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Machine learning and statistical techniques are powerful tools for analyzing large amounts of medical and

genomic data. On the other hand, ethical concerns and privacy regulations prevent free sharing of this

data. Encryption techniques such as fully homomorphic encryption (FHE) enable evaluation over encrypted

data. Using FHE, machine learning models such as deep learning, decision trees, and naive Bayes have been

implemented for privacy-preserving applications using medical data. These applications include classifying

encrypted data and training models on encrypted data. FHE has also been shown to enable secure genomic

algorithms, such as paternity and ancestry testing and privacy-preserving applications of genome-wide

association studies.

This survey provides an overview of fully homomorphic encryption and its applications in medicine and

bioinformatics. The high-level concepts behind FHE and its history are introduced and details on current

open-source implementations are provided. The state of fully homomorphic encryption for privacy-preserving

techniques in machine learning and bioinformatics is reviewed, along with descriptions of how these methods

can be implemented in the encrypted domain.
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1 INTRODUCTION

Increasing access to big data continues to transform medicine. The cost of genome sequencing
has reduced dramatically, leading to the proliferation of commercial personalized genetic analysis
and enabling large-scale genome sequencing for genetic research, and hospitals collect far more
data on patients than clinicians are able to examine. Machine learning techniques harness the
power of this data by learning rules from data sets too large or complex for any human to analyze.
Transformational applications in clinical medicine include prognosis models trained over massive,
many-featured data sets, interpretation of medical imaging, and generation of differential diagnoses
[47, 163].
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Machine learning on genomic andmedical data requires careful consideration of privacy concerns.
A breach in the privacy of medical data can have negative consequences for an individual, leading
to the passage of laws such as the Health Insurance Portability and Accountability Act (HIPAA) in
the United States [94] and the General Data Protection Regulation (GDPR) in the European union
[1].
Commercial genomic analysis opens the door to both privacy and civil liberties concerns. The

United States federal government and all 50 states allow the creation of DNA databases and admit
DNA evidence in courts [196]. This data can affect not just the individual, but also relatives with
whom an individual shares DNA [47]. Remarkably, the notorious łGolden State Killer,ž accused of
a series of decades-old murders in California, was arrested in 2018 after law enforcement used a
commercial genealogy website to locate relatives of the suspect using crime scene DNA. These
methods raise concerns over the impact such powerful tools could have on the general population
[133].
Privacy-preserving techniques for computation and machine learning can reduce the risk to

patients who choose to share their data for personalized medical analysis. Encryption enables
patients to secure and prevent third parties from analyzing their data. While traditional encryption
does not generally allow for computation over encrypted data points, fully homomorphic encryption
(FHE), described as the łholy grailž of cryptography, enables arbitrary computation over encrypted
data [100, 200]. This opens the door to privacy-preserving applications of computational techniques
such as machine learning and statistical analysis to genomic and medical data and outsourcing of
computation.
This work provides a broad overview of FHE, its history, current techniques and open-source

implementations, and the state-of-the-art in applications of FHE for machine learning and statistical
analysis in the medical field. In contrast, previous surveys provide overviews of FHE schemes for
mathematicians [102, 190, 200] or engineers [150]. One 2015 survey focuses on genomic applications
[20, 160], and another on the state of fully homomorphic encryption research [16], thoughmany new
techniques and applications have been presented since its publication . A recent survey provides an
overview of FHE but is not focused on applications [6]. Other recent surveys discusses applications
of secure outsourced computation more generally [187, 204], while this survey focuses instead on
specifics of HE for applications in the medical field. Additional surveys focus on HE for signal
processing [8, 139], hardware implementation [156], theory [17, 117], and lattice cryptography
[166].
This survey is targeted towards all who are interested in privacy-preserving techniques in the

medical field using fully homomorphic encryption. This includes clinicians, computer scientists,
engineers, developers, graduate students, and anywith some background in encryption, genomics, or
machine learning. It seeks to introduce readers to the high-level concepts behind fully homomorphic
encryption and familiarize readers with terms, definitions, and schemes necessary to begin applying
FHE. A detailed summary of currently available open-source implementations of FHE is given.
Applications of FHE for privacy-preserving machine learning in medicine and bioinformatics
are reviewed, and methods for performing these privacy-preserving techniques are summarized.
This survey gives a comprehensive overview of the applications of FHE in for machine learning
in medicine. In particular, details are provided on how to implement privacy-preserving logistic
regression, naive Bayes, decision tree, neural networks, and unsupervised learning using FHE. In
addition, privacy-preserving methods for DNA/RNA sequence comparisons, Hamming and edit
distance, genetic testing, and statistical tests for performing genome-wide association studies are
reviewed.
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Fig. 1. Under an additive homomorphism, encryption followed by homomorphic addition is equal to addition
followed by encryption.

1.0.1 Organization. Section 2 discusses the history of homomorphic encryption, defines the related
terminology, and discusses schemes and techniques in the field. Section 3 provides an overview
of open-source FHE libraries and implementation tools. Section 4 surveys the current status of
homomorphic encryption for privacy-preserving machine learning in medicine. Section 6 discusses
applications of FHE in privacy-preserving bioinformatics algorithms.

2 HOMOMORPHIC ENCRYPTION

Cryptography was originally developed as a technique for secure communication between multiple
parties, where one party encrypts a message and sends it to another party, who then decrypts it [200].
The concept of computing over encrypted data was first introduced as a łprivacy transformationž by
Rivest, Adleman, and Dertouzos in 1978 and developed into the study of homomorphic encryption
today [175]. Broadly, homomorphic encryption enables computation over encrypted data. A scheme
called additively (or multiplicatively) homomorphic if

[x] ⊕ [y] = [x + y] and [x] ⊗ [y] = [x · y]

for addition and multiplication, respectively, where [m] denotes the encryption of some plaintextm.
The symbols ⊕ and ⊗ respectively denote the homomorphic addition and multiplication operations
in the ciphertext space. In other words, if an encryption scheme is additively homomorphic, then
encryption followed by homomorphic addition is equal to addition followed by encryption, a
concept illustrated in Figure 1.
A partially homomorphic encryption (PHE) scheme can perform a single operation, such as

addition or multiplication, over encrypted data an arbitrary number of times. ElGamal [91] and RSA
[176] are multiplicatively homomorphic, although versions of RSA with improved security tend
to lose this capability [200]. Goldwasser and Micali’s quadratic reciprocity scheme [112, 113] and
subsequent improvements [24, 25, 158, 164] led to Paillier’s additively homomorphic encryption
scheme [165], one of themost well-knownHE schemes [93]. Other PHE schemes include adaptations
of Paillier [79, 80, 96] and some lattice-based schemes [9, 109, 173].

While PHE allows for arbitrary computation of a single operation on encrypted data, somewhat
homomorphic encryption (SHE) allows for bounded computation of a set of operations. For instance,
the somewhat homomorphic BGN encryption scheme can perform unlimited homomorphic addition
and a single homomorphic multiplication operation [31].
Fully homomorphic encryption (FHE) enables arbitrary addition and multiplication over en-

crypted data. Because arbitrary functions can be described as Boolean circuits, an encryption
scheme that can compute addition and multiplication can theoretically evaluate any function

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0000.
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[166]. Schemes that can perform homomorphic operations over a circuit of some pre-defined depth
are called leveled homomorphic encryption (LHE) schemes. In practice, considerations such as
execution time, ciphertext noise accumulation, key sizes, ciphertext sizes, and circuit depth limit
the class of functions that can be practically computed using FHE/LHE.
The first fully homomorphic scheme was published by Craig Gentry in his 2009 thesis [98, 99].

The introduction of Gentry’s revolutionary FHE scheme quickly led to a series of improvements that
laid the foundation for a wealth of future work. This development has been categorized in multiple
ways. Fully homomorphic encryption schemes have been sorted according to their theoretical
underpinnings.

Peikert categorizes FHE schemes into three generations of research [166]. First-generation FHE
schemes are based on Gentry’s initial breakthrough, with security based on ad-hoc average-case
assumptions about ideal lattices or the approximate GCD problem, while second-generation FHE
schemes are based on learning with errors (LWE) and ring learning with errors (RLWE). He describes
third-generation FHE as marked by practical improvements and further refinement of security
assumptions. Additional works follow Peikert’s blueprint [117]. Acar et al. [6] and Martins et
al. [150] describe four categories of FHE schemes: those based on ideal lattice assumptions, the
approximate GCD problem, (R)LWE, and NTRU-like assumptions [6].
FHE research has continued rapidly past Peikert’s third generation of schemes. The current

generation of FHE research is marked by a focus on open-source implementations, real-world
applications, and standardization of methodology and security requirements. The Homomorphic
Encryption Standardization Consortium1 has described contemporary FHE as being based in
three models of homomorphic computation: Boolean circuits, modular (exact) arithmetic, and
approximate number arithmetic [67]. This section provides a high-level overview of the develop of
fully homomorphic encryption.

2.1 Gentry’s Breakthrough

Gentry’s breakthrough scheme is built upon an abstract algebra construct called a lattice [166]. He
begins by constructing a somewhat homomorphic encryption scheme that is able to homomorphi-
cally compute low-degree polynomials. Each homomorphic evaluation adds noise to a ciphertext,
and the eventual accumulation of too much noise results in an undecryptable ciphertext.

Gentry handles noise by introducing bootstrapping, which reduces the rate of noise accumulation
in ciphertexts. A bootstrappable SHE scheme is able to handle its own decryption function. A
noisy ciphertext is double-encrypted, then łhomomorphicallyž decrypted using an encryption of
the private key. To illustrate, Gentry compares bootstrapping to a locked glovebox, where the
glovebox represents encryption, the lock represents the decryption key, and manipulation of items
in the box using the gloves represents homomorphic evaluation [100]. Noise accumulation is
symbolized by the gloves developing defects from use. When the gloves become defective the
original box and its key are placed inside of a second locked glovebox, where it can be unlocked.
Object manipulation continues inside of the second glovebox. Implementing the fully homomorphic
properties of Gentry’s original scheme is impractical largely due to the computational cost of
bootstrapping.
Gentry’s bootstrapping method blazed the trail for the first wave of rapid innovation in FHE

[159]. A FHE scheme introduced by Smart and Vercauteren has smaller key and ciphertext sizes, and
a SHE version of the scheme was implemented [191]. However, Cramer et al.’s 2016 key-recovery
attack compromises this system’s security assumptions [73]. Additional variants follow Gentry’s
blueprint [101, 103, 193]. Gentry and Halevi provided the first full implementation of Gentry’s FHE

1https://homomorphicencryption.org/
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Fig. 2. From left to right, multiple values are embedded within a single vector. A single operation simultane-
ously manipulates each value. Slot permutation re-orders the values within the vector.

scheme [104]. In this implementation, a single bootstrapping operation takes up to 30 minutes to
run. An implementation on a GPU yielded faster run times but is still impractical for real-world
deployment [202].
In another work, Smart and Vercauteren describe an SHE scheme that supports SIMD (Single-

Instruction Multiple-Data) operations, enabling parallelization in FHE via ciphertext packing [192].
SIMD instructions parallelize computation by encoding multiple plaintext values within a single
ciphertext vector. Ciphertext packing can be used for batch computation in many FHE schemes.
Additional usages permute the plaintext slots inside of a packed ciphertext, enabling, for instance,
evaluation speedups [107]. These concepts are illustrated in Figure 2. From left to right, multiple
values embedded within a vector can be processed via a single instruction, and their slots may be
permuted.

2.2 New Theoretical Underpinnings

After Gentry’s introduction of an FHE scheme rooted in ideal lattice-based assumptions, a new
wave of innovation yielded FHE schemes with different theoretical underpinnings [166]. In one
category, security is based on the learning with the errors (LWE) [173] and ring learning with errors

(RLWE) [147] assumptions. In the second category, security is based on the approximate-GCD
problem [126]. Another category of schemes are based on NTRU-like assumptions [124].

2.2.1 R/LWE: BGV Encryption. A series of papers Brakerski and Vaikuntanathan published in
2011 present schemes based on LWE and ring-LWE that follow the SHE-bootstrap-FHE model
[40, 41]. Their initial SHE scheme, based on LWE, is turned into a FHE scheme using their modulus
reduction and dimension reduction techniques. These reduce parameter sizes of the ciphertext,
making decryption independent from the number of levels the scheme can evaluate. Modulus
reduction changes themodulus used during encryption to a smaller value while dimension reduction
reduces the dimension of the ciphertext.
Joint work with Gentry followed that resulted in the Brakerski-Gentry-Vaikuntanathan (BGV)

scheme [39, 43]. BGV removes the need for expensive bootstrapping procedures using techniques
such as modulus reduction in order to mitigate noise growth during homomorphic evaluation.
Bootstrapping is left as an optional optimization procedure. Without bootstrapping, modulus
reduction yields a leveled homomorphic encryption scheme (LHE) that can handle noise up to a
pre-specified circuit depth. Further work on BGV encryption incorporates the batching technique
of Smart and Vercauteren in BGV [105, 107] and simpler bootstrapping techniques [106]. Gentry,
Halevi, and Smart implement BGV-based LHE to evaluate an AES circuit, the first homomorphic
evaluation of a complex circuit [108].

2.2.2 R/LWE: BFV Encryption. Fan and Vercauteren’s 2012 scheme follows the SHE-bootstrap-FHE
framework [92]. It is a modification of a łscale-invariantž scheme introduced by Brakerski that does

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0000.



0:6 Wood et al.

not require modulus switching [38]. Because of this, it is commonly referred to as the Brakerski-
Fan-Vercauteren (BFV) or the Fan-Vercauteren (FV) scheme. Fan and Vercauteren port Brakerski’s
LWE scheme to the ring-LWE setting and implement SIMD for batch computing. They introduce
two variants of this scheme. The first minimizes error that occurs due to noise accumulation, and
the second method reduces the time and space used during computation using techniques similar
to modulus-switching methods.

2.2.3 Approximate-GCD Based Schemes. In 2010, van Dijk et al. presented their DGHV scheme
[84], with security based on the approximate greatest common divisor (GCD) problem [126]. This
scheme follows Gentry’s SHE-bootstrap-FHE blueprint. A subsequent optimization reduces the
public key size in DGHV [70]. Further improvements include an extension to batch FHE [55, 68]
and more efficient key-reduction and bootstrapping techniques [69]. The bootstrap-free framework
of the BGV scheme is extended to the DGHV scheme via a new modulus-switching technique [71].

2.2.4 NTRU-Like Assumptions. Stehle and Steinfield’s 2011 work introduces a modification of an
encryption scheme called NTRUEncrypt [124] that makes it as secure as worst-case problems over
ideal lattices [194]. López-Alt et al. use the homomorphic properties of NTRUEncrypt to propose
the LTV scheme, the first FHE scheme based on NTRU-like assumptions [145]. Rohloff and Cousins
introduce another NTRU-like FHE cryptosystem with modified bootstrapping techniques and
ciphertext representations [177]. Further customization of the LTV scheme is presented by Doröz
et al [85], and YASHE, or łyet another somewhat homomorphic encryption schemež [34], removed
some non-standard assumptions from LTV. However, despite initial promise, Albrecht et al. present
attacks on some of the łoverstretchedž security NTRU-like security assumptions used in LTV and
YASHE [11].

2.3 Practical Improvements

From 2012 into 2013 marked the beginning to what Peikert terms the łthird generationž of FHE,
which introduced new internal methods used within the schemes [26, 166]. In this new wave,
practical improvements simplify and raise the efficiency of FHE schemes [13, 41, 110] and the first
open-source FHE implementations are released [72, 183].

2.3.1 R/LWE-Based Encryption. Gentry, Sahai, andWaters published a FHE scheme in 2013, known
as the GSW scheme, that is based on LWE and does not require key-switching [110]. The GSW
scheme is foundational to a number of following schemes and provides a Boolean circuit-based
approach to FHE. This method reduces homomorphic multiplication in most cases to matrix
multiplication and introduces the approximate eigenvector method of constructing an FHE scheme.
Brakerski and Vaikuntanathan apply modulus and dimension reduction to GSW to obtain a leveled
FHE scheme [42]. Alperin-Sheriff and Peikert introduce faster bootstrapping [13], which is then
applied by Hiromasa et al. to a variant on GSW that encrypts matrices and supports homomorphic
matrix addition and multiplication [123].

2.3.2 Approximate-GCD Based Encryption. Cheon and Stehlé introduce a decision variant on the
approximate-GCD problem that is at least as hard as the LWE problem, as well as a (non-batched)
variant of the DGHV scheme with security based on this new reduction [60]. Benarroch et al.
present two more schemes [26]. One of their LHE schemes is non-batched with security based on
the approximate-GCD decision problem. The other is a batched scheme with security based in part
on the batched approximate-GCD decision problem.

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0000.
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2.4 Implementation & Standardization

The current generation of research is marked by a shift towards real-world, open-source imple-
mentation and standardization of FHE methods and security. Technical improvements yielded an
assortment of open-source software libraries, which are discussed in Section 3.
Prompted in part by this rapid innovation, starting in 2017 a consortium of experts from the

government, industry, and academia formed the Homomorphic Encryption Standardization Con-
sortium2 and began holding regular workshops to create a community standard for HE. These
workshops led to the development of a Homomorphic Encryption Standard in 2018 [12]. This
standard outlines the security assumptions used in major FHE applications, possible attacks, and
recommends security parameters for implementations.

The Consortium has described contemporary FHE as being based in threemodels of homomorphic
computation: Boolean circuits, modular (exact) arithmetic, and approximate number arithmetic [67].
The modular (exact) arithmetic approach follows from the groundwork laid in second-generation
FHE by R/LWE-based schemes, notably BGV [39] and BFV [38, 92]. This leveled approach evaluates
arithmetic circuits over values encrypted modulo an integer t , with optional bootstrapping. Recent
developments include residue number system (RNS) variants of BFV, which provide speedups
for modular arithmetic operations [21, 22, 118]. Improvements to the plaintext space in the BFV
scheme allows for homomorphic evaluation of deep circuits with rational number inputs [140] and
improved bootstrapping techniques [54].
The Boolean circuit-based approach towards FHE evaluates Boolean circuits over encrypted

bits. The major schemes following this approach are known as FHEW and TFHE. Ducas and
Micciancio’s Fasted Homomorphic Encryption in the West (FHEW) scheme [88] introduces a ring
variant of Alperin-Sheriff and Peikert’s [13] bootstrapping for the GSW scheme [110] and a new
homomorphic NAND gate. Bootstrapping runs in less than a second after evaluation of this NAND
gate on a single bit. Another Boolean circuit-based scheme, Fast Fully Homomorphic Encryption
Over the Torus (TFHE) [64], extends the GSW scheme [110] and encodes polynomials over the torus
and evaluates over Boolean circuits [61]. Their techniques also apply to the FHEW cryptosystem.
Recent developments include improved bootstrapping methods for TFHE [62, 63], expansion of the
bootstrapping operation in FHEW to multiple bits [28, 32], multi-value bootstrapping for TFHE and
FHEW [49], and refreshing of multiple ciphertexts at the cost of a single refresh procedure [151].

The approximate number arithmetic approach is led by the Cheon-Kim-Kim-Song (CKKS) scheme,
also known as Homomorphic Encryption for Arithmetic of Approximate Numbers (HEAAN) [197].
This paper refers to the scheme itself as CKKS and uses HEAAN to refer to the eponymous software.
Evaluation of an approximate circuit over a ciphertext returns an approximation rather than an
exact result. These approaches are suited for fast polynomial approximation and floating point
computations. Fast polynomial approximation in CKKS can evaluate the multiplicative inverse,
exponential, and logistic functions, as well as the discrete Fourier transform [197]. Additional works
provide bootstrapping improvements [52, 56] and RNS variants [29, 57, 184].
Additional developments include a somewhat homomorphic variation on the GSW scheme

presented byGenise et al. [97]. This scheme uses an inhomogeneous variant of the NTRU assumption
(iNTRU) for security, a stronger assumption than LWE. This scheme evaluates encrypted, non-
deterministic finite automata more efficiently than other existing schemes. Boura et al. present a
unifying framework called Chimera that combines the best aspects of the BFV, CKKS, and TFHE
schemes [36]. This framework enables switching between the plaintext spaces of the three schemes
and describes a collection of bridges to connect the schemes.

2https://homomorphicencryption.org/
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Table 1. Fully Homomorphic Encryption Libraries and Software

Product Creator Language License Summary

SEAL [185] Microsoft C++ MIT Widely-used FHE library that imple-

ments BFV for modular arithmetic

and CKKS for approximate arith-

metic.

HElib [72] IBM C++ Apache-2.0 Widely-used FHE library that imple-

ments BGV for modular arithmetic

and CKKS for approximate arith-

metic.

TFHE [64] Gama et al. C++ Apache-2.0 Implements an optimized ring variant

of the GSW scheme.

HEAAN [127] CryptoLab, Inc. C++ CC-BY-NC-

3.0

Implements the CKKS approximate

number arithmetic scheme.

PALISADE [2] New Jersey

Institute of

Technology

C++ BSD-2-

Clause

Lattice cryptography library that sup-

ports multiple protocols for FHE, in-

cluding BGV, BFV, and StSt.

Λ ◦ λ [75] E. Crockett &

C. Peikert

Haskell GPL-3.0-only Pronounced ‘LOL.’ Implements a BGV-

type FHE scheme.

Cingulata [50] CEA LIST C++ CECILL-1.0 Compiler & RTE for C++ FHE pro-

grams. Implements BFV and supports

TFHE.

FV-NFLlib [78] CryptoExperts C++ GPL-3.0-only Implements FV scheme. Built on the

NFLLib lattice cryptography library.

Last updated 2016.

Lattigo [5] Laboratory for Data Security Go Apache 2.0 Implements BFV and HEAAN in Go.

3 IMPLEMENTING FULLY HOMOMORPHIC ENCRYPTION

The current generation of FHE research has led to efficient, publicly available FHE libraries and
software. These libraries continue to develop with respect to cutting-edge FHE research and the
recently drafted community standards for homomorphic encryption [198]. While FHE continues
to rapidly increase in efficiency, implementation presents a continuing challenge for non-experts.
Implementations must be custom-built, requiring a high level of expertise both as a programmer
and as a cryptographer. For example, conversions between plaintext and ciphertext computations
are not trivial, noise must be carefully managed to maintain correctness upon decryption, and
security parameters must be selected manually [77]. Some early compilers and tools have been
introduced to make FHE more approachable and widely usable [4, 50, 167].
An discussion of the major implementations, compilers, and FHE tools is given below. Table

2 provides an overview of the implementations, including the name of the software, its creator,
language, license, and a short summary of the implemented schemes.

Microsoft’s Simple Encrypted Arithmetic Library (SEAL). The Simple Encrypted Arithmetic Library
(SEAL)3 is a popular homomorphic encryption library developed and maintained by researchers in

3https://github.com/Microsoft/SEAL

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0000.



FHE for Machine Learning 0:9

the Cryptography Research Group at Microsoft Research since 2015. SEAL is self-contained and
developed in C++, and includes a .NET wrapper [186]. SEAL has undergone changes in terms of
the underlying encryption scheme since 2015. Early implementations of SEAL used a variant on
the YASHE scheme [34]. Version 3.3 of SEAL [186] implements the BFV and CKKS schemes. SEAL
3.3 was released in June of 2019 and is available on Microsoft’s website [186]. Intel AI has used
SEAL’s implementation of the CKKS scheme in the Intel HE transformer for nGraph (nGraph-HE)4,
a homomorphic backend to Intel’s graph compiler for artificial neural networks [30].

IBM’s Homomorphic Encryption Library (HElib). Shai Halevi and Victor Shoup are creators of the
Homomorphic Encryption Library (HElib)5, another popular FHE library that implements versions
of the BGV and CKKS [119]. HElib is implemented in C++ and requires the NTL mathematical
library [189]. HElib began with an implementation of the BGV scheme. Re-implementation led
to significant speedups in March of 2018, and in January of 2019 HElib began to support an
implementation of CKKS. HElib is available on Github [72].

Fast Fully Homomorphic Encryption over the Torus (TFHE). Fast Fully Homomorphic Encryption
over the Torus (TFHE)6 is an open-source C/C++ software for FHE available on Github [64]. It is
designed around an earlier library, The Fastest Homomorphic Encryption in the West (FHEW),
which is no longer maintained[88, 89]. This implementation enables homomorphic evaluation
of Boolean circuits on single-bit messages. FHEW requires the Fastest Fourier Transform in the
World (FFTW) library [95]. TFHE implements a ring variant of GSW [110] with optimizations
[61, 62, 88]. The CUDA-accelerated Fully Homomorphic Encryption Library (cuFHE)7 implements
TFHE on CUDA-enabled GPUs in C++ [116]. It includes an optional Python wrapper. Another
library, NuCypher fully homomorphic encryption (NuFHE)8, written in Python, implements TFHE
using CUDA and OpenCL [162].

HEAAN. The Homomorphic Encryption for Approximate Numbers (HEAAN) library9 implements
the CKKS scheme [127]. HEAAN is written in C++ and uses the NTL library [189]. Since its release in
2016, HEAAN has seen speed improvements including the addition of bootstrapping [57]. HEAAN
is available on Github [127].

PALISADE. PALISADE10 is a C++ library created by the New Jersey institute of Technology (NJIT)
that uses lattice cryptography primitives to support public-key encryption, several SHE and leveled
SHE schemes, proxy re-encryption (PRE), and other multiparty capabilities [170]. PALISADE 1.5.0
was released in March 2019 and is available on GitLab. PALISADE implements versions of a variety
of HE schemes: LTV [145], Stehle-Steinfeld (StSt) [194], BGV [39], and BFV [92], and PRE schemes
[170]. The authors include LTV for historical purposes, as the scheme itself is no longer considered
secure [170].

Λ ◦ λ (LOL). The Λ ◦ λ: Functional Lattice Cryptography (‘LOL’) library11 is a general lattice
cryptography library that includes an implementation of a BGV-type FHE scheme [76]. Λ ◦ λ is
implemented in Haskell and provides methods for high-level implementation of lattice cryptography
primitives, including a BGV-type FHE scheme.

4https://github.com/IntelAI/he-transformer
5https://github.com/homenc/HElib
6https://github.com/tfhe/tfhe
7https://github.com/vernamlab/cuFHE
8https://github.com/nucypher/nufhe
9https://github.com/snucrypto/HEAAN
10https://palisade-crypto.org/software-library/
11https://github.com/cpeikert/Lol
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A Language and Compiler for Homomorphic Encryption Made easY (ALCHEMY) compiles
plaintexts written in a modular domain-specific language with Λ ◦ λ implemented on the backend
[77, 167]. The ALCHEMY compiler is able to simplify the implementation process for users by
automatically generating many of the parameters.

Cingulata. Cingulata12 (pronounced ‘tchingulata,’ formally Armadillo) is a compiler toolchain and
runtime environment for C++ FHE programs [50]. It provides a high-level C++ interface for FHE
applications over a ‘low-level’ implementation of the scheme. Initially Cingulata supported the
BFV scheme. In June 2019, support was added for TFHE in gate bootstrapping mode. Cingulata is
available on Github [50].

(FV-)NFLlib. FV-NFLlib13 implements the FV scheme in C++ [78]. FV-NFLlib is available on Github
and was last updated in 2016.

Lattigo. Lattigo14 is recently published lattice-based cryptographic library in Go [5]. It implements
a number of schemes, including versions of BFV [21, 118] and HEAAN [57, 197]

3.1 Other Homomorphic Encryption Libraries

Pyfhel (PYthon For Homomorphic Encryption Libraries) implements homomorphic encryption
techniques in Cython using SEAL, HElib, and PALISADE as backends [3]. PySyft is a Python library
that implements a variety of privacy-preserving techniques, including homomorphic encryption
[180]. Additional libraries implement partially homomorphic encryption and somewhat homomor-
phic encryption. The PythonPaillier library implements the partially homomorphic Paillier scheme
in Python 3 [81]. The CUDA Homomorphic Encryption Library (cuHE) provides a GPU-accelerated
implementation of the somewhat homomorphic DHS scheme [85]. The Awesome Homomorphic

Encryption List15 is an online resource that is periodically updated with new and developing FHE
libraries.

4 PRIVACY-PRESERVING ARTIFICIAL INTELLIGENCE IN MEDICINE

Big data continues to transform medicine by improving prognostic models, aiding clinicians in
interpretation of clinical data, and improving diagnostic accuracy [163]. However, health data is
highly sensitive and sharing or obtaining medical data is challenging due to privacy regulations
such as HIPAA [114]. Cloud computing has great potential in the medical field in applications
such as personal health monitoring tools, but strict privacy regulations have slowed adoption of
such technologies [137]. As fully homomorphic encryption becomes increasingly practical and
standardized, its applications for artificial intelligence in the medical domain have grown.

Privacy-preserving machine learning broadly describes a variety of frameworks for training and
classification of sensitive data. These methods can take place between multiple parties that can
include the data owner(s), model owner(s), and cloud server(s). Computation can be delegated to
the cloud server, which performs some computation over a client’s encrypted data. The (encrypted)
result is returned to the client, who then decrypts to privately view her result. Privacy-preserving
machine learning has applications in personalized medicine [152, 153], DNA sequence analysis
[20], and diagnostic tools [137]. Possible models include:

(1) Private outsourced computation: A medical institution uses homomorphic encryption to
privately outsource computation-intensive tasks to a cloud server.

12https://github.com/CEA-LIST/Cingulata
13https://github.com/CryptoExperts/FV-NFLlib
14https://github.com/ldsec/lattigo
15https://github.com/jonaschn/awesome-he

ACM Comput. Surv., Vol. 0, No. 0, Article 0. Publication date: 0000.



FHE for Machine Learning 0:11

Fig. 3. A privacy-preserving classification model. A user encrypts her private medical data and uploads it to
some cloud computing service. Researchers encrypt their trained model parameters under the same public
key and upload to the cloud, which performs the required computation for privacy-preserving classification.
This result is then returned to the user, who decrypts with her private key.

(2) Private prediction: A client classifies her data using a model owner’s trained model without
direct access to the trained model and without giving the model owner any partial information
about her data. An intermediary cloud server may be used for outsourcing storage and
computation. An example of this model is seen in Figure 3. This model assumes no collusion
between the client and the server.

(3) Private training: A cloud server trains a classification model on clients’ encrypted data.

Private prediction is a major application for FHE techniques [35]. This scenario has applications in
health care as well. Clinicians, for instance, could use outside, private diagnostic prediction tools to
classify their patients based on their private medical records.
Additional methods develop models of information without specific knowledge of individual

data records using different methods [7]. Secure multiparty computation (MPC) techniques such
as collaborative learning, private set intersection, Yao’s garbled circuits [205], and secret-sharing
can be used for this task. Some models focus on the problem of multiple parties jointly training
a classifier that is revealed to parties, without sharing individual data points [44, 143, 199]. This
model can be useful in the medical field when multiple hospitals wish to jointly train a model
over sensitive patient data that must remain confidential. Differential privacy, on the other hand,
enables responses to queries from a database with protection from re-identification [90]. Models
and classifiers can be constructed from these query responses with a bounded amount of data
leakage regarding each data point [35].

This section focuses on applications of homomorphic encryption for privacy-preserving machine
learning techniques. The reviewed methods are logistic regression, Naive Bayes, decision tree
evaluation, support vector machine, neural networks, and unsupervised clustering. An overview of
each method is provided along with techniques for homomorphic implementation.

4.1 Logistic Regression

Logistic regression is a popular method for statistical learning that models two or more outcomes
using a logistic function. Logistic regression is widely used in the medical community to predict
binary outcomes such as whether a patient needs treatment or not, or whether a condition is present
or not [120]. It has been used in applications such as assessing treatment of diabetic patients [27].
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Logistic regression models uses linear functions to model the posterior probabilities of the classes.
Given a set of points {1, x1, x2, . . . , xn}, where xi ∈ R

d , and binary classes {−1, 1}, the model takes
the form

Pr(Y = −1|X = x) =
1

1 + e−β
T x
.

where β is a weight vector and Pr(Y = 1|X = x) = 1 − Pr(Y = −1|X = x). Training a logistic
regression model involves learning the parameter set β .

Training a Logistic Regression Model. The parameters in a logistic regression model can be learned
using maximum likelihood estimation. Let pyi (xi ; β) = Pr(Y = yi |X = x). The log-likelihood for N
observations with binary class labels is given by

ℓ(β) =

N
∑

i=1

logpyi (xi ; β) =

N
∑

i=1

(

yiβ
Txi − log

(

1 + eyi β
T xi

))

where yi ∈ {−1, 1}. The log-likelihood can be maximized in multiple ways. Newton’s method
approximates the zeros of the gradient of ℓ with iterative updates to

βk+1 = βk −
∇β ℓ(β)

∇2
β
ℓ(β)
.

Gradient descent minimizes a cost function C by moving in the direction of the gradient, the
steepest descent. It iteratively calculates βk+1 = βk − γk∇C(β), where γk is the learning rate at
iteration k . In the case of logistic regression the cost function is given by the negative log likelihood.
Calculating the gradient −∇β ℓ(β) of the negative log likelihood yields the iterative formula

βk+1 = βk + γk

N
∑

i=1

(1 − σ (βTx))yixi (1)

where σ is the sigmoid function, σ (x) = 1/(1 + exp(x)).

Training on Encrypted Data. In 2017, the Center for Integrating Data for Analysis, Anonymization
and Sharing (iDASH) held a competition at its annual iDASH Privacy and SecurityWorkshop calling
for methods to train a logistic regression model over encrypted data using HE 16. The winning
team used HEAAN to train the model [135].

Training logistic regression models on encrypted data requires HE-friendly modifications to the
optimization function. The training methodology should require the least number of iterations for
convergence possible due to the expense of homomorphic computation. Kim et al. use Nesterov’s
accelerated gradient [161], which converges faster than standard gradient descent, to learn the
parameter set in their winning algorithm [135]. Nesterov’s gradient descent adds a parameter ν
that looks further ahead each iteration in order to avoid overshooting minima. It is given by

βk+1 = νk − γk∇ℓ(β)

νk+1 = (1 − αk )βk+1 + αkβk

where αk ∈ (0, 1) is a smoothing parameter. The authors approximate the sigmoid σ over the
domain [−8, 8] with polynomials of degree 3, 5, and 7. They also introduce an improved method to
encrypt a matrix within a HEAAN ciphertext. In this way, the entire data set {x1, . . . , xN }, where
xi = (xi1, . . . , xid ), can be encoded within a single matrix x = (xi j )1≤i≤n,1≤j≤d . The weights βk are
encoded in a matrix n times, where each row represents a copy of βk . The server can then compute
Equation 1 using a polynomial approximation of sigmoid.

16iDASH Security & Privacy Workshop 2017. http://www.humangenomeprivacy.org (accessed August 21, 2019).
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Other approaches to learning logistic regression parameters over encrypted data implement
a variety of techniques. Bonte and Vercauteren use Newton’s method combined with a Hessian
approximation in FV-NFLib [33]. They use a Taylor series approximation in place of the sigmoid
function. Crawford et al. approximate the log-likelihood with a Taylor expansion and evaluate a
closed-form formula approximation of the logistic regression parameters using HElib [74]. Blatt
et al. approximate the sigmoid function with Chebyshev polynomials for an implementation of
logistic regression in PALISADE along with a custom variant of the CKKS scheme [29]. Carpov
et al. perform logistic regression over data encrypted using TFHE and HEAAN [48]. Additional
methods use HElib [201] and gradient descent with a minimax approximation for the sigmoid in
SEAL [53]. An earlier method presented by Aono et al. in 2016 trained a logistic regression model
using additive HE [15]. However, due to the limitation of encrypted computation to addition, the
client is required to perform initial and intermediary plaintext computations.

4.2 Naive Bayes

When diagnosing a patient, clinicians often search for conditionally independent attributes that
may be indicative of a disease [132]. Naive Bayes is a well-known classifier that assumes indepen-
dence between data features. The result is a transparent and understandable classification method
that frequently outperforms more sophisticated methods [120]. In medical applications, Naive
Bayes has outperformed more sophisticated diagnosis systems, including localization of a primary
tumor, prediction of recurrence of breast cancer, and rheumatological diagnosis [138], as well as in
applications predicting heart disease [132].
Given a set of classes Y and a sample X , Bayes Theorem states that

Pr(Y = Yi |X ) =
Pr(X |Y = Yi ) Pr(Y = Yi )

Pr(X )
.

In this formula, Pr(Y = Yi |X ) represents the posterior probability of a class given an attribute and
Pr(X |Y = Yi ) is the likelihood of an attribute given a class. The classification of a vector X is given
simply by taking the maximum posterior probability over all classes and applying Bayes’ Theorem:

Ŷ = argmax
Yi ∈Y

[Pr(Y = Yi |X )] = argmax
Yi ∈Y

[

Pr(Y = Yi )

d
∏

j=1

Pr(X = X j |Y = Yi )

]

.

The denominator term Pr(X ) can be omitted in the equation above because X is fixed.

4.2.1 Private Naive Bayes Classification. Bost et al. present a privacy-preserving method for naive
Bayes classification [35]. In their model, a client learns the classification of her data pointX without
learning any partial information about the classification model or giving away any information
about her input. The model’s learned parameters are uploaded to a cloud server in encrypted form.
Assume each vector X has d features, each of which can take on a finite number of possible

values. Continuous data can be quantized to satisfy this assumption. The authors formulate the
trained Naive Bayes model as two tables. The table P = (Pi ), where Pi = Pr(Y = Yi ), provides
the probability of class Yi . The table T is a matrix where the (i, j)th entry is the likelihood of an
attribute given a class, Ti , j = Pr(X j |Y = Yi ). A new data point can be classified by looking up the
probability for each attribute given each class and computing the argmax of the resulting values.

Bost et al. use two partially homomorphic encryption schemes. Algorithm 1 describes a simplified
version of this protocol that uses a single FHE scheme. First, the server encrypts P andT . The client
then downloads these tables from the server and homomorphically computes [pi ], the classifier
score, for each class i . The client and server then perform a private argmax protocol and the client
learns the index î of the largest value for pi .
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Algorithm 1: Private Naive Bayes Classification

Client input: Data point x ∈ Zd , FHE public key PK.
Server input: Tables P and T , FHE secret key SK.
Client output: The index of the class with the highest classifier score.

1: The server encrypts the tables P and T .
2: The client homomorphically evaluates

[pi ] = [Pi ]

d
∏

j=1

[Ti , j (X j )]

for i = 1, . . . , c .
3: The client uses the server to privately compute î = argmaxipi .

4: The client outputs î .

In order to compute the argmax, the client and server perform a linear sequence of comparisons to
determine the largest value. The client randomizes the order that she sends the posterior probability
for each class to the server. The server compares this value to the maximum observed value using
an encrypted comparison protocol and returns the new maximum value to the client, masked so
that she cannot learn a partial ordering on the values. A number of encrypted comparison protocols
have been published [35, 195], and additional methods for encrypted comparison are discussed in
Section 6.
Bost et al. implement Naive Bayes classification using the logarithm of the probability distri-

butions, where pi = log(Pr(G = Gi |X )), in order to compute the posterior probabilities using an
additively homomorphic encryption scheme. The scheme can be implemented with or without the
logarithm using a fully homomorphic encryption scheme. Sun et al. implement a fully homomorphic
version of this scheme [195].

4.3 Decision Trees

Binary decision trees are a classificationmethodwith a representation as a simple diagram consisting
of internal decision nodes and terminal leaf nodes. Decision nodes apply a sequence of binary splits
to the data and a final class is assigned based on the value of the terminal leaf node. In Figure 4b,
these classes are łosteoarthritisž and łno osteoarthritis.ž While this example is for qualitative data
with two classes, the concept also applies to multi-class data with quantitative features. A binary
tree model is straightforward to draw regardless of data dimension. In fact, this method is favored
among scientists in the medical community as it is easy to visualize and it łmimics the way a doctor
thinksž by łstratify[ing] the population into strata of high and low outcome, on the basis of patient
characteristicsž [120]. Decision trees are used for a variety of medical applications, including early
diagnosis of myocardial infarction, probability of admittance in the emergency room based on
chest pain, and computer-aided decision making in mental healthcare and wound care [169].
During training, a greedy algorithm chooses binary partitions that minimize the classification

error in each region at each step. For the first split, splitting variable j and split point s are selected
to minimize the node impurity in each of the two resulting sub-regions, R(j, s) = {X : X j ≤ s}

and R′(j, s) = {X : X j > s . The combined node impurity in these regions is minimized by testing
all potential values for the splitting point s [120]. The node impurity in region R is measured by
looking at the proportion of class ℓ vectors in the region. Possible measures for node impurity
include classification error, 1 − pkℓ ; Gini impurity,

∑c
ℓ=1(1 − pkℓ); or entropy, −

∑c
ℓ=1 pkℓ logpkℓ .
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(a)
(b)

Fig. 4. (a) A binary decision tree with decision nodes bi and leaf nodes ci . (b) A decision tree for classification
of osteoarthritis of the knee [14].

This process iterates until a stop condition is met. Determining when to stop requires finding a
balance between over-fitting with a large tree and under-fitting with a tree too small to adequately
describe the data. Methods include restricting tree depth, restricting number of leaf nodes, and
restricting the leaf nodes to a minimum node size. This can be followed by pruning to shrink
the tree. Gini impurity and entropy are often used as measures of node impurity during the tree
growing stage while the classification error is often used during the pruning phase [120].

4.3.1 Private decision tree classification. A trained decision tree T can be described by decision
nodes b = (bi )1≤i≤N and terminal nodes c = (ci )1≤i≤M , as in Figure 4a. Evaluation at each decision
node yields a representation of that node as a boolean value, 0 or 1. A new data point X is classified
within T by applying the condition b1 of the decision tree to X , then following the branches
sequentially and applying decision conditions until reaching to a leaf node. X is assigned the class
value contained in this leaf node.

Privately classifying data requires hiding both the tree structure from the client and hiding the
client’s data from themodel owner. An intermediary server should learn nothing about either party’s
information. One approach to hiding tree structure converts a decision tree into its polynomial form
[35, 195]. Another approach to hiding tree structure converts a decision tree into a complete binary
tree. In either approach, every internal node in the tree must be evaluated, regardless of each binary
outcome, in order to mask tree structure. Tree structure can present a computational bottleneck for
private decision tree classification using FHE when tree structure is too large, depending on the
speed of the underlying scheme.

Polynomial tree representation. A decision tree T for binary classification with decision nodes
b = (bi )1≤i≤N and terminal nodes c = (ci )1≤i≤M can be represented as a polynomial P that outputs
the predicted class of an input data point. Bost et al. [35] describe the a recursive procedure, F , for
constructing P given a non-empty tree T :

1: If T is one leaf node with class assignment ci , then F (T ) = ci .
2: If T has a decision node, boolean b, with left and right sub-trees T0 and T1, return F (T ) =

b · F (T1) + (1 − b) · F (T0).
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For example, the tree in Figure 4a has polynomial representation

P(b, c) =b0 · [b3 · (b5 · c6 + (b5 − 1) · c5) + (b3 − 1) · (b4 · c4 + (b4 − 1) · c3)]

+ (b0 − 1) · (b2 · c2 + (b4 − 1) · c1).

Protocols for private decision tree classification using the polynomial form of the tree follow the
broad steps based on the work of Bost et al. [35] and outlined in Algorithm 2 below.

Algorithm 2: Private Tree Evaluation

Client input: Data point X , FHE secret key SK.
Server input: The polynomial form P of a decision tree, FHE public key PK.
Client output: The index of the leaf node containing the classification of X .

1: The client and model owner perform comparisons so that the server learns [bi ], the
(encrypted) binary output of each internal node.

2: The server uses [bi ] to homomorphically evaluate the polynomial P .
3: The client receives and decrypts the output, [P(X )], to receive their final classification.

In this setting, privacy-preserving means that the client does not directly learn the evaluation of
her data point on each node or the tree structure and the model owner does not learn anything
about the client’s data point. First, the client and server perform a series of private comparisons to
determine the binary output on each internal decision node. Evaluation of each decision node is
modeled as comparison of an input x to a thresholdw , yielding bit b = [x > w]. Private comparison
in this setting requires that the client learn no information about the comparison result, and the
server only learns the comparison result encrypted under the client’s public key.

As with Naive Bayes, a number of private comparison methods using homomorphic encryption
are available. Bost et al. implement two partially homomorphic encryption schemes to perform
comparisons [35]. Sun et al. [195] implement private decision tree with comparison protocols using
a BGV-type FHE scheme. Khedr et al. [134] also implement private decision tree using FHE. They
formulate the decision on each node as a word matching problem and perform comparison using
their presented encrypted word matching protocol.

Fig. 5. The completion of
the binary tree in Figure
4b. The blue nodes denote
łdummyž nodes, added to
bring all leaf nodes in the
tree to the same depth.

Complete binary trees. Another method for hiding tree structure uses
complete binary trees. This model introduces łdummyž nodes in order
to impose a uniform depth upon tree structure [203]. The dummy nodes
give a random binary output, where each response leads to the same
outcome, as in Figure 5.
Wu et al. use tree randomization to hide the structure of a complete

binary tree [203]. Tree randomization constructs a randomized tree T ′

from a given tree T with the same classification output as the original
tree, where T is a complete binary tree with b decision nodes, via the
following process:

1: Initialize T ′ = T .
2: Randomly choose bits s = {s1, . . . , sb } ∈ {0, 1}

b .
3: For each i , if si = 1 negate the decision function on the node t ′i of

the tree T ′. Swap the subtrees originating at the left and right child
nodes.

4: Re-order the node indexes and output T ′.
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Step 3 of the above procedure randomly leaves or swaps the left and
right sub-trees at each node, ensuring that evaluation of the tree will
have a random path after each tree randomization procedure.

During the private complete tree evaluation protocol presented by Wu et al., a client learns the
depth of the tree and no other information about its structure. An overview of this protocol is given
below in Algorithm 3.

Algorithm 3: Private Evaluation of Complete Binary Trees

Client input: Data point X , FHE secret key SK.
Server input: A complete binary tree T with depth d , FHE public key PK.
Client output: The index of the leaf node containing the classification of X .

1: The client sends [xi ] to the server for i = 1, . . . ,d .
2: The server generates random bits bi for i = 1, . . . ,d and negates the decision function at node

i whenever bi = 1.
3: The server and client perform comparison for each node. The server provides the results to the

client in random order according to some permutation π .
4: The client sends [b ′

π (i)
] to the server for all i , where b ′

π (i)
is the boolean result of each

comparison.
5: The server reverses π on the clients encrypted bits and computes σi = [bi ⊕ b

′
i ], correct result

on each node.
6: The server chooses random bits si for i = 1, . . . ,d to construct the permuted tree T ′ and sends

the client σ ′ik = στ (i) ⊕ sτ (i), where τ is the permutation on node indexes of T arising from the

randomization procedure.
7: The client decrypts and computes the index I of the leaf node containing the response in T ′.
8: The client and server perform an Oblivious Transfer protocol, which allows the client to learn

the result on leaf node I in T ′ without revealing the node index to the server.

Lines 1 through 4 allow the client to evaluate each decision node in T . The client is only able to
see randomized results of these comparisons, while the server only has access to the encrypted
results. The server then reverses the initial permutation and homomorphically computes σi , the
correct result on each node, in Line 5. The server then randomizes the tree sends the client the
decision node results in the randomized tree.
The client then uses the randomized decision path to determine the index of the leaf node con-

taining the desired output. She retrieves the result associated with this index from the randomized
tree using a cryptographic protocol called oblivious transfer [66, 172]. Oblivious transfer enables
the client to learn the value contained in a exactly one leaf node in the randomized tree without
revealing the node index to the server.

4.4 Neural Networks and Deep Learning

A neural network consists of layers containing nodes that compute functions over values fed from a
previous layer. Deep learning uses deep neural networks, which are neural networks with multiple
hidden layers between input and output. While conventional machine learning algorithms rely on
feature selection prior to training, deep learning can discover data-driven and complex features
from the raw data [65, 152]. The goal is to derive features as linear combinations of the input values,
which are then combined in a nonlinear model of the target [120].

Increasing data availability in health care has led to a growing number of applications for deep
learning in the medical field. Implementations have been successful for processing clinical imaging,
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prediction and classification based on aggregated electronic health records, genomics, and analyzing
data from wearable devices and smart phone apps [152, 153]. Convolutional neural networks have
proven valuable for applications in medical imaging such as UNet [178].
This section first provides an overview of common layers used in neural networks. This is

followed by a summary of existing methods for privacy-preserving neural network classification
and homomorphic methods for evaluating non-linear layers.

4.4.1 Layers in neural networks. Neural networks contain layers such as dense (or fully connected)
layers, convolutional layers, pooling layers, and activation layers. The functions used in some
of these layers are not polynomial functions, making the direct application of homomorphic
encryption unfeasible. The approximation of non-linear layers by polynomial functions and the bits
of precision on inputs and network weights must be chosen to mitigate loss of network accuracy
during homomorphic evaluation. Various techniques have been employed for approximating non-
linear layers for homomorphic evaluation.

Convolutional layers. Convolutional layers perform feature extraction via discrete convolution.
Discrete convolution of vectors f and д at indexm is given by f ∗ д =

∑∞
i=−∞ f (i)д(m − i) where i

runs over all valid indexes for f and д. This feeds a vector of input values f to the next layer in the
network by computing its weighted sums with the vector д. If f and д are matrices, as in image
processing applications,

f ∗ д =

∞
∑

i=−∞

∞
∑

j=−∞

f (i, j)д(m − i,n − j).

Convolutional layers are common in image classification networks, where f is a sub-region of the
image centered at indexm and д is a kernel matrix [120]. After training, the weights of the kernel
д can be encrypted. As a polynomial function, discrete convolution can be computed using FHE
[36, 86].

Activation layers. Activation layers and introduce non-linearity to the neural network model.
Convolution layers are generally followed by activation layers. Common activation functions in-
clude the ReLU (REctified Linear Unit) function, the sigmoid activation function, and the hyperbolic
tangent function. The ReLU function is given by f (x) = max(0, x), and the sigmoid is given by

ϕ(z) =
1

1 + exp(−z)
.

Homomorphic-friendly variants of these functions are discussed in Section 4.4.2.

Fig. 6. Max pooling with a
2 × 2 stride.

Pooling layers. Pooling layers reduce the dimensionality of the input
layer. In image classification pooling often follows convolution, as in
UNet, a popular framework for medical image classification [178]. Max
pooling layers yield the maximum value of some input components,
while mean pooling layers yield the mean value of some input compo-
nents [86]. For instance, a 2 × 2 max pool will yield the maximum value
in non-overlapping regions in a 2 × 2 matrix.
Max pooling is not a polynomial function. Mean pooling, which cal-

culates the mean value of a collection of input components, is a FHE-
friendly function. Experiments have shown that mean pooling is more
stable in the presence of perturbations than max pooling [36]. Therefore,
mean pooling is advantageous for FHE applications in two ways: ease
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of computation and its relative stability in the presence of ciphertext
noise accumulation.

Fully connected layer. Fully connected layers appear at the end of the
network, combining all data from the preceding layer. Each node in a fully connected layer is
connected to all nodes in the previous layer. The value at each node in the layer is computed as a
weighted sum of all values in the previous layer. The kth node of layer ℓ, yℓ

k
, is given by

yℓk = bk +
∑

i

yℓ−1i wi ,k

where yℓ−1i are the node values from the previous layer,wi ,k are the weights, and bk is a bias term.
Because this is a polynomial function, it can be evaluated using FHE [36].

4.4.2 Private deep learning. Fully homomorphic encryption is used in a collection of works that
carry out private classification of encrypted data over a neural network trained in the clear. A
summary of these works is provided in Table 2. In these models, an encrypted data point is classified
using either unencrypted or unencrypted trained model parameters. When the parameters are
unencrypted, a client encrypts a data point under their own private key and sends the encrypted
value directly to the model owner. Because the model owner applies their (unencrypted) model to
this encrypted data point, the client never needs direct access to the model. Encryption of both
model parameters and input data would apply to the scenario of outsourcing all computation to an
external service.

Dowlin et al.’s methodology, CryptoNets, carries out private classification over neural networks
with unencrypted trained model parameters [111]. CryptoNets replaces ReLU with the square
activation function, f (x) = x2. This function is FHE-friendly due to its multiplicative depth of just
one. However, the authors point out that the square activation function can yield unstable behavior
during backpropagation. Networks deeper than 10 layers may have difficulty training with this
activation function. CryptoNets replaces max pooling with sum pooling ś a scalar multiple of
the mean. Both training and testing are performed with these modified functions. The sigmoid
function is applied in a final activation layer during training and is replaced with argmax during
classification.
Use of the square activation function for classification of encrypted data causes CryptoNets to

have low accuracy for networks when there is a high number of non-linear layers. Chabanne et
al. extended this approach to greater depth networks using batch normalization with low-degree
polynomial approximations for the ReLU function [51]. The authors implemented their framework
using BGV encryption [39] with SV ciphertext packing [192] using HElib [72].
Chabanne et al. [51] combine a low-degree polynomial approximation of ReLU with batch

normalization. Batch normalization adds a normalization layer to the network before each activation
layer in order to control the distribution of the data. After normalization, the activation function
chosen to replace ReLU only needs to be accurate on a fixed interval. The authors replace ReLU
with 2-, 4-, and 6-degree polynomials that approximate well on the interval [−3, 3].

The CryptoDL framework [121, 122], implemented using HElib [72], approximates both the tanh
and sigmoid functions with Chebyshev polynomials [122]. Rather than directly approximating
ReLU, the authors approximate its derivative, and calculate its antiderivative for use as an activation
function. Bootstrappingwithin the scheme is replacedwith additional communication steps between
client and server.
Another framework, GAZELLE, uses a combination of additive homomorphic encryption and

garbled circuit techniques to implement neural network classification [131]. Garbled circuits
compute non-linear functions such as MaxPool and ReLU with linear-sized circuits. Experiments
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Table 2. Frameworks for private (deep) neural network evaluation using FHE. If an open-source FHE imple-
mentation was used, it is listed in the Software column. The non-linear layer column outlines the activation
function used for fully homomorphic implementation, and the pooling layer column describes the FHE-friendly
pooling operation.

Name Software Non-linear layer(s) Pooling layer

Chabanne et al. [51] HElib ReLU approximated with low degree

polynomials.

Mean pooling

Chimera [36] ś ReLU approximated with low degree

trigonometric polynomials

Mean pooling

CryptoDL [122] HElib Low-degree polynomial

approximations of sigmoid and tanh.

ReLU replaced with the antiderivative

of an approximation of its gradient.

Mean pooling

CryptoNets [111] SEAL ReLU replaced with the square

activation function.

Sum pooling

E2DM [130] HEAAN Square activation function Replaced by a fully

connected layer.

FHE-DiNN [37] TFHE Sigmoid replaced by sign activation

function.

ś

Gazelle [131] PALISADE Encryption switching to evaluate

non-linear functions using garbled

circuits

Encryption switch-

ing to evaluate us-

ing garbled circuits

implement the BFV [38, 92] scheme using PALISADE [2] for homomorphic encryption, along with
Yao’s garbled circuits [205].

The Chimera framework unifies the plaintext spaces of B/GV, HEAAN, and TFHE [36]. It includes
a method to pack complex exponential values in HEAAN ciphertexts, enabling evaluation of
trigonometric polynomials up to a predefined depth. The authors approximate ReLU by low degree
trigonometric polynomials by decomposing the graph as a Fourier series.

FHE-DiNN addresses the issue of scale invariance, where noise accumulation in activation layers
limits network depth, by applying bootstrapping for noise reduction to each neuron’s output
[37]. Their network is a discretized neural network with {−1, 1} as the input space and integer
weights, and they implement the sign activation function. FHE-DiNN uses the TFHE library [64]
to implement FHE for deep learning [37].

The encrypted data and encrypted model (E2DM) framework performs classification of encrypted
data using an encrypted neural network model [115]. Implementation uses the HEAAN library and
the square activation function [130]. E2DM replaces ReLU with the square activation function and
replaces a pooling layer with a fully connected layer that learns parameters to compute an array of
weighted sums.

Additional methods use additive homomorphic encryption in conjunction with additional crypto-
graphic techniques to perform privacy-preserving classification on neural networks. The MiniONN
framework of Liu et al. combines additive homomorphic encryption, secret sharing, and oblivious
transfer for private classification [144]. This method does not require any changes to the model
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during training but does have a higher computation cost for clients. Ma et al. combine additive
homomorphic encryption with secret sharing in their non-interactive model [148].

4.4.3 Privacy-preserving model training. Training over encrypted data presents its own challenges.
Training a neural network for a complex classification problem generally requires analyzing
network accuracy to introduce modifications during training. However, training over encrypted
data requires the network to be effective on the first try [51]. In addition, training requires a heavy
computational load and the evaluation of many homomorphic operations when performed over
homomorphically encrypted data.
Zhang et al. describe a backpropagation method for model training over encrypted data [207].

Between each backpropagation iteration on the cloud, the client must download, decrypt, and
re-encrypt the parameters. This avoids the problem of the high computational cost associated with
high multiplicative depth from homomorphic operations, but at the cost of high communication
complexity. Li et al. [142] present a method for collaborative training of a deep learning model
using FHE combined with additional cryptographic techniques. This method is associated with
high computation and communication costs. Phong et al. [168] expand upon a method of Shokri
and Shmatikov [188]. The authors combine asynchronous stochastic gradient descent with addi-
tively homomorphic encryption, allowing multiple participants to jointly train a model without
sharing their data sets. Additional methods for privacy-preserving model training use multiparty
computation techniques [154, 155, 174, 179].

5 CLUSTERING

Clustering is a method of unsupervised machine learning that groups data points into clusters in
order to discover patterns and structure in the data. A data owner may wish to perform privacy-
preserving clustering, outsourcing the computational burden of clustering to an external cloud
server without giving that server direct access to the data. In the medical setting clustering has
been applied to neurological disease data sets, such as Alzheimer’s disease, to find patterns that
clinicians would otherwise have difficulty detecting [10].
The k-means clustering algorithm is a popular clustering method that calculates the center of

data clusters, called centroids, by iteratively assigning points to the cluster with the nearest mean
then updating the clusters to minimize within-cluster variance [120]. Sakellariou and Gounaris
[182] perform k-means clustering of encrypted data using Brakerski’s FHE scheme [38], but require
decryption by a trusted server during analysis. Jäschke and Armknecht present a modification of
k-means that can be evaluated without intermediate decryption, but the estimated run time for a
2-dimensional data set with 400 points is over 25 days on a CPU [129].
Cheon et al. [58] perform clustering over encrypted data using the mean shift algorithm and

HEAAN. Mean-shift clustering separates data into clusters by finding local maxima of a density
function, or kernel, via gradient descent. The most common kernels used in mean shift clustering,
such as the Gaussian kernel, require non-polynomial operations. The authors implement a HE-
friendly kernel K given by

K(x,y) = c · (1 − ∥x − y∥2)2
Γ
+1

for a constant parameters c and Γ, and address the computational load of mean-shift clustering by
performing each iteration on a sample of the data, rather than the entire data set.

6 FULLY HOMOMORPHIC ENCRYPTION FOR BIOINFORMATICS

Genome sequencing is now practical on a large scale, and the cost of data storage continues to
decrease. As a result, genome sequencing is now commercially available for personalized genetic
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analysis.17 Genomic data has been used for applications in multiple domains including healthcare,
biomedical research, disease risk tests, and forensics [160]. Because we are uniquely identified by
our genetic code, a privacy breach compromising this data could have an unforeseen negative
impact upon a person’s life.

The human genome is constructed of chains nucleic acid bases which exist in pairs wound in the
now well-known double helix structure. For DNA sequences, the bases cytosine, guanine, adenine,
and thymine yield the alphabet Σ = {a, c,д, t}, with complements a = t and д = c . DNA sequences
are represented as strings of the letters from this alphabet. For example,

tttдcддtдctддttдccдtatttacttддct .

is DNA strand fragment from vibrio cholarae []. Strings in an alphabet Σ can be written over a
ω-bit alphabet, where ω = ⌈log |Σ|⌉ [59]. In the case of DNA, ω = 2, and each base has a 2-bit
representation with the mapping a → 00, д→ 01, c → 10, and t → 11 [136].
Homomorphic encryption has been used for a variety of applications in bioinformatics. A

large portion of this work is driven by the annual iDASH workshop’s homomorphic encryption
competition tasks. Lauter et al. provided some of the first applications of FHE for computation
over encrypted genomic data [141]. They provided algorithms for homomorphic computation
of basic genomic algorithms such as the Pearson goodness-of-fit test, the D ′ and r 2-measures of
linkage disequilibrium, the Estimation Maximization (EM) algorithm for haplotyping, and the
Cochran-Armitage test for trend.

6.1 Sequence Comparisons

Comparisons of DNA and RNA sequences can be used in bioinformatics applications including
sequence alignment, gene finding, and motif discovery [136]. Algorithms for motif discovery seek
to identify common motifs, or patterns, among biosequences such as DNA or RNA. Identifying
motifs enables researchers to carry out such tasks as classifying protein sequences and identifying
important regions such as splice sites, promoters, or binding sites. Sequence alignment seeks to
align strings of DNA or RNA. Global alignment assumes that the entirety of two sequences are
similar, while local alignment seeks to align local portions of sequences [157]
Sequence comparison methods include edit distance and Hamming distance. One of the tasks

for the 2015 iDASH competition called for HE-based protocols that compute edit and Hamming
distance between encrypted data sets.

6.1.1 Hamming Distance. Hamming distance compares two equal-length strings by counting the
number of positions at which they differ. It has applications in bioinformatics such as the Planted
(ℓ,d)-Motif Problem, which seeks to identify the motifsM in a nucleotide sequence of length ℓ that
are at most Hamming distance d fromM [157].

Jarrous and Pinkas perform privacy-preserving Hamming distance computation using additive
HE and oblivious transfer [128]. Yasuda et al. compute Hamming distance between binary vectors
using a BV-like scheme [206]. Kim and Lauter provide a method for privacy-preserving computation
of Hamming distance between two participants given Variation Call Format (VCF) files, a text
file format used to store genetic variations [136]. The VCF for each participant summarizes their
variants with respect to the reference genome with values such as insertion, deletion, or substitution.

17www.ancestry.com, www.23andme.com/
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Let L denote a list indexed by participants x and y, where xi denotes the record in the VCF file
for patient x at location i . The authors formulate Hamming distance as follows.

1 h ← 0

2 for i ← 1 to |L|
3 if the structural variant given by xi or yi is an insertion or deletion

4 hi ← 0

5 else if xi ∧ yi = ∅

6 hi ← 1

7 else if xi and yi reference the same bases but have different alternate alleles

8 hi ← 1

9 else

10 hi ← 0

11 h = h + hi
12 return h

This algorithm skips all insertions and deletions, and counts the remaining record locations
where exactly one of the patients has a structural variant (line 5), or where both participants have
a structural variant but they are different structural variants (line 7).
Each participant encodes their data according to the server-provided reference list L. For each

position i , they calculate ei , fi ∈ {0, 1}, where ei = 1 if posi ∈ L and fi = 1 if svi ∈ {INS,DEL}.
The value ei defines whether the genotype at locus i is missing, and fi specificies whether the
variant is an insertion/deletion or not. The values si encode the single nucleotide variants. The
authors then formulate Hamming distance via evaluation of the circuit

(

E(si , s
′
i ) ∧ (ei ⊕ e

′
i ⊕ 1) ⊕ 1)

)

∧ fi ∧ f ′i

where ⊕ is binary addition (XOR gate) and ∧ is binary multiplication (AND gate). The function E(si , s
′
i )

equals 1 if and only if si = s ′i . The authors homomorphically evaluate these circuits over data
encrypted in a BGV scheme.

6.1.2 Edit Distance. The edit distance between two strings is given by the minimum number of
substitutions, deletions, and insertions that it would take to convert one string to the other. Edit
distance is used in algorithms such as motif discovery.
A 2003 protocol for private edit distance computation by Atallah et al. uses additive HE plus

oblivious transfer [18], resulting in a high communication complexity. Zhang et al. use a path-
finding algorithm combined with integer comparison to evaluate private edit distance [208]. Kim
et al. use a greedy algorithm to compute an upper bound for an approximate edit distance [136].
Cheon et al. compute edit distance by representing it as an arithmetic circuit, which they then

can evaluate using bit-wise homomorphic encryption [59]. For speed, the number of homomorphic
operations required to evaluate the circuit should be kept as low as possible. Furthermore, the depth
of the final circuit is needed to parametrize the SHE scheme. This circuit is built from equality
circuits, comparison circuits, and addition circuits. The equality circuit compares two unsigned
µ-bit values in their binary representations x = xµ . . . x1 and y = yµ . . .y1:

EQU(x,y) = ∧
µ
i=1(1 ⊕ xi ⊕ yi ).

This circuit is implemented with µ homomorphic addition operations and µ − 1 homomorphic
multiplication operations. The comparison circuit can be written COM(x,y) = c1 ⊕ c2 ⊕ · · · ⊕ cµ ,
where

ci = (xi ⊕ 1) ∧ yi ∧ (∧
µ
j=i+1(x j ⊕ 1 ⊕ yj )).
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This circuit can be evaluated with 2µ − 2 homomorphic additions and 2µ − 3 +
(µ−1) log(µ−1)

2 homo-
morphic multiplications. Lastly, the addition circuit ADD(x,y) is defined by (s1, . . . , sµ ), where the
kth value sk of the sum is denoted ADD(x,y)[k] and satisfies

si =

{

x1 ⊕ y1 if i = 1

xi ⊕ yi ⊕ ei−1 else,
and ei =

{

xi ∧ yi if i = 1

(xi ∧ yi ) ⊕ ((xi ⊕ yi ) ∧ ei−1) else.

Implementing this circuit requires 3m−3 homomorphic addition operations and 2m−3 homomorphic
multiplication operations.
Given an alphabet Σ and µ-bit words α and β , the authors compute encrypted edit distance is

based on the Wagner-Fischer algorithm []. Let d(i, j) denote the edit distance between the first i
characters of α and the first j characters of β . The Wagner-Fischer algorithm proceeds as follows.

1 for i ← 0 to n

2 d(i, 0) ← 0

3 for j ← 0 tom
4 d(0, j) ← 0

5 for i ← 1 to n

6 for j ← 1 tom
7 t(i, j) ← (αi = βi )

8 d(i, j) ← min{d(i − 1, j − 1) + t(i, j),d(i, j − 1) + 1,d(i − 1, j) + 1}

9 return d(n,m)

In line 6, (αi = βi ) denotes binary comparison. This comparison can be calculated by the
equality circuit as t(i, j) = EQU(αi , βj ) ⊕ 1, and d(i, j) + 1 can be calculated by the addition circuit
as ADD(d(i, j), 1). Homomorphic evaluation computes the encrypted distance [d(n,m)] with circuit
depth O((n +m) log(log(n +m))) and O(nm log(n +m)) homomorphic computations.

6.2 Genetic Testing

Genetic testing is used for a variety of applications in areas such as personalized medicine, which
uses each patient’s genetic makeup to personalize treatments and diagnoses. An individual’s genetic
markers and mutations can be used to test for a genetic predisposition to cancer and other late-onset
diseases, drug response, and genetic compatibility testing for the risk of passing a recessive disease
to offspring, among other applications [87]. Paternity tests can establish whether one individual
is the father of another, while ancestry and genetic genealogical testing enables individuals to to
learn about where their ancestors might have come from [82].

6.2.1 Paternity and Ancestry Testing. Ancestry testing can be performed on one individual, com-
paring her genome with a collection of sample genomes to infer information about the individual’s
genealogy. Another application is familial testing, such as paternity tests, which compare the
genomes of two individuals to determine a genetic relationship. Privacy-preserving protocols for
these tests seek to allow two parties to compare their genomes without sharing them.

Baldi et al. privately test for paternity using a combination of additive HE and private set inter-
section cardinality (PSI-CA) [23]. A PSI-CA protocol allows two parties to compute the cardinality
of the intersection of their sets without revealing any other portion of their set to the other party. In
their model, an individual and a testing service compare portions of their genomes without sharing
any information about their contents. De Christofaro et al. expand on this work, implementing two
privacy-preserving paternity testing algorithms on Android smartphones: one based on the work
of Baldi et al. [23], and another based on private Hamming distance [82].
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Bruekers et al. use short tandem repeats (STRs) to match DNA profiles for identity, paternity,
and common ancestry testing [46]. STRs are portions of the DNA known to contain repetitive short
sequences of nucleotides that are useful for identification. Two parties compare their encrypted
STRs with only one party learning the result of the comparison. The identity testing protocol
takes place between users A and B with respective STR profiles {(ai ,1,ai ,2)} and {(bi ,1,bi ,2)} for
1 ≤ i ≤ N . Each pair (xi ,1, xi ,2) represents a STR pair from the 22 autosomal chromosomes, with one
originating from the mother and one from the father. Identity testing is carried out by determining
whether the sum

Z =

N
∑

i=1

(ai ,1 − bi ,1) + (ai ,2 − bi ,2)

is equal to zero. For private evaluation,A encrypts her values under her additive HE private key and
sends ⟨{[ai ,1], [ai ,2]}⟩ to B. Then, B encrypts his values under A’s public key and homomorphically
evaluates [Z ] and sends [rZ ] to A for some random value r . If [rZ ] decrypts to zero, then A reports
a match. Bruekers et al. use similar methods for paternity and common ancestry testing.

De Christofaro et al. perform privacy-preserving ancestry testing based off of the Jaccard similar-
ity index between two genomesA and B, given by J (A,B) = |A∩B |/(|A|+ |B |) [82]. This test allows
two parties to receive a similarity score between their two genomes - for instance, an individual
could be compared against a reference genomes held by a testing facility. Due to the large size of
genomes, an approximation of this comparison can be sped up using MinHash techniques [45],
which use hash functions to analyze similarity between two sets more quickly.

6.2.2 Personalized Medicine. In personalized medicine, an individual’s genome is compared against
genetic markers held by some testing facility. The results can be used by medical professionals to
provide individualized treatment. Frequently, information about the test marker itself is propri-
etary - for instance, when the testing facility is a pharmaceutical company. Privacy-preserving
personalized medicine seeks to hide the genetic markers from the individual being tested, while
hiding information about the individual’s genome and test results from the testing facility.
Ayday et al. use additive HE to for a privacy-preserving disease susceptibility test [19]. An

individual sends their encrypted genome to a testing facility to test for some genetic marker(s). The
individual does not learn any specific information about the markers being tested, and the testing
facility only learns portions of the individual’s genome that it has been authorized to access.

Baldi et al. present a protocol based on private set intersection (PSI) that enables two parties to
privately compute the intersection of their sets [23]. This protocol allows an individual to test their
genome for the presence of some genetic marker. The testing facility does have direct access to the
individual’s gene, but does learn the result of the test.
A protocol presented by De Chistofaro et al. allows party to test a genome for an exact match

against an external set of DNAmarkers without learning the DNAmarkers or granting any access to
their genome data [83]. This protocol takes place between a client and testing laboratory. The client
has a genome with nucleotides t = {t1, . . . , tn} and the secret key for an additively homomorphic
encryption scheme. The testing laboratory has a substring p = {p1, . . . ,pm} with starting position
at index s in the genome. First, the client encrypts each nucleotide in the genome t using the
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additive HE scheme and sends the encryptions {[t1], . . . , [tn]} to the testing laboratory. The testing
laboratory then performs the following computation.

1 [b] ← [0]

2 for i ← 0 tom − 1
3 r ←$ Zq

4 [b] ← [b] ⊕ ([−pi ] ⊕ [ts+i ])
r

5 return [b]

The testing laboratory homomorphically adds each of the client’s encrypted nucleotides to the
inverse of its corresponding target substring character and raises this sum to a random exponent r
to randomize the value. Whenever ts+i = pi , then [−pi ] ⊕ [ts+i ] is an encryption of zero. If these
values match for all i , the final value [b] will equal zero. Otherwise, the client will receive some
random non-zero value due to the random exponentiation at each step.

6.3 Secure Genome-Wide Association Studies (GWAS)

Genome-wide association studies (GWAS) are used to identify the genes involved in a particular
disease or trait. These observational studies mostly classify genetic alterations in single nucleotide
variants (SNVs) and single nucleotide polymorphisms (SNPs) across groups of patients [33]. Subjects
may be split into groups - say, those for whom a disease is present versus not present - and a
number of statistical tests can be deployed to quantify the association between a SNP/SNV variant
and a disease.

It is common to perform a GWAS on large sets of individuals, numbering in the tens of thousands.
The large amount of individual genotype/phenotype data needed to perform large-scale GWAS
presents major privacy concerns. De-identification strategies are not always sufficient, as patients
have been re-identified from this łanonymizedž data in the past [149]. Furthermore, Homer et al.
demonstrate that an individual in a GWAS can be identified by analyzing the aggregated allele
frequencies in a large number of SNPs [125].

6.3.1 Privacy-Preserving Genome-wide Association Studies. In 2015 and again in 2018, the iDASH
competition called for development of secure outsourcing of GWAS via homomorphic encryption.
Logistic regression (Section 4.1), a common approach in genome-wide association studies, is used in
several solutions [29, 48]. Others use the χ 2 statistic [33, 136, 146, 181, 208], or statistical algorithms
including the D ′ and r 2 measures of linkage disequilibrium [141, 181], the estimation-maximization
(EM) algorithm for halotyping [141], and Fisher’s exact test [171].

Blatt et al. provide the winning solution to the 2018 challenge using their own RNS-variant of
the CKKS scheme [29]. Their experiments are performed using PALISADE, modified to implement
their RNS-variant. Carpov et al. implement their solution for private GWAS via logistic regression
in TFHE and HEAAN using the Chimera framework [48].
Additional approaches compute privacy-preserving versions of the χ 2 statistic for a GWAS

[33, 136, 146, 208]. The χ 2 statistic is given by

χ 2 =
∑

i , j ∈{1,2}

(Oi j − Ei j )
2

Ei j

where Oi j and Ei j are the observed and expected values for the allele counts for allele j in either
the case group (i = 1) or control group (i = 2).

Bonte et al. [33] compute χ 2 in the encrypted domain and only reveal whether or not this value
is significant for the case, not the value itself, to protect against the aforementioned attack of
Homer et al. For homomorphic evaluation, the authors rewrite the χ 2 statistic with a common
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denominator. The statistic is then computed homomorphically as the sum of the numerators, and
the comparison threshold is scaled by the denominator. The authors use a masking technique for
the final comparison. To compare two encrypted values [x] and [y], the server chooses a random
positive r and random r ′ ∈ [1, r ) and homomorophically evaluates [r (x − y) + r ′]. The decryption
of this value is positive if x > y, otherwise x < y. The implementation of Bonte et al. uses SHE in
FV-NFLlib [33].

Sadat et al.’s SAFETY system uses Paillier’s HE scheme [181]. This method is only secure against
Homer’s attack [125] with a semi-honest querying party. An approach by Zhang et al. provides a
secure division protocol that uses a lookup table [208]. However, the depth of the circuit required
for this protocol increases rapidly for larger data sets.

7 CONCLUSIONS

Rapid research in the field of fully homomorphic encryption led the field quickly from its first
presentation by Gentry to the efficient implementations available today. Implementations of FHE
are available from a variety of open-source libraries today. Implementing these FHE libraries often
requires an expert understanding of the theoretical foundations of the scheme(s). While these
implementations remain difficult for non-experts to navigate, current and future works will provide
more high-level, user-friendly technologies. These would enable researchers from a variety of
backgrounds to utilize FHE for their own research.

The data-rich, privacy-concerned medical field is well poised to benefit from these innovations.
Privacy-preserving classification models could allow a clinician to privately access a predictive
model without having to share patients’ medical data. FHE has been implemented for a variety of
machine learning and statistical tasks, including private evaluation of deep networks, naive Bayes
classification, decision trees, and logistic regression. A variety of genomic applications such as
genome testing, computation of Hamming and edit distance, and secure GWAS, have also been
carried out using FHE. As the speed and usability of FHE improves, new applications for FHE will
continue to be discovered.
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