
This is a repository copy of Formal Model-Based Assurance Cases in Isabelle/SACM:An
Autonomous Underwater Vehicle Case Study.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/160376/

Version: Accepted Version

Proceedings Paper:
Foster, Simon David orcid.org/0000-0002-9889-9514, Nemouchi, Yakoub, O'Halloran,
Colin et al. (2 more authors) (2020) Formal Model-Based Assurance Cases in
Isabelle/SACM:An Autonomous Underwater Vehicle Case Study. In: FormaliSE
'20:Proceedings of the 8th International Conference on Formal Methods in Software
Engineering. ACM

https://doi.org/10.1145/3372020.3391559

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Formal Model-Based Assurance Cases in Isabelle/SACM

An Autonomous Underwater Vehicle Case Study

Simon Foster
Yakoub Nemouchi

simon.foster@york.ac.uk
yakoub.nemouchi@york.ac.uk

University of York

Colin O’Halloran
Karen Stephenson

Nick Tudor
D-RisQ Software Systems

ABSTRACT

Isabelle/SACM is a tool for automated construction of model-based

assurance cases with integrated formal methods, based on the Is-

abelle proof assistant. Assurance cases show how a system is safe to

operate, through a human comprehensible argument demonstrat-

ing that the requirements are satisfied, using evidence of various

provenances. They are usually required for certification of critical

systems, often with evidence that originates from formal methods.

Automating assurance cases increases rigour, and helps with main-

tenance and evolution. In this paper we apply Isabelle/SACM to a

fragment of the assurance case for an autonomous underwater vehi-

cle demonstrator. We encode the metric unit system (SI) in Isabelle,

to allow modelling requirements and state spaces using physical

units. We develop a behavioural model in the graphical RoboChart

state machine language, embed the artifacts into Isabelle/SACM,

and use it to demonstrate satisfaction of the requirements.

KEYWORDS

Assurance Cases, Verification, Autonomous Systems, Isabelle/HOL

ACM Reference Format:

Simon Foster, Yakoub Nemouchi, Colin O’Halloran, Karen Stephenson,

andNick Tudor. 2020. FormalModel-BasedAssurance Cases in Isabelle/SACM:

An Autonomous Underwater Vehicle Case Study. In 8th International Con-

ference on Formal Methods in Software Engineering (FormaliSE ’20), October

7ś8, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3372020.3391559

1 INTRODUCTION

Deployment of autonomous systems into an open operational envi-

ronment requires a credible argument, underpinned by evidence, for

safety; namely an assurance case [27]. Assurance cases demonstrate

how hazardous behaviour is mitigated through safety requirements

that must be allocated to system components. This often requires

refinement and formalisation of the requirements to allow the use

of formal methods in providing evidence, particularly for higher as-

surance levels. The formal requirements provide an implicit system

model, which can be refined to an explicit model during the system

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FormaliSE ’20, October 7ś8, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7071-4/20/05. . . $15.00
https://doi.org/10.1145/3372020.3391559

design phases, and used as an evidential artifact [23]. This process

is usually performed in the context of an international certification

standard, such as IEC 61508, ISO 26262, or DO-178C.

During refinement and elaboration, it is important to maintain

traceability to the original high-level requirements. Otherwise łfor-

malisation gapsž can emerge, where formal models and require-

ments become detached from the original system specification and

therefore dramatically lose value [5, 19, 21]. In particular, when

a completed system is evaluated for certification, there must be a

clear explication of why design decisions were made, and how they

contribute towards satisfying the requirements. In summary, formal

models and assurance cases must evolve hand-in-hand [5, 18].

Previously, we have presented Isabelle/SACM [14], an embed-

ding of the Structured Assurance Case Metamodel (SACM) [38] into

the Isabelle document model [4, 39]. SACM is a unifying standard

for assurance cases to express argumentation, artifact traceability,

and terminology [38]. Our implementation provides a machine-

checked interactive and hyperlinked assurance language that al-

lows the use of multifarious modelling and verification techniques,

provided by Isabelle, to provide evidential artifacts. Due to its ex-

tensible and modular architecture, Isabelle is an ideal platform for

integrating formal methods [39]. It supports tools for both high

level modelling [12], including concurrent [13], hybrid [11, 31], and

probabilistic systems [40], and also code verification [20, 37].

At the same time, Isabelle’s automated asynchronous document

processing [39] supports assurance case evolution, whereby changes

to system parameters, models, requirements, and so on, trigger

re-checking of the impacted document sections. This means, for ex-

ample, we can tweak model elements, such as physical dimensions,

and see the effect on any verification results. Moreover, Isabelle’s

document preparation system can be used to generate a hyperlinked

PDF that is correct-by-construction, and with all artifacts presented

in a human-readable way, possibly for delivery to a regulator [5].

The contribution of this paper is application of Isabelle/SACM to

a novel assurance case for the safety controller of an autonomous

underwater vehicle (AUV). The safety controller, called the łLast

TerminologyTerminology

RequirementsRequirements

Data ModelData Model

ArchitectureArchitecture

Assurance
Case

(Isabelle/SACM)

Assurance
Case

(Isabelle/SACM)

Certification
Document
Certification
Document

Behavioural ModelBehavioural Model

R
o
b
o
C
h
a
r
t generate

semantic
integration

Figure 1: Formalised Assurance Cases

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Simon Foster, Yakoub Nemouchi, Colin O’Halloran, Karen Stephenson, and Nick Tudor

Response Enginež (LRE), acts as a run-time monitor that enforces

operational rules, and can engage collision avoidance. It is currently

being developed by D-RisQ1 under the regime of DO-178C. Our

end goal is a methodology and tool than can be used to support

computer aided certification for a variety of systems.

Our methodology is shown in Figure 1. We give a formal struc-

ture to the D-RisQ supplied system requirements document (SRD),

starting from terminology definitions, and then use these terms in

specifying the requirements in marked up natural language, for

which we also extend Isabelle/SACM. We then develop formal data,

architectural, and behavioural models for the AUV controller, and

use Isabelle/SACM to show how each requirement is mapped to a

transition, state, or other model element. Our paper provides evi-

dence that Isabelle can support model-based assurance of critical

systems [5, 14] supported by integrated formal analysis tools.

For the data model, we develop a Z-inspired notation [36] with

state variables and invariants. The AUV is a cyber-physical system,

and so the requirements contain physical quantities, such as its

maximum velocity. Consequently, we develop a novel embedding of

the SI unit system in Isabelle/HOL, to ensure consistent use of units,

and also enable dimension analysis, which allows higher rigour

than if this information was omitted. Moreover, the embedding pro-

vides access to versatile libraries for Multivariate Analysis [22] and

Differential Equations [25, 26], which can be used to symbolically

and precisely reason about the AUV’s dynamics and geometry.

For modelling the behaviour, we use the RoboChart language [28,

29], which provides block-based architectural and state machine

modelling notations. The core of the language is a formalised subset

of UML state machines. RoboChart makes the approach accessible

to practitioners with little knowledge of formal methods.

RoboChart has a denotational semantics in Hoare’s CSP process

algebra [2, 28], which allows verification using the FDR refinement

checker2. However, since the LRE model depends on real numbers

and transcendental functions, the state space is uncountable, and

so cannot be directly model checked. Previously, we have also

embedded a formal semantics for state machines into Isabelle [12]

using our mechanisation of Hoare and He’s Unifying Theories of

Programming (UTP) [24] semantic framework, Isabelle/UTP [16].

The use of UTP allows us to give a unifying semantics to the various

formal notations we use for modelling the LRE. We use our state

machine implementation to support traceability in Isabelle/SACM,

as well as formal verification through theorem proving, which is

symbolic and so overcomes the state explosion problem.

The structure of our paper is as follows. In ğ2 we introduce the

LRE, and key requirements. In ğ3 we introduce Isabelle, and our

SACM implementation. In ğ4, we develop the LRE data model by

mechanising the SI unit system, and then using this to describe

the state space. In ğ5 we model the architecture and behaviour of

the LRE using RoboChart. We show how we can formally verify

the model, and also link the various elements back to the LRE

requirements. Finally, in ğ6 we conclude and highlight related work.

All definitions and theorems in this paper are mechanised in

Isabelle3. We present them both using screenshots directly from

the tool, and also sometimes mathematically for conciseness.

1D-RisQ Software Systems. http://www.drisq.com/.
2FDR: The CSP Refinement Checker. https://www.cs.ox.ac.uk/projects/fdr/index.html
3Supporting materials: https://doi.org/10.5281/zenodo.3739235

2 AUV CASE STUDY

The AUV is a portable (< 200 kg) untethered Remotely Operated Ve-

hicle, equipped with a visual mapping system and verified on-board

autonomy. The aim is to make it capable of conducting light inter-

vention tasks, such as, cathodic protection surveys (oil and gas) and

simple coring (offshore), with potential to move to more complex

interventions in a later phase, such as valve turning. The project

brings together the UK expertise from: the National Oceanography

Centre and Forth Engineering in Underwater Robotic Development;

ROVCO on subsea operation, sensor development and subsea vision

perception; the University of Manchester in mixed mode underwa-

ter communications; and D-RisQ in Software Verification.

The National Oceanography Centre engages with regulators

through their ongoing contribution to the Marine Autonomous Sys-

tems regulatory working group to ensure regulatory compliance.

To this end the use of a structured assurance case is vital to commu-

nicate the evidence of safe operation to non-specialists, especially

in the aspect of software controlled autonomous behaviour. In this

paper, we focus on development of formal models and an assur-

ance case for the łLast Response Enginež (LRE), which provides

run-time safety assurance. We consider the special case of the AUV

navigating within an enclosed pond to perform maintenance tasks.

Architecturally, the LRE sits between the operator and autopilot

components. The operator, which can be a human or the navigation

system, provides instructions to the LRE to support execution of

tasks, such as requesting a particular heading and velocity. The au-

topilot controls the AUV actuators, and takes advice only from the

LRE. The LRE’s job is to avoid hazardous behaviours, such as get-

ting too close to an obstacle, or entering łobject proximity exclusion

zonesž (OPEZ), and engaging evasive manoeuvres if necessary.

The LRE functions in four modes: Operator Control Mode (OCM),

Main Operating Mode (MOM), High Caution Mode (HCM), and Col-

lision AvoidanceMode (CAM).Whilst in OCM, the LRE is effectively

inactive, and simply passes through control inputs to the autopilot.

MOM is where the LRE takes control for normal behaviour at maxi-

mum speed. HCM is for the situation when the AUV is getting close

to an obstacle, and so the LRE drops the velocity. Finally, CAM is

the mode where a potential collision has been detected, and the

AUV is manoeuvring away from the obstacle. The LRE has several

high-level safety requirements; here we focus on a small subset:

R1 The physical dimensions of the AUV shall be 457mm ×
338mm × 254mm.

R2 When, and only when, in OCM, the LRE shall accept operator

control inputs and send them to the autopilot.

R3 The LRE shall enter OCM: (i) when the AUV powers up; (ii)

at the end of a task; or (iii) when the operator requests.

R4 The LRE shall enter MOM from OCM when the following

conditions hold: (i) the velocity is less than 0.1ms−1; (ii) the
distance to a static obstacle is > 300mm; (iii) the distance to

a dynamic obstacle is greater than 7500mm; (iv) the operator

requests it; and (v) the AUV is not in an OPEZ.

R5 On entering MOM, the LRE shall advise a velocity of 1ms−1.
R6 The LRE shall enter HCM from MOM when either:

(a) the AUV has a horizontal velocity > 0.1ms−1 and is within
StaticObsHorizDist horizontal distance of a static obstacle;

Formal Model-Based Assurance Case in Isabelle/SACM FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Figure 2: Assurance Cases in Goal Structuring Notation

(b) the AUV has a vertical velocity > 0.1ms−1 and is within

StaticObsVertDist vertical distance of a static obstacle;

(c) the AUV is within StaticObsDfltVertDist of a static obstacle;

(d) the operator requests it.

R7 On entering HCM, the LRE shall advise a velocity of 0.1ms−1.
R8 The LRE shall exit HCM and enter MOM when the AUV is >

StaticObsHorizDist horizontal distance and > StaticObsVert-

Dist vertical distance of a static obstacle.

R9 The LRE shall enter CAM if (i) it is not in OCM and (ii) there

is an obstacle with an unsafe trajectory.

R10 The LRE shall never enter a deadlock state.

These requirements depend on a number of constants, including

StaticObsHorizDist and LREHorizon, and several defined terms. Part

of requirement satisfaction is to disambiguate and formalise each of

these concepts. Consider, for example, that two coordinate systems

are used in the requirements: R4 and R5 refer to the AUV łvelocityž,

which corresponds to the overall spherical velocity of the AUV,

including its depth component. In contrast, R6 refers to łhorizontalž

and łverticalž velocities, which are velocity across the ground, and

the depth velocity. These distinctions are important for the formal-

isation. We also emphasise the heavy use of physical quantities,

such as in R1, which is used in calculation of safety margins.

3 BACKGROUND: ISABELLE AND SACM

Here, we introduce the Isabelle tool [39], and our implementation

of the Structured Assurance Case Metamodel (SACM) [14, 38].

Isabelle/HOL is a proof assistant for Higher Order Logic (HOL).

It supports the mechanisation of mathematical theories through

a functional specification language and (semi-)automated proof.

Isabelle is more than a proof assistant though: it has an extensible

architecture with an executable frontend document model and a

modular backend supporting an array of formal analysis tools [39].

For this reason, an analogy can be drawn between Isabelle and IDEs

like Eclipse. Indeed, Isabelle can provide a frontend and verification

facilities for a variety of program languages [1], such as C [37].

Isabelle documents have outer- and inner-syntax levels. Outer-

syntax consists of a sequence of commands, using predefined key-

words and parsers, that construct and query previously specified

formal entities. Each command is implemented in the ML-based

backend, which can manipulate a database of axiomatic and defi-

nitional entities. For example, the HOL document model includes

commands like datatype, function, and theorem, that construct,

Figure 3: Assurance Cases in Isabelle/SACM

respectively, algebraic datatypes, recursive functions, and conjec-

tured theorems. New commands can be defined by specifying a

keyword, and developing ML code to parse and process the in-

puts. The top-level command is theory, which opens a new named

theory context, and can import existing theories. Processing of

documents is dynamic, such that edits trigger real-time rechecking

of the changed artifacts and any dependants.

Each command can take as parameters formal terms of the logic,

which are often enclosed in quotation marks (⟨ · · · ⟩), and referred to
as inner-syntax. Inner-syntax has separate parsing, processing, and

type-checking layers, which construct terms that must be certified

against the axiomatic core. The parser supports unicode characters

and prioritised mixfix operator notations. Certified terms can be

subjected to various analyses, such as decomposition using theo-

rems to support proof. Consider the following example command:

theorem t1: ⟨x + 1 > x⟩

This proposes a thereom, using the outer-syntax command theo-

rem with the assigned name t1. The content is the inner-syntax

term, x + 1 > x, enclosed by ⟨ · · · ⟩. In the backend, Isabelle first

parses the outer-syntax command, and then moves on to parse the

term. The operators (+) and (>) must all exist in the theory context,

with appropriate syntax defined. Provided this is the case, and the

term type checks, Isabelle will construct a formal term which can

then be subjected to proof and other analysis.

Commands also exist for structured informal content, such as

text ⟨ · · · ⟩, that can be used to intersperse formal entities with com-

mentary mark up. The backend can then render a PDF or HTML pre-

sentation of the theory content. The content of each text command

can also contain hyperlinks to previously defined entities using the

so-called łantiquotationž notation, @{cmd param}, where cmd is

the antiquotation command, and param is a parameter. Antiquo-

tation commands include const for defined constants, term for

Isabelle terms, thm for theorems, and typ for types. For example,

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Simon Foster, Yakoub Nemouchi, Colin O’Halloran, Karen Stephenson, and Nick Tudor

if we have proved the theorem t1 we can add the text

text ⟨We make use of @{thm t1} in the theorem below. ⟩

This checks that t1 exists and has been proved, and if so inserts a

hyperlink. If an antiquotation reference is invalid, if for example a

theorem does not exist or is unproven, then Isabelle raises an error

message. We have seen that an Isabelle document also overlays a

directed acyclic graph of such linked entities. For structuring of

documents, there are also commands like section and subsection.

We use the outer-syntax layer to develop an embedding of an

SACM interactive assurance language [14]. A structured assurance

case is typically modelled as a graph of claims, that are decom-

posed into further claims Ð through argumentation strategies and

with reference to defined context and assumptions Ð down to ev-

idential artifacts [27]. For example, claims may exist that each

requirement is satisfied, supported by evidence like test reports and

formal analysis. The claims are linked together through inferences

that assert that certain claims follow from others. Evidence and

contextual elements can be presented using SACM artifacts, which

can be used as leaf nodes in an argument. The content of claims

can be natural language, but can also use formally defined terms.

Assurance cases are often presented using a notation like GSN (Goal

Structuring Notation) [27]; a small example is shown in Figure 2.

Isabelle/SACM uses an Isabelle plugin called DOF (Document

Ontology Framework) [3ś5], to develop an ontology for SACM.

DOF provides an enriched version of the text command of the form

text*[x : c, a1 = v2, · · · an = vn] ⟨ · · · ⟩

which creates an instance x of a predefined document class c, and

assigns a value to each of the n attributes in c. DOF also provides a

command doc class c ≜ a1 : t1 · · · an : tn, to create new document

classes with a name and set of attributes. We extend the document

model with classes for the various SACM entities, and commands

for defining instances, such as Claim, Artifact, and Inference.

Moreover, every SACM class has a corresponding antiquotation,

provided by DOF, to support links in the assurance case graph. The

meta-model instances can be used to analyse the assurance case

structure, for example, to check that every claim is supported.

An example assurance case fragment is shown in Figure 3, that

corresponds to the GSN in Figure 2. It has a top-level claim, C1,

claiming that a system is acceptably safe. The means to show this

is that all identified hazards have been mitigated, which is claim

C2. An inference shows that C1 is supported by C2, by assigning

these as the target (tgt) and source (src), respectively. The identified

hazards are given by the context element ac1 that uses a predefined

hazard log as context for C2. Claim C3 then is made that one of

the identified hazards, H1, is mitigated, which is evidenced by a

predefined formal verification result, FV1, which in this case is a

theorem proved in Isabelle/HOL. Claim C4, asserting that a second

hazard, H2, is mitigated is yet to be developed into an argument,

and so it is marked with the keyword needsSupport.

Figure 4 shows the definition of several AUV terms and acronyms

in Isabelle/SACM, some of which refer to other terms using antiquo-

tations. EachDefinition command adds a new term into the theory

context. The list of terms can be used to provide a glossary for the

certification document output. We particularly draw attention to

the definition of OPEZ, which refers to several Isabelle terms to

Figure 4: Nomenclature in Isabelle/SACM

Figure 5: LRE Requirements in Isabelle/SACM

specify key dimensions, including their SI units, each of which is

parsed and type-checked before being accepted into the document.

Similarly, in Figure 5 we specify two requirements for the LRE in

two subsections. For this, we have created the Requirement com-

mand, that creates an SACM artifact. The first requirement states

that the LRE shall be developed according to DO-178C, with an ex-

planatory note. The second sets a timing upper bound of 50ms. This

second requirement uses a HOL constant,MAX LRE EXEC TIME,

that carries an SI quantity. The DOF document preparation system

can render each of the terms, requirements, and other artifacts in a

PDF. Requirements are rendered, for example, as follows:

Requirement 2. Execution Time. Themaximum execution

time for the LRE shall be less than 50·milli·second.

with a hyperlink for łLREž pointing to the location of its definition.

In the next section we develop the data model for the LRE, which

includes an mechanisation of the SI unit system.

4 DATA MODEL

Here, we describe the AUV data model, including SI unit types, and

state spaces with invariants. The results from this section support

the LRE architectural model, and requirement formalisation.

Formal Model-Based Assurance Case in Isabelle/SACM FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

4.1 SI Units and Quantities in Isabelle

The International System of Units (SI)4 is a standard for expression

of physical quantities. It defines seven base units ś including meters,

seconds, kilograms, and amperes ś that can be combined to derive

all the quantities required in science and engineering. Typically in a

computer program or systemmodel, quantities are represented only

by a numeric value, such as an integer (int) or real number (real).

However, for specifying a physical system, such as the AUV, it is

important to both represent the units, and use them consistently.

We embed SI units into the Isabelle type system through a type

of the form n[uuu], where n is a numeric type, such as int, rat, and

real, and uuu is a unit type. This allows us to enforce consistent use:

for example, x + y and x − y are well-formed only when x and y

have both the same numeric type and unit. However, implementing

the SI unit system at the type level in Isabelle has some challenges;

notably Isabelle lacks dependent types and so units must be types

rather than values. This issue has previously been overcome in a

Haskell SI implementation [32], from which we take inspiration.

Isabelle’s type system supports parametric polymorphism, where

types carry parameters, such as 𝛼 list, where 𝛼 can be instantiated

with a type like int. It also supports overloading using the type class

mechanism, where functions and their properties can be polymor-

phic, and instantiated for concrete types. For example, the semigroup

class characterises a polymorphic function · : 𝛼 → 𝛼 → 𝛼 , and

the associativity property x · (y · z) = (x · y) · z. We can then in-

stantiate this with int, using · ≜ +, by proving that + is associative.

Our approach uses the type class mechanism to characterise a

family of types that correspond to unit tags, which have a single-

ton carrier set and exist only for type annotation. Every unit tag

associates to a particular SI unit, which we encode through a data

structure. We therefore encode the SI system at both the value- and

type-level. We begin with datatypes to describe value-level units:

datatype SIBase ≜ Second | Meter | Kilogram | Ampere

| Kelvin | Mole | Candela

type-synonym SIUnit ≜ (SIBase → int)
SIBase enumerates the seven base units. A derived SIUnit is a total

function from SIBase to int, which defines a power for base unit. For

example, ms−1 is encoded with a function that assigns 1 to Meter ,

−1 to Second, and 0 to every other unit. We characterise each of the

base units as the subset of SIBase → int where precisely one domain

element is assigned 1, and so define seconds,meters, kilograms, ... :

SIUnit for every such case. We define arithmetic operators for units:

1 ≜ (𝜆 b • 0)
u1 · u2 ≜ (𝜆 b • u1 (b) + u2 (b)

u−1 ≜ (𝜆 b • −u(b))
Here, 1 corresponds to the dimensionless unit, where every base

unit has power 0. The product, u1 · u2 sums up all of the base unit

powers, and the inverse negates all of the powers. Together with the

base units, we can use these operators to algebraically specify any

derived unit, for examplemeters ·seconds−1. Moreover, we can prove

the following theorem demonstrating the algebraic properties:

4SI Brochure, 9th edition. https://www.bipm.org/utils/common/pdf/si-brochure/SI-
Brochure-9.pdf. BIPM, 2019.

Theorem 4.1. (SIUnit, ·) forms an abelian group: · is associative,
commutative, and has identity 1. Moreover, for any u : SIUnit, the

inverse element is u−1, that is u · u−1 = 1.

We also define division, x/y ≜ x ·y−1, which satisfies the usual laws.
With this algebraic structure, we support dimension analysis in

Isabelle; for example, we can provemeter ·second−1 ·second = meter .

From this foundation, we characterise type-level units. Though

we cannot have an algebraic data structure at the type level, we

can effectively declare an isomorphism between a certain set of

types and the value-level SIUnit. We define a type class, siunit, that

imposes the following constraints on any member type uuu: (1) its

carrier set has a cardinality of 1 (it is a tag, and its members have

no meaning), and (2) it associates with an element of SIUnit with

the function siunit-of : uuu → SIUnit. Every type instantiating siunit

therefore corresponds to a value-level unit. We also define the type

class sibaseunit, that extends siunit and identifies base unit types.

We then define seven unitary tag types for each base unit, and

instantiate sibaseunit with each of them, such that siunit-of returns

the corresponding value-level unit. We also define a binary type

constructor, uuu1 · uuu2, where uuu1 and uuu2 are both members of siunit,

which is type-level product, such that

siunit-of(uuu1 · uuu2) = siunit-of(uuu1) · siunit-of(uuu2)

Similarly, we define unary type constructor for inverse u−1. With

these type constructors, we can also construct every unit at the

type-level in Isabelle. However, we cannot easily perform dimen-

sion analysis at the type level since every syntactically distinct

construction is a unique type: for example ms−1s and m are differ-

ent types. There is no type equality in Isabelle, and so we cannot

automatically substitute these values, but must perform coercions,

which is another reason for also having the value-level units.

We can now define the type for SI quantities:

typedef 𝛼 [uuu] ≜ {(x : 𝛼, u : SIUnit) | sitype-of(uuu) = u}

A quantity is parameterised by a numeric type 𝛼 and a unit type uuu.

An element is a pair consisting of a factor x, and an SI value-level

unit u that corresponds with the type-level unit uuu; this how the

value- and type-level units fit together. We can define the arithmetic

operators + and − easily, since they do not change the unit and

so simply apply to the factors. Technically, we can also define

multiplication, but due to restriction in the type system, it has

the monomorphic type 𝛼 [uuu] → 𝛼 [uuu] → 𝛼 [uuu] and so does not

account for units. However, it is still useful, because it can be applied

when multiplying a dimensionless quantity and a unit. Consider

the following unitary and prefix quantities:

second ≜ (1 : 𝛼 [second])
meter ≜ (1 : 𝛼 [meter])

kilogram ≜ (1 : 𝛼 [kilogram])

kilo ≜ (1000 : 𝛼 [uuu])
centi ≜ (100 : 𝛼 [uuu])
milli ≜ (1/1000 : 𝛼 [uuu])

Here, second corresponds to the quantity of 1 second. It is polymor-

phic in its numeric type, but its unit type is fixed to second (note

the different namespaces). We also define SI prefixes, including

milli and kilo. These prefixes are dimensionless, or more precisely

dimension-polymorphic, since they can possess any unit. Then,

using the monomorphic multiplication operator we can construct

quantities like 50·milli·second, as demonstrated in Figure 5. Both

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Simon Foster, Yakoub Nemouchi, Colin O’Halloran, Karen Stephenson, and Nick Tudor

Figure 6: AUV Input Parameters Data Model

the numeral 50 and prefix milli are dimension polymorphic, but

second causes the whole expression to have unit type second.

For the general case of quantities with specific units, we define

specialised arithmetic operators that account for units:

qmult : 𝛼 [uuu1] → 𝛼 [uuu2] → 𝛼 [uuu1 · uuu2]
qsq : 𝛼 [uuu] → 𝛼 [uuu2]
qinv : 𝛼 [uuu] → 𝛼 [uuu−1]
qsqrt : real [uuu2] → real [uuu]

Function qmult multiplies together two quantities, which composes

the two units at the type level, and qinv takes the inverse. The effect

on the underlying factors is the same as the usual operators. We de-

fine square root, qsqrt since this is needed for calculating distances.

Square root can only be defined precisely for real numbers, and

so the numeric type is fixed. It can only be applied when the unit

has the correct form, such as m2. We give these four functions the

usual syntax: x · y, x2, x−1, and √x, respectively. They are used for

the distance and velocity calculations in the next section.

4.2 LRE State Space

In order to specify the data model of the LRE, we need state spaces

with invariants. Isabelle/HOL does not have a high-level command

for constructing these, and so we implement a Z-like schema com-

mand [36] for state space types with invariants attached:

schema S ≜ x1 : t1 · · · xn : tnwhere P (x1, · · · , xn)

This creates a type S, with n variables, each with an assigned type.

An invariant P constrains the variables in a valid state.

The AUV input parameter data model is described using the

schema shown in Figure 6. The schema uses our SI quantity type to

specify the units for each of the variables. Each variable also has an

explanatory textual comment. The inputs include the current depth

of the AUV, its horizontal velocity in north-south and east-west

components, and the vertical velocity (rate of climb). We model

the velocity in this way, as opposed to using an explicit heading

angle, because it makes calculation of relative velocities for collision

straightforward. We don’t include a global position for the AUV,

as we need only consider relative distances to obstacles for safety

monitoring and collision avoidance. There are also several invari-

ants included in the state schema, which assign permissible ranges

to each of the variables. We also encode a requirement stating that

the LRE’s inputs are described by the variables in the AUV Inp Par

Figure 7: Obstacle Inputs and Sensor Data Model

type. To satisfy this requirement, it is necessary for the AUV to

supply these inputs at the LRE interface, with the given ranges.

For tracking obstacles, we specify a further data schema shown

in Figure 7. It specifies the sensed information about each obstacle

that the AUV is aware of, including the relative distance in north-

south and east-west components, and the velocities. As for the LRE

input parameters, we also encode a requirement that the AUV can

supply this obstacle information to the AUV ś effectively we are

assuming adequate sensing capabilities. From this schema, we can

describe a useful function for distinguishing static obstacles:

Definition 4.2 (Static Obstacles).

is static(ob :Obstacle) ≜ (ob:obs ns vel = 0 ∧ ob:obs ew vel = 0)

In this context, the syntax x:a means selection of attribute a in x.

An obstacle is static if both of its velocity components are zero.

Finally, the LRE and obstacle sensed inputs are combined in the

type Sensors, which describes the complete set of sensor inputs.

The obstacle register is represented by a partial function (A ⇀ B)

from natural number identifiers to obstacles, with a finite domain.

Using the Sensor state type, we define several derived velocity

quantities for horizontal, vertical, and the overall (spherical) veloc-

ity, which are needed to implement requirement R6, for example.

hvel ≜
√(auv:ns vel2 + auv:ew vel2)

vvel ≜ auv:rate of climb

vel ≜
√(hvel2 + vvel2)

The horizontal velocity combines the north-south and east-west

components using a vector calculation employing square root. In Is-

abelle, the type system ensures correctness of the units: auv:ns vel2

and auv:ew vel2 both have type real [(meter ·second−1)2], and so

they can be added together. Then, taking the square root results in

a value of type real [meter ·second−1], as expected for a velocity. The
vertical velocity is really a synonym for the rate of climb, and so we

declare it as such. The overall spherical velocity, including the ver-

tical component, can again be obtained by a vector calculation. In

Formal Model-Based Assurance Case in Isabelle/SACM FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Isabelle/SACM we link each of these variables to the corresponding

term definition, to allow traceability back to the requirements.

Similarly, we also define some functions for calculating distances

between the AUV and an obstacle identified in the register:

hdist (ob :nat) ≜ √ (
obs(ob):ns rel dist2

+obs(ob):ew rel dist2)

)

vdist (ob :nat) ≜ |auv:depth − obs(ob):obs depth|
odist (ob :nat) ≜ √(hdist (ob)2 + vdist (ob)2)

The horizontal distance is, again, obtained by combination of the

components, though with different units to the velocities. The verti-

cal distance is the absolute difference between the depth of the AUV

and obstacle. Finally, the overall distance is calculated by combining

the horizontal and vertical distances. We can use the odist function

to formalise the notion of the AUV being in an OPEZ:

Definition 4.3 (Object Proximity Exclusion Zones).

inOPEZ ≜

(
(∃ ob ∈ dom(obs) • odist (ob) ≤ 300·milli·meter)
∨ auv:depth ≤ 300·milli·meter)

)

This formalises the term definition of OPEZ in Figure 4. The as-

sumption is that the pond walls are registered as static obstacles.

The definition therefore checks whether there is either an obstacle

within 300mm, or the AUV’s depth is less than 300mm. We use the

functions defined in this section for the behavioural model in ğ5.

5 BEHAVIOURAL MODEL

Here, we model the LRE using RoboChart [28, 29], a formal graphi-

cal modelling language for robotic controllers. It includes both a

block-based architectural notation, and a statechart-like language.

Modelling in RoboChart is supported by the Eclipse-based RoboTool5,

with which we created the diagrams in this section.

A typical RoboChart model (a łmodulež) consists of a robotic

platform (), and one or more controllers (). The robotic platform

acts as an abstraction layer for the hardware, and can provide shared

variables, which often represent sampled continuous variables for

sensors and actuators, and events. The platform is controlled by one

or more controllers, which are modelled using the state machine

notation (). Each controller has access to variables in the robotic

platform, and can also have its own private variables. Controllers

can also communicate with one another, and the robotic platform,

using events that allow the communication of commands and data.

Shared variables and events can be grouped together in inter-

faces which can be provided (), required (), or defined (). For

example, a controller may require shared variables provided by the

robotic platform. Defined interfaces are usually used to assign a set

of events to a controller or state machine. In this work, we model

interfaces using data schemas, like those defined in ğ4.

5.1 AUV Architecture

The overall AUV architecture in Figure 8 uses the RoboChart block

notation in the module AUV Module. The LRE is modelled us-

ing the controller LRE Ctrl. It uses inputs both from the physical

sensors of the AUV, and also digital operator inputs.

5https://www.cs.york.ac.uk/robostar/robotool/

Figure 8: Overall Architecture of the AUV and LRE

The physical inputs are modelled as shared variables in the

robotic platform AUV Platform, through two provided interfaces:

Sensors and Actuators. The former corresponds to the state space

specified in Figure 7, and the latter is unused, as only the autopilot

control the actuators, so its definition is elided for now.

The digital inputs are modelled using RoboChart events, that are

represented by the squares on the controller borders. Events consist

of a name and an optional list of typed parameters, to specify any

data the event may carry. They are analogous to channels in the

CSP process algebra [2], which is also used to give a semantics to

RoboChart [28]. Events can either be synchronous or asynchronous.

The LRE takes its digital inputs from the controllerAUV Operator,

and gives outputs to the controller AUV Autopilot. The LRE does

not directly control the actuators, but rather communicates advice

to the autopilot, which in turns controls the actuators. There are six

event inputs, which are collected in the defined interface Inputs:

• reqVel, with which the operator can request a new velocity;

• reqHdng, to request a new heading;

• reqOCM, reqMOM, and reqHCM, with which the operator

can request a particular mode;

• endTask, with which the operator can delineate a task.

The two output events are advVel and advHdng, with which the

LRE can sends instructions to change velocity or heading to the

autopilot, which are collected in the defined interface Outputs.

5.2 LRE Controller

The state space of the LRE controller is specified in Figure 9. In

addition to the sensor variables, which are included by extending

Sensors, the state space includes variables to track the closest dy-

namic and static obstacles. For simplicity in the model, we assume

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Simon Foster, Yakoub Nemouchi, Colin O’Halloran, Karen Stephenson, and Nick Tudor

Figure 9: LRE state space

that it is sufficient to consider only the closest obstacles in decision

making, though this can be generalised. The specified invariants

ensure that the closest obstacles are both in the obstacle register,

and that the static obstacle is indeed static (see Definition 4.2).

The assumption of our model is that in each behavioural cycle,

the LRE will calculate the closest obstacles, and for a dynamic

obstacle will calculate the time at which it will reach its closest

point of approach (CPA). From this information, the LRE will be

able to determine whether it is currently on an unsafe trajectory,

and apply evasive manoeuvres. Moreover, the LRE will also use

the obstacle information to determine whether it needs to switch

into high caution mode (HCM). We first specify the operations for

calculating the closest static and dynamic obstacles below:

Definition 5.1 (Closest Obstacle Calculation Operations).

sobs ≜ {obs ∈ dom(obs) | is static(obs)}
dobs ≜ dom(obs) \ sobs

CalcCStc ≜ cstc:


sobs ≠ ∅,

cstc ∈ sobs ∧(
∀ x ∈ sobs •

odist (x) ≥ odist (cstc))

)


CalcCDyn ≜ cdyn:


dobs ≠ ∅,

cdyn ∈ dobs ∧(
∀ x ∈ dobs •

odist (x) ≥ odist (cdyn))

)


Wefirst define the sets of static and dynamic obstacles in the register:

sobs and dobs. We specify the two operations for calculating static

and dynamic obstacles using Morgan’s specification statement op-

erator [30]. It has the form a:[pre, post], with a variable frame (a):

the set of variables permitted to change, precondition (pre), and a

postcondition (post). They are both in theory non-deterministic as

there could be several obstacles that are close by. Both operations

have a similar form: they select a static or dynamic obstacle, so

that this is the closest such obstacle in the register. We have auto-

matically proved, using Isabelle/UTP, that both of these operations

preserve the state invariants of LRE State, that is

Σ:[LRE State, LRE State] ⊑ CalcCStc,CalcCDyn

where ⊑ means łis refined byž, and Σ is the set of all variables.

Once the closest obstacles have been determined, the next step

is to work out whether the current trajectory of the AUV, with

respect to the closest dynamic obstacle, is safe. For this, we need to

calculate the closest distance of approach (CDA), which is minimum

separation that the obstacle and AUV will have if they both remain

on their current course. If the CDA is too low, it means a collision

could occur, and therefore the AUV needs to enact collision avoid-

ance. To determine the CPA, we need (1) functions to calculate the

relative distance at time t, and (2) calculate the time at closest point

of approach (TCPA). We first define relative velocity and distance:

Definition 5.2 (Relative Velocity and Distance).

ns rvel ≜ obs(cdyn):obs ns vel − auv:ns vel

ew rvel ≜ obs(cdyn):obs ew vel − auv:ew vel

ns rdist(t) ≜ obs(cdyn):ns rel dist + ns rvel·t
ew rdist(t) ≜ obs(cdyn):ew rel dist + ew rvel·t

Functions ns rvel and ew rvel calculate the relative velocity be-

tween the AUV and the obstacle. Using these, and the relative

position of the obstacle, we can determine whether the obstacle is

approaching or retreating from theAUV. For example, if the obstacle

is 5m due north of the AUV, the AUV has a velocity of 1ms−1 north
(ns vel = 1), and the obstacle has a velocity of 0.5ms−1 due south
(ns vel = −0.5), then the relative velocity is (−0.5) − 1 = −1.5ms−1

(south) and so the obstacle is approaching from the north.

Functions ns rdist(t) and ew rdist(t) calculate the relative dis-
tance from the obstacle at time t. The definitions simply subtract

the velocity component mulitplied by t from the current distance

component. Continuing the example above, we have ns rdist(t) =
5 − 1.5·t, so the AUV and the obstacle will be on top of each other

at t = 3.34 s. We can now give the formula for the TCPA:

Definition 5.3 (Timed to Closest Point of Approach).

TCPA ≜

(
−obs(cdyn):ew rel dist · ew rel vel+
−obs(cdyn):ns rel dist · ns rel vel

)

ew rel dist2 + ns rel vel2

CDA ≜
√(ns rdist(TCPA)2 + ew rdist(TCPA)2)

This formula obtains the t that gives the minimal combined dis-

tance from the two distance components. In the example above,

the east-west component is zero, and so we have TCPA = −(5 ·
−1.5)/(−1.5)2 = 3.5/2.25 = 3.34, as expected. Finally, we can ob-

tain the CDA by simply plugging the TCPA into the two relative

distance formulas, and calculate the overall distance.

With these functions, we model the LRE’s behaviour in the

RoboChart state machine shown in Figure 10. Its goal is to imple-

ment the requirements in Section 2. The transitions use an action

language with a similar syntax to CSP [2]: a?v receives a value over

channel a and places it into variable v, and b!e sends e over channel

b. The state machine has four states (OCM, MOM, HCM, CAM)

and transitions between them. Each transition is decorated with an

expression with the general form of trigger [condition]/action. The
trigger denotes an event required for execution of the transition,

and the condition is a predicate on the variables. The action is ex-

ecuted if the transition executes, and following the trigger. Each

part of the general transition form can be omitted. For example,

there is a transition from OCM to MOM that has the form

reqMOM

[
vel ≤ 0.1 ∧ odist (cdyn) > 7.5

∧ odist (cstc) > 0.3 ∧ ¬inOPEZ

]

It states that the LRE can move from OCM to MOM when the

trigger event reqMOM is received from the operator, and the set of

conjoined conditions specified in requirement R4 hold. The state

MOM has an entry action, advVel!1, that is executed when the state

is activated from any transition, and advises the autopilot to set

the velocity to the maximum 1ms−1. The top-most transition from

Formal Model-Based Assurance Case in Isabelle/SACM FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

Figure 10: State machine for LRE behaviour

Figure 11: LRE state machine in Isabelle

MOM to HCM has no trigger action, and only the condition

[hvel ≥ 0.1 ∧ hdist (cstc) ≤ StaticObsHorizDist]

attached, meaning that it will activate as soon as the sensor val-

ues enter the characterised range. Requirements R2 to R9 can be

straightforwardly implemented in RoboChart using transitions and

entry actions, since they largely deal with mode switching, and

what the LRE can do when in a particular mode.

The LRE initially enters OCM, indicated by the initial junction

(). Whilst in OCM, the LRE is not directing the AUV, and instead

accepts velocity and heading commands using reqVel and reqHdng,

which are passed on to the autopilot using the corresponding advice

events (cf. R2). Once a suitable trajectory has been selected, the

operator can request MOM, which can be entered provided the AUV

is not close to obstacles (R4). Whilst in MOM, and indeed any other

state, the operator can request control using the reqOCM event (R3).

Control is also handed back when a task ends, triggered by endTask,

at which point the velocity is also set to 0. The LRE moves from

MOM to HCM either when the AUV is close to a static obstacle, or

when the operator requests it (R6). CAM is entered when an unsafe

trajectory is detected using the CDA calculation from Definition 5.3

(R9). For now, the behaviour in CAM is unspecified, as the collision

avoidance algorithm is under development. The LRE exits CAM

once it is no longer on an unsafe trajectory, and drops back to OCM

setting the velocity to 0, to await further instructions.

An Isabelle representation is shown in Figure 11. This uses the

command statemachine, which we developed previously [12], and

has been extended and improved for this paper. It provides a textual

language and theorem proving facilities for RoboChart. The LRE

state machine was manually translated from Figure 10, but this

can be automated. The command creates a state machine called

LRE Beh, using the state space defined in Figure 9. We add two

FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea Simon Foster, Yakoub Nemouchi, Colin O’Halloran, Karen Stephenson, and Nick Tudor

Figure 12: LRE Requirement Allocation Claims

variables, v and h, that are used to store velocities and headings.

Most variables have physical units, and so expressions must use

these consistently (ğ4.1). We also create the events, with the types as

specified in Figure 8. We then specify each state, with entry actions

when needed, and specify that OCM is the initial state. Finally,

we specify each transition, with source and target states, and an

identifier. Due to space constraints, we only show 11 transitions.

Underneath, the statemachine command automatically checks

well-formedness of the state machine, and generates a denotational

semantics, assigned to a definition called action, which targets a

formal modelling language called Circus [33]. Circus combines the

concurrency primitives of CSP, with statemodelling primitives from

Z [36], refinement calculus [30], and Dijkstra’s guarded command

language [10]. We previously mechanised Circus in Isabelle [13, 15],

which allows us to perform various verifications, including check-

ing for deadlock. The semantics depends on previously defined

constants like StaticObsHorizDist. If these are changed, the entire

model is automatically recompiled and rechecked by Isabelle.

Though the LRE has an uncountable state space, due to the pres-

ence of real transcendental manipulations, we can still verify the

model due to the symbolic nature of our verification technique [15].

Below is a theorem and proof of deadlock freedom:

This states that action, which gives the semantics to LRE Beh, re-

fines a specification of deadlock freedom, dlockf [12, 15]. As can be

seen, this process is completely automated through several tactics

we have developed for state machine reasoning [12], and can gen-

erally be applied to any state machine. Deadlock freedom means

that LRE Beh never enters a state where no behaviour is possible.

It follows because there is always an enabled event.

Now, using Isabelle/SACM we can link each of the state machine

elements to one of the requirements, which allow traceability for

each behaviour andwould form part of the case for DO-178C compli-

ance. An argument for allocation of three requirements to LRE Beh

is shown in Figure 12. The top-level claim is LRE Reqs, stating

that all of the requirements are implemented in the generated state

machine LRE Beh. There are then three subclaims, LREC1-LREC3,

that provide part of the argument for LRE Reqs. LREC1 states that

requirement R4 is implemented by transition t1. LREC2 states that

requirement R5 is implemented by the entry action of MOM. LREC3

states that R6 is implemented by transitions t4 − t7. Finally, the

inference AUV S1 shows that the three subclaims all provide sup-

port for LRE Reqs. However, not all requirements have yet been

allocated in the argument (although in reality they have), and so the

inference is annoted with the the needsSupport keyword, mean-

ing that the argument is to be completed. In a similar way, we can

link our deadlock freedom theorem to R10.

6 CONCLUSIONS

We applied Isabelle/SACM in mechanising a fragment of a model-

based assurance case for an AUV safety controller. This is supported

by several formal artifacts mechanised in Isabelle, including termi-

nology and requirements, a data model with SI unit support, several

functions and operations, and a high-level behavioural model in

the graphical RoboChart language. All these heterogeneous ar-

tifacts have a unifying semantics in the Isabelle/UTP semantic

framework [16], which also provides verification support through

Isabelle’s powerful automated reasoning capabilities.

The overarching goal of Isabelle/SACM is to support certifica-

tion of critical systems, by conveying assurance arguments and

verification results to regulators and other stakeholders. Mecha-

nised support increases confidence through machine-checking and

traceability, and eases the burden of maintaining and evolving an

assurance case. This is of particular importance for autonomous

systems, which must evolve to match an open environment and

changing requirements [18]. Our paper adds weight to the evi-

dence [3, 5, 14, 39] that Isabelle is an ideal platform for assurance

cases, utilising a variety of formal methods, to support certification.

In related work, Denney et al. [9] have developed a sophisticated

graphical tool for assurance cases, called AdvoCATE, that includes

management of hazards, requirements, arguments, and other ar-

tifacts. This, and Denney’s pioneering work on formal semantics

for assurance cases [7, 8], is a strong inspiration. Wei et al. [38]

have developed an SACM-based tool called ACME, supporting

graphical arguments and integration with model-based engineer-

ing. Rushby [35] proposes an evidential tool bus as for managing

results from several verification tools, for assurance cases, an idea

that was implemented by Cruanes et al. [6], and shares several

characteristic with Isabelle. Resolute [17] is a tool for automating

assurance case generation from an AADL architectural model that

we are exploring links with. Brucker and Wolff have applied DOF

to a CENELEC 50128 safety case for an odometric case study [5].

In future work, we aim to use Isabelle/SACM as a backend for

tools like AdvoCATE [9], and are currently integrating it with

Eclipse for use with ACME [38] and RoboTool [28]. We will also

further verify the LRE model, in particular its timing requirements

and continuous dynamics, for which we will utilise our Isabelle

implementation of Differential Dynamic Logic [11, 31, 34]. The

ultimate goal is a automated assurance cases that go from hazard

analysis and safety requirements, right down to executable code.

Acknowledgements. We thank Prof. Burkhart Wolff and Prof.

Achim Brucker, for their helpful advice on the use of DOF and feed-

back on our SI unit formalisation. We thank Dr. Alvaro Miyazawa

for his support in the use of RoboTool and its development. This

Formal Model-Based Assurance Case in Isabelle/SACM FormaliSE ’20, October 7–8, 2020, Seoul, Republic of Korea

work is supported by the EPSRC UKRI project CyPhyAssure (Grant

EP/S001190/1, https://www.cs.york.ac.uk/circus/CyPhyAssure/).

REFERENCES
[1] A. Armstrong, V. Gomes, and G. Struth. 2015. Building program construction

and verification tools from algebraic principles. Formal Aspects of Computing 28,
2 (2015).

[2] S. D. Brookes, C. A. R. Hoare, andA.W. Roscoe. 1984. A Theory of Communicating
Sequential Processes. J. ACM 31, 3 (1984), 560ś599.

[3] A. Brucker, I. Aït-Sadoune, P. Crisafulli, and B. Wolff. 2018. Using the Isabelle
Ontology Framework ś Linking the Formal with the Informal. In Intelligent
Computer Mathematics (CICM) (LNCS), Vol. 11006. Springer, 23ś38.

[4] A. Brucker and B. Wolff. 2019. Isabelle/DOF: Design and Implementation. In
SEFM (LNCS 11724). Springer, 279ś292.

[5] A. Brucker and B. Wolff. 2019. Using Ontologies in Formal Developments Target-
ing Certification. In Integrated Formal Methods (iFM) (LNCS), Vol. 11918. Springer,
65ś82.

[6] S. Cruanes, G. Hamon, S. Owre, and N. Shankar. 2013. Tool Integration with the
Evidential Tool Bus. In VMCAI (LNCS), Vol. 7737. Springer, 275ś294.

[7] E. Denney andG. Pai. 2013. A Formal Basis for Safety Case Patterns. In SAFECOMP
(LNCS), Vol. 8153. Springer, 21ś32.

[8] E. Denney and G. Pai. 2015. Towards a Formal Basis for Modular Safety Cases. In
Computer Safety, Reliability, and Security (SAFECOMP) (LNCS), Vol. 9337. Springer,
328ś343.

[9] E. Denney and G. Pai. 2018. Tool support for assurance case development.
Automated Software Engineering 25 (2018), 435ś499.

[10] E. W. Dijkstra. 1975. Guarded commands, nondeterminacy and formal derivation
of programs. Commun. ACM 18, 8 (1975), 453ś457.

[11] S. Foster. 2019. Hybrid Relations in Isabelle/UTP. In 7th Intl. Symp. on Unifying
Theories of Programming (UTP) (LNCS), Vol. 11885. Springer, 130ś153.

[12] S. Foster, J. Baxter, A. Cavalcanti, A. Miyazawa, and J. Woodcock. 2018. Automat-
ing Verification of State Machines with Reactive Designs and Isabelle/UTP. In
FACS (LNCS 11222). Springer, 137ś155.

[13] S. Foster, A. Cavalcanti, S. Canham, J. Woodcock, and F. Zeyda. 2020. Unifying
Theories of Reactive Design Contracts. Theoretical Computer Science 802 (January
2020), 105ś140.

[14] S. Foster, Y. Nemouchi, M. Gleirscher, and T. Kelly. 2019. Isabelle/SACM:
Computer-Assisted Assurance Cases with Integrated Formal Methods. In iFM
(LNCS 11918). Springer, 379ś398.

[15] S. Foster, K. Ye, A. Cavalcanti, and J. Woodcock. 2018. Calculational Verification
of Reactive Programs with Reactive Relations and Kleene Algebra. In Proc. 17th
Intl. Conf. on Relational and Algebraic Methods in Computer Science (RAMICS)
(LNCS), Vol. 11194. Springer, 205ś224.

[16] S. Foster, F. Zeyda, and J. Woodcock. 2016. Unifying heterogeneous state-spaces
with lenses. In ICTAC (LNCS 9965). Springer, 295ś314.

[17] A. Gacek, J. Backes, D. Cofer, K. Slind, and M. Whalen. 2014. Resolute: An
Assurance Case Language for Architecture Models. In Proc. 2014 ACM SIGAda
Annual Conference on High Integrity Language Technology (HILT). ACM, 19ś28.
https://doi.org/10.1145/2663171.2663177

[18] M. Gleirscher, S. Foster, and Y. Nemouchi. 2019. Evolution of Formal Model-
Based Assurance Cases for Autonomous Robots. In SEFM (LNCS 11724). Springer,
87ś104.

[19] M. Gleirscher, S. Foster, and J. Woodcock. 2019. New Opportunities for Integrated
Formal Methods. Comput. Surveys 52, 6 (2019), 36.

[20] G. Greenaway, J. Lim, J. Andronick, and G. Klein. 2014. Don’t sweat the small
stuff: Formal verification of C code without the pain. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI). ACM,
429ś439.

[21] I. Habli and T. Kelly. 2014. Balancing the Formal and Informal in Safety Case
Arguments. In VeriSure Workshop, colocated with CAV.

[22] J. Harrison. 2005. A HOL Theory of Euclidean space. In Theorem Proving in
Higher Order Logics, 18th International Conference, TPHOLs 2005 (August 2005)
(LNCS), Joe Hurd and Tom Melham (Eds.), Vol. 3603. Springer, Oxford, UK.

[23] R. Hawkins, I. Habli, D. Kolovos, R. Paige, and T. Kelly. 2015. Weaving and
Assurance Case from Design: A Model-Based Approach. In Proc. 16th Intl. Symp.
on High Assurance Systems Engineering. IEEE.

[24] C. A. R. Hoare and J. He. 1998. Unifying Theories of Programming. Prentice-Hall.
[25] F. Immler. 2014. Formally Verified Computation of Enclosures of Solutions of

Ordinary Differential Equations. In Proc. 6th NASA Formal Methods Symposium
(NFM) (LNCS), Vol. 8430. Springer.

[26] F. Immler and J. Hölzl. 2012. Numerical Analysis of Ordinary Differential Equa-
tions in Isabelle/HOL. In 3rd Intl. Conf. on Interactive Theorem Proving (ITP)
(LNCS), Vol. 7406. Springer, 377 ś 392.

[27] T. Kelly. 1998. Arguing Safety ś A Systematic Approach to Safety Case Management.
Ph.D. Dissertation. University of York.

[28] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Woodcock. 2019.
RoboChart: modelling and verification of the functional behaviour of robotic
applications. Software and Systems Modelling 18 (January 2019), 3097ś3149. Issue
5.

[29] A. Miyazawa, P. Ribieiro, W. Li, A. Cavalcanti, and J. Timmis. 2017. Automatic
Property Checking of Robotic Applications. In Intl. Conf. on Intelligent Robots
and Systems (IROS). IEEE, 3869ś3876.

[30] C. Morgan. 1996. Programming from Specifications. Prentice-Hall.
[31] J. H. Y. Munive, G. Struth, and S. Foster. 2020. Differential Hoare Logics and

Refinement Calculi for Hybrid Systems with Isabelle/HOL. In 18th Intl. Conf on Re-
lational and Algebraic Methods in Computer Science (RAMiCS) (LNCS), Vol. 12062.
Springer, 169ś186.

[32] T. Muranushi and R. A. Eisenberg. 2014. Experience Report: Type-Checking
Polymorphic Units for Astrophysics Research in Haskell. In Proc. 2014 Haskell
Symposium. ACM, New York, NY, USA, 31ś38.

[33] M. Oliveira, A. Cavalcanti, and J. Woodcock. 2009. A UTP semantics for Circus.
Formal Aspects of Computing 21 (2009), 3ś32. Issue 1-2.

[34] André Platzer. 2018. Logical Foundations of Cyber-Physical Systems. Springer.
[35] J. Rushby. 2005. An Evidential Tool Bus. In Formal Methods and Software Engi-

neering (ICFEM) (LNCS), Vol. 3785. Springer.
[36] M. Spivey. 1989. The Z-Notation - A Reference Manual. Prentice Hall.
[37] F. Tuong and B. Wolff. 2019. Deeply Integrating C11 Code Support into Is-

abelle/PIDE. In Formal Integrated Development Environment (F-IDE) (EPTCS),
Vol. 310. 13ś28.

[38] R. Wei, T. Kelly, X. Dai, S. Zhao, and R. Hawkins. 2019. Model based system
assurance using the Structured Assurance Case Metamodel. Systems and Software
154 (2019).

[39] M. Wenzel. 2019. Interaction with Formal Mathematical Documents in Is-
abelle/PIDE. In CICM (LNCS 11617). Springer, 1ś15.

[40] J. Woodcock, A. Cavalcanti, S. Foster, A. Mota, and K. Ye. 2019. Probabilistic
Semantics for RoboChart. In 7th Intl. Symp. on Unifying Theories of Programming
(UTP) (LNCS), Vol. 11885. Springer.

	Abstract
	1 Introduction
	2 AUV Case Study
	3 Background: Isabelle and SACM
	4 Data Model
	4.1 SI Units and Quantities in Isabelle
	4.2 LRE State Space

	5 Behavioural Model
	5.1 AUV Architecture
	5.2 LRE Controller

	6 Conclusions
	References

