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Abstract

This survey gives a selective review of recent devel-
opment of machine learning (ML) for combinato-
rial optimization (CO), especially for graph match-
ing. The synergy of these two well-developed ar-
eas (ML and CO) can potentially give transforma-
tive change to artificial intelligence, whose founda-
tion relates to these two building blocks. For its
representativeness and wide-applicability, this pa-
per is more focused on the problem of weighted
graph matching, especially from the learning per-
spective. For graph matching, we show that many
learning techniques e.g. convolutional neural net-
works, graph neural networks, reinforcement learn-
ing can be effectively incorporated in the paradigm
for extracting the node features, graph structure
features, and even the matching engine. We further
present outlook for the new settings for learning
graph matching, and direction towards more inte-
grated combinatorial optimization solvers with pre-
diction models, and also the mutual embrace of tra-
ditional solver and machine learning components.

1 Introduction

Combinatorial optimization (CO) has been an established and
indispensable research direction, which spans rich classic al-
gorithmic solvers covering constraint satisfaction problems,
integer programming, graph algorithms etc. Meanwhile, the
recent decade has witnessed the surge of deep learning (DL),
which allows for learnable feature extraction by cascading
differentiable layers in flexible architectures. These two areas
have both made profound impact from fundamental research
to real-world applications, while the paths of these two areas
have rarely crossed until recent years. This paper generally
discusses the emerging trend for machine learning (ML), and
especially dive into the area of learning graph matching, for
the hope of better efficiency, scalability and even improved
accuracy, with less reliance on expertise.
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CO has direct business and social impact in wide appli-
cations ranging from supply chain planning to locomotive
dispatching, with commercial toolboxes e.g. CPLEX and
Gurobi. Yet they still suffer tractability and scalability issues.
Aside from its wide existence in applications, CO also natu-
rally raises in ML with various forms e.g. graph matching,
Markov random field, conditional random field with down-
stream applications like pose estimation, image segmenta-
tion, entity recognition. While the computational issues can
be further pronounced for more effective solution, e.g. con-
sidering the dense pixels for segmentation and dense corre-
spondences between views.

Many combinatorial problems are NP-hard if not even
harder, or practically intractable for large-scale settings for
exact solution. Though still in its early phase, in our opin-
ion, introducing learning for cost-effective (near-)optimal so-
lutions finding has some potential advantages:

i) Data-driven and generic approximation: traditional
solvers are based on experts’ theoretical or/and empirical
knowledge. The carefully devised components can be hu-
man skill-intensive and case dependent. In contrast, learning-
based methods are expected to be free from the experts by
training (with generic approximation) often in an end-to-end
fashion, which allows to model real world problems in a flex-
ible way. For instance, many combinatorial problems are
based on graph structure [Bengio et al., 2018], which can be
readily modeled by existing graph embedding or network em-
bedding techniques, which embed the graph information into
continuous node representation. Then the constraints can also
be accounted by different techniques out of which reinforce-
ment learning can be a flexible and general approach [Khalil
etal.,2017].

ii) Adaptivity and reusability: learned models (or in other
forms e.g. meta policy, meta rewards) are known can be
transferred to relevant tasks in different ways, hence a trained
combinatorial solver or a meta solver may be adapted to new
tasks. It may further enhance the practical applicability by ad-
dressing the cold start problem using traditional solvers, for
instance by imitation learning. In general, a specific solver
could be more cost-effective than a general-purpose method,
and ML can provide a generic way of building such solvers
with training data rather than human knowledge. The learn-
ing can be possibly further eased by flexibly designed neu-
ral network architectures with end-to-end learning paradigm



(also potential to network architecture search as there is vast
literature therein).

iii) Computational efficiency: deep networks often in-
volve matrix multiplication and convolution. It allows highly
parallel computation and full usage of GPU, especially when
the discrete combinatorial problems can be mostly relaxed
into the continuous domain as successfully fulfilled in some
recent graph matching networks [Wang et al., 2019b; Yu et
al., 2020]. This also holds for the graph tasks like Mini-
mum Vertex Cover, Maximum Cut and Traveling Salesman
problems as addressed in [Khalil ez al., 2017] by graph em-
bedding. Then it can be accelerated by parallel computations
in GPU. Another example can be found in [Bertsimas and
Stellato, 2019] for solving online mixed-integer optimization
problems at very high speed using neural network and a linear
system based solver. In contrast, traditional solvers, which
are mostly performed on CPU, often require iterative compu-
tation and more logic operation, being less parallel-friendly,
more time-consuming and power intensive. Though currently
traditional learning-free solvers are often more accurate.

A rich body of learning techniques have been applied to
solve the combinatorial problems, though the performance
of learning based solvers in general may still fall behind the
well-designated classic competitors, especially on real-world
complex problems and datasets. In the following, we give
examples for recent advancement whereby various learning
based techniques are applied, including graph neural net-
works [Gasse et al., 2019], reinforcement learning [Bello et
al., 2016], multi-agent [Sghir ef al., 2018], etc. Specifically,
the work [Huang et al., 2019] solves the well known NP-hard
problem for coloring very large graphs with deep reinforce-
ment learning, and the Travelling Salesman Problem (TSP) is
studied in [Vinyals er al., 2015] with the proposed pointer net-
work. Preliminary success on learning for the NP-complete
decision-variant of TSP is recently attained in [Prates et al.,
2019]. Meanwhile, deep learning for node set is also explored
in [Zaheer et al., 2017] where permutation invariant objective
functions are learned for node sets. For resource manage-
ment, imitation learning is adopted in [Shen er al., 2019] to
learn the pruning policy in the optimal branch-and-bound al-
gorithm. Interestingly their method does not resort to an end-
to-end learning paradigm, and in fact can more effectively ex-
ploit the algorithm structure with few training samples. The
technique for learning to branch has also been well develop
in [Gasse er al., 2019] by imitation learning with expert rules.

Despite the above preliminary and scattered results, learn-
ing e.g. graph attention network (GAT) in [Kool et al., 2018]
has shown its promising universal applicability to various
combinatorial optimization problems, including TSP, Vehicle
Routing Problem (VRP), Orienteering Problem (OP), Prize
Collecting TSP (PCTSP) and Stochastic PCTSP (SPCTSP).
Such a generality may come from GAT’s ability to learn the
relations between nodes and edges, especially the changeable
relations among adjacent nodes, which is key to graph based
combinatorial optimization problems.

Among the combinatorial problems, graph matching or
namely quadratic assignment, has been a fundamental prob-
lem across different areas ranging from pattern recognition,
computer vision to resource management. In fact, learn-
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Figure 1: Illustration of the widely used affinity matrix K (see Eq. 1)
in two-graph matching problem: graph (1, 2, 3) to graph (a, b, ¢).
Each node or edge is represented with a three-dimensional feature
vector, and the affinity is calculated by the inner product. In learning
base methods, the features can be learned by CNN or GNN.

ing based methods are relatively few [Cho er al., 2013;
Caetano et al., 2009; Leordeanu et al., 2011] to this prob-
lem until the recent pioneering work [Nowak et al., 2018;
Zanfir and Sminchisescu, 2018] which boosts its performance
notably. Differing from the general introduction [Bengio et
al., 2018; Lombardi and Milano, 2018] on learning for CO,
our discussion will be focused on GM for its representative-
ness, hardness, generality, and usefulness. The detailed study
is aimed to show how learning techniques and paradigms are
disruptively transforming combinatorial optimization. The
hope is making this article more self-contained, comprehen-
sible, and hands on. Finally we also give exploratory outlook
to highlight a list of (but not exhaustive) promising directions
in graph matching and beyond, by the use of ML within CO.

2 Towards Learning of Graph Matching

Overview. For generality, we discuss graphs with weighted
edges and labeled nodes. The matching refers to establish the
one-to-one node correspondence over two or more graphs, to
maximize the affinity score (denoted by J — see Eq. 1) be-
tween matched nodes (with outliers), which is NP-complete.
This form is more general than graph isomorphism or sub-
graph isomorphism, with wide connection to other problems.

As shown in Table 1, learning GM often involves i) learn-
ing to extract more tailored node features (by e.g. CNN);
ii) geometric features of graph (by e.g. GNN); iii) affinity
model, which are guided by different loss functions. Node
assignment module is also learned in RL based methods [Liu,
2018], and extension to hypergraph and multi-graph match-
ing solvers has also been devised [Wang er al., 2019b] (see
Fig. 2). In our analysis, the adoption of the above techniques
in GM has also well represented their roles in CO.

2.1 Learning-free Graph Matching

We refer the traditional optimization methods for GM as clas-
sic ones, to differentiate from the learning-based methods.

2.1.1 Classic Two-Graph Matching

Objective formulation. Two-graph matching can be mod-
eled as the quadratic assignment problem (QAP), which is
known NP-complete. Its most general form called Lawler’s
QAP has been widely adopted in literature [Leordeanu and
Hebert, 2005; Leordeanu et al., 2009; Cho et al., 2010;



Zhang et al., 2019]:

Jx)=x"Kx,X1,, =1,,,X"1,, <1,,,X e {0,1}"*"2

ey
where x = vec(X) is column-wise vectorized version of
matrix X € {0,1}™*"2 which denotes the binary corre-
spondence matrix (namely assignment matrix). Note K €
Rm™n2xninz ig the so-called affinity matrix, whereby the di-
agonal elements store the vertex-to-vertex similarity while
off-diagonal carry the edge-to-edge similarity. An illustra-
tion of K is presented in Fig. 1. Another popular form is
Koopmans-Beckmann’s (KB) QAP [Loiola et al., 20071, as
a special case for Lawler’s QAP by setting K = F; ® Fy,
where F' are the weighted adjacency matrices:

J(X) = (X" F1XF2) + (K, X) )
—_— . ——

edge affinity node affinity

Note the values of the node-to-node affinity matrix K, (simi-
larly for F') depend on applications. In computer vision, SIFT
or CNN features are used, while in social network analysis,
node feature can be extracted by user’s behavior. To measure
the value in K, usually Gaussian kernel is used for real-value
data like image features, while it can be edit distance between
texts e.g. username in social networks. A parametric form of
K can also be learned as summarized in Table 1.

The above formulas only consider the second-order affin-
ity, and the higher-order similarity among a pair of hyperedge
(i.e. vertex tuple) can be readily encoded by affinity tensor.
This leads a popular objective [Lee et al., 2011] as follows
for maximization (constraints are omitted for briefly):

J(x)=H®i1x--Q®x 3)

where H is the affinity tensor and p is the order of the affin-

ity. Termed as hypergraph matching, various higher-order
methods [Zass and Shashua, 2008; Chertok and Keller, 2010;
Duchenne e al., 2011; Yan et al., 2015b; Ngoc et al., 2015]
have been proposed for improved matching accuracy at the
cost of increased time and space complexity. The common
strategy is to transform the higher-order problem into the
second-order case in an iterative fashion.

Learning-free optimization. Some methods search the
solution directly in assignment matrix space via heuristics.
[Leordeanu et al., 2009] is devised with the hope that an op-
timal solution can be found along a (quasi) discrete solution
course. The methods [Lee er al., 2010; Suh ef al., 2012] gen-
erate discrete solutions via Monte Carlo Sampling. [Adam-
czewski er al., 2015] devises a tailored Tabu search for graph
matching. The idea of gradient descent with projection to
constraint is also explored in [Yan ef al., 2015b].

Meanwhile, relaxation techniques have been devised, by
which the continuation method (i.e. path-following) is often
adopted. In [Gold and Rangarajan, 1996], a deterministic an-
nealing procedure is performed in the continuous space. Sim-
ilar path-following techniques are widely used in recent work
[Zhou and Torre, 2016].

We briefly discuss three representative ways as follows: 1)
spectral relaxations on the matching matrix [Leordeanu and
Hebert, 2005; Cour et al., 2006]. The matching constraint
is loosened by ||x||]2 = 1 which can be solved efficiently;

ii) doubly-stochastic (DS) relaxation on the matching matrix
[Gold and Rangarajan, 1996; Leordeanu et al., 2009]. Note

DS matrix is the convex-hull of the assignment matrix; iii)
semidefinite-programming (SDP) [Torr, 2003; Schellewald
and Schnérr, 2005]. The relaxation model in [Schellewald
and Schnorr, 2005] can be written as:

n%}n Tr(QY) st Y*>0, Tr(A)Y)=c; 4)

where constraints are defined by a series of A; and c;. There
is off-the-shelf solver for SDP problem, while the derived
variable Y € R(mm2+1)x(min2+1) cayges scalability issue.

2.1.2 Multiple-Graph Matching

There are emerging line of works on joint matching of mul-
tiple graphs, which bears several merits compared with two-
graph case. First, the graphs are often given in batch and a
cycle-consistent matching across graphs is welcomed. Here
consistency refers to the fact that the correct correspondence
shall lead to the loop node mapping over three or more
graphs, for instance X2 = X;3X32. However, performing
two-graph matching pair-wisely cannot guarantee such a con-
sistency. Moreover, two-graph matching can be inherently ill-
posed because: 1) the graphs are often noisy, ii) modeling the
affinity objective is nontrivial. These factors can both incur
the mathematically global solution cannot guarantee a mean-
ingful perfect matching due to the deviation in objective. This
partly motivates the idea of learning for graph matching in the
sense of more meaningful objective design.

Here we introduce the learning-free multi-graph matching
methods and discuss their pros and cons. We divide recent
multi-graph matching methods into three groups:

1) Methods in the first group transform the multi-graph
matching problem into a pairwise matching task at each it-
eration. Hence off-the-shelf two-graph matching solvers can
be readily reused.

ii) While the second group involves methods that search
matching composition chain based on initial (noisy) pairwise
matching result to optimize both affinity and cycle-consistent.

iii) The methods of last group take a clustering or low rank
recovery perspective in feature space.

The first category of methods often start with a basic objec-
tive for joint matching N graphs (constraint omitted), to max-
imize the overall affinity score .J in the following quadratic
form, where K;; is the affinity matrix between two graphs:

N
X" = argmax > xGKixy 5)
i,j=1,i#j

By introducing a series of basis {er},]cvzlk?ér regarding
with a pre-selected reference graph G,., [Yan et al., 2015al
shows that the above problem can be iteratively solved by
transforming it into a QAP problem in each iteration. The it-
eration is conceptually performed on a super-graph regarding
each graph as its vertex, and G, serves as the central vertex for
iterative updating. Such a star-shape centralized framework
inherently suffers from fragility as the information flow are
all through G, which becomes the bottleneck and the match-
ing error can also be accumulated. The underlying assump-
tion is that G, shall be similar or easier to match with other

graphs, which however can not hold in many cases.

To mitigate the above issue, a distributed framework is pro-
posed in [Yan et al., 2016]. Similar to the star-shape central-
ized framework, a matching will be updated iteratively that



method CNN GNN module affinity metric loss function
[Nowak et al., 2018] none GCN inner-product multi-class cross-entropy
[Zanfir and Sminchisescu, 2018] | VGG16 | none weighted exponential | pixel offset regression
[Wang er al., 2019a] VGG16 | GCN + cross-graph conv. weighted exponential | binary cross-entropy (BCE)
[Jiang ef al., 2019a] VGGle | Laplacian smoothing/sharpening | oo o exponential | DINALY Cross-entropy

+ cross-graph convolution + sparsity norm

Channel independent embedding . .. | binary cross-entropy
[Yu et al., 2020] VGGl6 + cross-graph convolution weighted exponential with Hungarian attention
[Fey et al., 2020] VGG16 | SplineCNN/GIN/cross-GNN inner-product BCE-+ neighbor consensus

Table 1: Three main modules for learning: CNN, GNN, affinity model. CNN (VGG16) and GNN (different variants) is widely used for
extracting visual features to build the graph attributes and structure, respectively. The affinity can also be learned effectively by inner-product

or weighted exponential form, while cross-entropy is often used as loss, based on a double-stochastic matrix converted by Skinhorn net.

involves an intermediate graph. The difference is that there
is no centralized reference graph, and the intermediate graph
is distributed among every graph in the set. Moreover, the
consistency constraint is relaxed by adding a consistency reg-
ularizer C), on affinity J for more robust optimization:

k" = arg rﬁi{ (1= N)J(XixXp;) + ACp(Xir X, X)  (6)

affinity score

This approach estimates matchings between dissimilar

graphs by composition along a path of similar graphs. The

cycle consistency metric has been recently more efficiently

explored in [Guibas et al., 2019] that only samples a subset
of weighted cycles according theoretical study.

Another body of work aim to recover a globally consis-
tent pairwise matching set from putative pairwise matchings.
Spectral techniques [Kim et al., 2012; Pachauri et al., 2013;
Huang and Guibas, 2013] are developed to extract the consis-
tent matches by the spectrum (top eigenvectors) of the matrix
composed of all putative matches and these early works of-
ten assume bijection among all the graphs. The underlying
rationale is that the problem can be formulated as quadratic
integer programming which can be relaxed into a generalized
Rayleigh problem [Pachauri er al., 2013].

In the seminal work [Huang and Guibas, 2013], the au-
thors show theoretical conditions for exact recovery. They
note that if the pairwise matchings are cycle-consistent then
the bulk matrix storing all matchings is low-rank and positive
semidefinite. This leads to a convex relaxation method for
estimating cycle-consistent matchings by finding the nearest
positive semidefinite matrix to the input matrix stacking by all
initial matchings. Improvement is made in [Chen et al., 2014]
by assuming the underlying rank of variable matrix can be
estimated reliably. Then two extensions are made which are
further improved in [Zhou et al., 2015]: i) partial matching to
allow for when different groups of inliers are shared among
different graph subsets; ii) robust recovery from a small frac-
tion of observation given large portion of hidden or erroneous
matches. Another typical setting is to identify the inliers com-
monly shared by every graph, as addressed in [Wang er al.,
2018] which requires additional constraint from motion es-
timation. Finally there are also recent works on distributed
methods for both memory and time efficiency. [Leonardos et
al., 2017] proposes a decentralized version of the centralized
spectral method [Pachauri et al., 2013]. Akin to [Pachauri
et al., 2013], their method can only be applied to the bijec-
tion case. This limitation is addressed in [Hu et al., 2018],
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Figure 2: Illustrative pipeline of recent GM learning methods (see
details in Table 1). Compared to [Zanfir and Sminchisescu, 2018]
that only uses CNN models to extract image features, GNN is used
in [Wang et al., 2019a] for jointly embedding the two input graphs
for graph structure learning. Hypergraph and multiple GM learn-
ing are further devised in [Wang er al., 2019b] by association graph
embedding.

which gives a theoretical study on the connection between
the cycle-consistency on overlapped clusters, and that on the
whole graph set.

2.2 Shallow Learning for Graph Matching

In all the above methods, the objective is pre-given, either
for the node and edge attributes (for KB’s QAP), or the di-
rect pairwise affinity between nodes and edges (for Lawler’s
QAP). While it is often the case that the objective can be
better modeled via learning, instead of a handcrafted loss.
For instance in image matching, CNN features pretrained on
ImageNet may be more discriminative than SIFT feature for
matching. The efficacy can be further boosted by end-to-end
training the CNN tailored to the matching task. This is under-
standable since the raw CNN features that are good at object
recognition may account more for the intra-class variability
which loses the sensitivity to local feature changes.



2.2.1 Structured Learning-based Methods

Structured SVM has been adopted in [Cho et al., 2013] for a
unified framework for learning the weight of each node and
edge, instead of a homogeneous weight allocation in learning-
free methods. Specifically, the sense of structure learning
refers to the prediction of graph edge weights whereby the
graphs are assumed of equal size and the vertex are fully
connected. This approach incorporates a series of previous
GM learning [Caetano et al., 2009; Leordeanu et al., 2012;
Torresani et al., 2008] as its special cases. The weights can
also be learned in an unsupervised [Leordeanu et al., 2012]
or semi-supervised [Leordeanu er al., 2011] (for hypergraph)
fashion. Compared the following deep network based ap-
proaches, these methods have limited model capacity which
can mostly only account for the different affinity weights of
nodes and edges for matching. While the node-wise feature
representation and structural information cannot be learned.

2.2.2 Network Embedding-based Learning

Large-scale GM, often in the context of network alignment,
has also evolved into a well-established research area. For
scalability issue, shallow network embedding has been the
dominant tools instead of costive deep learning methods.

Early works mainly rely on handcrafted features. Given
seed alignments, MNA [Kong et al., 2013] extracts pairwise
features including number of common neighbors, Jaccard
similarity of users’ neighborhoods, and Adamic/Adar mea-
sure from networks and then correspondences are found by
stable matching. BASS [Cao and Yu, 2016] jointly models
consistencies for handcrafted features, including Jaccard sim-
ilarity of users’ neighborhoods, user name edit distance, and
the features of social contents, and then the matching clas-
sifier is trained in EM by bootstrapping. A Markov chain is
modeled [Zhang et al., 2015] to gradually recover the miss-
ing matchings from seeds. These methods, in general, lack
the capacity to fully explore the structure using learning.

Recently learning based, especially embedding based
methods become more popular, which mostly follow a
weakly-supervised setting with seed alignments for expan-
sion. The basic idea in [Tan et al., 2014; Liu et al., 2016;
Li et al., 2016] is to train node embeddings by forcing the
seed nodes across networks to be the same. [Du and Tong,
2019] shows multi-resolution embedding on multiple net-
works brings further improvement on network alignment.
[Wang er al., 2019¢] proposes a reinforcement learning ap-
proach on bipartite graph matching. There are works [Man et
al., 2016; Zhou et al., 2018] follow a simple pipeline starting
with embedding: i) generate each node’s embedding based
on matrix factorization [Tan ef al., 2014] or Skip-gram [Man
et al., 2016], supervised by seeds; ii) measure pairwise em-
bedding similarity between nodes by e.g. cosine [Man er al.,
2016; Zhou et al., 2018] or Euclidean distance [Heimann et
al., 2018]; iii) match node pairs with high similarity.

There are recently fully unsupervised network alignment
methods. In [Du et al., 2019], the authors propose a cross-
graph random walk based embedding technique for alignment
without any seed alignment. [Xu ef al., 2019] jointly learns
cross-network embedding and performs matching by adopt-
ing Gromov-Wasserstein learning which is the second-order
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Figure 3: Demonstration of the Sinkhorn operation as performed
in the Sinkhorn network, which involves alternative row-wise and
column-wise normalization until converging to a doubly-stochastic
matrix or for certain rounds. To obtain the final matching matrix,
Hungarian method is adopted to convert the doubly-stochastic ma-
trix into a binary permutation one. This operation is key to graph
matching networks that bridge the gap between continuous domain
which is more friendly to deep learning, to the final discrete solution.

generalization form of Sinkhorn, and its formulation can also
be regarded as a special case of Lawler’s QAP.

2.3 Deep Neural Network-based Learning

In computer vision, the seminal work [Zanfir and Sminchis-
escu, 2018] firstly adopts CNN for feature extraction to build
the affinity matrix K, followed by a differentiable (but fixed)
spectral solver [Leordeanu and Hebert, 2005] to approxi-
mately obtain the matching. Note in this network, only image
features can be learned via CNN while the structure informa-
tion is still hard to model and in fact poses persistent chal-
lenge as in learning-free methods. To solve this issue, graph
neural network (GNN) has become a important way to help
embed node structure information into graph node represen-
tation, especially for graphs of moderate size.

The work [Nowak et al., 2018] considers alignment be-
tween two identical graphs, with one graph distorted by
noise. GNN is used to extract node’s structural features and
Sinkhorn network [Adams and Zemel, 2011] is adopted as a
differentiable and fixed layer [Kosowsky and Yuille, 1994] to
solve the resulting linear assignment problem. The Sinkhorn
network has served as a building block in many combina-
torial learning pipelines by repeatedly performing row and
column-normalization until convergence. As shown in Fig. 3,
Sinkhorn algorithm turns a non-negative input matrix into a
doubly-stochastic one, as the convex hull of the final discrete
permutation matrix, which can be converted by the Hungar-
ian method [Kuhn, 1955]. The recent work [Wang ef al.,
2019a] combines the CNN and (cross-graph) GNN to extract
the local image features and the geometry information by the
formed graph, and a so-called permutation loss is devised by
the integration of the Sinkhorn layer and cross-entropy loss,
in contrast to the inner-product [Nowak et al., 2018] or re-
gression loss [Zanfir and Sminchisescu, 2018].

This idea is further improved in [Wang et al., 2019b;
Yu et al., 2020]: the former work proposes to directly perform
embedding on the association graph for matching, which cor-
responds to the most general Lawler’s QAP, instead of the
KB’s form in previous works. Also multi-graph matching
and hypergraph matching by edge embedding are both ful-
filled as an extension to [Wang et al., 2019al. In [Yu et al.,
2020], a Hungarian attention mechanism is devised to solve
the overfitting issue in permutation loss. Hungarian attention



computes a discrete matching result by Hungarian algorithm,
paying more attention on mismatched nodes and less on cor-
rect ones. They also develop a channel-independent edge em-
bedding technique to enhance graph feature extraction. [Li
et al., 2019] fuses information across graphs with attention
mechanism on GNN based embedding to measure the simi-
larity between graphs. [Fey et al., 2020] further proposes a
graduated refinement approach to ensure the local consensus
between graphs, in a salable way. Refer to Fig. 2 and Table 1
for illustration and comparison.

Finally, it shall be noted that it is the GNN (e.g. GCN)
rather than CNN that provides the capability for embedding
the graph structure into vectors in continuous space. Such
continuous embedding can either be used in graph structure
feature extraction [Wang et al., 2019a] or direct assignment
solution scoring that is performed on the association affinity
matrix [Wang et al., 2019b].

2.4 On Reinforcement Learning for GM

Using reinforcement learning (RL) for GM is still in its in-
fancy. The preliminary work [Liu, 2018] takes a progressive
matching strategy by matching one pair of nodes each time,
which naturally fits with the sequential decision paradigm in
RL. As an early work in RL for GM, its problem setting is
relatively simple: seeking the correspondence between two
graphs with no edge nor node attribute. Hence the desig-
nated reward is also simple: accounting for the binary struc-
tural consistency between a pair of two nodes without know-
ing the ground truth matching. Deep Q-learning is adopted
for training the neural Q-function whose input is multi-layer
node embedding by GNN in an unsupervised manner by us-
ing the above reward function. The hope is that the learned
Q-table and policy can well fit the specific graph data instead
of traditional heuristics. Experiments involve only synthetic
data with no testing on real-world data as the approach is rel-
atively elementary. So far there is still little work using RL
for GM [Wang et al., 2019d], which is worth further study.

2.5 Joint Graph Matching with Other Tasks

GM can also be jointly solved with other tasks, which can be
of practical importance. The tasks of social network align-
ment and link prediction can benefit each other and this idea
has been explored in [Du et al., 2019] via cross-network em-
bedding. In vision, the single image may contain repeated
objects/structures, and it is welcomed to solve graph cut and
matching in one-shot [Yu ef al., 2018]. In practical scenarios,
there can be different graphs hence clustering is needed for
meaningful matching within each cluster. Clustering-aware
multiple graph matching is developed [Wang et al., 2020]. In
the above latter two settings, cuts and clustering are also typi-
cal combinatorial problems, which pose further challenge for
a joint solution. We expect learning will be more frequently
used for solving more joint optimization tasks.

3 Conclusive Remarks for Graph Matching

Based on the above description, we try to give some conclu-
sive remarks on the transformation from classic methods to
learning-based ones in the following aspects:

3.1 What to learn?

Node-wise representation. Different from traditional GM
focusing on the combinatorial matching itself, learning can
provide more broad space to enhance the overall matching
pipeline. For visual object matching, image features can be
better extracted by learning CNN tailored to the matching
task which is ignored in the classic GM setting.

Edge-wise representation. For the established graphs, its
structure can also be effectively extracted by learning rather
than a fixed embedding procedure. For large-scale network,
shallow models e.g. network embedding methods like Deep-
Walk [Perozzi et al., 20141, struc2vec [Ribeiro et al., 2017]
are more popular than the GNN model, which is often used
in moderate size problem. The basic idea is to embed the ge-
ometric structure around the node into a unary embedding,
as such the NP-complete GM is reduced into a much easier
linear assignment problem.

Matching solver. In the previous learning methods [Zan-
fir and Sminchisescu, 2018; Wang er al., 2019al, the learning
is focused on the above feature representation part. While in
the more recent work [Wang er al., 2019b], it has been suc-
cessfully directly applied in decision part, i.e. scoring the as-
signment solution via embedding on the so-called association
graph whose weighted adjacency matrix is the affinity matrix
in two-graph matching (see the bottom row of Fig. 2).

3.2 How to learn?

The pipeline based on GNN with Sinkhorn net and cross-
entropy loss has been well developed and widely used (see
Table 1. In contrast, alternative methods receive less atten-
tion and still have not achieved comparable performance e.g.
RL approaches. In our analysis, the reasons are as follows:
GNN helps transform the problem into a linear assignment
task with embedding that can encode both second (or higher)-
order information, which otherwise need careful and costive
treatment in traditional methods [Yan et al., 2015b]. The
essential role for GNN in combinatorial problems has been
advocated in literature [Khalil et al., 2017]. Note that af-
ter Sinkhorn re-normalization, the output becomes a doubly-
stochastic matrix which can be regarded as a multi-class dis-
tribution hence the cross-entropy loss is a natural choice as
loss given ground truth. In this sense, the differentiable
Sinkhorn net plays a vital role in connecting the continuous
computing which is more friendly to GPUs and the decision
variables i.e. assignment matrix.

3.3 What is next?

We believe reinforcement learning has promising potential
in the more challenging multiple graph matching problems,
seeing its recent success in multi-object tracking, either by
deep networks [Ren er al., 2018], multi-agent [Rosello and
Kochenderfer, 2018] or both [Jiang er al., 2019b] to address
a similar data association problem. In particular, we would
like to emphasize that the two-graph matching setting in fact
has been largely solved by existing Sinkhorn net based learn-
ing methods, which involves turning the quadratic assignment
problem into the more easier linear assignment problem by
node embedding. Hence one may pay more attention to the
multi-graph case which is also very common in practice.



To our best knowledge, the only existing multi-graph
matching learning method [Wang et al., 2019b] is based
on GNN embedding, which suffers accuracy loss in feed-
forward computing as it uses the approximate spectral match-
ing to convert input two-graph matchings into global consis-
tent ones for final loss computing. Moreover, the spectral
layer is fixed and non-learnable, which limits the model ca-
pacity. How to devise more principled multi-graph matching
learning methods is challenging, and RL as well as multi-
agent reinforcement learning, may play a more important role
compared with that in two-graph matching.

Moreover, meta learning [Finn et al., 2017] can also be
of great potential for graph matching, as well as the gen-
eral QAP problems. It has shown in [Wang et al., 2019a]
that the learned model based on the KB’s form (especially
the CNN features) have some transferability across different
categories of objects. For more general Lawler’s QAP, one
way to enable such a transfer learning protocol might be in
[Wang er al., 2019b] directly taking the association graph in-
duced affinity matrix for embedding learning. Here the GNN
embedding differs fundamentally from the embedding on the
input graph, and the embedding model can be used to transfer
across different QAP tasks.

4 Further Discussion on CO and Outlook

Finally we discuss learning for CO in some interesting direc-
tions: 1) integration with traditional combinatorial solvers, ii)
integration with predictive models (a.k.a. stochastic combina-
torial optimization) and iii) developing reinforcement learn-
ing for CO. The first refers to the idea of how to reuse tradi-
tional solvers, especially for few-sample cases. The second
has practical impact for streamlining whole analytics systems
that involve both prediction and decision making. While we
believe the third one is a general methodology to explore the
complex problem structure in CO.

Fusing ML with Traditional CO Solvers. Although
many learning based works are shown above, the gap between
neural network and CO is still huge. On the one hand, directly
applying neural networks may produce unsatisfactory results
in many CO problems as their discrete nature pose particular
challenge to networks computed in continuous domain. On
the other hand, CO problems are strongly based on high-level
mathematical abstraction on real-world problems, with which
traditional solvers also suffer from the rigidity and expert
rules/heuristics, which has difficulty in modeling the physical
world in a generic way. Fusing traditional solvers and learn-
ing based methods seems an promising way to bridge com-
plex real world to the highly-abstracted CO problems, and to
combine the best of the two areas.

Neural network can be combined with, or integrated in, an
algorithmic solver to more effectively explore the algorith-
mic structure. The traditional solver is also a good teacher
for neural networks by certain means e.g. imitation learn-
ing, especially given few samples for training [Gasse ef al.,
2019]. Also, it is beneficial to incorporate traditional solvers
into a pipeline with flexibly placed neural networks for the
modeling of real-world problems. Recent work [Vlastelica et
al., 2020] has shown this can be fulfilled with differentiable

end-to-end learning by adopting deep networks for problem
modeling and traditional solvers to the modeled problem.

Fusing Predictive Model with CO. Many prediction mod-
ules for real-world problems, especially deep neural network
based models often issue deterministic point-level estimation
(e.g. regression or descritized classification output), and the
fixed estimation (without uncertainty interval) is then fed into
a CO engine for decision making. In fact, these two parts are
historically often separately devised. However, uncertainty is
ubiquitous in real-world problems where traditional CO re-
searchers have been working on the long-standing stochastic
operations research for decades [Dohi et al., 2007]. More-
over, with modern deep learning paradigms the continuous
valued network prediction can also be viewed as a probability
distribution. We believe a new learning paradigm by account-
ing for the uncertainty from prediction to decision is promis-
ing, corresponding to the related traditional learning-free area
i.e. stochastic operations research.

Embracing RL in CO. For one of the most important
research and application directions in CO, i.e. integer pro-
gramming, existing learning-based algorithms e.g. [Liu et
al., 2020; Gasse et al., 2019; Balcan et al., 2018] rarely con-
sider RL in their learning pipeline. Future research may in-
clude boosting the acceleration performance of CO solvers
by RL and explore problem-specific strategies. In particular,
branch-and-bound can be viewed as a Markov Decision Pro-
cess [Gasse et al., 2019]. In addition, learning acceleration
strategies for CO also naturally rise in the meta-learning set-
ting, where recent meta-learning advances can be explored
for the generalization-ability among relevant CO tasks in
combination with RL.
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