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Abstract

High dimensional covariance matrices appear in many disciplines. Much literature has de-

voted to the research in high dimensional constant covariance matrices. However, constant

covariance matrices are not sufficient in applications, e.g. in portfolio allocation, dynamic co-

variance matrices would be more appropriate. As argued in this paper, there are two difficulties

in the introduction of dynamic structures into covariance matrices: (1) simply assuming each

entry of a covariance matrix is a function of time to introduce the dynamic needed would not

work; (2) there is a risk of having too many unknowns to estimate due to the high dimensionality.

In this paper, we propose a dynamic structure embedded with a homogeneous structure. We

will demonstrate the proposed dynamic structure makes more sense in applications and avoids,

in the meantime, too many unknown parameters/functions to estimate, due to the embedded

homogeneous structure. An estimation procedure is also proposed to estimate the proposed high

dimensional dynamic covariance matrices, and asymptotic properties are established to justify

the proposed estimation procedure. Intensive simulation studies show the proposed estimation

procedure works very well when the sample size is finite. Finally, we apply the proposed high

dimensional dynamic covariance matrices to portfolio allocation. It is interesting to see the

resulting portfolio yields much better returns than some commonly used ones.
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1 Introduction

1.1 Motivation

Covariance matrices appear in many disciplines, such as economics, finance, engineering, psychol-

ogy, and biology, to name but a few. The estimation of covariance matrices has a very long history.

Traditionally, sample covariance matrices are used to estimate the covariance matrices. In many

applications, we often come across the need for a function of a covariance matrix, e.g. in portfolio

allocation, we need the inverse of the covariance matrix of the returns of the assets under consider-

ation. When the dimension of the covariance matrix is big, the sample covariance matrix would not

work well, this is because the estimation error accumulates very quickly to reach an unacceptable

level when computing the function of the estimated covariance matrix.

During the past decades, there is much literature devoting to the research in the estimation of

constant high dimensional covariance matrices. See, Wu and Pourahmadi (2003), Sun et al.(2007),

Fan et al.(2008), Bickel and Levina (2008a, 2008b), El Karoui (2008), Rothman et al.(2009), Yuan

(2010), Fan et al.(2011), Berthet and Rigollet (2013), Birnbaum et al.(2013), Fang et al.(2016), Guo

et al.(2017), Avella-Medina et al.(2018), Fan et al.(2018), Ke et al.(2019), and the references therein.

In many applications, constant covariance matrices are not suitable. For example, in portfolio

allocation, we would expect that a good portfolio allocation should be dynamic, this is because an

optimal portfolio allocation today may not be optimal tomorrow. Therefore, the covariance matrix

used in forming a portfolio allocation has to be dynamic. To introduce a dynamic structure into a

covariance matrix, simply assuming each entry of this covariance matrix is an unknown function of

time would not work in many cases. For example, in portfolio allocation or risk management, the

main purpose is for prediction. If we assume each entry of the covariance matrix used is an unknown

function of time, we would not be able to estimate this unknown function well at time point n+ 1

when we have observations up to the time point n. This is because the unknown function can go

smoothly either up or down at a time point n+1, and we do not have the information about which

way the unknown function may go. Therefore, the resulting portfolio allocation or risk management

would not work very well. Another commonly used approach to incorporate a dynamic pattern in a

covariance matrix is to estimate the covariance matrix only based on the observations in a moving

window. This approach is the same as that assuming each entry of the covariance matrix is an
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unknown function of time and estimate it by the local constant estimation.

Research in dynamic covariance matrices has been attracting many scholars. Relevant literature

includes Bollerslev et al.(1988), Harvey et al.(1994), Engle (2002, 2009), Ledoit and Wolf (2004,

2020), Bauwens et al.(2006), Asai et al.(2006), Yu and Meyer (2006), Silvennoinen and Teräsvirta

(2009), Chib et al.(2009), Ledoit and Wolf (2012), Almeida et al.(2018), Francq and Zakoian (2019),

Boudt et al.(2019), Engle et al.(2019), Kastner (2019), Pakel et al.(2020), and the references therein.

Taking different approach, based on the autoregressive idea and factor models, Guo et al.(2017)

proposed the following models for the components of the vector Yt, Yt = (y1,t, · · · , ypn,t)
T, to

which we are interested in its covariance matrix

yi,t = ai,0(X
T
t�1�) +XT

t ai(X
T
t�1�) + ✏i,t, i = 1, · · · , pn; t = 2, · · · , n (1.1)

where Xt is a q dimensional factor, and

� = (�1, · · · , �q)
T, k�k = 1, �1 > 0, ai(·) = (ai,1(·), · · · , ai,q(·))

T

Based on (1.1), the covariance matrix of Yt can be derived, and the covariance matrix comes with

a nice dynamic structure.

The dynamic covariance matrices based on models (1.1) have two problems: (1) They may

result in serious bias in some applications, this is because models (1.1), based on which the dynamic

covariance matrices are introduced, do not appreciate the heterogeneity on the index � among the

components of Yt as the same � is used for all components. (2) There are (q + 1)pn unknown

functions involved, which is too many for high dimensional cases. This can cause serious trouble

on the variance side and make the final estimators of the covariance matrices very unstable. In

this paper, we are going to take a different approach to introduce a dynamic structure for high

dimensional covariance matrices to overcome these problems.

1.2 The models

Suppose (XT
t ,Y

T
t ), t = 1, · · · , n, is a time series, where Yt is a pn dimensional vector and Xt is

a q dimensional factor. An underlying assumption throughout this paper is that pn �! 1 when

n �! 1, and q is fixed. See Guo et al.(2017) for reasoning of this assumption. Also, we assume

that {Xt, t = 0, · · · , n} is a stationary Markov process. Let Yt = (y1,t, · · · , ypn,t)
T, we assume

the ith component of Yt, which is also called the ith individual throughout this paper, follows

yi,t = ai,0(X
T
t�1�i) +XT

t ai(X
T
t�1�i) + ✏i,t, k�ik = 1, �i,1 > 0, (1.2)
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where �i = (�i,1, · · · , �i,q)
T, ai(·) = (ai,1(·), · · · , ai,q(·))

T is a factor loading vector, and �i,js and

ai,j(·)s have the following unknown homogeneous structure

�i,j =

8
>>><
>>>:

�(1) when (i, j) 2 D1,
...

...

�(H) when (i, j) 2 DH ,

ai,j(·) =

8
>>><
>>>:

a(1)(·) when (i, j) 2 Q1,
...

...

a(N )(·) when (i, j) 2 QN ,

(1.3)

{Dk : k = 1, · · · , H} is an unknown partition of set {(i, j) : i = 1, · · · , pn; j = 2, · · · , q},

{Qk : k = 1, · · · , N} is an unknown partition of set {(i, j) : i = 1, · · · , pn; j = 0, · · · , q}.

{✏t = (✏1,t, · · · , ✏pn,t)
T, t = 1, · · · , n} are random errors which are independent of {Xt, t =

0, · · · , n}. Note that due to the unit norm constraint k�ik = 1, the value �i,1 is determined by

other components of �i and thus we only specify partition for �i,2, . . . ,�i,q. We assume

E(✏t|{✏l : l < t}) = 0, cov(✏t|{✏l : l < t}) = Σ0,t = diag
�
�2
1,t, · · · , �2

pn,t

�
(1.4)

where

�2
k,t = ↵k,0 +

mX

i=1

↵k,i✏
2
k,t�i +

sX

j=1

�k,j�
2
k,t�j , (1.5)

for each k = 1, · · · , pn and for some integers m and s. ↵k,is and �k,js also enjoy the following

unknown homogeneous structure

↵i,j =

8
>>><
>>>:

↵(1) when (i, j) 2 A1,
...

...

↵(&) when (i, j) 2 A& ,

�i,j =

8
>>><
>>>:

�(1) when (i, j) 2 Γ1,
...

...

�(⌧) when (i, j) 2 Γ⌧ ,

(1.6)

{Ak : k = 1, · · · , &} is an unknown partition of set {(i, j) : i = 1, · · · , pn; j = 0, · · · , m},

{Γk : k = 1, · · · , ⌧} is an unknown partition of set {(i, j) : i = 1, · · · , pn; j = 1, · · · , s}.

The model (1.2) with (1.3), (1.4), (1.5) and (1.6) is the model this paper is going to address,

in which, H, N , &, ⌧ , �(i), i = 1, · · · , H, a(j)(·), j = 1, · · · , N , ↵(k), k = 1, · · · , &, �(l),

l = 1, · · · , ⌧ , the partitions {Dk : k = 1, · · · , H}, {Qk : k = 1, · · · , N}, {Ak : k = 1, · · · , &},

and {Γk : k = 1, · · · , ⌧} are all unknowns to be estimated.

Let Ft be the ��algebra generated by {(XT
l , ✏

T
l ) : l  t}. The main focus of this paper is on

the conditional covariance matrix

cov(Yt|Ft�1) =

0
BBB@

aT1(X
T
t�1�1)
...

aTpn(X
T
t�1�pn)

1
CCCAΣx(Xt�1)

�
a1(X

T
t�1�1), · · · , apn(X

T
t�1�pn)

�
+Σ0,t (1.7)

where Σx(Xt�1) = cov(Xt|Xt�1).
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Remark 1. The proposed dynamic structure for high dimensional covariance matrices is very

different from those appear in the literature mentioned in the third paragraph of Section 1.1. The

dynamic structure there is mainly based on the GARCH models. The proposed dynamic structure

is based on the ideas of Fama-French common risk factors, single index varying coefficient models

and homogeneity pursuit. Due to the homogeneity pursuit, the proposed dynamic structure is

parsimonious, and our empirical studies show the proposed dynamic structure is appropriate in

real life and works well in real data analysis.

Remark 2. In the dynamic structure introduced in Guo et al.(2017), they use the same index �

for all components of the Yt, this may lead to serious misspecification, which would result in serious

bias in the final estimator of the underlying true covariance matrix in real life application. In the

proposed dynamic structure, we use different index for different component, namely �i for the ith

component of Yt, to make the modelling more flexible and avoid misspecification, in the meantime,

we apply homogeneity pursuit to avoid overfitting, therefore, make the modelling parsimonious.

Remark 3. The proposed homogeneous structure imposes a parsimonious yet flexible structure

embedded in the high-dimensional parameter space. It is flexible in the sense that it includes many

widely used low-dimensional structures as its special cases. For example, the sparsity structure can

be considered as a dominant group of 0’s plus several non-zero groups; the bi-clustering structure

can be considered as a homogeneity structure with a known group number of two; and the tree

structure can also be recovered by the proposed binary segmentation algorithm. In some modern

data based economic and business applications, learning a flexible low-dimensional structure has

become the primary objective over the coefficient estimation and inference. Besides the problem

studied in this manuscript, the homogeneity structure has also been studied for large panel data

analysis. Another hot topic in business analytic is to cluster the social media users across the topics

and geological locations into homogeneity groups, such that further precision business actions can

be applied to each group.

2 Estimation procedure

In this section, we introduce an estimation procedure for cov(Yt|Ft�1). We will first estimate �is,

ai(·)s, Σx(·), ↵k,is and �k,js based on the model (1.2) together with (1.3), (1.4), (1.5) and (1.6), and

denote the resulting estimators by b�i, bai(·), i = 1, · · · , pn, bΣx(·), b↵k,i and b�k,j for i = 0, · · · , m

and j = 1, · · · , s. Let bΣ0,t be Σ0,t with ↵k,i and �k,j being replaced by b↵k,i and b�k,j respectively.
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We use

ccov(Yt|Ft�1) =

0
BBB@

baT1(XT
t�1
b�1)

...

baTpn(XT
t�1
b�pn)

1
CCCA
bΣx(Xt�1)

⇣
ba1(XT

t�1
b�1), · · · , bapn(XT

t�1
b�pn)

⌘
+ bΣ0,t (2.1)

to estimate cov(Yt|Ft�1).

2.1 Estimation of ai,0(·)s, �is and ai(·)s

Our approach to deal with the unknown functions ai,j(·), i = 1, · · · , pn, j = 0, · · · , q, in (1.2)

is based on the B-Spline. The reason for us to use B-Spline rather than kernel smoothing is for

the concern of homogeneity pursuit in ai,j(·)s, see Remark 4 at the end of this section for more

details. To achieve the best result for the homogeneity pursuit, we have to decompose all ai,j(·)s

by the same B-Spline basis, B(·) = (B1(·), · · · , BK(·))T. For each i, i = 1, · · · , pn, let e�i be the

estimate of �i obtained, based on the observations for the ith individual, by a standard estimation

procedure for the varying coefficient single index models, and

a = min
1ipn

min
0tn

XT
t
e�i, b = max

1ipn
max
0tn

XT
t
e�i.

We use the B-Spline basis of order 3 in this paper, and the basis, B(·), is formed by the equally

spaced knots, ⌧k, k = 0, · · · , K � 2, on the interval [a, b], with ⌧0 = a and ⌧K�3+1 = b. K can be

selected by either cross-validation or BIC. Based on the basis B(·), ai,j(·) can be decomposed as

ai,j(·) ⇡ B(·)T✓ij , (2.2)

where ✓ij = (✓ij,1, · · · , ✓ij,K)T. So, to get the estimator of ai,j(·), we only need to get the estimator

of ✓ij .

The estimation procedure for �is and ✓ijs consists of three stages: initial estimation, homo-

geneity pursuit and final estimation, which is detailed as follows:

Stage 1 (Initial Estimation). For each i, based on the observations for the ith individual, approxi-

mating ai,j(·) by its decomposition (2.2) and applying the least squares estimation method,

we have the following objective function

nX

t=2

�
yit � ✓Ti0B(XT

t�1�i)�B(XT
t�1�i)

T
ΘiXt

�2
, (2.3)

where Θi = (✓i1, · · · , ✓iq). Minimise (2.3) with respect to �i, Θi and ✓i0, and denote the

resulting minimiser by e�i, eΘi and e✓i0. We will show how to conduct the minimisation in

Section 2.4.
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Stage 2 (Homogeneity Pursuit). Let e�ij be the jth component of e�i. We sort e�ij , i = 1, · · · , pn,

j = 2, · · · , q, in ascending order, and denote them by

b(1)  · · ·  b((q�1)pn)

We use Rij to denote the rank of e�ij . Identifying the homogeneity among e�ij , i = 1, · · · , pn,

j = 2, · · · , q, is equivalent to detecting the change points among b(l), l = 1, · · · , (q � 1)pn.

To this end, we apply the Binary Segmentation algorithm as follows.

For any 1  i < j  (q � 1)pn, let

∆ij() =

s
(j � )(� i+ 1)

j � i+ 1

�����

Pj
l=+1 b(l)

j � 
�
P

l=i b(l)

� i+ 1

�����

Given a threshold �, which can be selected by AIC or BIC in practice, the Binary Segmentation

algorithm to detect the change points works as follows

(1) Find bk1 such that

∆1,(q�1)pn(
bk1) = max

1<(q�1)pn
∆1,(q�1)pn().

If ∆1,(q�1)pn(
bk1)  �, there is no change point among b(l), l = 1, · · · , (q � 1)pn, and

the process of detection ends. Otherwise, add bk1 to the set of change points and divide

the region { : 1    (q � 1)pn} into two subregions: { : 1    bk1} and

{ : bk1 + 1    (q � 1)pn}.

(2) Detect the change points in the two subregions obtained in (1), respectively. Let us deal

with the region { : 1    bk1} first. Find bk2 such that

∆
1,bk1

(bk2) = max
1<bk1

∆
1,bk1

().

If ∆
1,bk1

(bk2)  �, there is no change point in the region { : 1    bk1}. Otherwise, add

bk2 to the set of change points and divide the region { : 1    bk1} into two subregions:

{ : 1    bk2} and { : bk2+1    bk1}. For the region { : bk1+1    (q�1)pn},

we find bk3 such that

∆bk1+1,(q�1)pn
(bk3) = max

bk1+1<(q�1)pn

∆bk1+1,(q�1)pn
().

If ∆bk1+1,(q�1)pn
(bk3)  �, there is no change point in the region { : bk1 + 1    (q �

1)pn}. Otherwise, add bk3 to the set of change points and divide the region { : bk1+1 
  (q�1)pn} into two subregions: { : bk1+1    bk3} and { : bk3+1    (q�1)pn}.
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(3) For each subregion obtained in (2), we do exactly the same as that for the subregion

{ : 1    bk1} or { : bk1 + 1    (q � 1)pn} in (2), and keep doing so until there

is no subregion containing any change point.

We sort the estimated change point locations in ascending order and denote them by

bk(1) < bk(2) < · · · < bk
( bH�1)

,

where bH�1 is the number of change points detected. In addition, we denote bk(0) = 0, bH =

bH�1 + 1, and bk
( bH)

= (q � 1)pn. We use bH to estimate H. Let

bD` = {(i, j) : bk(`�1) < Rij  bk(`)}, 1  `  bH,

we use
n
bD` : 1  `  bH

o
to estimate the partition {D` : 1  `  H}. We consider all the

�i,js with the subscript (i, j) in the same group of the estimated partition having the same

value.

Let e✓ij,l be the lth component of e✓ij . Doing exactly the same to e✓ij,l, i = 1, · · · , pn,

j = 0, · · · , q, l = 1, · · · , K, we get a partition {B1, · · · , BN} of {(i, j, l) : i = 1, · · · , pn; j =

0, · · · , q; l = 1, · · · , K}. We consider all the ✓ij,ls with the subscript (i, j, l) in the same

group of the estimated partition having the same value.

Stage 3 (Final Estimation). Let L(⇠1, · · · , ⇠ bH
, ⌘1, · · · , ⌘N ) be

pnX

i=1

nX

t=2

�
yit � ✓Ti0B(XT

t�1�i)�B(XT
t�1�i)

T
ΘiXt

�2
,

with �i,j , i = 1, · · · , pn, j = 1, · · · , q, being replaced by ⇠k if (i, j) 2 bDk, and ✓ij,l,

i = 1, · · · , pn, j = 0, · · · , q, l = 1, · · · , K, being replaced by ⌘` if (i, j, l) 2 B`. Let

(b⇠1, · · · , b⇠ bH
, b⌘1, · · · , b⌘N ) minimise L(⇠1, · · · , ⇠ bH

, ⌘1, · · · , ⌘N ). The final estimator b�i,j
of �i,j is b⇠k if (i, j) 2 bDk, and the final estimator b✓ij,l of ✓ij,l is b⌘` if (i, j, l) 2 B`. Once we

have the estimator b✓ij,l, let b✓ij = (b✓ij,1, · · · , b✓ij,K)T, the estimator baij(·) of aij(·) is taken to

be B(·)Tb✓ij .

Remark 4. When dealing with the unknown functions ai,j(·), i = 1, · · · , pn, j = 0, · · · , q,

in the estimation procedure, instead of treating each unknown function as a single undivided unit

to conduct homogeneity pursuit, we work on the coefficients of its B-Spline decomposition. This

is because there may still be some kind of homogeneity between two functions even if they are

different, e.g. some coefficients of the B-Spline decomposition of one function may be the same as

some coefficients of the B-Spline decomposition of the other one, but not all the same. If we treat
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each unknown function as a single undivided unit to conduct homogeneity pursuit, we would not

be able to identify and use this kind of homogeneity, which would make our final estimators not as

efficient as they should be.

2.2 Estimation of Σx(·)

In order to estimate E(Xt|Xt�1 = u) and E(XtX
T
t |Xt�1 = u), for any given u, we propose using

the local constant estimators

bE(Xt|Xt�1 = u) =

nP
t=2

XtKh(kXt�1 � uk)
nP

t=2
Kh(kXt�1 � uk)

, (2.4)

bE(XtX
T
t |Xt�1 = u) =

nP
t=2

XtX
T
tKh(kXt�1 � uk)

nP
t=2

Kh(kXt�1 � uk)
.

This gives us the following estimator of Σx(u)

bΣx(u) = bE(XtX
T
t |Xt�1 = u)� bE(Xt|Xt�1 = u)

n
bE(Xt|Xt�1 = u)

oT

= {tr(W)}�2XT
�
tr(W)W �W11TW

 
X (2.5)

where

X = (X1, · · · , Xn)
T, W = diag(Kh(kX0 � uk), · · · , Kh(kXn�1 � uk)),

h is a bandwidth, Kh(·) = K(·/h)/h, and K(·) is a kernel function.

The reason for us to use kernel smoothing rather than B-Spline in the estimation of Σx(u) is

for simplicity, because there is no homogeneity pursuit needed here and u is not a scalar.

2.3 Estimation of Σ0,t

For each k, k = 1, · · · , pn, let

b✏k,t = yk,t � bak,0(XT
t�1
b�k)�XT

t bak(XT
t�1
b�k).

By (1.5), we have the following synthetic GARCH model

�2
k,t = ↵k,0 +

mX

i=1

↵k,ib✏2k,t�i +

sX

j=1

�k,j�
2
k,t�j . (2.6)

Once ↵k,is and �k,js have been estimated, by substituting them into (2.6) and with appropriate

initial values we can obtain an estimator b�2
k,t of �

2
k,t and hence an estimator bΣ0,t of Σ0,t.
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For each k, k = 1, · · · , pn, we apply a quasi-maximum likelihood approach to estimate

(↵k,0, · · · , ↵k,m, �k,1, · · · , �k,s) initially. We define the negative quasi log-likelihood function

as

Lk(↵k,0, · · · , ↵k,m, �k,1, · · · , �k,s) = n�1
nX

t=1

(
b✏2k,t
�2
k,t

+ log �2
k,t

)
, (2.7)

where �2
k,t are recursively defined by (2.6) with initial values being either

b✏2k,0 = · · · = b✏2k,1�m = �2
k,0 = · · · = �2

k,1�s = ↵k,0 (2.8)

or

b✏2k,0 = · · · = b✏2k,1�m = �2
k,0 = · · · = �2

k,1�s = b✏2k,1. (2.9)

By minimising (2.7) with respect to (↵k,0, · · · , ↵k,m, �k,1, · · · , �k,s), we take the minimiser

(e↵k,0, · · · , e↵k,m, e�k,1, · · · , e�k,s) as an initial estimate of (↵k,0, · · · , ↵k,m, �k,1, · · · , �k,s).

Apply exactly the same homogeneity pursuit approach, stated in Stage 2 of the estimation

procedure for �i in Section 2.1, to the initial estimates e↵k,j , k = 1, · · · , pn, j = 0, · · · , m,

and e�k,j , k = 1, · · · , pn, j = 1, · · · , s, respectively. Denote the resulting partition for e↵k,js by

{ bAk : k = 1, · · · , b&}, for e�k,js by {bΓk : k = 1, · · · , b⌧}.
Let L(µ1, · · · , µb& , ⌫1, · · · , ⌫b⌧ ) be

pnX

k=1

Lk(↵k,0, · · · , ↵k,m, �k,1, · · · , �k,s),

with ↵i,j , i = 1, · · · , pn, j = 0, · · · , m, being replaced by µk if (i, j) 2 bAk, and �i,j , i = 1, · · · , pn,

j = 1, · · · , s, being replaced by ⌫` if (i, j) 2 bΓ`. Let (bµ1, · · · , bµb& , b⌫1, · · · , b⌫b⌧ ) minimise

L(µ1, · · · , µb& , ⌫1, · · · , ⌫b⌧ ). The final estimator b↵i,j of ↵i,j is bµk if (i, j) 2 bAk, and the final

estimator b�i,j of �i,j is b⌫` if (i, j) 2 bΓ`.

2.4 Computational algorithm

In the estimation procedure described in Section 2.1, the minimiser of (2.3) does not have a closed

form, neither does the minimiser of L(⇠1, · · · , ⇠ bH
, ⌘1, · · · , ⌘N ). To conduct the minimisation

of either of the two objective functions, we appeal to the standard NLS algorithm, and use the

nls of R to implement it. One can also use other NLS software, for example, the NLS routine

lsqnonlin() from MATLAB and PROC NLIN from SAS. To use the nls of R, we first need to find

an initial value. The initial value for minimising (2.3) can be obtained as follows:

(1) Apply the standard least squares estimation for the linear models to (yit, Xt), t = 1, · · · , n,

and denote the resulting estimator by �̌i, the initial value for �i is taken to be �
(0)
i = �̌i/k�̌ik

if the first component of �̌i, �̌i1, is positive, �
(0)
i = ��̌i/k�̌ik otherwise.
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(2) Substitute �
(0)
i for �i in (2.3), then minimise (2.3) with respect to (Θi, ✓i0), the minimiser

(Θ
(0)
i , ✓

(0)
i0 ) is the initial value of (Θi, ✓i0).

Once we have �
(0)
i , Θ

(0)
i and ✓

(0)
i0 , the minimiser of (2.3) can be obtained by the nls of R straight-

forwardly.

For any set A, let |A| be the number of elements in A. The initial value for minimising

L(⇠1, · · · , ⇠ bH
, ⌘1, · · · , ⌘N ) can be obtained through the initial estimates of �i and ✓i, obtained

in Stage 1 of the estimation procedure in Section 2.1, as follows:

⇠
(0)
k =

⇣
| bDk|

⌘�1 X

(i,j)2 bDk

e�ij , k = 1, · · · , bH

and

⌘
(0)
k = (|Bk|)

�1
X

(i,j,l)2Bk

e✓ij,l, k = 1, · · · , N.

Once we have the initial value (⇠
(0)
1 , · · · , ⇠

(0)
bH
, ⌘

(0)
1 , · · · , ⌘

(0)
N ), we can have the minimiser of

L(⇠1, · · · , ⇠ bH
, ⌘1, · · · , ⌘N ) by using the nls of R straightforwardly.

3 Asymptotic properties

We start with our definitions of the overfitting, correct fitting, and misspecification in this paper:

• Overfitting: the underlying homogeneity structure is ignored and the homogeneity pursuit is

not conducted when ccov(Yn+1|Fn) being constructed, namely ccov(Yn+1|Fn) is constructed

based on (2.1) and the initial estimators of �is, ai(·)s, ↵i,ks and �i,ks obtained in Stage 1 of

the proposed estimation procedure in Section 2.1.

• Correct fitting (which is our modelling together with the proposed estimation): the under-

lying homogeneity structure is appreciated and the homogeneity pursuit is conducted when

ccov(Yn+1|Fn) being constructed, namely ccov(Yn+1|Fn) is constructed based on (2.1) and the

final estimators of �is, ai(·)s, ↵i,ks and �i,ks in Section 2.1.

• Misspecification: ccov(Yn+1|Fn) is constructed based on (2.1), and the estimators of �is,

ai(·)s, ↵i,ks and �i,ks in (2.1) are obtained under the false assumption that �1 = · · · = �pn ,

by exactly the same estimation procedure stated in Section 2 but setting bH = q � 1 and

bDk = {(i, k) : 1  i  pn} in Stage 3 of the estimation for �is and ai(·)s in Section 2.1.

In this Section, we are going to discuss the asymptotic properties of the estimator of cov(Yt|Ft�1)

obtained by either overfitting, correct fitting, or misspecification.
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To measure the accuracy of an estimatorcM of a positive definite matrix M of dimension pn⇥pn,

we use the entropy loss norm:

kcM�MkΣ = p�1/2
n kM�1/2(cM�M)M�1/2k.

In the following, we are going to present three theorems to show theoretically the superiority of our

modelling and the proposed estimation.

The relatively long list of assumptions is contained in the Appendix. However, it is worthwhile

to mention here that we assume the number of groups H, N , &, ⌧ are fixed, while pn = O(nb)

for some b < 1 (see as sumption (C13) for the exact constraints required on pn). Furthermore,

the sequence Yt is assumed to be stationary and ↵-mixing while we allow some weak dependence

across the components i = 1, · · · , pn.

Theorem 1 (Overfitting case) Assume the number of spline basis function used is K1 ⇣ n1/5 with

bandwidth h ⇣ n1/(4+q). For the convergence rate of ccov(Yn+1|Fn) constructed by overfitting, we

have, under conditions (C1)-(C13) in the Appendix,

kccov(Yn+1|Fn)� cov(Yn+1|Fn)k2Σ
 Cpnn

�8/5 log2 n+ Cn�4/5 log n+ Cp�1
n n�4/(4+q) log n,

with probability approaching one. When pn = O(n
4(q�1)
5(q+4) ), the 3rd term above is dominated by the

second term and we have

kccov(Yn+1|Fn)� cov(Yn+1|Fn)k2Σ  Cpnn
�8/5 log2 n+ Cn�4/5 log n,

with probability approaching one.

Theorem 2 (Correct fitting case) Assume the number of spline basis function used is K2 ⇣
(pnn)

1/5 with bandwidth h ⇣ n1/(4+q). For the convergence rate of ccov(Yn+1|Fn) constructed by

correct fitting, we have, under conditions (C1)-(C13) in the Appendix,

kccov(Yn+1|Fn)� cov(Yn+1|Fn)k2Σ
 Cpn(pnn)

�8/5 log2 n+ C(pnn)
�4/5 log n+ Cp�1

n n�4/(4+q) log n,

with probability approaching one. When pn = O(n
4(q�1)
q+4 ), the 3rd term above is dominated by the

second term and we have

kccov(Yn+1|Fn)� cov(Yn+1|Fn)k2Σ  Cpn(pnn)
�8/5 log2 n+ C(pnn)

�4/5 log n,

with probability approaching one.
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Theorem 3 (Misspecification case) Under assumptions (C1)-(C16) in the Appendix, when ccov(Yn+1|Fn)

is constructed by misspecification, we have

kccov(Yn+1|Fn)� cov(Yn+1|Fn)k2Σ � Cpn,

with probability bounded away from zero.

Theorems 1 and 2 show the error bar of the proposed estimator, which is the correct fitting

case, is of a higher order of convergence rate than that of the estimator obtained without using the

underlying homogeneity structure, therefore, the proposed estimator is more accurate. Theorem 3

shows the estimator, obtained under the assumption that there is no heterogeneity on the index �

among the components of Yt, would not be consistent when heterogeneity exists.

In conclusion, theorems 1 - 3 show: (1) to assume every component of Yt share the same index

�, when this is not the case, would result in a serious problem in the final estimator; (2) to ignore

the homogeneity structure would lead to an inefficient final estimator, which is not good either;

(3) our modelling together with the proposed estimation takes into account both homogeneity and

heterogeneity, and therefore, results in the best estimator. Our simulation results in Section 5 will

tell the same story.

4 Portfolio allocation

In this section, we are going to demonstrate how to apply the proposed dynamic covariance matrices

to portfolio allocation, therefore, Yt here is the vector of returns at time point t of assets concerned.

Our portfolio allocation is based on the mean-variance optimal portfolio proposed by Markowitz

(1952, 1959). Specifically, we assume the conditional covariance matrix cov(Yt|Ft�1) involved in

the Markowitz’s formula enjoys the proposed dynamic structure and estimate it by the proposed

estimation procedure. Except cov(Yt|Ft�1), in order to form a portfolio allocation based on the

Markowitz’s formula, we also need the conditional expectation E(Yt|Ft�1), we therefore estimate

it first.

By taking conditional expectation of (1.2), we have

E(yi,t|Ft�1) = ai0(X
T
t�1�i) + ai(X

T
t�1�i)E(Xt|Xt�1)

which leads to the following estimator of E(yi,t|Ft�1)

bE(yi,t|Ft�1) = bai0(XT
t�1
b�i) + bai(XT

t�1
b�i) bE(Xt|Xt�1) (4.1)
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where bE(Xt|Xt�1) is defined in (2.4), and bai0(·), bai(·) and b�i are the final estimators of ai0(·), ai(·)

and �i obtained in Section 2.1.

Based on the Markowitz’s formula, we define the vector of our portfolio weights of pn risky

assets, to be held between times t� 1 and t, by

bwt�1 =
c3 � c2⇣

c1c3 � c22
ccov(Yt|Ft�1)

�11pn +
c1⇣ � c2
c1c3 � c22

ccov(Yt|Ft�1)
�1 bE(Yt|Ft�1), (4.2)

where

c1 = 1Tpn ccov(Yt|Ft�1)
�11pn , c2 = 1Tpn ccov(Yt|Ft�1)

�1 bE(Yt|Ft�1),

bE(Yt|Ft�1) =
⇣
bE(y1,t|Ft�1), · · · , bE(ypn,t|Ft�1)

⌘T
,

c3 = bE(Yt|Ft�1)
Tccov(Yt|Ft�1)

�1 bE(Yt|Ft�1),

⇣ is the target return imposed on the portfolio.

5 Simulation study

In this section, we are going to use simulated examples to show how well the proposed estimation

procedure for ccov(Yt|Ft�1) works, and how well bΣ0,t works when applied to estimate Σ0,t. We will

also compare the accuracy of ccov(Yt|Ft�1)s (and bΣ0,ts) obtained by several competing methods,

respectively, and the returns of the portfolios formed based on (4.2) with ccov(Yt|Ft�1)s obtained

by competing methods.

5.1 Simulation Setting

We set q = 4, and (n, pn) to be either (300, 120), (500, 300), or (1250, 1000). For each scenario,

we do 100 simulations, and for each simulation, we generate data as follows:

We first generate Xt 2 R
4, t = 1, · · · , n + 1, independently from an uniform distribution on

[�1, 1]4, then for each i, i = 1, · · · , pn, independently generate ✏i,t, t = 1, · · · , n + 1, from the

GARCH model (1.5) with

m = 1, s = 1, ↵i,0 = 0.1,

and

↵i,1 =

8
<
:

0.3 when i is odd,

0.7 when i is even,
and �i,1 =

8
<
:

0.6 when i is odd,

0.2 when i is even.

After Xts and ✏i,ts are generated, we generate Yt = (y1,t, · · · , ypn,t)
T, t = 1, · · · , n+ 1, based on

model (1.2) with

�i =

8
<
:

(0.5, �0.5, 0.5, �0.5)T when i is odd,

(0.5, 0.5, �0.5, �0.5)T when i is even,
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and

ai,0(u) = ln(1 + u2), ai(u) =

8
<
:

�
u, cos(⇡u), u, 2� 3 exp(�u2)

�T
when i is odd,

�
cos(⇡u), u, 2� 3 exp(�u2), u

�T
when i is even.

Throughout this section, we use a B-Spline basis of order 3 with 10 equally spaced knots to

approximate the unknown functions. The threshold � in homogeneity pursuit is selected by BIC.

The kernel function in the estimation of Σx(·) is taken to be the Epanechnikov kernel K(u) =

0.75(1� u2)+, and the bandwidth h is selected by 5-fold cross-validation.

5.2 Estimation of dynamic covariance matrix

Denote the proposed dynamic covariance matrix estimation method as Our Method. We compare

Our Method with the Overfitting Method and the Misspecification Method defined in

Section 3. Further, we include the DCC-NL Method⇤, proposed by Engle et al.(2019), in the

comparison. In this subsection, we use {Yt, Xt}
n
t=1 as the training sample to estimate the dynamic

covariance matrix cov(Yn+1|Fn) as well as the residual covariance matrix Σ0,n+1 by each one of

the above four methods. The estimation accuracy is measure by the scaled spectrum norms, which

are defined as

p�1/2
n kccov(Yn+1|Fn)� cov(Yn+1|Fn)k and p�1/2

n kbΣ0,n+1 �Σ0,n+1k

where ccov(Yn+1|Fn) and bΣ0,n+1 are estimates of cov(Yn+1|Fn) and Σ0,n+1 obtained by one of the

above four methods, respectively. The sample mean and sample standard deviation of the scaled

spectrum norm over 100 simulations for each method and each pair of (n, pn) are presented in

Tables 1 and 2.

Tables 1 and 2 show Our Method performs best, and the Misspecification Method is the

worst. The performance of the DCC-NL Method and the Overfitting Method are compa-

rable since they both are tailored for dynamic covariance matrix estimation without homogeneity

pursuit. This suggests that it is absolutely necessary to take into account both homogeneity and

heterogeneity in the estimation of dynamic covariance matrices, which is in line with the asymptotic

results in Section 3.

5.3 Performance of portfolio allocation

In this subsection, we are going to examine the performance of the portfolio allocation introduced

in Section 4, and investigate the implication for the resulting portfolio allocation of Our Method,

⇤The DCC-NL package is available at https://www.econ.uzh.ch/en/people/faculty/wolf/publications.html
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Table 1: Mean and Standard Deviation of: p
�1/2
n kccov(Yn+1|Fn)� cov(Yn+1|Fn)k

n = 300 n = 500 n = 1250

Method pn = 120 pn = 300 pn = 1000

Mean

Our 0.2046 0.1983 0.1741

DCC-NL 0.2551 0.2278 0.2055

Overfitting 0.2998 0.2568 0.2158

Misspecification 0.4178 0.3738 0.3612

SD

Our 0.0922 0.1154 0.1083

DCC-NL 0.1508 0.1439 0.1201

Overfitting 0.2822 0.2546 0.2144

Misspecification 0.6510 0.4054 0.3406

Mean and SD stand for the sample mean and sample standard deviation of

p
�1/2
n kccov(Yn+1|Fn)� cov(Yn+1|Fn)k over 100 simulations.

Table 2: Mean and Standard Deviation of: p
�1/2
n kbΣ0,n+1 �Σ0,n+1k

n = 300 n = 500 n = 1250

Method pn = 120 pn = 300 pn = 1000

Mean

Our 0.0762 0.0758 0.0724

DCC-NL 0.0795 0.0802 0.0741

Overfitting 0.1021 0.1035 0.0895

Misspecification 0.1505 0.1476 0.1253

SD

Our 0.0922 0.0877 0.0520

DCC-NL 0.1421 0.1350 0.1182

Overfitting 0.1854 0.1756 0.1574

Misspecification 0.3082 0.2561 0.2266

Mean and SD stand for the sample mean and sample standard deviation of

p
�1/2
n kbΣ0,n+1 �Σ0,n+1k over 100 simulations.

DCC-NL method, Overfitting Method and Misspecification Method in the estimation

of the covariance matrix involved. We set the target return of every portfolio in this subsection to

be 1%.

We form a portfolio allocation bwn at time point n based on the training sample {Yt, Xt}
n
t=1.

Specifically, bwn is formed by the formula (4.2) with t� 1 being replaced by n, ccov(Yn+1|Fn) being

obtained by either of the four methods stated above and bE(Yn+1|Fn) by formula (4.1). The return
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yielded by the portfolio bwn at time point n+ 1 is

R(bwn) = bwT
nYn+1.

For each setting of (n, pn) in Subsection 5.1, we compute the sample mean (denoted by

Mean{R(bwn)}) and sample standard deviation (denoted by SD{R(bwn)}) of return, over the 100

simulations conducted, for each portfolio formed, and present them in Table 3. For each case, we

also compute the Sharpe ratio, which is defined as

SR(bwn) =
Mean{R(bwn}

SD{R(bwn)}
,

and still present it in Table 3.

Table 3: The Performance of Each Portfolio Allocation

n = 300 n = 500 n = 1250

Method pn = 120 pn = 300 pn = 1000

Mean{R(bwn)}

Our 0.97 0.98 0.96

DCC-NL 0.88 0.89 0.88

Overfitting 0.83 0.86 0.88

Misspecification 0.80 0.79 0.77

SD{R(bwn)}

Our 0.52 0.56 0.58

DCC-NL 0.65 0.60 0.64

Overfitting 0.79 0.83 0.86

Misspecification 0.92 0.99 0.98

SR(bwn)

Our 1.87 1.75 1.66

DCC-NL 1.35 1.48 1.38

Overfitting 1.05 1.03 1.02

Misspecification 0.87 0.79 0.78

Method column indicates the estimation methods of ccov(Yn+1|Fn) upon
which the portfolios is formed. The entries corresponding to Mean{R(bwn)}
are in percentage.

Table 3 shows the portfolio formed based on the ccov(Yn+1|Fn) obtained by Our Method

performs best, with both sample mean and Sharpe ratio of the yielded return highest and sample

standard deviation lowest for every case. This attributes to the homogeneity pursuit in Our

Method, which significantly reduces the number of unknowns. The DCC-NL method is the

runner up in the horse racing as it has the second-highest mean and the second-lowest standard

deviation in every case. Again, the Misspecification method performs the worst in all cases.
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The simulation results in this subsection shows the estimation of cov(Yn+1|Fn) plays a key role

in portfolio allocation, ignoring either homogeneity or heterogeneity in the modelling of cov(Yn+1|Fn)

would have serious consequences, which will eventually be hit on the yielded return.

6 Real data analysis

In this section, we are going to apply the proposed portfolio allocation (denoted by Our), i.e. the

portfolio formed by (4.2) with ccov(Yn+1|Fn) being obtained by correct fitting, to the 49 Industry

Portfolios dataset†, which has been analysed by Guo et al.(2017), and compare the yielded return

with that of the portfolios formed by other methods. Specifically, the portfolio allocations under

comparison are listed as follows:

(1) DCC-NL: The portfolio allocation based on the dynamic covariance matrix estimator pro-

posed in Engle et al.(2019).

(2) Face: The portfolio allocation based on the dynamic covariance matrix estimator proposed

in Guo et al.(2017).

(3) Fan: The portfolio allocation based on the covariance matrix estimator proposed in Fan et

al.(2008).

(4) Sam: The portfolio allocation based on the sample covariance matrix.

(5) Market: The market portfolio allocation. This is used as a benchmark.

We remark that the portfolio allocations inOur, DCC-NL, Face, Fan and Sam are all constructed

out of the Markowitz’s formula. The difference between them lies in the way to estimate the

covariance matrix of return. Neither Sam nor Fan takes into account the dynamic feature of the

covariance matrix in their estimation. Although DCC-NL and Face estimate dynamic covariance

matrices, they ignore the underlying homogeneous structure in ai(·)s and heterogeneity on the

index �. It is worth mentioning that, Our is the only one that uses a covariance matrix, in the

modelling and estimation of which, both homogeneity and heterogeneity are taken into account.

We now give a brief description about the dataset: the response variable Yt = (y1,t, · · · , y49,t)
T

is the vector of daily returns of the 49 industry portfolios (value weighted) excess the risk-free rate.

The observable factors Xt = (x1,t, x2,t, x3,t)
T are the market, size and value factors in the Fama-

French three-factor models. We refer to Guo et al.(2017) for more descriptive details of the dataset.

†The dataset is maintained by the Kenneth French’s data library which is public available at http://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html.
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For example, the labeling along with a brief description of Yt and Xt can be found in Tables 4 and

5 in Guo et al.(2017), respectively.

We assess the performance of a portfolio allocation with a year by year back-testing from 1995

to 2014. Throughout this section, in the implementation of Our method, we use a B-Spline basis of

order 3 with 10 equally spaced knots in the decomposition of unknown function ai(·), i = 1, · · · , 49,

the threshold � in the homogeneity pursuit is selected by BIC, the kernel function involved is chosen

as the Epanechnikov kernel, and the bandwidth is selected by 5-fold cross-validation.

To highlight the role of covariance matrix estimation, we adopt a simplified back-testing setup:

we assume no transaction cost, allow for short selling and assume that all possible portfolio alloca-

tions are attainable. In each year, we start with an initial fund of 100 pounds and trade on a daily

basis. The trading strategy consists of forming a portfolio allocation at the end of each trading day

and holding it until the end of the next trading day. Between day t � 1 and day t, we obtain the

portfolio return

R(bwt�1) = bwT
t�1Yt,

where bwt�1 is obtained by the historical data of lag n, i.e. (Yt�j , Xt�j), j = 1, · · · , n. In a year

of T trading days, we calculate the annualized Sharpe ratio as

SR =
R̄

SD(R)

p
T ,

where

R̄ =
1

T

TX

t=1

R(bwt�1) and SD(R) =

"
1

T

TX

t=1

{R(bwt�1)� R̄}2

#1/2
. (6.1)

For each year between 1995 and 2014, and each of the five portfolio allocations, we compute

the balance at the end of the final trading day of the year and the annualized Sharpe ratio. We

repeat this using n = 100 and 300, respectively. The end of year balances are presented in Table

4. In all years except 1998, Our portfolio allocation produces the highest end of the year balance.

In addition, Our portfolio allocation is the only one that beats the market portfolio and gains

positive profit (e.g. end of year balance > 100) in every year.

The annualized Sharpe ratios are presented in Figure 1. Again, Our portfolio allocation has the

highest Sharpe ratio in almost all scenarios. We also applied a one-tailed robust Sharpe ratio test‡

(Ledoit and Wolf, 2008) to test the null hypothesis that the Sharpe ratio of Our portfolio is no

less than the Sharpe ratio of DCC-NL portfolio, versus the alternative hypothesis that the Sharpe

‡The robust Sharpe ratio test is implemented by the R code available at https://www.econ.uzh.ch/en/people/

faculty/wolf/publications.html
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ratio of Our portfolio is less than the Sharpe ratio of DCC-NL portfolio. With a pre-specified

significance level ↵ = 0.05, the testing results do not reject the null hypothesis.

Further, we choose the Market portfolio as the benchmark and report the information ratio

for Our, DCC-NL and FACE, which are three portfolios that can consistently outperform the

Market portfolio. The information ratio has been widely studied to compare the performance of

two portfolios, see Haugen and Baker (1991), Jagannathan and Ma (2003), Nielsen and Aylursub-

ramanian (2008), among others. The information ratio is defined as

IR =
R̄� R̄M

SD(R�RM )
,

where R = R(bw) is the return obtained by Our, DCC-NL or FACE, and RM is the return of

Market portfolio. Further, R̄, R̄M and SD(R � RM ) are defined similar as in (6.1). The results

are presented in Figure 2. The results show that Our portfolio has the highest information ratio in

all scenarios. This highlights the effectiveness of Our portfolio allocation in improving the balance

as well as reducing the risk.

We would like to declare that the results obtained in this section are based on a simplified

back-testing setup, and hence they should not be used as a guideline for any real-world investment

activities.

7 Conclusion

In this paper, we introduce a new dynamic structure for high dimensional covariance matrices,

which combines common risk factors, single index varying coefficient modelling, and homogeneity

pursuit to make the proposed structure more realistic, flexible but also parsimonious. Estimation

procedure for the covariance matrices with the proposed dynamic structure is also established. The

advantage of the proposed dynamic structure over that in Guo et al.(2017) is significant and has

been clearly demonstrated by both simulation studies and empirical applications. The proposed

dynamic structure is also different from the GARCH model based dynamic structure for high

dimensional covariance matrices. Empirical applications show the proposed dynamic structure

together with the proposed estimation procedure is superior to many existing methods.
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Table 4: Balances of Trading Strategies

Year Market
n = 100 n = 300

Our DCC-NL Face Fan Sam Our DCC-NL Face Fan Sam

1995 137 278 260 224 164 216 563 543 541 277 347

1996 121 177 165 159 101 96 194 173 184 56 72

1997 131 216 194 179 138 155 331 304 303 146 207

1998 124 196 206 178 79 134 357 364 317 330 299

1999 126 144 137 121 61 78 285 276 260 117 175

2000 88 204 197 176 102 133 272 261 253 155 120

2001 89 151 140 129 53 60 186 141 167 49 49

2002 79 187 158 164 73 69 239 229 222 150 142

2003 132 195 178 161 57 97 150 166 134 40 45

2004 112 125 128 112 67 95 143 112 132 55 56

2005 106 211 202 179 194 166 205 193 184 157 151

2006 115 169 151 149 119 121 206 160 184 114 95

2007 106 273 261 233 185 231 404 381 376 305 217

2008 63 165 143 143 73 104 216 206 203 79 114

2009 128 172 167 147 48 66 207 196 188 9 5

2010 117 158 111 129 109 100 113 115 107 169 148

2011 100 217 214 177 107 93 209 201 192 88 120

2012 116 198 189 158 117 96 132 127 122 60 83

2013 135 294 224 232 200 226 437 390 412 180 275

2014 112 194 166 158 133 134 161 150 152 114 131

In this table, the first two columns show the year and the balance on the final trading day when
investing in the market portfolio. The balances on the final trading day for Our, Face, Fan and Sam
are grouped according to n = 100 (columns 3-6), n = 300 (columns 7-10) and n = 500 (columns
11-14). For each row, the bold figure indicates the highest balance of the year.
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Figure 1: Annualized Sharpe Ratios
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This figure shows the performance of the five portfolio allocations (Our, Market, DCC-NL, Face, Fan
and Sam) in terms of the annualized Sharpe ratio, using different sample sizes n = 100 and n = 300.
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Figure 2: Information Ratios
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This figure shows the performance of the three portfolio allocations (Our, DCC-NL and Face) in
terms of the annualized Sharpe ratio with respect to the market portfolio, using different sample sizes
n = 100 and n = 300.

Appendix A. Assumptions and notations

Let Xt = (1,XT
t )

T, ai = (ai,0,a
T
i )

T. Due to the unit norm constraint for �i, its first component

�i,1 is a function of the remaining components �
(�1)
i = (�i,2, . . . ,�i,q)

T. The Jacobian of the
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transformation from �
(�1)
i to �i is given by

Mi =
@�i

@�
(�1)
i

=

0
B@

� �
(�1)T

i

(1�k�
(�1)

i k2)1/2

Iq�1

1
CA

�������
�i=�0i

.

Here and below we use subscript 0 to indicate the true value (when using multiple subscripts

the true value is indicated by the zero appearing in the leading position). Let Mi = {m :

m(x1,x2) = xT
1 b(x

T
2 �0i) : E[m2(Xt,Xt�1)] < 1,x1 = (1,xT

1 )
T = (1, x11, . . . , x1q)

T,b(.) =

(b0(.), . . . , bq(.))
T} be the space of functions taking the same form as for our mean model. Let

a0i = (a0i,0, . . . , a
0
i,q)

T be the first derivative of the functions ai,j . Define the projection of the

random vector X
T
t a

0
i(X

T
t�1�0i)Xt�1 on Mi as

EMi [X
T
t a

0
i(X

T
t�1�0i)Xt�1] = m(Xt,Xt�1) = (m1(Xt,Xt�1), . . . ,mq(Xt,Xt�1))

T,

where m1, . . . ,mq is the minimizer of

min
m1,...,mq2Mi

E[kXT
t a

0
i(X

T
t�1�0i)Xt�1 � (m1(Xt,Xt�1), . . . ,mq(Xt,Xt�1))

Tk2]. (A.1)

We impose the following assumptions.

(C1) (yt,Xt, ✏t), t = 1, . . . , n is stationary and ↵-mixing with mixing coefficient ↵(l)  ⇢l for some

⇢ 2 (0, 1). ✏it has mean zero and is independent of {Xt}. The variables Xt,j are uniformly

bounded. The density of XT
t �0i is bounded and bounded away from zero on its support which

is a closed interval.

(C2) Let �ii0,l = E[✏it✏i0t0 ] with |t � t0| = l. We assume
Pn

l=1 |�ii0,l|  ⌧ii0 for some ⌧ii0 > 0 and

maxi
P

i0 ⌧ii0  M for some constant M .

(C3) The functions ai,j , j = 0, . . . , q are twice continuously differentiable. By definition of projec-

tion (A.1) we can write EMi [X
T
t a

0
i(X

T
t�1�0i)Xt�1,j ] = X

T
t bij(X

T
t�1�0i) for some functions

bij = (bij,0, . . . , bij,q)
T. We also assume bij,k are twice continuously differentiable.

(C4) E[XtX
T
t ] and E[MT

i (X
T
t a

0
i(X

T
t�1�0i)Xt�1 � EMi [X

T
t a

0
i(X

T
t�1�0i)Xt�1])

⌦2Mi] have eigen-

values bounded and bounded away from zero, uniformly over i, where for any matrix A,

A⌦2 = AAT.

(C5) H,N , &, ⌧ are fixed scalars (non-diverging with sample size). |Dj |/(pn(q � 1)) ! cj for some

constant cj 2 (0, 1), j = 1, . . . , H, where |Dj | is the cardinality of the set Dj , and similarly

for the other three partitions for ai,j , ↵i,j and �i,j .
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(C6) Assume
p

pnK log n/n << � << �, where K is equal to either K1 or K2, � is the minimum

jump size for any of the four sequences (defined in stage 2 of the estimation procedure) at

the change points, and � is the threshold used in the change point detection algorithm (we

stop partitioning if the test statistic is below �).

(C7) {Xt, t = 1, . . . , n} is a stationary Markov chain. E[Xt,j |Xt�1 = u] and E[Xt,jXt,j0 |Xt�1 = u]

are twice continuously differentiable in u.

(C8) For each i, (✏it,�
2
it) is a strictly stationary and ergodic GARCH process with supiE[�2d

it ] < 1
for some d > 2.

(C9) For each i, the innovations ⌫it = ✏it/�it are i.i.d. with a nondegenerate distribution, E⌫2it = 1

and supiE[⌫2dit ] < 1 with the same d as defined in (C8). Furthermore, ⌫it are weakly

correlated in the sense that there exists some � > 0 such that (E[|(⌫2it � 1)(⌫2i0t0 � 1)|1+�])
1

1+δ

satisfies the same condition assumed for E[✏it✏i0t0 ] in assumption (C2).

(C10) Let Ω be a compact subset of (0,1)m+s+1. sup(↵i,�i)2Ω

Ps
j=1 �i,j < 1, and (↵0i,�0i) is an

interior point of Ω.

(C11) Let A(z) =
Pm

j=1 ↵0i,jz
j and B(z) = 1�

Ps
j=1 �0i,jz

j . A(z) and B(z) have no common roots

on the complex plane C, A(1) 6= 0, ↵0i,m + �0i,s 6= 0.

(C12) The kernel function K(z) is a symmetric density function that is bounded on a bounded

support and satisfies the Lipschitz condition. The bandwidth h satisfies h ⇣ n�c with 0 <

c < 1/(q + 1).

(C13) The number of knots for splines satisfies K1 ⇣ n1/5, K2 ⇣ (pnn)
1/5. pn . nb with b <

min{d/2� 1, 1}.

Remark 5. (C1) contains some mild regularity assumptions. Assuming Xt.j to be bounded

is common in estimation with B-splines since the basis functions are constructed on a compact

interval. (C2) roughly means the dependence across i is not too strong. If pn is fixed, (C2) follows

from the geometric mixing assumption. Assumptions similar to (C2) were also used in Bai (2003) to

impose weak dependence among errors. Note Vogt and Linton (2017) made the stronger assumption

that the data are independent across i which also easily implies (C2). (C3) contains smoothness

conditions for some functions and (C4) contains some identifiability conditions usually assumed in

models with a single-index structure and involves the projection one typically use to profile out

the nonparametric part. Uniformity over i in various assumptions above is void if pn is fixed.
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(C5) is assumed for ease of exposition so that it can be clearly demonstrated that homogeneity

pursuit can significantly improve the convergence rate. (C6) is used in showing that stage 2 of our

estimation procedure can identify the true partition with probability approaching one. (C7) and

(C12) are the same as assumed in Guo et al.(2017) for the estimation of Σx. (C8)-(C9) are mild

regularity assumptions for the GARCH model. Assumptions (C10) and (C11) imply that (1.5)

admits a unique strictly stationary solution, and the parameters are identified. (C13) restricts the

divergence rate of pn.

For the misspecified case, we introduce the following notations and definitions before listing ad-

ditional assumptions below. For any � with unit norm, let ai(x;�) = (ai,0(x;�), . . . , ai,q(x;�))
T =

argmin
a
E[(yit �X

T
t a)

2|XT
t�1� = x] and �

(m)
0 = argmin�

Ppn
i=1E[(yit �X

T
t ai(X

T
t�1�;�))

2]. Here

�
(m)
0 and a(x;�) can be regarded as the population limit of our estimator under misspecification.

We generally use superscript (m) to denote the quantities under misspecification.

Misspecification in � also means the population limit of our estimator of ↵i = (↵i,0, . . . ,↵i,m)T

and �i = (�i,1, . . . , �i,s)
T is no longer the true value in the GARCH model (1.5). Let ✏

(m)
it =

yit �X
T
t ai(X

T
t�1�

(m)
0 ;�

(m)
0 ) and define �

(m)
it (#i) with #i = (↵i,�i) by

(�
(m)
it )2(#i) = ↵k,0 +

mX

j=1

↵i,j(✏
(m)
i,t�j)

2 +

sX

j=1

�i,j(�
(m)
i,t�j)

2(#i).

The quasi-likelihood assuming the knowledge of ✏
(m)
it is L

(m)
i (#i) = (1/n)

P
t(✏

(m)
it )2/(�

(m)
it (#i))

2 +

log(�
(m)
it (#i))

2.

Finally, we note that cov(Yn+1|Fn) can obviously be regarded as a random matrix-valued

function of the parameters. Thus we can write, say, cov(Yn+1|Fn) = R({�i}, {ai}, {#i}).

(C14) ai,j(x;�) is twice continuously differentiable in both x and �, and
Ppn

i=1E[(yit�X
T
t ai(X

T
t�1�;�))

2]

has a unique minimizer so that �
(m)
0 is well-defined.

(C15) For each i, (✏
(m)
it ,�

(m)
it (#i)) is strictly stationary and ergodic with supi,✓i2Ω

E[(�
(m)
it (#i))

2d] <

1. For all i, E[L
(m)
i (#i)] has a unique minimizer in the interior of Ω, say #

(m)
0i = (↵

(m)
0i ,�

(m)
0i ).

(C16) kR({�
(m)
0 }, {a

(m)
i }, {#

(m)
0i })�R({�0i}, {ai}, {#0i})k2Σ > c1pn with probability at least c2 for

some positive constants c1, c2.

(C14) and (C15) are mild assumptions in the misspecified case. We do not impose those more

stringent assumptions as in the overfitting and correct fitting case since we will only aim to es-

tablish convergence of the estimators in the misspecified case, rather than tight convergence rates.

Assumption (C16) is a high-level assumption which guarantees that inconsistent estimate of the
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parameters will result in inconsistent estimate of the covariance matrix. The scaling of pn in the

lower bound of (C16) is natural by the definition of the k.kΣ norm.

Below we use C to denote a generic positive constant whose exact value can change even on the

same line. Whenever we use the constant C1 > 0 in 1/nC1 , C1 will denote a constant that can be

chosen to be arbitrarily large. We use k.kop to denote the operator norm of a matrix (the operator

norm is the same as the largest singular value of the matrix) and use k.k to denote the Frobenius

norm of a matrix or the Euclidean norm of a vector. We use k.kL2 to denote the L2 norm of functions

and k.k1 is the sup-norm for vectors (maximum absolute value of the components). Since we will

very frequently use tail probability, for simplicity of notation we write P (X > Ca) = O(b) as

X = Ot(a; b), where a is possibly random, while X = ot(a; b) means P (X > �a) = O(b) for any

� > 0. Ov(a), Op,v(a), Ot,v(a; b) denotes a (possibly random) vector such that its Euclidean norm

is of order O(a), Op(a), Ot(a; b), respectively.

Let

✓0i = (✓T0i,0, . . . ,✓
T
0i,q)

T = argmin
✓

E[(X
T
t ai(X

T
t�1�0i)� (Xt ⌦B(XT

t�1�0i))
T✓)2], (A.2)

and set Θ0i = (✓0i,0, . . . ,✓0i,q). The partition on functions {ai,j} induces a partition on the com-

ponents of ✓0 = (✓
T
01, . . . ,✓

T
0pn)

T. The induced partition on ✓0 has a constraint that each row of

(✓i,0, . . . ,✓i,q) are partitioned in the same way. As mentioned previously in Remark ??, we do not

impose this constraint for flexibility and ease of modelling. Since the number of unique functions

among ai,j is N , the number of unique values in ✓0 is generally NK. With abuse of notation, in

the following we still use Q1, . . . ,QNK to denote a partition of {(i, j, k) : 1  i  pn, 0  j  q, 1 
k  K} and assume naturally that |Qj |/(pn(q + 1)K) has a limit in (0, 1) for all j = 1, . . . ,NK.

Assume the true partition of components of �
(�1)
0 = (�

(�1)T
01 , . . . ,�

(�1)T
0q )T and ✓0 is given by

Dh, h = 1, . . . , H and Qh, h = 1, . . . ,NK, respectively. The unique values of the components of

�
(�1)
0 and ✓0 are denoted by ⇠0 = (⇠01, . . . , ⇠0H)T and ⌘0 = (⌘01, . . . , ⌘0NK)T, respectively. Let

JD
i be the (q � 1) ⇥ H binary matrix whose (j, h) entry is 1 if �0ij = ⇠0h and 0 otherwise. We

have �
(�1)
0i = JD

i ⇠0. Similarly, we define JQ
i such that ✓0i = JQ

i ⌘0. Finally, let GD and GQ be

the diagonal matrices with entries
p

|Dh|, h = 1, . . . , H and
p
|Qh|, h = 1, . . . ,NK, respectively.

For the parameters in the GARCH model, we write ↵i = (↵i,0, . . . ,↵i,m)T = JA
i ! and �i =

(�i,1, . . . , �i,s)
T = JΓ

i ⇡, where ! = (!1, . . . ,!&)
T and ⇡ = (⇡1, . . . ,⇡⌧ )

T denote all the unique

values of ↵i, i = 1, . . . , pn and �i, i = 1, . . . , pn respectively. We also define  = (!T,⇡T)T.
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Appendix B. Sketch of Proofs for Theorem 1 and Theorem 2

The detailed proof is split into several subsections in the supplementary material. Here we just

sketch the proof. In Section S.1, we consider the asymptotic property of the initial mean estimator

(e✓, e�). Although the results are relatively standard, the challenge is to obtain bounds that hold

uniformly over different responses i = 1, . . . , pn in order to prove consistency of change point

detection later. To this effect, tail bounds for the estimators are derived. In particular we show that

maxi ke✓i�✓0ik+ke�i��0ik = Ot(r
0
n; pnK

d(log n)3d/nd�1), where r0n =
p

K log n/n+K�2. Although

this rate is usable, we further refine it to maxi ke�i � �0ik = Ot(
p

log n/n; pn(log n)
3d/nd�1 +

pnK
�4d+pnK

d(log n)d/nd) and maxi ke✓i�✓0ik = Ot(
p

K log n/n; pnK
d(log n)3d/nd�1+pnK

�4d),

in order to obtain more relaxed constraints regarding the order of pn,K. These improved rates are

obtained using the profiling strategy that orthogonalize the parametric part and the nonparametric

part in the regression function. Such an strategy was often used in semiparametric models to show

the improved rate of the parametric part, but as far as we know was not previously used for the

nonparametric part as we do here.

With these bounds that are uniform over i, in Section S.2 we adapt the results of Venkatraman

(1992) to show that the change point analysis can consistently identify the true partition for both

� and ✓. This means we can then assume that the true partition is known when considering

the asymptotic properties of the final estimator of the mean. Thus in Section S.3, we show that

maxi kb✓i � ✓0ik + kb�i � �0ik = Op(ern) where ern =
p
K/(pnn) + K�2. Note that for the final

estimator, the factor n in r0n is replaced by pnn in ern, suggesting that for the correctly specified

model, the sample size is effectively pnn as expected. The term K�2 comes from the bias of

spline approximation and thus cannot be reduced even when the correct partition is known. The

proof of the rate is based on the explicit parametrization of the model using �
(�1)
i = JD

i ⇠, ✓̄i =

JQ
i ⌘ and carefully examining the structure and property of the binary matrices JD

i and JQ
i . As

done before for the initial estimator, by the profiling strategy we also obtain the improved rates

maxi kb�i � �0ik = Op(1/
p
pnn) and maxi kb✓i � ✓0ik = Op(

p
K/(pnn)).

Now moving to the GARCH model for the error part. By the derived estimation error of the

mean function, we can bound ∆ := maxi,t |b✏it�✏it| = Op

⇣q
K
pnn

+K�2
⌘
, where b✏it is the estimated

residual. Let #i = (↵i,0,↵i,1, . . . ,↵i,m, �i,1, . . . , �i,s)
T be all the parameters in the GARCH model,

with true parameter value #0i = (↵0i,0,↵0i,1, . . . ,↵0i,m, �0i,1, . . . , �0i,s)
T. Let e�2

it(#i) be defined

iteratively by

e�2
it(#i) = ↵i,0 +

mX

j=1

↵i,j✏
2
it�j +

sX

j=1

�i,je�2
it�j(#i),

28



and b�2
it(#i) defined iteratively by

b�2
it(#i) = ↵i,0 +

mX

j=1

↵i,jb✏2it�j +

sX

j=1

�i,jb�2
it�j(#i),

both with the initial values given by (2.8) or (2.9). The negative quasi-log-likelihood is given

by bLi(#i) = 1
n

Pn
t=1

bLit(#i) with bLit(#i) = b✏2it/b�2
it(#i) + log b�2

it(#i). Similarly let eLi(#i) =

1
n

Pn
t=1

eLit(#i) with eLit(#i) = ✏2it/e�2
it(#i) + log e�2

it(#i). We further define �2
it(#i) to be the unique

strictly stationary solution of the GARCH model (1.5), and define Li(#i) = 1
n

P
t Lit(#i) with

Lit(#i) = ✏2it/�
2
it(#i) + log �2

it(#i).

In Section S.4, we establish consistency of e#i uniformly over i. Following the arguments of

Theorem 7.1 in Francq and Zakoian (2019), we have

sup
1ipn,#i2Ω

| eLi(#i)� Li(#i)| = op(1).

Thus we only need to show that

sup
1ipn,#i2Ω

| bLi(#i)� eLi(#i)| = op(1).

The strategy for establishing the latter is simply using the bound for ∆ above, but involves detailed

and technical derivations using the recursive form for the definition of b�2
it(#i).

In Section S.5, we show the convergence rate for the initial estimator

max
i

ke#i � #0ik = Ot

 
∆+

p
log n/n;

pn(log n)
3d/2

nd/2�1

!
.

Since

0 =
1

n

nX

t=1

@

@#i

bLt(e#i)

=
1

n

nX

t=1

@

@#i

bLt(#0i) +
1

n

nX

t=1

@2

@#i@#
T
i

bLt(#
⇤
i )(
e#i � #0i),

where #⇤
i lies between e#i and #0i, we only need bounds for

�����
1

n

X

t

@ bLit(#0i)

@#i

����� and sup
#i2V(#0i)

�����
1

n

nX

t=1

@2

@#i@#
T
i

bLt(#i)

�����

where V(#0i) is an arbitrarily small neighborhood of #0i. Existing asymptotic theory for GARCH

models has provided bounds when bLit(#i) above is replaced by Lit(#i). In fact, adaptation of

existing results yield
�����
1

n

X

t

@Lit(#0i)

@#i

����� = Ot

 
p

log n/n;
(log n)3d/2

nd/2�1

!
.
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and

sup
#i2V(#0i)

�����
1

n

X

t

@2Lit(#i)

@#i@#
T
i

����� = Ot

✓
1;

(log n)2d

nd�1

◆
.

Furthermore, we will establish the bounds

�����
1

n

X

t

@ bLit(#0i)

@#i
� 1

n

X

t

@Lit(#0i)

@#i

����� = Ot(∆;
(log n)d

n
1
2
d�1

).

and

sup
#i2V(#0i)

�����
1

n

X

t

@2 bLit(#i)

@#i@#
T
i

� 1

n

X

t

@2Lit(#i)

@#i@#
T
i

����� = Ot(∆;
(log n)d

n
1
2
d�1

).

These will complete our proof.

Lastly, in Section S.6, to establish the rate for the final estimator for the GARCH model

parameters, we can assume the true partition is known (since it can be consistently estimated).

First we establish the rate when ✏2it is observed with the estimator still denoted by b#i. We write

↵i = (↵i,0, . . . ,↵i,m)T = JA
i ! and �i = (�i,1, . . . , �i,s)

T = JΓ

i ⇡, where ! = (!1, . . . ,!&)
T and

⇡ = (⇡1, . . . ,⇡⌧ )
T denotes all the unique values of ↵i, i = 1, . . . , pn and �i, i = 1, . . . , pn respectively.

We also define  = (!T,⇡T)T. We can then write #i = Ji and b#i = Ji
b with

Ji =

0
@ JA

i 0

0 JΓ

i

1
A .

The first order condition for the minimization yields

0 =
1

n

pnX

i=1

JT
i

nX

t=1

@

@#i
Lit(b#i)

=
1

n

pnX

i=1

JT
i

nX

t=1

@

@#i
Lit(#0i) +

1

n

pnX

i=1

 
JT
i

nX

t=1

@2

@#i@#
T
i

Lit(#
⇤
i )Ji

!
(b � 0),

where #⇤
i lies between

b#i and #0i. Let G
A and GΓ be the diagonal matrices with entries

p
|Ah|, h =

1, . . . , & and
p
|Γh|, h = 1, . . . , ⌧ , respectively and define

G :=

0
@ GA 0

0 GΓ

1
A ,

eO :=

0
BBBBBBBBB@

JA
1 0

0 JΓ

1
...

...

JA
pn 0

0 JΓ
pn

1
CCCCCCCCCA

0
@ (GA)�1 0

0 (GΓ)�1

1
A =

0
BBB@

J1

...

Jpn

1
CCCAG�1.
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Then the first order condition is rewritten as

0 =
1

n

nX

t=1

eOT @

@#
Lt(#0) +

1

n

nX

t=1

eOT @2

@#@#T
Lt(#

⇤)eOG(b � 0),

where

@

@#
Lt(#) =

 
@

@#T
1

L1t(#1), . . . ,
@

@#T
pn

Lpnt(#pn)

!T

,

and
@2

@#@#T
Lt(#) = diag

(
@2

@#1@#
T
1

L1t(#1), . . . ,
@2

@#pn@#
T
pn

Lpnt(#pn)

)
.

Using assumption (C9) and similar to the proof of Lemma 4, we can show

k
nX

t=1

eOT @

@#
Lt(#0)k = Op(

p
n).

Thus we get kG(b � 0)k = Op(1/
p
n). By assumption (C5), this implies k � 0k = Op(1/

p
pnn).

When using quasi-likelihood bLit(#i) based on the estimated residuals b✏it, as before the proof

mainly consists of bounding the difference between bLt(#) and Lt(#) (as well as their derivatives),

taking into account the effect of eO. Such bounds combined with the first order condition above

eventually yield the desired conclusion k �  0k = Op(
p
K/(pnn) + K�2) and kb#i � #0ik =

Op(
p

K/(pnn) +K�2).

Given the rates obtained for estimators of �i, ai, ↵i, �i, and Σx (proved in Lemma D.1 of Guo

et al.(2017)), the proof of convergence rate for dCov(Yn+1|Fn) is exactly as the proof of Theorem 2

in Guo et al.(2017).

Appendix C: Proof of Theorem 3

Let b�(m)

1 = · · · = b�(m)

pn = b�(m)
and bΘ

(m)

i , i = 1, . . . , pn be the minimizer of
P

i

P
t(yit�BT(XT

t�1�i)ΘiXt)
2

with the constraint �1 = · · · = �pn . For any �, define

b
Θ

(m)

i (�) = argmin
Θ

X

t

(yit �BT(XT
t�1�)ΘXt)

2.

Obviously we have bΘ
(m)

i = b
Θ

(m)

i (b�(m)
). Let bai(x;�) = ( bΘ

(m)

i (�))TB(x). Since � is in a compact

set, based on standard results for the spline estimator, it can be shown that

sup
i,x,�

kbai(x;�)� ai(x;�)k = op(1), (C.1)

and

sup
i,x,�

kba0i(x;�)� a0i(x;�)k = op(1), (C.2)
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where a0i(x;�) denotes the derivative with respect to x. Similar results for the even more com-

plicated quantile regression case has been established in Proposition 1 of Zhao et al.(2018), for

example. Then we proceed similarly as in Ichimura (1993) to establish convergence of b�(m)
to �

(m)
0

as follows.

Write Jn(�) = (npn)
�1
P

i,t(yit�X
T
it
bai(XT

it�1�;�))
2, eJn(�) = (npn)

�1
P

i,t(yit�X
T
itai(X

T
it�1�;�))

2

and J(�) = (npn)
�1E

hP
i,t(yit �X

T
itai(X

T
it�1�;�))

2
i
. Then we have, as in the proof of Theorem

5.1 in Ichimura (1993),

P (kb�(m) � �(m)
0 k > �)

 P

 
inf

k���
(m)

0 k>�

Jn(�) < Jn(�
(m)
0 )

!

 P

 
2 sup
�

|Jn(�)� eJn(�)|+ 2 sup
�

| eJn(�)� J(�)| > inf
k���

(m)

0 k>�

J(�)� J(�
(m)
0 )

!
.

Using (C.1), we have sup� |Jn(�) � eJn(�)| = op(1). The uniform law of large numbers result

sup� | eJn(�) � J(�)| = op(1) can be established using Theorem 2.18 (ii) of Fan and Yao (2003)

(similar to the way applied in the proof of Lemma 6). Finally, assumption (C14) means that

inf
k���

(m)

0 k>�
J(�)� J(�

(m)
0 ) is bounded away from zero. Thus kb�(m) � �(m)

0 k = op(1).

Let b✏(m)
it = yit �X

T
t
bai(XT

t�1
b�(m)

; b�(m)
) and define b�(m)

it (#i) by

(b�(m)
it )2(#i) = ↵k,0 +

mX

j=1

↵i,j(b✏(m)
i,t�j)

2 +

sX

j=1

�i,j(b�(m)
i,t�j)

2(#i),

and let bL(m)
i (#i) = (1/n)

P
t(b✏

(m)
it )2/(b�(m)

it (#i))
2 + log(b�(m)

it (#i))
2.

Using the convergence of b�(m)
to �

(m)
0 as well as (C.1) and (C.2), we have

∆
(m) := max

i,t
|b✏(m)
it � ✏

(m)
it | = op(1).

Following the proof of consistency of #i in Section S.4, we get maxi kb#
(m)

i � #(m)
i k = op(1), where

b#(m)

i is the minimizer of bL(m)
i (#i).

Using the convergence of all the parameters/functions even in the misspecificed case, exactly

as in the proof of Theorem 2 of Guo et al.(2017), we can show the k.kΣ-norm of the difference

between the estimated conditional covariance matrix of Yn+1 and R({�
(m)
0 }, {a

(m)
i }, {#

(m)
0i }) is of

order op(pn), and the proof is complete by condition (C16). ⇤

Supplementary Materials

The supplementary material contains detailed proofs of Theorems 1 and 2 in Section 3 and addi-

tional simulation results in Section 5.
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