 

high hydrothermal and mechanical stability, acidic silanol groups and uniform 

pore structure [13]. Following on from this research, many heterogeneous 

catalysts based on SBA-15 were developed in 2019. One example is the 

triethanolamine (TEA)-modified mesoporous SBA-15 catalyst, reported by 

Zhang et al. [14], which has been widely used as a CO2 adsorbent due to its 

high basicity. It was found that using 2 g of TEA on the SBA-15 solid support 

(termed as TEA(2.0)/SBA-15), the yield of PC increased (94%) compared to 

using SBA-15 alone, with high PC selectivity (99%) under mild conditions (20 

bar of CO2, 110 °C for 4 hours using 0.2 g of catalyst with 34.5 mmol of PO).  

Reusability tests found that TEA(2.0)/SBA-15 exhibited excellent yields 

(>90%) after 5 cycles under the same conditions, thus highlighting the stability 

of the catalyst. The mechanism proposed by Liu et al. [12] and Zhang et al. [14] 

does not follow the Langmuir–Hinshelwood mechanism, i.e. the CO2 molecule 

is not adsorbed on the basic sites. Instead, the CO2 attacks the oxyanion 

intermediate, produced by the iodide ring-opening the epoxide, thus leading to 

cyclic carbonate formation (Figure 5).  

Zhang et al. [15] investigated the use of novel amine-incorporating 

benzene-bridging organosilica nanotubes (AMx-NT), where x is the molar 

fractions of 3-aminopropyltrimethoxysilane (APTMS) incorporated in the 

nanotube, to catalyze the cycloaddition of CO2 to epoxides. By using the  

AM0.4-NT catalyst, with a pore diameter and length of 7 nm and 60 nm, 

respectively, in presence of tetrabutylammonium iodide (TBAI, n-Bu4NI), fast 

conversions of PC (TOF = 80 h-1) were achieved under mild conditions (10 bar 

CO2, 70 °C for 10 hours using 1 mol% of TBAI).  

The NH2 group was proposed to act as a basic site, which firstly activates 

CO2 and then facilitates the coupling of the activated CO2 with the ring-opened 

intermediate, forming a carbonate intermediate. The results show that the basic 

amine groups function effectively with the acidic silanol groups to create an 

effective bifunctional catalyst. 

 

https://www.linguee.com.br/ingles-portugues/traducao/effectively.html


Figure 5. Schematic proposal for cycloaddition of CO2 and epoxides using 

TEA/SBA-15 as catalyst [14]. 

 

2.2. Metal Organic Frameworks (MOFs) 

MOFs are organic–inorganic hybrid porous materials, which have been 

demonstrated to be promising catalysts for cyclic carbonate synthesis. The 

porosity and the Lewis acidic sites (unsaturated metal cations) make MOFs 

ideal candidates for epoxide activation [16,17]. A serious drawback, which limits 

the application of MOFs however, is the poor availability and accessibility of 

active sites. Several well-known MOFs, including MIL-101, UiO-66, MOF-892 

and ZIF-95 [18–21] have shown low catalytic activity due to a lack of functional 



sites, especially basic sites. It is therefore often necessary to use Lewis basic 

co-catalysts with MOFs, to synthesize cyclic carbonates. 

The majority of studies have focused on using a quaternary ammonium 

salt, for example nBu4NX (where X= Br- or I-) as a co-catalyst, because of their 

highly synergistic effect with MOFs. The generally accepted reaction 

mechanism for the cycloaddition of CO2 with epoxides using MOFs and a co-

catalyst first involves activation of epoxide, followed by the epoxide ring-opening 

and then CO2 insertion to form a cyclic carbonate (Figure 6).  

  

Figure 6. The generally proposed mechanism of cyclic carbonate synthesis 

from CO2 and epoxides using heterogeneous MOF catalysts. The orange 

sphere represents the acidic metal center and X represents the halide anion of 

the co-catalyst. 

In 2017, Xue et al. [22] reported the use of gadolinium (Gd), a rare-earth-

metal to make a Gd-MOF catalyst (Gd2C15H3O36) as a heterogeneous catalyst 

for the cycloaddition of epoxides and CO2 in the presence of quaternary 

ammonium salts. Various quaternary ammonium salts were tested (n-Bu4NBr, 

n-Pr4NBr, Et4NBr, Me4NBr, n-Bu4NCl, n-Pr4NCl, Et4NCl and Me4NCl). It was 

found that Gd2C15H3O36 combined with n-Bu4NBr gave the highest yields for 

converting ECH into cyclic carbonate (99.1%) under mild reaction conditions  

(20 bar of CO2, 80 °C for 5 hours using 0.1 g of catalyst and 2.5 mol% of n-

Bu4NBr with 20 mmol of ECH). The use of the rare metal gadolinium in this 

catalyst is however not ideal from a green chemistry and sustainability 

perspective. 

In 2017, Li et al. [23] imbedded the nontoxic Sr2+ ion into a new MOF 

catalyst, as a promising alkaline Earth metal and strong Lewis acid active site. 

The authors reported that the bromide anion of tetrabutylammonium bromide 



(TBAB, n-Bu4NBr) effectively ring-opens the epoxide, generating a high PO 

conversion (98.5%) and turnover number (TON, 117.4 mmolproduct/mmolcatalyst). 

Conversions and TON were lower when no TBAB was used in the reaction 

mixture (PO conversion of 5.9% and TON of 7 mmolproduct/mmolcatalyst), 

illustrating the importance of the co-catalyst. The optimum reaction conditions 

were extremely mild, requiring only 1 bar of CO2 at room temperature for 48 

hours. In the same year, Lu et al. [24] also reported the use of TBAB as an 

efficient co-catalyst with the Cd(III)-MOF catalyst 

[(CH3)2NH2]6[Cd3L(H2O)2]·12H2O, which was synthesized via solvothermal 

assembly of resorcin[4]arene-functionalized dodecacarboxylic acid (H12L) and 

Cd(II) cations. The isolated yields reported in converting ECH, under mild 

reaction conditions, increased from 41 to 88%, when the co-catalyst TBAB (0.5 

mmol) was added to the reaction mixture.  

In 2018, Lan et al. [25] compared catalytic activity between a simple MOF 

catalyst and a zinc based MOF-Zn-1 (Zn2L2MA·2DMF) with TBAB, where MA is 

melamine and H2L is 2,5-thiophenedicarboxylic acid. Similar to Lu’s work, the 

authors reported that bromide is important for the reaction mechanism. Noh et 

al. [16] showed that the non-functionalized pristine UiO-66 catalyst, which 

consists of Zr6O4(OH)4 SBU (secondary building units) and 12 BDCs (benzene-

1,4-dicarboxylates, Figure 7), gave a good yield of PC (77% at 50 °C), using 

TBAI as co-catalyst under 10 bar of CO2 for 12 hours with 1 mol% of co-catalyst 

and 2 mol% of catalyst. The catalytic efficiency of UiO-66 without TBAI was very 

low (24%).  

  

Figure 7. Simplified structure of the UIO-66 Zn-based catalyst [25].  

In the same year, two amino‐acid‐based MOFs containing copper and 

zinc respectively, were reported by Jeon et al. [26] and Kim et al. [27]. Both 

catalysts showed excellent ECH conversion (>90%) with TBAB as a co-catalyst, 

under the optimized reaction conditions (80 °C, 1 mol% of catalyst, 6 h and 12 



bar of CO2). In both papers, the authors reported that the reactions were 

performed under solvent-free conditions, which is advantageous from a green 

chemistry perspective. In 2019, many authors reported the use of MOFs and 

co-catalysts as efficient systems for cyclic carbonate formation as summarized 

in Table 1.  

 

Table 1. Summary of MOF-based catalytic systems reported in cyclic carbonate 

synthesis. 

Catalyst Co-

catalyst 

Reaction 

conditions 

Conversion 

(%) 

TONa Selectivity 

(%) 

Ref. 

Cu-MOF1 TBAB 25 bar, 5 h, 

80°C 

99 (yield) - - [28] 

MOF1 TBAB 1 bar, 24 h, 

RT 

100 200 - [29] 

MOF-5 TBAB 4 bar, 4 h,  

50 °C 

93 720 - [30] 

Ni-MOF-1 TBAB 1 bar, 6 h, 

60 °C 

94 (yield) 37.6 - [31] 

MOF-5-MIX TBAB 12 bar, 6 h, 

50 °C 

98 - 99 [32] 

UiO-66 TBAB 12 bar, 8 h, 

60 °C 

67 - >99 [33] 

Cu-BTC 

(BTC = benzene-

1,3,5-tricarboxylate) 

TBAB 12 bar, 8 h, 

60 °C 

78 - >99 [33] 

Cu-BTC/UiO-66 TBAB 12 bar, 8 h, 

60 °C 

84 - >99 [33] 

UiO-66/Cu-BTC  TBAB 12 bar, 8 h, 

60 °C 

91 - >99 [33] 

ammolproduct/mmolcatalyst 

The catalytic potentials of Cu-HKUST-1 and Cu-MOF in cyclic carbonate 

formation were investigated in 2019 via density functional theory (DFT), by Hu 

et al. [34] and Li et al. [17] in two different studies. Both studies showed that the 

rate-determining step of the reaction mechanism is the ring-opening of the 

epoxide. Furthermore, Hu et al. [34] reported that among the co-catalysts 

studied, the bromide anion was predicted to be the most effective due to it 



having the lowest activation energy barrier in the ring-opening step (F- 29.18 

kcal mol-1 > Cl- 16.13 kcal mol-1 > I- 13.73 kcal mol-1 > Br- 12.40 kcal mol-1).  

Although the use of co-catalysts such as TBAB lead to efficient catalytic 

systems and increase the reaction yield, recycling TBAB from the reaction 

mixture is difficult, due to the high solubility of the ammonium salts in the 

reaction mixture solution. In addition, halide anions can cause ferrous metal 

corrosion, which is an issue for large-scale industrial implementation. To try to 

overcome this issue, various metal ions, including zirconium, zinc and copper, 

which can act as active catalytic sites in the catalyst, have been incorporated 

into MOFs. 

Zanon et al. [35] in 2017, prepared zinc and cobalt doped ZIFs (zeolitic 

imidazolate frameworks, a subclass of MOFs), using zinc nitrate tetrahydrate 

(Zn(NO3)2.4H2O), cobalt nitrate hexahydrate (Co(NO3)2.6H2O), and 2-

methylimidazole. The synthesized Zn-Co-ZIF-67 catalyst could form cyclic 

carbonates without a co-catalyst or solvent and was reported to give excellent 

conversions for ECH (100%) using 7 bar of CO2 at 100 °C for 2 hours using 50 

mg of catalyst with 9 mmol of substrate. In this case, the authors proposed that 

the metal center coordinates to the oxygen atom of the epoxide, thus activating 

the epoxide (Figure 8).  

  

Figure 8. Proposed reaction mechanism for the formation of cyclic 

carbonates from ZIF catalyst Zn-ZIF-67. Both zinc and cobalt metal sites 

coordinate to the epoxide [35]. 



In 2018, Wu et al. [36,37], Song et al. [38] and Zhang et al. [4] reported 

the use of MOFs doped with metals, such as potassium, cobalt, manganese 

and zinc, in cyclic carbonate synthesis. These metals were used because they 

provide unsaturated cations, which can serve as Lewis acidic sites, and thus 

remove the need for a co-catalyst to activate the epoxide. This, combined with 

the presence of basic nitrogen atoms in the MOF structure, promotes the CO2 

activation step in the reaction mechanism (Figure 9).  

 

Figure 9. Cyclic formation using Zn-doped MOFs. Adapted with 

permission from Wu et al. [37]. 

 

In 2020, Xiang et al. [39] discovered that the dual-ligand ZIF “ZIF-8-90” 

(ZIF-8 and ZIF-90 combined), was an effective catalyst for cyclic carbonate 

formation. The dual ligand ZIF displayed greater catalytic properties, giving 90% 

ECH conversion, compared to the mono-ligand ZIFs. Both acidic and basic 

sites, located at the external surface of the ZIF catalyst, were responsible for 

cyclic carbonate formation. It was proposed in the reaction mechanism, that the 



basic nitrogen atom sites adsorb CO2, whereas the acidic unsaturated zinc sites 

adsorb the oxygen of the epoxide. Despite the great activity of this catalyst, 

non-ambient conditions were required (20 bar of CO2). 

In 2019, a review of MOF-based catalysts for the direct catalytic 

conversion of CO2 to cyclic carbonates under mild conditions was written by 

Huh [40]. Huh summarized that for the majority of MOFs reported in the 

literature, Lewis or Brønsted acidic sites on the catalyst accelerated the 

reaction. Furthermore, bifunctional acid-base MOF catalysts demonstrated good 

recoverability and stability, and could be recycled approximately 5-10 times. 

The direct incorporation of bromide nucleophiles into MOFs was also 

reported in this review. By incorporating bromide anions in close proximity to the 

Lewis acid metal center, no co-catalyst was required for cyclic carbonate 

formation and reactions could be performed under mild conditions (1 bar of CO2 

and room temperature for 24 h). However, conversions and product selectivity 

were very low, compared to when co-catalysts were used.  

Cui and co-workers [41] also published a review of MOF-based 

heterogeneous catalysts, focusing on their use in the reactions of CO, CO2 and 

CH4. According to the authors, there are three different types of MOFs, each 

with different catalytic sites: (1) MOFs with structural defects; (2) MOFs with 

catalytically active metal nodes; and (3) MOFs with functional linkers. All of 

these MOFs have been studied as catalysts for forming cyclic carbonates from 

epoxides and CO2. 

In Cui’s review [41], it was noted that MOFs with structural defects, and 

thus a high abundance of Lewis basic sites on the surface of the catalyst, are 

extremely promising candidates for CO2 conversion. On the other hand, MOFs 

with Lewis or Brønsted acidic metal nodes (termed as secondary building units, 

SBUs, often incorporating organic ligands as short-range bridges between 

metal centers) could also activate the epoxide molecule. These catalysts 

however cannot act as one-component catalysts, as an extra Lewis basic 

component (and therefore co-catalyst) is required to ring-open the epoxide ring. 

 The third type of MOFs reported in the review were MOFs with functional 

linkers. The introduction of Lewis basic functional groups such as amines  

(-NR2), pyrazoles and uncoordinated nitrogen atoms as organic linkers, created 

one-component catalysts with Lewis acidic metal centers and Lewis basic 



organic linker sites. These groups combined could therefore synergistically 

activate and ring-open the epoxide. The majority of MOF-based catalytic 

systems with structural defects or active metal nodes required Lewis basic co-

catalysts to optimize epoxide conversions.  

MOFs with dual catalytic metal centers on the other hand are active even 

in the absence of a co-catalyst, but require high-pressure and/or high-

temperatures. As a result, MOF-based heterogeneous catalysts are very 

competitive with some of the most active catalysts reported in the literature. 

Creating MOF catalysts that can synthesize cyclic carbonates synthesis without 

a reaction solvent and/or co-catalyst under mild conditions however still remains 

a challenge.  

 

2.3. Metal Oxides 

Metal oxides have been tested as catalysts for cyclic carbonate formation 

as they contain both acidic and basic sites and have redox properties, which 

can create defects and thus oxygen vacancies, in the catalyst. These oxides 

constitute the largest family of catalysts in heterogeneous catalysis [42]. 

Recently, many metal oxides have shown promise as catalysts for cyclic 

carbonate synthesis and can be synthesized easily, by various techniques with 

great reproducibility.  

Tambe and Yadav [43] reported that tetragonal zirconia (t-ZrO2), doped 

with La3+ cations (La–ZrO2), promotes styrene carbonate (SC) formation from 

styrene oxide (SO) and CO2. The La3+ cations can substitute Zr4+ cations in the 

metal oxide framework, resulting in oxygen vacancies which act as strong Lewis 

basic sites [44]. Carbon dioxide can be adsorbed by these sites, while SO is 

adsorbed onto the acidic zirconia sites. This catalyst is therefore predicted to 

follow the Langmuir–Hinshelwood–Hougen–Watson (LHHW) model (Figure 10). 

In 2018, Rasal et al. [45] also showed that incorporation of lithium cations 

into a MgO lattice significantly increased catalytic activity. Prior to lithium 

doping, the conversion of ECH into cyclic carbonate was approximately 30%, 

whereas after doping it increased to 96%, using 0.75% (w/w) of lithium and 

carrying out reactions at 130 °C, and 30 bar of CO2 for 4 hours. Furthermore, 



catalyst basicity increased after lithium doping, as characterized by 

temperature-programmed desorption of CO2, and it was hypothesized that this 

increase in basicity was associated with oxygen vacancy generation.  

 

 

Figure 10. Proposed reaction mechanism of the formation of cyclic 

carbonates using the La–ZrO2 catalyst [43]. 

 

In 2018, Chowdhury et al. [46] also reported the use of a MgO 

nanomaterial for the synthesis of cyclic carbonates via CO2 fixation with a wide 

range of epoxides under ambient reaction conditions, with TBAB as a  

co-catalyst. The catalyst showed good reactivity, with an isolated yield of 99% 

reported for the conversion of ECH into the corresponding cyclic carbonate 

under mild conditions (1 bar of CO2 and room temperature after 4 hours). The 

authors proposed in the reaction mechanism that the magnesium cations act as 

Lewis acid sites and thus activate the oxygen of the epoxide. Furthermore, the 

bromide anion from TBAB promotes the ring-opening step. It was also proposed 

that the O2− sites of MgO act as Lewis basic sites, which in turn activate the 

CO2 molecule (Figure 11). 

 



 

Figure 11. Proposed reaction mechanism for the conversion of CO2 and 

epoxides into cyclic carbonate, using a MgO nanomaterial and TBAB [46]. 

 

 In 2019, Zhao et al. [47] reported for the first time the use of boron 

trioxide (B2O3) as an effective metal-free heterogeneous catalyst, for the 

production of cyclic carbonates from epoxides and CO2. In this work, the 

authors used bromide anions from TBAB as the nucleophile to promote the  

ring-opening step. It was proposed that the boride sites of the catalyst acted as 

Lewis acids in the reaction mechanism. Under optimum reaction conditions (100 

°C for 2 hours with 20 bar of CO2 and using 2.5 mol% of B2O3), an isolated yield 

of 90% was reported for PC. When the authors used just 0.5 mol% of B2O3 

catalyst, it was found that pre-treating the catalyst by ball milling for 2 hours, 

increased the yield of PC considerably from 40 to 95%. The pressure required 

for this system however was much higher (20 bar) compared to other works 

cited in this research area.   
 In 2019, Middelkoop et al. [48] reported the first use of 3D printers to 

manufacture new heterogeneous catalysts for the conversion of CO2 into cyclic 

carbonates. In this paper, the authors compared the catalytic activity between 

CeZrLa and CeZrLa/GO (GO: graphene oxide) nanocomposites, created by a 

continuous hydrothermal flow synthesis (CHFS) process and 3D printing, 

respectively. It was found that the optimal catalyst contained a polymer/powder 

ratio of 54 wt% of polymer (made from aqueous solution of methyl cellulose) 

and 42 wt% of the nano-powder, mixed with a small amount of lubrication 

additive (4 wt%) using a planetary centrifugal mixer (Figure 12). No organic 

solvents were required to prepare this catalyst. 



 

Figure 12. a) Simplified structure of CeZrLa (yellow powder) and CeZrLa/GO 

(black powder) nanocomposites, synthesized by a CHFS process; b)  3D 

printing of the CeZrLa and CeZrLa/GO catalysts through a 600 mm nozzle in 

stacked layers of fibers; c) The CeZrLa/GO catalyst mounted onto an impeller 

shaft of a stirred batch reactor cell. 

Adapted with permission from Middelkoop et al. [48].  

The GO-supported catalyst exhibited higher surface areas (128 m2/g) 

compared to the control material without the GO support (109 m2/g) and the 

standard 2D CeZrLa material (92 m2/g). Furthermore, the 3D printed structures 

showed greater PO conversion (94%) compared to the 2D CeZrLa powder 

(89%). This greater catalytic activity was believed to be due to the greater 

surface area of the 3D printed catalyst, enabling better accessibility of the 

epoxide and CO2 to the catalyst’s active sites. 

Overall, metal oxides are promising heterogeneous catalysts for cyclic 

carbonate synthesis. In addition, they can be easily synthesized, separated 

from the mixture reaction and their performance can be easily modified, by 

changing structural aspects, such as morphology, particle size and doping.   

 

2.4 Carbon-based 

  
 In order to try and meet the challenge of converting epoxides into cyclic 

carbonates in a potentially more sustainable and metal free process [49], 

attention has turned towards using carbon-based materials. Carbon materials 

have a high surface area, good chemical and mechanical stability and high 

conductivity, features that allow for easy transformation and production of 

materials with different shapes and dimensions.  

 Recently, 2D carbon based materials have received huge attention as 

alternative catalysts, due to their large surface areas and excellent reactivity 



[50,51]. Pure carbon materials are most often inert in the conversion of CO2, as 

for example in the reaction to reduce carbon dioxide. However, by inserting 

heteroatoms, such as nitrogen, into these materials, basic sites are introduced 

into the matrix, increasing CO2 absorption, stability and facilitating their use as 

catalysts [52]. 

 One material that has been researched extensively is graphite carbon 

nitride (g-C3N4), which is often used for CO2 absorption, due to the presence of 

CO2 absorbing amine and guanidine groups [53–55]. Goettmann et al. first 

reported in 2007 that mesoporous g-C3N4 could activate a CO2 molecule and 

convert benzene and CO2 into phenol [56]. This report sparked other 

researchers to study using g-C3N4 as a catalyst for carbon dioxide utilisation 

[57–60].  

 In 2017, Samanta and Srivastava [61] prepared a bifunctional catalyst 

from g-C3N4 for cyclic carbonate synthesis, esterification and transesterification 

reactions. The authors reacted g-C3N4 with H2SO4(aq) at different 

concentrations (20%, 40% and 60%). Temperature programmed desorption 

analysis of NH3 and CO2 from g-C3N4 identified the bifunctional character of the 

catalyst, as it revealed the presence of acidic (-SO3H) and basic (-NH2) sites. 

For cyclic carbonate formation, the authors observed that catalyst acidity 

influenced catalytic activity, as the catalyst prepared with 60% H2SO4(aq),  

S-CN(UTU)-60, and thus with the greatest number of acidic sites, was the most 

active. Terminal epoxides ethylene oxide (EO), PO and ECH were tested as 

substrates. By investigating the reaction conditions required to convert ECH into 

cyclic carbonate, the optimum reaction conditions were found to be, 50 mg of 

catalyst for 63 mmol of epoxide, at 10 bar of CO2 and 100 °C with a minimum 

reaction time of 4 hours required for high conversions. Whilst high conversions 

and selectivities were obtained for EO and ECH (more than 90%), a more 

moderate conversion (63%) was reported for PO. Although this catalyst is 

sustainable and simple to make, a much wider range of epoxides could have 

been tested with this catalyst, including internal epoxides.  

 The justification for the observed catalytic activity was the presence of 

both acidic and basic sites, allowing the simultaneous activation of epoxide and 

CO2, respectively, thus promoting the insertion of CO2 and the consequent 

formation of cyclic carbonate. This acidic g-C3N4 catalyst was also more active 



than standard zeolite, magnesium oxide and magnesium/aluminium 

hydrotalcite.  

 Also in 2017, Biswas and Mahalingan [62] explored for the first time the 

synergistic effect of using g-C3N4 with TBAB to convert epoxides into cyclic 

carbonates. By simply using 50 mg of g-C3N4 and 1.8 mol% of TBAB with 

respect to epoxide (13.7 mmol) at 1 bar of CO2 and 105 °C for 20 hours, 100% 

conversion of epoxide to cyclic carbonate was reported for ECH, SO, phenyl 

glycidyl ether (PGE) and allyl glycidyl ether (AGE). Relatively low conversions 

were however reported for other epoxides including 1,2-epoxy hexane, 1,2-

epoxy octane, 1,2-epoxy-9-decene, and no ring-opening of the internal epoxide 

cyclohexene oxide (CHO) occurred. Only conversions were reported rather than 

isolated yields of the cyclic carbonate products. Catalyst recycling tests 

demonstrated no loss in activity after 7 cycles. 

 Control tests performed with these reagents as separate components 

always resulted in conversions under 40%. The authors therefore propose that 

g-C3N4 and TBAB work in a cooperative manner. The authors suggest that the 

primary and secondary g-C3N4 amino groups activate the epoxide ring via 

hydrogen bond formation, which thus increases the electrophilicity of the 

epoxide carbon atoms. This makes the carbon atom more susceptible for 

nucleophilic attack by the bromide anion of TBAB, causing the epoxide to ring-

open and thus initiating the conversion of epoxide into cyclic carbonate (Figure 

13).  

 In 2018, Zhang et al. [63] studied the use of graphene oxides (GOs) as 

green and inexpensive alternative catalysts for the conversion of epoxides into 

cyclic carbonates under atmospheric pressures of CO2. Styrene oxide (SO, 5 

mmol) was used to screen this catalyst (using only 5 mg of catalyst) against 

various reaction conditions, and it was determined that the optimal reaction 

conditions were 140 °C and 1 bar of CO2 for 6 hours with 4 mL of N,N-

dimethylformamide (DMF). This catalyst was also more active than standard 

activated carbon and acetylene black (aka carbon black). Despite reporting high 

selectivities >95%, conversions of SO were moderate at 75% and lower than 

other metal free or metal based catalytic systems. Considering that only 5 mg of 

catalyst was however required, 75% conversion is impressive. The catalyst was 



also recyclable was tested with conversions and selectivity keeping fairly 

consistent, only dropping from 90.3 to 87.5%, after four cycles. 

 

Figure 13. Proposed mechanism for the g-C3N4 and TBAB catalyzed 

conversion of epoxides and CO2 into cyclic carbonates [62]. 

  

 The authors proposed that CO2 activation occurs in the reaction solvent 

DMF and that quaternary C-OH groups on the GO surface are responsible for 

epoxide activation. This was further supported by the observations that no 

increase in conversion occurs with an increase in CO2 pressure when DMF is 

used in the reaction; and oxidised GOs, with more oxygen functionality, were 



more active than reduced GOs. The conversion of other terminal epoxides to 

cyclic organic carbonates was also tested, with conversions and selectivity’s 

greater than 90% reported (Table 2). Ideally, this reaction would work in the 

presence of a much greener solvent than DMF, as DMF is soon to be restricted 

under REACH guidelines. This system also struggled to convert CHO into cyclic 

carbonate, but could convert some simple internal epoxides into cyclic 

carbonates.  

Table 2. Cyclic carbonate formation from GO catalysed cycloaddition reactions 

between CO2 and epoxides [63].  

 
Entry Substrate Product Temp. (°C) Time (h) Conv. (%) Sel. (%) 

1 

 

 

100 12 >99.9 95.6 

2 

 

 

100 12 >99.9 96.1 

3 

  

140 10 39.7 99.8 

4 

 

 

140 10 89.9 96.3 

5 

 

 

140 10 96.6 98.3 

Reaction conditions: Substrates (5 mmol), DMF (4 mL), 2.5 mg of GO and 1 bar of CO2. 

Inspired by the successful application of numerous carbon-based 

materials with oxygenated groups on the surface, Vidal et al. [64] decided in 

2019 to study the catalytic ability of biochar (carbon-rich solids produced by the 

pyrolysis of biomass at low oxygen concentrations and temperatures). The 

authors prepared their catalysts from two different types of wood, one soft and 

the other hard, which were treated with nitric acid to produce oxidized biochar 

with carboxyl groups on its surface. In this study, it was reported that 10 mol% 



of TBAB (with respect to epoxide) was required as a co-catalyst. In the absence 

of TBAB, the biochar catalysts showed no conversion of PO to PC. By using 

200 mg of catalyst, 68 mmol of PO and 10 mol% of TBAB, at 100 °C and 20 bar 

of CO2 for 16 hours, conversions of 91% were reported for PO. This catalyst 

gave moderate conversions for other simple terminal epoxides, such as SO, 

glycidol and ECH, but low conversions for CHO (<22%).  

Both soft (ox-bcsw) and hard (ox-bchw) wood oxidized materials gave 

similar conversions, which were unaffected when different types of wood were 

used to make the catalysts. Non-oxidized analogous materials (bcsw and bchw) 

only gave 40% and 38.3% conversion, respectively, highlighting the importance 

of oxygen groups in the catalyst. It was also found that the catalyst ox–bchw was 

recyclable, showing no loss of activity after five cycles [64].  

In 2019, Wang et al. [65] produced a single atom catalyst (SAC), a 

catalyst support with metals dispersed throughout on an atomic level, by doping 

graphene with zinc (NG-aZnN). The authors hypothesized that the NG-aZnN 

catalyst could potentially activate epoxides and initiate the reaction efficiently, in 

the presence of different alkyl ammonium salts which could cooperatively lead 

to cyclic carbonate formation, and were the first to test these catalysts in cyclic 

carbonate formation. In the initial studies, the transformation of PO and CO2 into 

PC was investigated. The optimized reaction conditions were found to be 15 mg 

of NG-aZnN (0.12 mol% of zinc with respect to epoxide) for 20 mmol of epoxide 

under 10 bar of CO2 at 120 °C for 3 hours. When screened with numerous 

ammonium halide salts, it was found that this catalytic system was most active 

in the presence of tetraheptylammonium bromide (THPAB, (nC7H15)4NBr, 0.5 

mol% with respect to epoxide), with increases in the alkyl chain lengths of the 

co-catalyst also leading to an increase in carbonate yield. Using these 

parameters, the authors obtained 98% isolated yield and 99% selectivity in the 

conversion of PO to PC.  

An impressive range of epoxides were tested (10 in total) including 

terminal and internal epoxides, with >98% yields reported for all terminal 

epoxides and reasonable yields reported for internal epoxides (39-67%). 

Although this catalyst is not strictly metal free, the isolated yields and 

selectivities reported with such low metal loading are impressive.  

 



2.5 Organic Polymer supports 

 An emerging type of porous materials are porous organic polymers 

(POPs), which have gained attention as useful materials for gas storage, 

pollutant removal and heterogeneous catalysis [67–69]. POPs are promising 

CO2 absorbents. Since they can be prepared via a molecular building block 

(MBB) approach, which allows the adjustment of the chemical composition, 

surface area and pore size, as well as shape and functionality of the material, 

they can become stable materials with a strong affinity for CO2. Factors such as 

high thermal and chemical stability enables these materials to also be used in 

strenuous reaction conditions if required, and therefore they often exhibit high 

catalytic activity and long durability [66]. 

 The flexible synthetic routes used to make POPs allow their structures 

and porous properties to be elegantly fine-tuned by carefully selecting the 

desired building blocks of the POP at the molecular level [70,71]. 

Simultaneously, desired catalytic components can also be homogeneously 

embedded into POPs to enhance the catalytic activity and durability of the POP 

[72,73]. In this context, CO2 attracting groups and catalytically active sites can 

be easily incorporated, to facilitate CO2 adsorption and thus catalytic 

transformation.  

In 2017, Zhong et al. [74] studied an imidazolium- and triazine-based 

POP with a chloride counter anion (IT-POP-1) as a catalyst in the conversion of 

ECH and CO2 into cyclic carbonate, using only 0.1 mol% of IT-POP-1 at 10 bar 

of CO2 and 120 °C for 10 hours. Under these conditions, the authors achieved 

yields and selectivities greater than 98%, without the need for a solvent or co-

catalyst. To understand the influence of the chloride counter anion, the authors 

synthesized and studied two other POPs, with an iodide (IT-POP-2) and 

hexafluorophosphate anion (IT-POP-3), respectively. Cyclic carbonate (gas 

chromatography, GC) yields obtained using IT-POP-2 and IT-POP-3 were 89% 

and 33%, respectively, both with a selectivity of 99%. The low catalytic activity 

of IT-POP-3 is attributed to the low nucleophilicity of the hexafluorophosphate 

anion, which is much lower than that of an iodide anion. The superior result for 

IT-POP-1 was attributed to the synergistic effect of this catalyst containing the 

largest Brunauer-Emmett-Teller (BET) surface area and the strong 



nucleophilicity of the chloride anion. These characteristics facilitate faster mass 

transfer and a greater capacity for nucleophilic attack, compared to the other 

catalysts. Catalyst IT-POP-1 was tested against nine terminal epoxides, with 

moderate to excellent yields reported. This catalyst could also be recycled, with 

no loss in catalytic activity and selectivity reported after 5 cycles.  

The authors suggest that the activity of IT-POP catalysts overall, is due 

to the porosity of the materials and the presence of imidazole and triazine in the 

catalyst increasing the adsorption capacity of the catalyst, and thus the ability to 

activate CO2. As the imidazole and triazine groups in the catalyst framework 

contain hydroxyl groups, the author hypothesized that cyclic carbonate 

formation is promoted synchronously by hydrogen bond formation occurring 

between these hydroxyl groups and the epoxide, and then the chloride anion in 

the pores of the catalyst ring-opening the epoxide. This synergistic effect thus 

accelerates the rate-determining step of the reaction. Whilst this system is 

impressive and can be used at low catalytic loadings, the synthesis of these 

catalysts requires the unsustainable solvent DMF and they were not tested in 

the conversion of internal epoxides. Isolated yields of the carbonates from the 

reaction mixtures were also not reported.  

In 2017, Zhang et al. [75] prepared mesoporous organic polymers 

(MOPs) via a one-pot polycondensation of melamine and monoaldehydes, for 

the adsorption and conversion of CO2 into cyclic carbonates. Four catalysts 

were prepared from benzaldehyde and its hydroxylated derivatives: MOP-0 to 

MOP-3 (Scheme 1). 

 These catalysts were tested against ECH (10 mmol), using 50 mg of 

MOP catalyst at 10 bar of CO2 and 100 °C for 24 hours, with 2 mmol of biphenyl 

added as an internal standard. A decrease in catalytic activity was reported as 

the number of hydroxyl groups increased; the GC yields were 89% (MOP-0), 

86% (MOP-1), 81% (MOP-2) and 58% (MOP-3). Although MOPs have typically 

been reported to convert epoxides into cyclic carbonates via hydrogen bond 

formation, it was concluded by the authors that an increase in hydroxyl groups 

caused a reduction in material porosity. This therefore increased the difficulty in 

diffusing the epoxide to the active sites. The most active catalyst, MOP-0, could 

be used up to 5 times without any loss in catalytic activity. This catalytic system 



was screened only against terminal epoxides (11 in total) and sometimes 

required 5 mol% of KI or TBAI to achieve excellent conversions.  

  

Scheme 1. Synthetic route used to make MOP catalysts: MOP-0 to MOP-3 [75].  

 

In 2017, Verma et al. [76] developed a nitrogen-rich polymeric catalyst, 

termed as cyanuric–urea polymer (CUP). This catalyst was formed by heating 

cyanuric chloride and urea to 140 °C under solvent free conditions, in a cross-

linking mechanism (Figure 14). 

 

Figure 14. Synthetic route to make the CUP catalyst [76]. 



The prepared material was initially tested in the conversion of PO to PC, 

using 5-20 wt% of CUP catalyst at 30-120 °C and 20-60 bar of CO2 for 12 

hours. Among the conditions evaluated, the highest conversions were obtained 

using 10-20 wt% of catalyst, 120 °C and 60 bar of CO2 for 12 hours, giving 99% 

conversion for PO. The conversion of 16 other epoxides to cyclic carbonates 

with CUP was also reported (Scheme 2). The CUP catalyst could also be used 

in 7 reaction cycles without any loss in catalytic activity. Conversions were 

determined from 1H NMR analysis of the crude reaction mixtures. 

 

Scheme 2. Substrate scope of catalyst CUP, in the cycloaddition reaction of 

aromatic, aryloxy and aliphatic terminal epoxides with CO2 [76]. 

In the same study, Verma et al. [76] proposed that the reaction 

mechanism is driven by the two different nitrogen environments present in the 



catalyst (Scheme 3). It was hypothesised that the non-aromatic nitrogen groups 

activate the epoxide via hydrogen bonding (intermediate B), and the aromatic 

nitrogen groups activate CO2 due to their basic nature (intermediate C). 

Intermediate B is then converted into intermediate D, which can react with 

intermediate C and then undergo ring-closure via intermediate F to from cyclic 

carbonate. Despite the promise of this catalyst, the conditions used are quite 

harsh and energy intensive compared to other catalysts reported in the 

literature. No isolated yields are reported for this catalytic system and no 

internal epoxides were tested. On a positive note, this catalyst was used on a 

large scale, converting 10 g of epoxide in each test, which is not always 

straightforward. 

 

Scheme 3. Proposed mechanism for the cycloaddition of CO2 to epoxides using 

the CUP catalyst [76]. 

In 2017, Jawad et al. [77] developed a highly bifunctional, solvent-stable, 

porous bromide aminopropyltrimethoxysilane (Br/APS) grafted ZrO2 polyamide-

imide (PAI) hollow fiber catalyst, Br/APS/Zr-PAIHF. This bifunctional catalyst 

consists of a porous ZrO2-PAI hollow fiber support, with acidic and basic Lewis 



species and nucleophilic bromide anions immobilized in the catalyst support. 

Under the optimum reaction conditions of 30 mmol of SO, 50 mL of acetonitrile 

or DMF, 300 mg of catalyst, 20 bar of CO2 pressure and 160 °C for 6 hours, 

100% conversion of SO into SC was achieved with 100% selectivity. ICP 

elemental analysis of the catalyst after use in three reactions revealed that the 

Br/APS/Zr-PAIHF catalyst maintained its structure and chemical composition, 

with low bromide leaching reported. Bromide free versions of this catalyst also 

led to no conversion, highlighting the importance of the bromide anion in the 

reaction mechanism. Although this catalyst was never tested in recycling 

experiments, these results indicate that catalyst recycling is feasible. It would 

also be interesting to see how active this catalyst is in ring-opening other 

epoxides. 

Ravi et al. [78], in 2017, synthesized porous aromatic polymers which 

were functionalized with ethylenediamine (CBAP-1(EDA)) and then complexed 

with Zn2+
 (EDA-Zn) or Co2+ (EDA-Co) cations (Figure 15). 

 

Figure 15. Synthesis of CBAP-1(EDA-Zn) and CBAP-1(EDA-Co) [78]. 



In the conversion of ECH to cyclic carbonate, CBAP-1(EDA) showed 

high conversion and selectivity, both 99%, using 40 mg of catalyst with 20 mmol 

of ECH and 10 bar of CO2 at 130 °C for 4 hours. This reaction did not require a 

co-catalyst, solvent or metal. The catalytic activity of CBAP-1(EDA) could be 

increased when used in conjunction with nucleophiles; as when CBAP-1(EDA) 

was used with 1.8 mmol% of TBAB, conversions of 98% were reported at the 

lower temperature of 80 °C, using 10 bar of CO2 for 8 hours.  

 

Table 3. Conversion of epoxides and CO2 into cyclic carbonates, using CBAP-

1(EDA) and CBAP-1(EDA-Zn) [78]. 

Entry Substrate Product Temp. 

(°C) 

Time 

(h) 

Sel. 

(%) 

Yield 

(%)d 

1 

 

 

130a 4 99 98 

2 

 

 

25b 36 95 81 

3 

  

60c 48 98 34 

4 

 

 

25b 36 98 89 

5 

 

 

25b 36 97 84 

Reaction conditions: Epoxide (20 mmol). aCBAP-1(EDA) (40mg) and 10 bar of CO2; bCBAP-

1(EDA-Zn) (40 mg), TBAB (1.8 mol%) and 10 bar of CO2; cCBAP-1(EDA-Zn) (40 mg), TBAB 

(1.8 mol%) and 1 bar of CO2; dIsolated yields. 

 

When tests were conducted with the metal-doped samples, CBAP-

1(EDA-Zn) and CBAP-1(EDA-Co) with 1.8 mol% of TBAB, conversions of 96% 

and 91%, with selectivity to carbonate of 98% and 97%, were reported 

respectively. These impressive conversions could be achieved in 36 hours 

using 10 bar of CO2 at room temperature. In recycling experiments, CBAP-



1(EDA) showed no loss in catalytic activity after 5 cycles, at 130 °C for 4 hours. 

Catalyst CBAP-1(EDA-Zn) also showed no significant loss of activity after 5 

cycles, in the presence of TBAB at 25 °C for 36 hours.  

The authors tested catalysts CBAP-1(EDA) and CBAP-1(EDA-Zn) in the 

formation of cyclic carbonates from other epoxides (Table 3), demonstrating the 

applicability of this catalyst to convert numerous substrates. Whilst this catalyst 

was effective at converting some terminal epoxides, more substrates could 

have been tested and a low conversion was reported for the internal epoxide 

cyclohexene oxide, especially compared to other catalytic systems.  

In 2018, Ma et al. [79] prepared a bifunctional porous organic framework 

(POF) heterogeneous catalyst, doped with bromide anions from pyridine-based 

ionic liquids (POF-PNA-Br-). The authors sought to prepare a bifunctional metal-

free environmentally friendly heterogeneous catalyst, to convert epoxides and 

CO2 into cyclic carbonates without the need for a co-catalyst. They proposed 

that by employing carboxylic acid groups as Brønsted acid sites, and the 

bromide anion as nucleophilic sites, this catalyst alone could form cyclic 

carbonates. By using 50 mg of POF-PNA-Br- for 30 mmol of PO, with 1 bar of 

CO2 at 40 °C for 48 h, an isolated yield of 98.2% was reported for PC. Catalyst 

POF-PNA-Br- could be used in up to 3 cycles with no significant loss in catalytic 

activity.  

The POF-PNA-Br− catalyst was also effective against other terminal 

epoxides, under the same reaction conditions used to transform PO into PC. 

The yields obtained for some substrates were not as impressive as other 

catalysts reported in the literature, especially for SC at just 52% (Table 4). A 

wider substrate scope could have been tested and no tests were performed with 

internal epoxides. Considering though that a low catalytic loading of catalyst 

was used with no co-catalyst, these conversions are significant. 

The proposed reaction mechanism begins with the acidic Brønsted 

carboxylic acid groups activating the epoxide, followed by nucleophilic attack of 

the bromide anion causing the epoxide to ring-open. Insertion of CO2 then 

occurs, followed by ring closure to form cyclic carbonate. 

 

 



Table 4. Substrate scope of cyclic carbonate formation using catalyst POF-

PNA-Br− [79]. 

Entry Substrate Product Yield (%)a 

1 

 

 

91.7 

2 

 

 

94.1 

3 

 

 

81.2 

4 

 

 

77.1 

5 

  

  

52.4 

Reaction conditions: Epoxide (30 mmol): catalyst (50 mg), 1 bar of CO2 and 40 °C for 48 h. 

aIsolated yields. 

 

In 2018, Ravi et al. [80] prepared a hydroxylamine-anchored covalent 

aromatic polymer (CAP-DAP) via a Friedel-Crafts benzoylation reaction, by 

reacting p-terphenyl and trimesoyl chloride together with AlCl3, followed by 

functionalization with 1,3-diamino-2-propanol (Figure 16). This CAP-DAP 

catalyst (40 mg) could form cyclic carbonate from ECH (20 mmol) but gave a 

low conversion of only 8% without a co-catalyst, at 60 °C with 1 bar of CO2 for 

12 hours. When screened with different co-catalysts: tetrabutylammonium 

chloride (TBAC, n-Bu4NCl), TBAB, TBAI and KI, (at 2 mol% with respect to 

epoxide), TBAB was the most active co-catalyst achieving 98% conversion and 

99% selectivity, at 1 bar of CO2 at 60 °C for 12 hours. The catalytic system of 

CAP-DAP and TBAB could be recycled and did not show any loss in activity 

after 6 cycles. The authors also tested this catalytic system in the conversion of 

PO, AGE, 1,2-epoxy-5-hexene and SO. All of the terminal epoxides tested 

showed high yields and selectivities: above 82% and 98% respectively. This 



catalytic system was additionally tested in the conversion of one internal 

epoxide, CHO, but achieved only 13% yield and therefore seems only effective 

in ring-opening terminal epoxides 

Figure 16. Synthesis of the CAP-DAP catalyst, followed by functionalization 
with 1,3-diamino-2-propanol. Adapted with permission from Ravi et al. [80].  



The mechanism proposed by the authors begins with the hydroxyl group 

and the secondary amine group of the CAP-DAP catalyst, interacting with the 

oxygen of the epoxide via hydrogen bonding. This activated epoxide is then 

ring-opened by the nucleophilic bromide anion from TBAB, forming an alkoxide 

intermediate. The amine group also adsorbs CO2 to form a carbamate, which is 

attacked by the alkoxide anion, followed by ring-closure, thus forming the cyclic 

carbonate (Figure 17).  

 
Figure 17. Proposed reaction mechanism for the conversion of ECH and CO2 

into cyclic carbonate using CAP-DAP catalyst [80]. 

 

2.6 Zeolites 

 Zeolites, zeolite-based metal organic frameworks and amine-

functionalized mesoporous materials have large surface areas combined with 

thermal and chemical stability. They also consist of large pores, which in terms 

of size can be easily adjusted. These materials can have many active functional 

sites, which can act as Brønsted acidic, Lewis acidic or Lewis basic sites. This 

makes these materials good adsorbents and catalysts for CO2 absorption, 

either inside the pores or on the surface of the material [81]. 

In 2017, Bhin et al. [21] produced the zeolitic imidazolate framework ZIF-

95 and tested it in the addition of CO2 to epoxides. The material was prepared 

by a solvothermal route, using zinc nitrate tetrahydrate and 5-

chlorobenzimidazole (cbIM) in DMF. The catalyst was initially tested in the 



conversion of PO into PC. In the study, the authors evaluated catalytic loading 

of the co-catalyst TBAB and ZIF-95, temperature, CO2 pressure and reaction 

time to obtain optimum conversions. The optimized conditions were 0.4 mol% of 

both ZIF-95 and TBAB, at 12 bar of CO2 and 80 °C for 2 hours (using 18.6 

mmol of epoxide). Under these conditions, 83.2% conversion for PO was 

achieved with a selectivity greater than 99%. The ZIF-95 catalyst could be 

recycled five times, in the conversion of PO, with no significant loss in activity. 

Other epoxides were tested, with excellent selectivities reported in all cases, but 

low conversions were reported for SO and the internal epoxide CHO (Table 5). 

 

Table 5. Synthesis of cyclic carbonates using catalyst ZIF-95 [21]. 

Entry Substrate Product Conv. at 

120 oC (%) 

Selectivity 

(%) 

1 

 

 

83.2 >99 

2 

 

 

61.4 >99 

3 

 

 

76.5 >99 

4 

 

 

75.0 >99 

5 

 

 

56.9 >99 

6 

 

 

15.3 >99 

Reaction conditions: 18.6 mmol of epoxide, 0.4 mol% of ZIF-95 and TBAB, 12 bar of CO2, 2 h. 

 



The mechanism for epoxide and CO2 cycloaddition with ZIF-95 and 

TBAB was proposed to begin with the unsaturated zinc atom of ZIF-95 

coordinating to the oxygen atom of the epoxide. The epoxide is then ring-

opened by the bromide anion from TBAB, followed by CO2 insertion and then 

ring-closure, with regeneration of the catalyst (Scheme 4). 

 

 

Scheme 4. Mechanism of ZIF-95 and TBAB assisted CO2-epoxide 

cycloaddition [21]. 

 

 In 2018, Babu et al. [82] prepared zinc-based zeolitic imidazolium 

framework ZIF-71, using zinc acetate and 4,5-dichloroimidizole, for cyclic 

carbonate synthesis. The catalyst was tested in the conversion of different 

epoxides (ECH, PO and SO), using ≤ 0.6 mol% of catalyst at 12 bar of CO2. 

High conversions were obtained at 120 °C and at room temperature, a feat 

which is not always easy to achieve in cyclic carbonate synthesis (Table 6). No 

co-catalyst was required to obtain these conversions. The ZIF-71 catalyst was 

recycled in the conversion of PO at 120 °C, maintaining high conversions over 6 

cycles. 

 



Table 6. Substrate scope of ZIF-71 catalyst [82]. 
 
Entry Substrate Product Conv. at 

120 oC (%)a 

Selectivity 

(%) 

Conv. at  

25 oC (%)b 

1 

 

 

99 >99 98 

2 

 

 

95 >99 97 

3 

 

 

85 >99 86 

4 

 

 

75 >99 73 

5 

 

 

8 >99 10 

a0.2 mol% of ZIF-71, 42.8 mmol of epoxide, 12 bar of CO2 at 120 °C for 4 h. b0.6 mol% of ZIF-

71, 42.8 mmol of epoxide, 12 bar of CO2 at 25 °C for 24 h. 

 

 In 2018, Zhao et al. [83] developed a multifunctional heterogeneous zinc-

modified catalyst, ZnHZSM-5, for the synthesis of cyclic carbonates under mild 

conditions. This catalyst was extremely effective in ring-opening many simple 

terminal epoxides but struggled with CHO (Scheme 5). This catalyst also 

required the co-catalyst tetra‐n‐propylammonium bromide (TPAB, nPr4NBr) in 

order to obtain reasonable conversions. This ZnHZSM-5 catalyst gave higher 

yields than the standard HZMS-5 zeolite. It was therefore suggested that the 

multifunctional synergistic activation of the epoxide and CO2 through the metal 

activated hydrogen groups in the catalyst (ZnOH+), in the presence of bromide 

anions from TPAB, leads to a more effective catalyst. 



 

Scheme 5. Substrate scope using ZnHZSM‐5 catalyst. All yields quoted are 

isolated yields. a160 °C at 10 bar of CO2 for 4 h [83] 

 

We have studied ion-exchanged zeolite Y impregnated with metal halides 

as a heterogeneous catalyst for the synthesis of styrene carbonate. The best 

results were obtained with potassium iodide impregnated on potassium 

exchanged zeolite Y (KI/KY) and sodium iodide impregnated on sodium 

exchanged zeolite Y. Both these systems gave 100% yield of styrene carbonate 

at 100 oC and 50 bar CO2 after 24 hours using an amount of zeolite containing 5 

mol% of MI relative to styrene oxide [84]. Figure 18 shows the catalytic activity 

of KI/KY and KI in the production of styrene carbonate. It can be seen that the 

zeolitic system is significantly more active, achieving 100% yield within 6 hours, 

whereas KI required about twice this time to reach the same conversion. The 

impregnation of metal halides on zeolites has been previously used to ascertain 

the mechanism of ionic reactions inside the pores [85,86], suggesting a solvent-

like behaviour for the zeolite system, which favours the stabilization of charge-

separated transition states. 

 



0 5 10 15 20 25

0

20

40

60

80

100

Y
ie

ld
 (

%
)

Time (h)

 KI/KY

 KI

 

Figure 18. Yield of styrene carbonate against time in the reaction of CO2 and 

styrene oxide at 100 oC and 50 bar CO2 over KI/KY and KI (5 mol% of KI in both 

cases) as catalysts. 

 

3. Conclusion 

Overall, many heterogeneous catalysts have been successfully employed in 

the conversion of epoxides and CO2 into cyclic carbonates, often at low catalytic 

loadings. The main challenges that still need to be overcome with these 

catalysts include obtaining good conversions for the more challenging internal 

epoxides, not just simple, sterically unhindered terminal epoxides, and obtaining 

reasonable conversions and yields under milder reaction conditions. Whilst 

these catalysts can, impressively, be employed with low metal loadings, co-

catalyst loadings and sometimes without a co-catalyst, some catalysts still 

struggle to produce comparable conversions to metal-based complexes. The 

sustainability of some of these catalytic systems must also be improved, such 

as removing the need for toxic and unsustainable solvents like DMF. The future 

for these catalysts though is promising and they will continue to be an important 

field of research for promoting green and sustainable CO2 utilisation.   

 

 

 

 



Acknowledgements 

The authors thank the Royal Society for International Collaboration Award 

IC170051. CJAM thanks CNPq and Faperj for fellowships. 

References 

Papers of particular interest, published within the period of review, have been 

highlighted as:  

* of special interest  

* * of outstanding interest 

[1] C.-H. Yu  C.-H. Huang, C.-S. Tan, A Review of CO2 Capture by 
Absorption and Adsorption, Aerosol Air Qual. Res. 12 (2012) 745-769. 
https://doi.org/10.4209/aaqr.2012.05.0132. 

[2] M. Aresta, A. Dibenedetto, Utilisation of CO2 as a chemical feedstock: 
opportunities and challenges, Dalt. Trans. (2007) 2975-2992. 
https://doi.org/10.1039/B700658F. 

[3] R.H. Perry, D.W. Green, J.O. Maloney, Perry´s chemical engineers´ 
handbook. United States of America: McGraw-Hill, 7th ed., 2008. 
http://ftp.feq.ufu.br/Luis_Claudio/Books/E-Books/Perry/INTRO.pdf. 

[4] X. Zhang, Z. Chen, X. Yang, M. Li, C. Chen, N. Zhang, The fixation of 
carbon dioxide with epoxides catalyzed by cation-exchanged metal-
organic framework, Microporous Mesoporous Mater. 258 (2018) 55-61. 
https://doi.org/https://doi.org/10.1016/j.micromeso.2017.08.013. 

[5] I. Karamé, S. Zaher, N. Eid, L. Christ, New zinc/tetradentate N4 ligand 
complexes: Efficient catalysts for solvent-free preparation of cyclic 
carbonates by CO2/epoxide coupling, Mol. Catal. 456 (2018) 87-95. 
https://doi.org/10.1016/j.mcat.2018.07.001. 

[6] H. Parker, J. Sherwood, A. Hunt, J. Clark, Cyclic Carbonates as Green 
Alternative Solvents for the Heck Reaction, ACS Sustain. Chem. Eng. 2 
(2014) 1739-1742. https://doi.org/10.1021/sc5002287. 

[7] D.C. Webster, A.L. Crain, Synthesis and applications of cyclic carbonate 
functional polymers in thermosetting coatings, Prog. Org. Coatings. 40 
(2000) 275-282. https://doi.org/https://doi.org/10.1016/S0300-
9440(00)00114-4. 

[8] B. Zou, L. Hao, L.-Y. Fan, Z.-M. Gao, S.-L. Chen, H. Li, C.-W. Hu, Highly 
efficient conversion of CO2 at atmospheric pressure to cyclic carbonates 
with in situ-generated homogeneous catalysts from a copper-containing 
coordination polymer, J. Catal. 329 (2015) 119-129. 
https://doi.org/https://doi.org/10.1016/j.jcat.2015.05.002. 

[9] M. Ahmed, A. Sakthivel, Preparation of cyclic carbonate via cycloaddition 
of CO2 on epoxide using amine-functionalized SAPO-34 as catalyst, J. 



CO2 Util. 22 (2017) 392-399. 
https://doi.org/https://doi.org/10.1016/j.jcou.2017.10.021. 

[10] K. Yamazaki, T. Moteki, M. Ogura, Carbonate synthesis from carbon 
dioxide and cyclic ethers over methylated nitrogen-substituted 
mesoporous silica, Mol. Catal. 454 (2018) 38-43. 
https://doi.org/https://doi.org/10.1016/j.mcat.2018.05.014. 

[11] D. Liu, G. Li, J. Liu, Y. Yi, Organic-inorganic hybrid mesoporous titanium 
silica material as bi-functional heterogeneous catalyst for the CO2 
cycloaddition, Fuel. 244 (2019) 196-206. 
https://doi.org/https://doi.org/10.1016/j.fuel.2019.01.167. 

[12] M. Liu, X. Lu, Y. Jiang, J. Sun, M. Arai, Zwitterionic Imidazole-Urea 
Derivative Framework Bridged Mesoporous Hybrid Silica: A Highly 
Efficient Heterogeneous Nanocatalyst for Carbon Dioxide Conversion, 
ChemCatChem. 10 (2018) 1860-1868. 
https://doi.org/10.1002/cctc.201701492. 

[13] J. Thielemann, F. Girgsdies, R. Schlögl, C. Hess, Pore structure and 
surface area of silica SBA-15: Influence of washing and scale-up, 
Beilstein J. Nanotechnol. 2 (2011) 110-118. 
https://doi.org/10.3762/bjnano.2.13. 

*[14] M. Zhang, B. Chu, G. Li, J. Xiao, H. Zhang, Y. Peng, B. Li, P. Xie, M. Fan, 
L. Dong, Triethanolamine-modified mesoporous SBA-15: Facile one-pot 
synthesis and its catalytic application for cycloaddition of CO2 with 
epoxides under mild conditions, Microporous Mesoporous Mater. 274 
(2019) 363-372. 
https://doi.org/https://doi.org/10.1016/j.micromeso.2018.09.011. 

The use of triethanolamine (TEA) modified with mesoporous SBA-15 promoted 
a highly stable heterogeneous catalyst. There was no drop in propylene 
carbonate (PC) yield (94%) or selectively (99%) after 4 uses under optimal 
conditions (20 bar of CO2 at 110 °C for 4 h and only 0.2 g of catalyst). 
 
[15] S. Zhang, X. Liu, M. Li, Y. Wei, G. Zhang, J. Han, X. Zhu, Q. Ge, H. 

Wang, Metal-free amino-incorporated organosilica nanotubes for 
cooperative catalysis in the cycloaddition of CO2 to epoxides, Catal. 
Today. 324 (2019) 59-65. 
https://doi.org/https://doi.org/10.1016/j.cattod.2018.07.004. 

[16] J. Noh, Y. Kim, H. Park, J. Lee, M. Yoon, M.H. Park, Y. Kim, M. Kim, 
Functional group effects on a metal-organic framework catalyst for CO2 
cycloaddition, J. Ind. Eng. Chem. 64 (2018) 478-483. 
https://doi.org/https://doi.org/10.1016/j.jiec.2018.04.010. 

[17] X. Li, A.K. Cheetham, J. Jiang, CO2 cycloaddition with propylene oxide to 
form propylene carbonate on a copper metal-organic framework: A 
density functional theory study, Mol. Catal. 463 (2019) 37-44. 
https://doi.org/https://doi.org/10.1016/j.mcat.2018.11.015. 

[18] O. V Zalomaeva, A.M. Chibiryaev, K.A. Kovalenko, O.A. Kholdeeva, B.S. 



Balzhinimaev, V.P. Fedin, Cyclic carbonates synthesis from epoxides and 
CO2 over metal–organic framework Cr-MIL-101, J. Catal. 298 (2013) 179-
185. https://doi.org/https://doi.org/10.1016/j.jcat.2012.11.029. 

[19] M. Delavari, F. Zadehahmadi, S. Tangestaninejad, M. Moghadam, V. 
Mirkhani, I. Mohammadpoor-Baltork, R. Kardanpour, Catalytic synthesis 
of cyclic carbonates from epoxides and carbon dioxide by magnetic UiO-
66 under mild conditions, Appl. Organomet. Chem. 31 (2017) 3656. 
https://doi.org/10.1002/aoc.3656. 

[20] P.T.K. Nguyen, H.T.D. Nguyen, H.N. Nguyen, C.A. Trickett, Q.T. Ton, E. 
Gutiérrez-Puebla, M.A. Monge, K.E. Cordova, F. Gándara, New Metal-
Organic Frameworks for Chemical Fixation of CO2, ACS Appl. Mater. 
Interfaces. 10 (2018) 733–744. https://doi.org/10.1021/acsami.7b16163. 

[21] K. Bhin, T. Jose, R. Roshan, D.-W. Kim, Y. Chung, D.-W. Park, Catalytic 
performance of zeolitic imidazolate framework ZIF-95 for the solventless 
synthesis of cyclic carbonates from CO2 and epoxides, J. CO2 Util. 17 
(2017) 112-118. https://doi.org/10.1016/j.jcou.2016.12.001. 

[22] Z. Xue, J. Jiang, M.-G. Ma, M.-F. Li, T. Mu, Gadolinium-Based Metal–
Organic Framework as an Efficient and Heterogeneous Catalyst To 
Activate Epoxides for Cycloaddition of CO2 and Alcoholysis, ACS Sustain. 
Chem. Eng. 5 (2017) 2623-2631. 
https://doi.org/10.1021/acssuschemeng.6b02972. 

[23] X.-Y. Li, Y.-Z. Li, Y. Yang, L. Hou, Y.-Y. Wang, Z. Zhu, Efficient light 
hydrocarbon separation and CO2 capture and conversion in a stable MOF 
with oxalamide-decorated polar tubes, Chem. Commun. 53 (2017) 12970-
12973. https://doi.org/10.1039/C7CC08298C. 

[24] B.-B. Lu, W. Jiang, J. Yang, Y.-Y. Liu, J.-F. Ma, Resorcin[4]arene-Based 
Microporous Metal–Organic Framework as an Efficient Catalyst for CO2 

Cycloaddition with Epoxides and Highly Selective Luminescent Sensing of 
Cr2O7

2–, ACS Appl. Mater. Interfaces. 9 (2017) 39441-39449. 
https://doi.org/10.1021/acsami.7b14179. 

[25] J. Lan, M. Liu, X. Lu, X. Zhang, J. Sun, Novel 3D Nitrogen-Rich Metal 
Organic Framework for Highly Efficient CO2 Adsorption and Catalytic 
Conversion to Cyclic Carbonates under Ambient Temperature, ACS 
Sustain. Chem. Eng. 6 (2018) 8727-8735. 
https://doi.org/10.1021/acssuschemeng.8b01055. 

[26] G. Jeong, A. Kathalikkattil, R. Babu, Y. Chung, D. Park, Cycloaddition of 
CO2 with epoxides by using an amino-acid-based Cu(II)–tryptophan MOF 
catalyst, Chinese J. Catal. 39 (2018) 63-70. 
https://doi.org/10.1016/S1872-2067(17)62916-4. 

[27] S.-H. Kim, R. Babu, D.-W. Kim, W. Lee, D.-W. Park, Cycloaddition of CO2 
and propylene oxide by using M(HBTC)(4,4’‐bipy)∙3DMF (M = Ni, Co, Zn) 
metal‐organic frameworks, Chinese J. Catal. 39 (2018) 1311-1319. 
https://doi.org/10.1016/S1872‐2067(17)63005‐5. 



[28] F. Guo, A novel 2D Cu(II)-MOF as a heterogeneous catalyst for the 
cycloaddition reaction of epoxides and CO2 into cyclic carbonates, J. Mol. 
Struct. 1184 (2019) 557-561. 
https://doi.org/https://doi.org/10.1016/j.molstruc.2019.02.076. 

[29] N. Sharma, S.S. Dhankhar, C.M. Nagaraja, A Mn(II)-porphyrin based 
metal-organic framework (MOF) for visible-light-assisted cycloaddition of 
carbon dioxide with epoxides, Microporous Mesoporous Mater. 280 
(2019) 372-378. 
https://doi.org/https://doi.org/10.1016/j.micromeso.2019.02.026. 

[30] H. Kim, H.-S. Moon, M. Sohail, Y.-N. Yoon, S.F.A. Shah, K. Yim, J.-H. 
Moon, Y.C. Park, Synthesis of cyclic carbonate by CO2 fixation to 
epoxides using interpenetrated MOF-5/n-Bu4NBr, J. Mater. Sci. 54 (2019) 
11796-11803. https://doi.org/10.1007/s10853-019-03702-6. 

[31] J. Li, W.-J. Li, S.-C. Xu, B. Li, Y. Tang, Z.-F. Lin, Porous metal-organic 
framework with Lewis acid−base bifunctional sites for high efficient CO2 
adsorption and catalytic conversion to cyclic carbonates, Inorg. Chem. 
Commun. 106 (2019) 70-75. 
https://doi.org/https://doi.org/10.1016/j.inoche.2019.05.031. 

[32] J.F. Kurisingal, Y. Rachuri, Y. Gu, Y. Choe, D.-W. Park, Multi-variate 
metal organic framework as efficient catalyst for the cycloaddition of CO2 
and epoxides in a gas-liquid-solid reactor, Chem. Eng. J. (2019). 
https://doi.org/https://doi.org/10.1016/j.cej.2019.05.061. 

[33] J.F. Kurisingal, Y. Rachuri, Y. Gu, G.-H. Kim, D.-W. Park, Binary metal-
organic frameworks: Catalysts for the efficient solvent-free CO2 fixation 
reaction via cyclic carbonates synthesis, Appl. Catal. A Gen. 571 (2019) 
1-11. https://doi.org/https://doi.org/10.1016/j.apcata.2018.11.035. 

[34] T. Hu, Y. Jiang, Y. Ding, Computational screening of metal-substituted 
HKUST-1 catalysts for chemical fixation of carbon dioxide into epoxides, 
J. Mater. Chem. A. 7 (2019) 14825-14834. 
https://doi.org/10.1039/C9TA02455G. 

*[35] A. Zanon, S. Chaemchuen, B. Mousavi, F. Verpoort, 1 Zn-doped ZIF-67 
as catalyst for the CO2 fixation into cyclic carbonates, J. CO2 Util. 20 
(2017) 282-291. https://doi.org/https://doi.org/10.1016/j.jcou.2017.05.026. 

The authors showed that using ZIF (zeolitic imidazolate frameworks) doped with 
Zn could form cyclic carbonates without a co-catalyst or solvent. Excellent 
conversions were obtained in the case of ECH (100%) under mild reaction 
conditions (7 bar of CO2 at 100 °C for 2 h). 
 
[36] Y. Wu, X. Song, S. Li, J. Zhang, X. Yang, P. Shen, L. Gao, R. Wei, J. 

Zhang, G. Xiao, 3D-monoclinic M–BTC MOF (M=Mn, Co, Ni) as highly 
efficient catalysts for chemical fixation of CO2 into cyclic carbonates, J. 
Ind. Eng. Chem. 58 (2018) 296-303. 
https://doi.org/https://doi.org/10.1016/j.jiec.2017.09.040. 

[37] Y. Wu, X. Song, J. Zhang, S. Xu, N. Xu, H. Yang, Y. Miao, L. Gao, J. 



Zhang, G. Xiao, Zn2(C9H3O6)(C4H5N2)(C4H6N2)3 MOF as a highly efficient 
catalyst for chemical fixation of CO2 into cyclic carbonates and kinetic 
studies, Chem. Eng. Res. Des. 140 (2018) 273-282. 
https://doi.org/https://doi.org/10.1016/j.cherd.2018.10.034. 

[38] X. Song, Y. Wu, D. Pan, J. Zhang, S. Xu, L. Gao, R. Wei, J. Zhang, G. 
Xiao, Dual-linker metal-organic frameworks as efficient carbon dioxide 
conversion catalysts, Appl. Catal. A Gen. 566 (2018) 44-51. 
https://doi.org/https://doi.org/10.1016/j.apcata.2018.08.011. 

[39] W. Xiang, Z. Sun, Y. Wu, L.-N. He, C. Liu, Enhanced cycloaddition of CO2 
to epichlorohydrin over zeolitic imidazolate frameworks with mixed linkers 
under solventless and co-catalyst-free condition, Catal. Today. 339 (2020) 
337-343. https://doi.org/https://doi.org/10.1016/j.cattod.2019.01.050. 

[40] S. Huh, Direct Catalytic Conversion of CO2 to Cyclic Organic Carbonates 
under Mild Reaction Conditions by Metal-Organic Frameworks, Catal. 9 
(2019) 34. https://doi.org/10.3390/catal9010034. 

[41] W.-G. Cui, G.-Y. Zhang, T.-L. Hu, X.-H. Bu, Metal-organic framework-
based heterogeneous catalysts for the conversion of C1 chemistry: CO, 
CO2 and CH4, Coord. Chem. Rev. 387 (2019) 79-120. 
https://doi.org/https://doi.org/10.1016/j.ccr.2019.02.001. 

[42] M.B. Gawande, R.K. Pandey, R. V Jayaram, Role of mixed metal oxides 
in catalysis science-versatile applications in organic synthesis, Catal. Sci. 
Technol. 2 (2012) 1113–1125. https://doi.org/10.1039/C2CY00490A. 

[43] P.R. Tambe, G.D. Yadav, Heterogeneous cycloaddition of styrene oxide 
with carbon dioxide for synthesis of styrene carbonate using reusable 
lanthanum–zirconium mixed oxide as catalyst, Clean Technol. Environ. 
Policy. 20 (2018) 345-356. https://doi.org/10.1007/s10098-017-1475-1. 

[44] H. Metiu, S. Chrétien, Z. Hu, B. Li, X. Sun, Chemistry of Lewis Acid–Base 
Pairs on Oxide Surfaces, J. Phys. Chem. C. 116 (2012) 10439-10450. 
https://doi.org/10.1021/jp301341t. 

[45] K.B. Rasal, G.D. Yadav, R. Koskinen, R. Keiski, Solventless synthesis of 
cyclic carbonates by direct utilization of CO2 using nanocrystalline lithium 
promoted magnesia, Mol. Catal. 451 (2018) 200-208. 
https://doi.org/https://doi.org/10.1016/j.mcat.2018.01.012. 

[46] A.H. Chowdhury, P. Bhanja, N. Salam, A. Bhaumik, S.M. Islam, 
Magnesium oxide as an efficient catalyst for CO2 fixation and N-
formylation reactions under ambient conditions, Mol. Catal. 450 (2018) 
46-54. https://doi.org/https://doi.org/10.1016/j.mcat.2018.03.003. 

[47] L.-Y. Zhao, J.-Y. Chen, W.-C. Li, A.-H. Lu, B2O3: A heterogeneous metal-
free Lewis acid catalyst for carbon dioxide fixation into cyclic carbonates, 
J. CO2 Util. 29 (2019) 172-178. https://doi.org/10.1016/j.jcou.2018.12.006. 

**[48] V. Middelkoop, T. Slater, M. Florea, F. Neațu, S. Danaci, V. Onyenkeadi, 
K. Boonen, B. Saha, I.-A. Baragau, S. Kellici, Next frontiers in cleaner 



synthesis: 3D printed graphene-supported CeZrLa mixed-oxide 
nanocatalyst for CO2 utilisation and direct propylene carbonate 
production, J. Clean. Prod. 214 (2019) 606-614. 
https://doi.org/https://doi.org/10.1016/j.jclepro.2018.12.274. 

In this paper, the authors present a unique example of catalyst prepared via 3D 
printing. This research emphasizes how 3D printing can lead to a material with 
a higher surface area, which was found to increase propylene oxide (PO) 
conversion (94%). This novel 3D catalyst is an efficient and promising new 
material and cyclic carbonate synthesis could be performed without any organic 
solvent. 
 
[49] L.E. Young, C.W. Porter, Stereochemistry of Deuterium Compounds. II. α-

Methylbenzylamine, J. Am. Chem. Soc. 59 (1937) 1437-1438. 
https://doi.org/10.1021/ja01287a008. 

[50] D. Li, X. Duan, H. Sun, J. Kang, H. Zhang, M.O. Tade, S. Wang, Facile 
synthesis of nitrogen-doped graphene via low-temperature pyrolysis: The 
effects of precursors and annealing ambience on metal-free catalytic 
oxidation, Carbon N. Y. 115 (2017) 649-658. 
https://doi.org/https://doi.org/10.1016/j.carbon.2017.01.058. 

[51] X. Duan, H. Sun, Z. Ao, L. Zhou, G. Wang, S. Wang, Unveiling the active 
sites of graphene-catalyzed peroxymonosulfate activation, Carbon N. Y. 
107 (2016) 371-378. 
https://doi.org/https://doi.org/10.1016/j.carbon.2016.06.016. 

[52] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active 
sites of nitrogen-doped carbon materials for oxygen reduction reaction 
clarified using model catalysts, Science. 351 (2016) 361-365. 
https://doi.org/10.1126/science.aad0832. 

[53] D.-H. Lan, H.-T. Wang, L. Chen, C.-T. Au, S.-F. Yin, Phosphorous-
modified bulk graphitic carbon nitride: Facile preparation and application 
as an acid-base bifunctional and efficient catalyst for CO2 cycloaddition 
with epoxides, Carbon N. Y. 100 (2016) 81-89. 
https://doi.org/https://doi.org/10.1016/j.carbon.2015.12.098. 

[54] Q. Su, J. Sun, J. Wang, Z. Yang, W. Cheng, S. Zhang, Urea-derived 
graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 
conversion into cyclic carbonates, Catal. Sci. Technol. 4 (2014) 1556-
1562. https://doi.org/10.1039/C3CY00921A. 

[55] J. Xu, J.-K. Shang, Q. Jiang, Y. Wang, Y.-X. Li, Facile alkali-assisted 
synthesis of g-C3N4 materials and their high-performance catalytic 
application in solvent-free cycloaddition of CO2 to epoxides, RSC Adv. 6 
(2016) 55382-55392. https://doi.org/10.1039/C6RA10509B. 

[56] F. Goettmann, A. Thomas, M. Antonietti, Metal-Free Activation of CO2 by 
Mesoporous Graphitic Carbon Nitride, Angew. Chemie Int. Ed. 46 (2007) 
2717-2720. https://doi.org/10.1002/anie.200603478. 

[57] Y. Oh, V.-D. Le, U. Maiti, J. Hwang, W. Park, J. Lim, K. Lee, Y.-S. Bae, 



Y.-H. Kim, S. Kim, Selective and Regenerative Carbon Dioxide Capture 
by Highly Polarizing Porous Carbon Nitride, ACS Nano. 9 (2015) 9148-
9157. https://doi.org/10.1021/acsnano.5b03400. 

[58] M.B. Ansari, B.-H. Min, Y.-H. Mo, S.-E. Park, CO2 activation and 
promotional effect in the oxidation of cyclic olefins over mesoporous 
carbon nitrides, Green Chem. 13 (2011) 1416-1421. 
https://doi.org/10.1039/C0GC00951B. 

[59] Z. Huang, F. Li, B. Chen, G. Yuan, Cycloaddition of CO2 and epoxide 
catalyzed by amino- and hydroxyl-rich graphitic carbon nitride, Catal. Sci. 
Technol. 6 (2016) 2942-2948. https://doi.org/10.1039/C5CY01805F. 

[60] J. Xu, F. Wu, Q. Jiang, Y.-X. Li, Mesoporous carbon nitride grafted with n-
bromobutane: a high-performance heterogeneous catalyst for the solvent-
free cycloaddition of CO2 to propylene carbonate, Catal. Sci. Technol. 5 
(2015) 447-454. https://doi.org/10.1039/C4CY00770K. 

[61] S. Samanta, R. Srivastava, A novel method to introduce acidic and basic 
bi-functional sites in graphitic carbon nitride for sustainable catalysis: 
cycloaddition, esterification, and transesterification reactions, Sustain. 
Energy Fuels. 1 (2017) 1390-1404. https://doi.org/10.1039/C7SE00223H. 

[62] T. Biswas, V. Mahalingam, g-C3N4 and tetrabutylammonium bromide 
catalyzed efficient conversion of epoxide to cyclic carbonate under 
ambient conditions, New J. Chem. 41 (2017) 14839-14842. 
https://doi.org/10.1039/C7NJ03720A. 

[63] S. Zhang, H. Zhang, F. Cao, Y. Ma, Y. Qu, Catalytic Behavior of 
Graphene Oxides for Converting CO2 into Cyclic Carbonates at One 
Atmospheric Pressure, ACS Sustain. Chem. Eng. 6 (2018) 4204-4211. 
https://doi.org/10.1021/acssuschemeng.7b04600. 

**[64] J.L. Vidal, V.P. Andrea, S.L. MacQuarrie, F.M. Kerton, Oxidized Biochar 
as a Simple, Renewable Catalyst for the Production of Cyclic Carbonates 
from Carbon Dioxide and Epoxides, ChemCatChem. 11 (2019) 4089-
4095. https://doi.org/10.1002/cctc.201900290. 

In this work, the preparation of a catalyst, oxidized biochar, from leftover wood, 
a hard and a soft wood, was reported, representing an advance in the 
production of catalysts for cyclic carbonate formation; aiming to not only reduce 
CO2 emissions, but to also use an easily produced, ecological, sustainable and 
cheap raw material. The catalytic system employed provided very good 
conversions under mild conditions and could be used for a variety of 
substrates. The oxidized biochar also demonstrated excellent recyclability and 
stability, making it an even more attractive catalyst in the conversion of 
epoxides to cyclic carbonates. 

[65] C. Wang, Q.-W. Song, K. Zhang, P. Liu, J. Wang, J. Wang, H. Zhang, J. 
Wang, Atomic zinc dispersed on graphene synthesized for active CO2 
fixation to cyclic carbonates, Chem. Commun. 55 (2019) 1299-1302. 
https://doi.org/10.1039/C8CC09449G. 



[66] M. Eddaoudi, M. Alkordi, L. Weselinski, V. D’Elia, S. Barman, A. Cadiau, 
M. Hedhili, A. Cairns, R. AbdulHalim, J. Basset, CO2 Conversion: The 
Potential of Porous–Organic Polymers (POPs) for the cycloaddition of 
CO2 and epoxides, J. Mater. Chem. A. 4 (2016) 7453-7460. 
https://doi.org/10.1039/C5TA09321J. 

[67] Y. Xu, S. Jin, H. Xu, A. Nagai, D. Jiang, Conjugated microporous 
polymers: design, synthesis and application, Chem. Soc. Rev. 42 (2013) 
8012-8031. https://doi.org/10.1039/C3CS60160A. 

[68] Q. Sun, Z. Dai, X. Meng, F.-S. Xiao, Porous polymer catalysts with 
hierarchical structures, Chem. Soc. Rev. 44 (2015) 6018-6034. 
https://doi.org/10.1039/C5CS00198F. 

[69] H.-S. Xu, S.-Y. Ding, W.-K. An, H. Wu, Constructing Crystalline Covalent 
Organic Frameworks from Chiral Building Blocks, J. Am. Chem. Soc. 138 
(2016) 11489-11492. https://doi.org/10.1021/jacs.6b07516. 

[70] Z.-F. Pang, T.-Y. Zhou, R.-R. Liang, Q.-Y. Qi, X. Zhao, Regulating the 
topology of 2D covalent organic frameworks by the rational introduction of 
substituents, Chem. Sci. 8 (2017) 3866-3870. 
https://doi.org/10.1039/C6SC05673C. 

[71] H. Zhong, C. Liu, Y. Wang, R. Wang, M. Hong, Tailor-made porosities of 
fluorene-based porous organic frameworks for the pre-designable 
fabrication of palladium nanoparticles with size, location and distribution 
control, Chem. Sci. 7 (2016) 2188-2194. 
https://doi.org/10.1039/C5SC04351D. 

[72] G. Ji, Z. Yang, H. Zhang, Y. Zhao, B. Yu, Z. Ma, Z. Liu, Hierarchically 
Mesoporous o-Hydroxyazobenzene Polymers: Synthesis and Their 
Applications in CO2 Capture and Conversion, Angew. Chemie Int. Ed. 55 
(2016) 9685-9689. https://doi.org/10.1002/anie.201602667. 

[73] Y. Xie, T.-T. Wang, X.-H. Liu, K. Zou, W.-Q. Deng, Capture and 
conversion of CO2 at ambient conditions by a conjugated microporous 
polymer, Nat. Commun. 4 (2013) 1960. 
https://doi.org/10.1038/ncomms2960. 

[74] H. Zhong, Y. Su, X. Chen, X. Li, R. Wang, Imidazolium- and Triazine-
Based Porous Organic Polymers for Heterogeneous Catalytic Conversion 
of CO2 into Cyclic Carbonates, ChemSusChem. 10 (2017) 4855-4863. 
https://doi.org/10.1002/cssc.201701821. 

[75] N. Zhang, B. Zou, G.-P. Yang, B. Yu, C.-W. Hu, Melamine-based 
mesoporous organic polymers as metal-Free heterogeneous catalyst: 
Effect of hydroxyl on CO2 capture and conversion, J. CO2 Util. 22 (2017) 
9-14. https://doi.org/https://doi.org/10.1016/j.jcou.2017.09.001. 

[76] S. Verma, G. Kumar, A. Ansari, R. Kureshy, N. Khan, A nitrogen rich 
polymer as an organo-catalyst for cycloaddition of CO2 to epoxides and 
its application for the synthesis of polyurethane, Sustain. Energy Fuels. 1 
(2017) 1620-1629. https://doi.org/10.1039/C7SE00298J. 



[77] A. Jawad, F. Rezaei, A.A. Rownaghi, Porous polymeric hollow fibers as 
bifunctional catalysts for CO2 conversion to cyclic carbonates, J. CO2 Util. 
21 (2017) 589-596. 
https://doi.org/https://doi.org/10.1016/j.jcou.2017.09.007. 

[78] S. Ravi, P. Puthiaraj, W.-S. Ahn, Cyclic carbonate synthesis from CO2 
and epoxides over diamine-functionalized porous organic frameworks, J. 
CO2 Util. 21 (2017) 450-458. 
https://doi.org/https://doi.org/10.1016/j.jcou.2017.08.011. 

[79] D. Ma, K. Liu, J. Li, Z. Shi, Bifunctional Metal-Free Porous Organic 
Framework Heterogeneous Catalyst for Efficient CO2 Conversion under 
Mild and Cocatalyst-Free Conditions, ACS Sustain. Chem. Eng. 6 (2018) 
15050-15055. https://doi.org/10.1021/acssuschemeng.8b03517. 

[80] S. Ravi, P. Puthiaraj, W.-S. Ahn, Hydroxylamine-Anchored Covalent 
Aromatic Polymer for CO2 Adsorption and Fixation into Cyclic 
Carbonates, ACS Sustain. Chem. Eng. 6 (2018) 9324-9332. 
https://doi.org/10.1021/acssuschemeng.8b01588. 

[81] B. Sarmah, R. Srivastava, Activation and Utilization of CO2 Using Ionic 
Liquid or Amine-Functionalized Basic Nanocrystalline Zeolites for the 
Synthesis of Cyclic Carbonates and Quinazoline-2,4(1H,3H)-dione, Ind. 
Eng. Chem. Res. 56 (2017) 8202-8215. 
https://doi.org/10.1021/acs.iecr.7b01406. 

[82] R. Babu, S.-H. Kim, J.F. Kurisingal, H.-J. Kim, G.-G. Choi, D.-W. Park, A 
room temperature synthesizable zeolitic imidazolium framework catalyst 
for the solvent-free synthesis of cyclic carbonates, J. CO2 Util. 25 (2018) 
6-13. https://doi.org/https://doi.org/10.1016/j.jcou.2018.03.006. 

[83] Q.-N. Zhao, Q.-W. Song, P. Liu, Q.-X. Zhang, J.-H. Gao, K. Zhang, 
Catalytic Conversion of CO2 to Cyclic Carbonates through Multifunctional 
Zinc-Modified ZSM-5 Zeolite, Chinese J. Chem. 36 (2018) 187-193. 
https://doi.org/10.1002/cjoc.201700573. 

[84]  L.O. Peçanha, J. Comeford, M. North, C.J.A. Mota, unpublished results. 

 [85]  M. Franco, N. Rosenbach Jr., G.B. Ferreira, A.C.O. Guerra, W.B. Kover, 
C.C. Turci, C.J.A. Mota. “Rearrangement, Nucleophilic Substitution and 
Halogen Switch Reactions of Alkyl Halides over NaY Zeolite: Formation of 
the Bicyclobutonium Cation Inside the Zeolite Cavity”. J. Am. Chem. Soc. 
130 (2008) 1592-1600. https://doi.org/10.1021/ja0742939. 

 [86] N. Rosenbach Jr., A.P.A. dos Santos, M. Franco, C.J.A. Mota. "The tert-
Butyl Cation on Zeolite Y: A Theoretical and Experimental Study ". Chem. 
Phys. Lett. 485 (2010) 124-128. 
https://doi.org/10.1016/j.cplett.2009.12.003. 


