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ABSTRACT

The Bathyergidae, commonly known as blesmols or African mole-rats, is a family of
rodents well-known for their subterranean lifestyle and tunnelling behaviour.
Four of the five extant bathyergid genera (Cryptomys, Fukomys, Georychus and
Heliophobius) are chisel-tooth diggers, that is they dig through soil with their enlarged
incisors, whereas the remaining genus (Bathyergus) is a scratch-digger, only using its
forelimbs for burrowing. Heterocephalus glaber, the naked mole-rat, is also a
chisel-tooth digger and was until recently included within the Bathyergidae (as the
most basally branching genus), but has now been placed by some researchers into
its own family, the Heterocephalidae. Given the importance of the masticatory
apparatus in habitat construction in this group, knowledge and understanding of the
morphology and arrangement of the jaw-closing muscles in Bathyergidae is vital for
future functional analyses. Here, we use diffusible iodine-based contrast-enhanced
microCT to reveal and describe the muscles of mastication in representative
specimens of each genus of bathyergid mole-rat and to compare them to the
previously described musculature of the naked mole-rat. In all bathyergids, as in all
rodents, the masseter muscle is the most dominant component of the masticatory
musculature. However, the temporalis is also a relatively large muscle, a condition
normally associated with sciuromorphous rodents. Unlike their hystricomorphous
relatives, the bathyergids do not show an extension of the masseter through
the infraorbital foramen on to the rostrum (other than a very slight protrusion
in Cryptomys and Fukomys). Thus, morphologically, bathyergids are
protrogomorphous, although this is thought to be secondarily derived rather than
retained from ancestral rodents. Overall, the relative proportions of the jaw-closing
muscles were found to be fairly consistent between genera except in Bathyergus, which
was found to have an enlarged superficial masseter and relatively smaller pterygoid
muscles. It is concluded that these differences may be a reflection of the behaviour of
Bathyergus which, uniquely in the family, does not use its incisors for digging.

Subjects Evolutionary Studies, Zoology
Keywords Masticatory muscles, DiceCT, Virtual reconstruction, Bathyergidae, Rodentia

INTRODUCTION
The comparative anatomy of the masticatory, or jaw-closing, muscles in rodents has been

a well-studied topic over many years (Wood, 1965; Turnbull, 1970; Woods, 1972;
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Woods & Howland, 1979; Woods & Hermanson, 1985; Ball & Roth, 1995; Thorington &

Darrow, 1996; Druzinsky, 2010; Cox & Jeffery, 2011, 2015). Early classifications of

rodents were based on masticatory muscle anatomy (Brandt, 1855), although modern

phylogenies based on molecular data (Blanga-Kanfi et al., 2009; Fabre et al., 2012;

Swanson, Oliveros & Esselstyn, 2019) have shown many of the myological similarities

between taxa to be the result of convergent evolution rather than shared evolutionary

history. Nonetheless, the highly specialised feeding system in rodents (including enlarged,

ever-growing incisors and a lower jaw that can move antero-posteriorly with respect to

the cranium) has ensured that the morphology of the jaw adductor muscles remains a

relevant research topic in the field of functional morphology.

One group of rodents that is particularly interesting with regard to the jaw-closing

muscles is the Bathyergidae, a family of subterranean rodents known as blesmols or

African mole-rats. The family comprises at least 21 species (Van Daele et al., 2007;

Faulkes et al., 2011, 2017; Burgin et al., 2018; Visser, Bennett & Jansen Van Vuuren, 2019)

in five genera—Bathyergus, Cryptomys, Fukomys, Georychus and Heliophobius—all found

in sub-Saharan Africa. A sixth monospecific genus, Heterocephalus (the naked mole-

rat), was until recently also included within the Bathyergidae. However, it has been

proposed (Patterson & Upham, 2014) that Heterocephalus glaber should be placed in its

own family, the Heterocephalidae (Landry, 1957) based on the depth of the split from

other bathyergids (c. 31.2 Ma) and a number of morphological characters. Nevertheless, it

is important to note that from an evolutionary perspective the two families are still united

as a monophyletic superfamily, the Bathyergoidea (Fig. 1). This division of mole-rats

into two families is not universally supported (Visser, Bennett & Jansen Van Vuuren,

2019), but nonetheless has been reflected in a number of recent mammalian taxonomies

(Wilson, Lacher & Mittermeier, 2016; Burgin et al., 2018). Accepting this classification,

the Bathyergidae first diversified in the early Miocene, around 17.9 Ma (Patterson &

Upham, 2014) with the earliest known fossils dating from this time as well (Mein &

Pickford, 2008).

African mole-rats are highly specialised for a fossorial lifestyle, spending much of

their life underground in complex networks of burrows (Bennett & Faulkes, 2000). Five of

the six genera (Cryptomys, Fukomys, Georychus, Heliophobius and Heterocephalus) are

chisel-tooth diggers that dig tunnels with their incisors, whereas the remaining genus,

Bathyergus, is a scratch digger, only using its limbs for digging (Stein, 2000). Chisel-tooth

digging blesmols share a number of morphological adaptations to this behaviour, such as

enlarged incisors, taller and wider skulls, enlarged temporal fossae and longer jaws

(McIntosh & Cox, 2016a, 2016b; Samuels & Van Valkenburgh, 2009). These modifications

have been shown to facilitate the production of high bite forces and wide gapes, both

necessary for digging with the incisors (McIntosh & Cox, 2016a).

Despite the well-known osteological adaptations to digging seen in the bathyergid

masticatory system, there are comparatively few in-depth studies of the jaw muscle

anatomy of blesmols in the published literature. Tullberg (1899), in his large survey of

rodent and lagomorph anatomy, illustrated some of the more superficial muscles of

Georychus capensis, Cryptomys hottentotus and Bathyergus suillus. Boller (1970) and
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Van Daele, Herrel & Adriaens (2009) provide more detailed descriptions, but only of

C. hottentotus and Fukomys species respectively. A study of subterranean rodents

published by Morlok (1983) has a much broader coverage, including all bathyergid genera

except Fukomys, which was split more recently from Cryptomys (Kock et al., 2006).

However, the only detailed descriptions and figures of masticatory musculature in this

work are of Cryptomys. Most recently, the masticatory musculature of H. glaber (now

removed from the Bathyergidae as mentioned above) was described by Cox & Faulkes

(2014) using digital dissection. That is the jaw-closing musculature was visualised and

virtually reconstructed via diffusible iodine-based contrast-enhanced computed

tomography (diceCT). This methodology, developed over the last decade (Metscher, 2009;

Jeffery et al., 2011; Gignac & Kley, 2014; Gignac et al., 2016), uses iodine staining to increase

the radio density of soft tissues and render them visible in CT scans. The technique is

a useful complement to physical dissection, particularly when studying small specimens

with complex, layered musculature.

The aim of this study is to describe the jaw-closing musculature of all five currently

recognised genera of bathyergid mole-rats, in order to facilitate comparisons between them

and also with the masticatory musculature of the closely related naked mole-rat. It is

hypothesised that all chisel-tooth digging bathyergids have a similar arrangement of jaw

adductor muscles, owing to the strong functional constraint of needing to produce a high

Figure 1 Genus-level phylogeny of the African mole-rats. Tree based on mitochondrial 12S rRNA and
cytochrome b sequence data and analysis of 3,999 nuclear genes (Faulkes et al., 2004; Ingram, Burda &

Honeycutt, 2004; Davies et al., 2015). A chronologically calibrated scale in millions of years ago is illu-
strated beneath the tree, estimated using a molecular clock approach and using the bathyergid fossil
Proheliophobius for calibration of genetic distances. Adapted from Faulkes & Bennett (2013).

Full-size DOI: 10.7717/peerj.8847/fig-1
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bite force at a wide gape (McIntosh & Cox, 2016a). Furthermore, it is hypothesised that the

relative proportions of the jaw adductors in chisel-tooth digging bathyergids are similar to

those previously described in the naked mole-rat (Cox & Faulkes, 2014), owing to its

similar mode of digging and its shared common ancestor with Bathyergidae. Finally, it is

hypothesised that blesmols of the genus Bathyergus differ from other bathyergid genera in

the relative proportions of their jaw-closing muscles, as these taxa are scratch diggers

that do not use their incisors to construct burrows (Stein, 2000). In particular, the

temporalis has been proposed to be particularly important in chisel-tooth digging

(Samuels & Van Valkenburgh, 2009; McIntosh & Cox, 2016a), so this muscle is

hypothesised to be relatively smaller in Bathyergus.

MATERIALS AND METHODS

Sample and scanning

Five ethanol-preserved heads of bathyergid mole-rats were obtained from collections

originating from the University of Pretoria. The work was approved by the animal ethics

committee at the University of Pretoria AUCC 030110-002 and AUCC 040702-015.

The specimens represented one species from each of the five currently recognised genera of

Bathyergidae: B. suillus, C. hottentotus, Fukomys mechowi, G. capensis and Heliophobius

argenteocinereus. As ethanol is known to reduce the efficacy of diceCT (Gignac et al.,

2016), the concentration of the preserving fluid was gradually reduced from 70% ethanol

down to distilled water over a period of 2 weeks. After another week in distilled water, the

specimens were immersed in 4% phosphate-buffered formaldehyde solution. Finally,

the specimens were transferred to a 7.5% solution of iodine-potassium iodide in

formaldehyde for 3 months. The stained specimens were scanned using microCT at the

Cambridge Biotomography Centre, University of Cambridge. The scans were performed at

164 kV and 165 mA (175 kV and 156 mA for B. suillus), with a 0.5 mm copper filter

and a beryllium target. Voxels were isometric with dimensions between 0.026 and

0.046 mm. Further scanning details are given in Table S1. The diceCT stacks are archived

and available from www.morphosource.org (the DOI of each stack is given in Table S1).

Digital reconstruction

Scans were imported as stacked TIFF files to Avizo 9.2 Lite (Thermo Fisher Scientific,

Waltham, MA, USA) and the jaw adductor muscles of one side of the head were

reconstructed. The side of the head chosen for reconstruction differed between specimens

and was based on the quality of the staining and scanning in the left and right muscles.

The muscles that were digitally reconstructed comprised the superficial masseter, deep

masseter, zygomaticomandibularis, temporalis, medial pterygoid and lateral pterygoid,

following the nomenclature of Cox & Jeffery (2011) and Cox & Faulkes (2014). Automatic

thresholding of masticatory muscles was not possible owing to insufficient contrast

difference between bone and muscle, and therefore the muscles were reconstructed using

manual painting of selected slices and interpolation between them. Each muscle volume

was subjected to a single application of the ‘smooth labels’ algorithm within the Avizo

segmentation editor (size, 4; mode, 3D volume), and the volume of each muscle was

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 4/19



recorded. Muscle masses were calculated from volumes assuming a muscle density value of

1.0564 g cm−3 (Murphy & Beardsley, 1974), although absolute mass values should be

treated with caution as both iodine staining and formalin preservation are known to lead to

soft tissue shrinkage (Vickerton, Jarvis & Jeffery, 2013). The percentage contribution of

each muscle to total adductor muscle mass was also calculated for each specimen.

In addition to the digital dissections, three of the specimens were also physically dissected

(Bathyergus, Cryptomys, Georychus). Digital and physical dissections were compared

both quantitatively (relative muscles masses) and qualitatively to ensure that muscle

attachment sites and boundaries between muscle layers had been correctly identified in the

diceCT scans. As congruence between the dissection methods was good (attachment

sites correctly identified, relative muscle masses within 4%), digital dissection was deemed

to be an accurate reflection of the morphology.

The reconstructed muscles were visualised by aligning them with a virtually

reconstructed skull and mandible. Because scans of the unstained specimens were not

available, and I2KI staining renders the reconstruction of bony material very difficult, an

individual of the same species, but not the same specimen, was used to create each

skull and mandible. A Bookstein warp (Bookstein, 1989) was then used to fit the bony

elements to the reconstructed muscles.

RESULTS
The percentage contribution of each muscle to total masticatory muscle mass are given in

Table 1 (absolute masses are given in Table S2) and the percentage split between the

masseteric complex, temporalis and pterygoid muscles for each specimen is shown in

Fig. 2. Overall, it can be seen that the relative proportion of each jaw-closing muscle

is largely consistent between Cryptomys, Fukomys, Georychus, Heliophobius and

Heterocephalus, which all have a masseter forming 58–63%, a temporalis contributing

26–32%, and pterygoid muscles accounting for 8–11% of total muscle mass. B. suillus

differs from the other blesmols somewhat, with a relatively larger masseter (69%) and

relatively smaller pterygoids (5%). The morphology of each muscle is described below and

shown in Figs. 3–6.

Table 1 Percentage of total masticatory muscle adductor mass occupied by each jaw-closing muscle

in each mole-rat genus.

Bathyergus Cryptomys Fukomys Georychus Heliophobius Heterocephalus

Superficial masseter 37.5 24.5 27.4 25.9 19.3 23.4

Deep masseter 23.7 23.8 22.1 22.8 27.7 25.5

Anterior ZM 2.7 1.8 2.2 2.7 5.3 2.9

Posterior ZM 1.8 2.9 4.2 3.6 6.0 2.6

IOZM 3.7 5.6 4.9 7.0 4.8 5.4

Temporalis 26.0 31.8 26.2 28.0 26.1 32.2

Medial pterygoid 3.7 7.7 9.7 7.8 7.2 6.1

Lateral pterygoid 0.9 2.0 3.2 2.3 3.7 2.0

Note:
Values for Heterocephalus glaber from Cox & Faulkes (2014). Absolute muscle masses given in Table S2.
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Superficial masseter

The superficial masseter is a large muscle in all blesmols, although only a small part of it

can be seen in lateral view (Fig. 3). It represents about a quarter of the total masticatory

musculature in most of the bathyergid genera. However, Heliophobius has a slightly

reduced superficial masseter of about 19% total muscle mass, and Bathyergus has a greatly

increased superficial masseter that occupies over 37% of the total musculature. This muscle

has a tendinous origin via a small attachment site on the skull on the ventral surface

of the zygomatic process of the maxilla. The tendon initially runs antero-medial to the

deep masseter, but the muscle itself then wraps around the deep masseter to take a more

lateral position. The superficial masseter then inserts along the ventral margin of the

masseter all the way to the tip of the angular process. The muscle also wraps around the

ventral mandibular margin and extends widely over the medial surface of the mandible,

forming a pars reflexa (Figs. 4 and 5). This reflected component covers almost the

entire medial angular process, leaving just a small area for the insertion of the medial

pterygoid muscle.

Deep masseter

The deep masseter is also a large muscle in blesmols, contributing 22–28% of the

total adductor muscle mass in all genera. It originates along the entire length of the

ventro-lateral surface of the zygomatic arch, from the attachment site of the superficial

masseter anteriorly, to the zygomatic process of the squamosal posteriorly. The insertion of

the deep masseter is along the lateral mandibular surface just dorsal to the insertion of

the superficial masseter. Thus, in lateral view, the deep masseter covers the posterior half of

Figure 2 Relative contributions of the masseter, temporalis and pterygoid muscles to total adductor

muscle mass in each genus of Bathyergidae and Heterocephalidae. Data for Heterocephalus from Cox

& Faulkes (2014). Full-size DOI: 10.7717/peerj.8847/fig-2

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 6/19



the mandible (Fig. 3). The separation between the superficial and deep masseter muscles

was one of the most difficult aspects of the digital dissection, with these two muscles

appearing continuous in some places (Fig. 5). However, the physical dissections of

Bathyergus, Cryptomys and Georychus provided confidence that the muscles had been

correctly reconstructed. No division of the deep masseter into anterior and posterior

sections was identified.

Zygomaticomandibularis

The zygomaticomandibularis or ZM is a small to medium-sized component of the

bathyergid masticatory system. It forms 10–13% of the total muscle mass in most genera,

although this rises to 16% in Heliophobius and drops to 8% in Bathyergus. The ZM is

divided into three sections—infraorbital, anterior and posterior—that were easily

identifiable and separable in all specimens (Fig. 6). The anterior ZM originates from the

Figure 3 Masticatory muscles of Bathyergidae. Left lateral view of a 3D reconstruction of the cranium,
mandible and masticatory muscles of: (A) Bathyergus suillus; (B) Georychus capensis; (C) Cryptomys

hottentotus; (D) Fukomys mechowi; (E) Heliophobius argenteocinereus. Abbreviations: azm, anterior
zygomaticomandibularis; dm, deep masseter; iozm, infraorbital portion of the zygomaticomandibularis;
sm, superficial masseter; t, temporalis. Scale bars = 5 mm. Full-size DOI: 10.7717/peerj.8847/fig-3

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 7/19



medial surface of the zygomatic arch, with the attachment site spanning the posterior half

of the jugal bone and the anterior part of the zygomatic process of the squamosal.

The origin of the posterior ZM is immediately posterior to that of the anterior ZM and

Figure 4 Superficial master and pterygoid muscles of Cryptomys hottentotus. Left lateral view of a 3D
reconstruction of the cranium, mandible, superficial masseter and pterygoid muscles. Cranium and
mandible transparent for visualisation of muscles attaching to medial mandibular surface. Abbreviations:
lp, lateral pterygoid; mp, medial pterygoid; pr, pars reflexa of the superficial masseter; sm, superficial
masseter. Scale bar = 5 mm. Full-size DOI: 10.7717/peerj.8847/fig-4

Figure 5 Coronal diceCT slice of Bathyergus suillus. MicroCT slice through the head of Bathyergus
suillus stained with iodine potassium iodide. Abbreviations: azm, anterior zygomaticomandibularis (dark
green); dm, deep masseter (dark blue); man, mandible; pr, pars reflexa of the superficial masseter (light
blue); pzm, posterior zygomaticomandibularis (light green); sm, superficial masseter (light blue);
t, temporalis (red); ten, tendon of temporalis. White line on 3D reconstruction shows position of slice.
Scale bar = 5 mm. Full-size DOI: 10.7717/peerj.8847/fig-5

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 8/19



runs medially along the zygomatic arch until it meets the glenoid fossa. Both muscles insert

in a fossa on the lateral surface of the mandible, with the anterior ZM having largely

ventrally oriented fibres and the posterior ZM running somewhat anteriorly from origin to

insertion. The anterior margin of the anterior ZM is at the level of the coronoid process of

the mandible. Both muscles are covered by the deep masseter in lateral view.

The infraorbital portion of the ZM (IOZM) is usually the largest division of the ZM

(although not in Heliophobius where it is smaller than the anterior ZM). It takes a wide

origin across the anterior orbital wall and zygomatic process of the maxilla. The fibres

then run ventrally and converge to a much narrower insertion area on the lower

margin of the coronoid process, next to the attachment site of the anterior ZM. In most

bathyergid genera, the IOZM origin is confined to the orbit, but in Cryptomys and

Fukomys, a very small extension of the IOZM can be seen to push through the infraorbital

foramen to take its origin on the rostrum (Figs. 6 and 7).

Figure 6 Temporalis and zygomaticomandibularis muscles of Bathyergidae. Left lateral view of a 3D
reconstruction of the cranium, mandible, temporalis and zygomaticomandibularis of: (A) Bathyergus
suillus; (B) Georychus capensis; (C) Cryptomys hottentotus; (D) Fukomys mechowi; (E) Heliophobius

argenteocinereus. Abbreviations: azm, anterior zygomaticomandibularis; iozm, infraorbital portion of the
zygomaticomandibularis; pzm, posterior zygomaticomandibularis; t, temporalis. Scale bars = 5 mm.

Full-size DOI: 10.7717/peerj.8847/fig-6
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Temporalis

The temporalis is large in all bathyergid genera, forming between 26% and 32% of the total

muscle mass. It originates on the braincase, covering the parietal and the posterior part

of the frontal bone (Fig. 3). The posterior limit of the temporalis on the skull is the

nuchal crest, the medial border runs along the midsagittal line and anteriorly it extends

into the orbit where it meets the posterior border of the IOZM (Fig. 6). Fibres from all

across this wide origin converge on a small insertion on the anterior margin and medial

surface of the coronoid process on the mandible. This gives the temporalis a fan-shaped

morphology, with fibres from the orbital region running vertically and fibres from the

nuchal crest running horizontally over the top of the zygomatic process of the squamosal.

A tendon running through the middle of the muscle from the coronoid process

upwards appears to divide the ventral part of the muscle into lateral and medial portions,

inserting on the lateral and medial surfaces of the coronoid process respectively (Fig. 5).

However, these portions come together in the dorsal part of the muscle and it is not

possible to subdivide the temporalis here with any certainty. Thus, to avoid introducing

errors, the temporalis has been reconstructed as a single component.

Figure 7 Transverse diceCT slice of Cryptomys hottentotus. MicroCT slice through the head of
Cryptomys hottentotus stained with iodine potassium iodide. Abbreviations: iozm, infraorbital portion of
zygomaticomandibularis (dark green); on, optic nerve; t, temporalis (red). White line on 3D recon-
struction shows position of slice. Scale bar = 5 mm. Full-size DOI: 10.7717/peerj.8847/fig-7

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 10/19



Medial pterygoid

The medial pterygoid comprises between 7% and 8% of the total masticatory muscle mass

in Cryptomys, Georychus and Heliophobius. It is a little larger in Fukomys, representing

almost 10% total muscle mass, but is notably smaller in Bathyergus occupying only 3% of

the adductor musculature. The medial pterygoid has an elongated anterior portion that

extends deeply into the pterygoid fossa where it takes its origin. There is also a smaller

part of this muscle that originates on the lateral surface of the pterygoid flange that is

ventral to the attachment of the lateral pterygoid muscle. From these attachment sites, the

medial pterygoid runs ventro-laterally, fanning out somewhat, to insert on the medial

surface of the angular process of the mandible, just dorsal to the ventral margin.

The insertion site is elongate but narrow and bounded on all sides by the superficial

masseter (Fig. 4).

Lateral pterygoid

The lateral pterygoid is a relatively small muscle forming 2–4% of the total adductor

muscle mass, except in Bathyergus in which it is just under 1% of the total musculature.

It takes its origin from the lateral surface of the pterygoid flange, just dorsal to a part of the

medial pterygoid. From there, it runs laterally and posteriorly to an insertion site on the

medial surface of the condylar process of the mandible.

DISCUSSION
The technique of diceCT was successfully used to reveal the masticatory muscle anatomy

of all five extant genera of blesmols. Despite being stored in ethanol for a number of

years, which can reduce the contrast differences between soft tissues stained with I2KI

(Gignac et al., 2016), the microCT images produced here were of good quality and allowed

the different masticatory muscles to be distinguished from one another (Fig. 5).

The most notable finding from this study is consistency of the relative muscle

proportions across the chisel-tooth digging bathyergid genera (Cryptomys, Fukomys,

Georychus, Heliophobius). This supports our first hypothesis which predicted that the

functional demands of needing to produce a high bite force at wide gape (McIntosh & Cox,

2016a) would lead to a constrained configuration of masticatory muscles across the

family. In these genera, the masseter complex (including superficial and deep masseters,

and all parts of the ZM) forms approximately 60% of adductor muscle mass, the temporalis

represents around 30%, and the two pterygoid muscles together make up the final 10%.

This distribution of muscle mass, with its dominant masseter, but also relatively large

temporalis, has also been reported in a number of rodents, such as the mountain beaver,

Aplodontia rufa, several members of the Sciuridae (Ball & Roth, 1995; Druzinsky, 2010),

and the North American beaver, Castor canadensis (Cox & Baverstock, 2016). Notably,

all of these rodents are sciuromorphous (Wood, 1965), that is they have an extension

of the deep masseter on to the rostrum and they are all relatively distantly related to

blesmols (Fabre et al., 2012). In contrast, more closely related rodents, from the

suprafamilial clade Ctenohystrica to which blesmols belong, generally differ from the

bathyergid pattern by having an even more dominant masseter (70% or more of total

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 11/19



muscle mass) and a much reduced temporalis (15% or lower), for example Hydrochoerus

(Müller, 1933),Hystrix (Turnbull, 1970) and Ctenomys (Becerra, Casinos & Vassallo, 2013).

These rodents are hystricomorphous and have a substantial extension of the IOZM

through the infraorbital foramen on to the rostrum. It is notable that the rodent species

that more closely resemble bathyergids in the proportions of their jaw-closing muscles are

those that require high bite forces at the incisors, either for processing mechanically

demanding food items (Smith & Follmer, 1972) or for tree-felling (Rosell et al., 2005).

It appears that the demands of chisel-tooth digging may have driven convergent evolution

of a similar distribution of muscle mass in blesmols.

The second hypothesis of this study predicted that the chisel-tooth digging bathyergids

would resemble H. glaber in their masticatory muscle anatomy. This hypothesis is also

supported, with the relative proportions of each muscle in the naked mole-rat (Cox &

Faulkes, 2014) being very similar to that seen in Cryptomys, Fukomys, Georychus and

Heliophobius. Given this similarity, it is possible that this muscle arrangement is ancestral

for the Bathyergoidea (the superfamily containing Heterocephalidae and Bathyergidae).

However, given the strong pressures exerted on morphology by chisel-tooth digging

(Lessa, 1990; Samuels & Van Valkenburgh, 2009; Gomes Rodrigues, Šumbera & Hautier,

2016;McIntosh & Cox, 2016a, 2016b), it is also possible that this configuration of adductor

muscles evolved independently in the two families, especially given that they appear to

have diverged over 30 million years ago (Patterson & Upham, 2014).

The exception to the common arrangement of masticatory muscles in the Bathyergidae

is Bathyergus, the only genus of scratch-digging blesmols. The distribution of muscles

in this genus is 69% masseter, 26% temporalis and 5% pterygoids. Thus, our third

hypothesis that Bathyergus would differ from the chisel-tooth diggers is supported.

However, it should be noted that only one specimen of each genus was available for study,

so no statistical test of the difference between scratch and chisel-tooth diggers could be

undertaken. We further predicted that the temporalis would be relatively smaller in

the scratch digger, owing to the perceived importance of the temporalis in chisel-tooth

digging (Samuels & Van Valkenburgh, 2009;McIntosh & Cox, 2016a), but this was not the

case. The temporalis muscle in Bathyergus forms a similar proportion of total adductor

muscle mass as inHeliophobius and Fukomys; instead the masseter complex in Bathyergus,

in particular the superficial masseter, is relatively larger and the pterygoid muscles form a

smaller part of the masticatory musculature. The lack of difference in the relative

temporalis mass may reflect the fact that all bathyergid genera, Bathyergus included, have

diets that incorporate hard foods such as the roots and tubers of geophytes, many of

which are of large size and would require the use of a wide gape. Thus the size of the

temporalis may be driven more by diet than by mode of digging.

The function of the superficial masseter has been debated by a number of authors, but it

is generally thought to be important in the power stroke of both gnawing and chewing

(Gorniak, 1977; Byrd, 1981) as well as being the main protractor of the lower jaw

(Hiiemae, 1971), based on the antero-posterior orientation of the muscle fibres. Thus,

the enlarged superficial masseter in Bathyergus may be an adaptation to its diet which

incorporates many tough grasses and bulbs (Bennett & Faulkes, 2000). The function of the
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expansion of the superficial masseter on the medial mandibular surface, the pars reflexa, is

less clear. Satoh & Iwaku (2004) have suggested that it may enable a wider gape by

increasing the resting length of the muscle fibres. In most bathyergid genera, this would be

advantageous as it would facilitate the wide opening of the jaws necessary for chisel-tooth

digging. Blesmols of the genus Bathyergus do not dig with their teeth (Stein, 2000) but

the males do fight with their incisors (Bennett & Faulkes, 2000), again requiring a wider

gape. Whether or not the fighting behaviour requires a wider gape (and thus larger

superficial masseter) than chisel-tooth digging is at present unclear.

The reduced pterygoid muscles in Bathyergus, particularly the medial pterygoid, may

also be a reflection of scratch digging behaviour. It has previously been noted that the

medial pterygoid contracts more strongly during incisor gnawing than molar chewing

(Weijs & Dantuma, 1975). Thus, scratch digging mole-rats may not need such large

pterygoid muscles as their chisel-tooth digging counterparts. Alternatively, the reduced

medial pterygoid may simply reflect the reduced area for attachment on the medial surface

of the angular process, resulting from the increased size of the pars reflexa of the superficial

masseter in Bathyergus (Satoh & Iwaku, 2004).

In general, the muscle reconstructions presented here are in agreement with the previous

descriptions of bathyergid jaw musculature given by Tullberg (1899) and Morlok (1983),

but differ in some respects from the anatomy reported by Boller (1970) and Van Daele,

Herrel & Adriaens (2009). The main difference arises in the morphology of the superficial

masseter, which in Boller (1970) and Van Daele, Herrel & Adriaens (2009) is reported to

have a wide expansion across the deep masseter in lateral view and is split into sections

known as M1a, M1b and M2. Here, we agree withMorlok (1983) that the main part of the

superficial masseter in lateral view is very slender and runs along the ventral margin of

the mandible and that most of the muscle attaching to the lateral surface of the mandible is

the deep masseter. It is clear that the division between the superficial and deep masseter

muscles is quite difficult to determine in some places, but following both digital and

physical dissection, we are confident that the morphology presented here is correct and

moreover resembles that reported for the naked mole-rat (Cox & Faulkes, 2014).

The other major difference between the reconstructions here and that of Boller (1970) is

with regard to the temporalis. The illustrations of Cryptomys in Boller (1970) show the

temporalis extending ventrally on to the mandible, between two sections of the ZMmuscle.

We believe this ‘pars zygomatica of the temporalis’ to be a misidentification of the anterior

ZM resulting from the close apposition of the two muscles, and the insertion of the

temporalis on the mandible to be restricted to the coronoid process.

The virtual reconstructions presented here highlight one well-known peculiarity of

bathyergid musculature—the lack of jaw-closing muscles attaching to the rostrum in

this family. Species in the Ctenohystrica, which includes the blesmols, are almost all

hystricomorphous; that is they have a greatly enlarged infraorbital foramen, through which

a portion of the ZM muscle (the IOZM) extends to take its origin on the rostrum

(Hautier, Cox & Lebrun, 2015). In the Bathyergidae, the infraorbital foramen is much

smaller and very little, if any, muscle passes through it. This is very similar to the condition

known as protrogomorphy, which is believed to be the ancestral state for rodents
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(Wood, 1965). Here we have designated the rostral most section of the ZM as the ‘IOZM’,

but only in Cryptomys and Fukomys does it pass through the infraorbital foramen. In the

remaining three genera, the IOZM is confined to the orbit. Maier & Schrenk (1987)

noted that some muscle fibres pass through the infraorbital foramen in Bathyergus and

Georychus in early ontogeny, but subsequently retreat and are absent from the rostrum at

birth. Similarly, no part of the IOZM was found on the rostrum in the specimens of these

two genera in this study.

Despite not extending on to the rostrum, the IOZM is usually the largest part of the

ZM in bathyergids and has a wide origin across the anterior part of the orbit. Indeed, in

all the specimens studied here, its posterior margin meets the anterior margin of the

temporalis in the orbit. Such an arrangement of muscles has likely been made possible by

the extreme reduction of the eye in these fossorial species, which has left space into

which the muscles have expanded (Fig. 7). The large IOZM also gives a clue to the

evolutionary history of the masticatory muscles in Bathyergidae. Although frequently

referred to as being ‘protrogomorphous’ (Tullberg, 1899; Wood, 1965, 1985), the

morphology of the bathyergid ZM muscle does not resemble that of the extant

protrogomorph, Aplodontia rufa, in which the ZM origin is restricted to the zygomatic

arch and does not extend dorsally into the orbit. Instead, the bathyergid IOZM more

closely resembles that of other hystricomorphs, minus the extension on to the rostrum, a

morphology that seems more likely to be secondarily derived than ancestrally retained.

This hypothesis is also supported by the phylogenetic position of bathyergids within the

otherwise hystricomorph clade Ctenohystrica (Swanson, Oliveros & Esselstyn, 2019),

the presence of hystricomorphy in some fossil bathyergids (Lavocat, 1973), and the

previously mentioned presence of hystricomorphy in early development of some blesmols

(Maier & Schrenk, 1987).

The loss of the rostral extension of the IOZM seems an unusual morphological change,

given that this muscle is known to improve the efficiency of molar chewing in rodents

(Cox et al., 2012; Cox, 2017). It is possible that it is an adaptation towards increased use of

the incisors in digging, as has been suggested for H. glaber (Cox & Faulkes, 2014).

Shortening the rostrum would decrease the out-lever of incisor biting and would thus

increase bite force, but would leave less room for rostral muscle attachment. In addition,

the loss of the IOZM from the rostrum could be a strategy for increasing maximum gape,

which is also important in chisel-tooth digging (McIntosh & Cox, 2016a). It should be

noted that Bathyergus also lacks the rostral portion of the IOZM, despite being a scratch

digger. This may be a case of phylogenetic inertia and that having lost the rostral IOZM

once in its evolutionary history, Bathyergus has not re-evolved it.

CONCLUSION
The masticatory musculature of the Bathyergidae is dominated by the masseter muscle, but

also has a relatively large temporalis, similar to the condition seen in many sciuromorph

rodents. The ZM muscle does not extend on to the rostrum (except very slightly in

Cryptomys and Fukomys), a condition that is thought to be secondarily derived from a

hystricomorph ancestor. The relative proportions of the jaw-closing muscles are largely
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consistent between the chisel-tooth digging blesmols, but the scratch digging genus,

Bathyergus, differs in having a larger superficial masseter and smaller pterygoid muscles.

Despite the deep split between the Heterocephalidae and the Bathyergidae, the jaw

adductor musculature of the naked mole-rat is very similar to that of the chisel-tooth

digging bathyergids.

ACKNOWLEDGEMENTS
The authors thank Keturah Smithson (Cambridge Biotomography Centre, University of

Cambridge) for microCT scanning the specimens.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The specimens were collected under a grant from the DST-NRF SARChI Chair (GUN

647560 to Nigel C. Bennett). The funders had no role in study design, data collection and

analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

DST-NRF SARChI Chair: GUN 647560.

Competing Interests

Philip G. Cox is an Academic Editor for PeerJ.

Author Contributions

� Philip G. Cox conceived and designed the experiments, performed the experiments,

analysed the data, prepared figures and/or tables, authored or reviewed drafts of the

paper, and approved the final draft.

� Chris G. Faulkes conceived and designed the experiments, analysed the data, prepared

figures and/or tables, authored or reviewed drafts of the paper, and approved the final

draft.

� Nigel C. Bennett conceived and designed the experiments, analysed the data, authored or

reviewed drafts of the paper, and approved the final draft.

Animal Ethics

The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

The work was approved by the animal ethics committee at the University of Pretoria

(AUCC 030110-002 and AUCC 040702-015).

Data Availability

The following information was supplied regarding data availability:

All specimens are stored in the PalaeoHub, Department of Archaeology, University

of York.

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 15/19



MicroCT stacks are available at Morphosource: M54784-98703, M54785-98704,

M54786-98705, M54787-98706, M54788-98707.

The full details of specimens, scanning parameters and microCT stack files are available

in Table S1.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/

peerj.8847#supplemental-information.

REFERENCES
Ball SS, Roth VL. 1995. Jaw muscles of new world squirrels. Journal of Morphology 224(3):265–291

DOI 10.1002/jmor.1052240303.

Becerra F, Casinos A, Vassallo AI. 2013. Biting performance and skull biomechanics of a chisel
tooth digging rodent (Ctenomys tuconax; Caviomorpha; Octodontoidea). Journal of
Experimental Zoology Part A: Ecological Genetics and Physiology 319A(2):74–85
DOI 10.1002/jez.1770.

Bennett NC, Faulkes CG. 2000. African mole-rats: ecology and eusociality. Cambridge:
Cambridge University Press.

Blanga-Kanfi S, Miranda H, Penn O, Pupko T, DeBry RW, Huchon D. 2009. Rodent phylogeny
revised: analysis of six nuclear genes from all major rodent clades. BMC Evolutionary Biology

9(1):71 DOI 10.1186/1471-2148-9-71.

Boller N. 1970. Untersuchungen an Schädel, Kaumuskulatur und äußerer Hirnform von
Cryptomys hottentotus (Rodentia, Bathyergidae). Zeitschrift für wissenschaftlische Zoologie
181:7–65.

Bookstein FL. 1989. Principal warps: thin-plate splines and the decomposition of deformations.
IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6):567–585
DOI 10.1109/34.24792.

Brandt JF. 1855. Beiträge zur nähern Kenntniss der Säugethiere Russlands. Mémoires de
l’Academie Imperiale des Sciences de St Pétersbourg. Sixième Série 9:1–375.

Burgin CJ, Colella JP, Kahn PL, Upham NS. 2018. How many species of mammals are there?
Journal of Mammalogy 99(1):1–14 DOI 10.1093/jmammal/gyx147.

Byrd KE. 1981. Mandibular movement and muscle activity during mastication in the guinea pig
(Cavia porcellus). Journal of Morphology 170(2):147–169 DOI 10.1002/jmor.1051700203.

Cox PG. 2017. The jaw is a second-class lever in Pedetes capensis (Rodentia: Pedetidae). PeerJ
5:e3741 DOI 10.7717/peerj.3741.

Cox PG, Baverstock H. 2016.Masticatory muscle anatomy and feeding efficiency of the American
beaver, Castor canadensis (Rodentia, Castoridae). Journal of Mammalian Evolution

23(2):191–200 DOI 10.1007/s10914-015-9306-9.

Cox PG, Faulkes CG. 2014. Digital dissection of the masticatory muscles of the naked mole-rat,
Heterocephalus glaber (Mammalia, Rodentia). PeerJ 2:e448 DOI 10.7717/peerj.448.

Cox PG, Jeffery N. 2011. Reviewing the morphology of the jaw-closing musculature in squirrels,
rats, and guinea pigs with contrast-enhanced microCT. Anatomical Record 294(6):915–928
DOI 10.1002/ar.21381.

Cox PG, Jeffery N. 2015. The muscles of mastication in rodents and the function of the medial
pterygoid. In: Cox PG, Hautier L, eds. Evolution of the Rodents: Advances in Phylogeny,

Functional Morphology and Development. Cambridge: Cambridge University Press, 350–372.

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 16/19



Cox PG, Rayfield EJ, Fagan MJ, Herrel A, Pataky TC, Jeffery N. 2012. Functional evolution of the
feeding system in rodents. PLOS ONE 7(4):e36299 DOI 10.1371/journal.pone.0036299.

Davies KT, Bennett NC, Tsagkogeorga G, Rossiter SJ, Faulkes CG. 2015. Family wide molecular
adaptations to underground life in African mole-rats revealed by phylogenomic analysis.
Molecular Biology and Evolution 32:3089–3107.

Druzinsky RE. 2010. Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph
rodents–Part 1: masticatory muscles, skull shape and digging. Cells Tissues Organs
191(6):510–522 DOI 10.1159/000284931.

Fabre P-H, Hautier L, Dimitrov D, Douzery EJP. 2012. A glimpse on the pattern of rodent
diversification: a phylogenetic approach. BMC Evolutionary Biology 12(1):88
DOI 10.1186/1471-2148-12-88.

Faulkes CG, Bennett NC. 2013. Plasticity and constraints on social evolution in African mole-rats:
ultimate and proximate factors. Philosophical Transactions of the Royal Society B: Biological
Sciences 368(1618):20120347 DOI 10.1098/rstb.2012.0347.

Faulkes CG, Bennett NC, Cotterill FPD, Stanley W, Mgode GF, Verheyen E. 2011.

Phylogeography and cryptic diversity of the solitary-dwelling silvery mole-rat, genus
Heliophobius (family: Bathyergidae). Journal of Zoology 285(4):324–338
DOI 10.1111/j.1469-7998.2011.00863.x.

Faulkes CG, Mgode GF, Archer EK, Bennett NC. 2017. Relic populations of Fukomysmole-rats in
Tanzania: description of two new species F. livingstoni sp. nov. and F. hanangensis sp. nov. PeerJ
5:e3214.

Faulkes CG, Verheyen E, Verheyen W, Jarvis JUM, Bennett NC. 2004. Phylogeographical
patterns of genetic divergence and speciation in African mole-rats (Family: Bathyergidae).
Molecular Ecology 13(3):613–629 DOI 10.1046/j.1365-294X.2004.02099.x.

Gignac PM, Kley NJ. 2014. Iodine-enhanced microCT imaging: methodological refinements for
the study of soft-tissue anatomy of post-embryonic vertebrates. Journal of Experimental Zoology

Part B: Molecular and Developmental Evolution 322B(3):166–176 DOI 10.1002/jez.b.22561.

Gignac PM, Kley NJ, Clarke JA, Colbert MW, Morhardt AC, Cerio D, Cost IN, Cox PG,

Daza JD, Early CM, Echols MS, Henkelman RM, Herdina AN, Holliday CM, Li Z, Mahlow K,

Merchant S, Müller J, Orsborn CP, Paluh DJ, Thies ML, Tsai HP, Witmer LM. 2016.

Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool
for rapid, high-resolution, 3-D imaging of metazoan soft tissues. Journal of Anatomy

228(6):889–909 DOI 10.1111/joa.12449.

Gomes Rodrigues H, Šumbera R, Hautier L. 2016. Life in burrows channelled the morphological
evolution of the skull in rodents: the case of African mole-rats (Bathyergidae, Rodentia).
Journal of Mammalian Evolution 23(2):175–189 DOI 10.1007/s10914-015-9305-x.

Gorniak GC. 1977. Feeding in golden hamsters, Mesocricetus auratus. Journal of Morphology

154(3):427–458 DOI 10.1002/jmor.1051540305.

Hautier L, Cox PG, Lebrun R. 2015. Grades and clades among rodents: the promise of geometric
morphometrics. In: Cox PG, Hautier L, eds. Evolution of the Rodents: Advances in Phylogeny,

Functional Morphology and Development. Cambridge: Cambridge University Press, 277–299.

Hiiemae K. 1971. The structure and function of the jaw muscles in the rat (Rattus norvegicus L.) III:
the mechanics of the muscles. Zoological Journal of the Linnean Society 50(1):111–132
DOI 10.1111/j.1096-3642.1971.tb00754.x.

Ingram CM, Burda H, Honeycutt RL. 2004. Molecular phylogenetics and taxonomy of the
African mole-rats, genus Cryptomys and the new genus Coetomys Gray, 1864. Molecular

Phylogenetics and Evolution 31(3):997–1014 DOI 10.1016/j.ympev.2003.11.004.

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 17/19



Jeffery NS, Stephenson R, Gallagher JA, Jarvis JC, Cox PG. 2011. Micro-computed tomography
with iodine staining reveals the arrangement of muscle fibres. Journal of Biomechanics

44(1):189–192 DOI 10.1016/j.jbiomech.2010.08.027.

Kock D, Ingram CM, Frabotta LJ, Honeycutt RL, Burda H. 2006. On the nomenclature of
Bathyergidae and Fukomys ngen (Mammalia: Rodentia). Zootaxa 1142(1):51–55
DOI 10.11646/zootaxa.1142.1.4.

Landry SO. 1957. The interrelationships of the new and old world rodents. University of California
Publications in Zoology 56:1–118.

Lavocat R. 1973. Les Rongeurs du Miocène d’Afrique orientale. 1, Miocène inférieur, Mémoires et

travaux de l’Institut de, Montpellier. Montpellier: École pratique des hautes études, Institut de
Montpellier, 1–284.

Lessa EP. 1990. Morphological evolution of subterranean mammals: integrating structural,
functional, and ecological perspectives. In: Nevo E, Reig OA, eds. Evolution of Subterranean

Mammals at the Organismal and Molecular Levels. New York: Wiley-Liss, 211–230.

Maier W, Schrenk F. 1987. The hystricomorphy of the Bathyergidae, as determined from
ontogenetic evidence. Zeitschrift für Säugetierkunde 52:156–164.

McIntosh AF, Cox PG. 2016a. Functional implications of craniomandibular morphology in
African mole-rats (Rodentia: Bathyergidae). Biological Journal of the Linnean Society

117(3):447–462 DOI 10.1111/bij.12691.

McIntosh AF, Cox PG. 2016b. The impact of digging on craniodental morphology and
integration. Journal of Evolutionary Biology 29(12):2383–2394 DOI 10.1111/jeb.12962.

Mein P, Pickford M. 2008. Early miocene rodentia from the northern sperrgebiet, Namibia.
Memoir of the Geological Survey of Namibia 20:235–290.

Metscher BD. 2009. MicroCT for comparative morphology: simple staining methods allow
high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiology 9(1):11
DOI 10.1186/1472-6793-9-11.

Morlok WF. 1983. Vergleichend- und funktionell-anatomische Untersuchungen an Kopf, Hals
und Vorderextremität subterraner Nagetiere (Mammalia, Rodentia). Courier Forschungsinstitut
Senckenberg 64:1–237.

Murphy RA, Beardsley AC. 1974.Mechanical properties of the cat soleus muscle in situ. American

Journal of Physiology 227(5):1008–1013 DOI 10.1152/ajplegacy.1974.227.5.1008.

Müller A. 1933. Die Kaumuskulatur des Hydrochoerus capybara und ihre Bedeutung für die
Formgestaltung des Schädels. Morphologisches Jahrbuch 72:1–59.

Patterson BD, Upham NS. 2014. A newly recognized family from the Horn of Africa, the
Heterocephalidae (Rodentia: Ctenohystrica). Zoological Journal of the Linnean Society

172(4):942–963 DOI 10.1111/zoj.12201.

Rosell F, Bozsér O, Collen P, Parker H. 2005. Ecological impact of beavers Castor fiber and Castor
canadensis and their ability to modify ecosystems. Mammal Review 35(3–4):248–276
DOI 10.1111/j.1365-2907.2005.00067.x.

Samuels JX, Van Valkenburgh B. 2009. Craniodental adaptations for digging in extinct burrowing
beavers. Journal of Vertebrate Paleontology 29(1):254–268
DOI 10.1080/02724634.2009.10010376.

Satoh K, Iwaku F. 2004. Internal architecture, origin-insertion site, and mass of jaw muscles in Old
World hamsters. Journal of Morphology 267(8):987–999 DOI 10.1002/jmor.10443.

Smith CC, Follmer D. 1972. Food preferences of squirrels. Ecology 53(1):82–91
DOI 10.2307/1935712.

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 18/19



Stein BR. 2000. Morphology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN, eds.
Life Underground: The Biology of Subterranean Rodents. Chicago: University of Chicago Press,
19–61.

Swanson MT, Oliveros CH, Esselstyn JA. 2019. A phylogenomic rodent tree reveals the repeated
evolution of masseter architectures. Proceedings of the Royal Society B: Biological Sciences
286(1902):20190672 DOI 10.1098/rspb.2019.0672.

Thorington RW, Darrow K. 1996. Jaw muscles of old world squirrels. Journal of Morphology

230:145–165 DOI 10.1002/(SICI)1097-4687(199611)230:2<145::AID-JMOR3>3.0.CO;2-G.

Tullberg T. 1899. Über das System der Nagethiere: eine phylogenetische Studie. Nova Acta Regiae
Societatis Scientarium Upsaliensis Series 3 18:1–514.

Turnbull WD. 1970. Mammalian masticatory apparatus. Fieldiana (Geology) 18:147–356.

Van Daele PAAG, Herrel A, Adriaens D. 2009. Biting performance in teeth-digging African
mole-rats (Fukomys, Bathyergidae, Rodentia). Physiological and Biochemical Zoology

82(1):40–50 DOI 10.1086/594379.

Van Daele PAAG, Verheyen E, Brunain M, Adriaens D. 2007. Cytochrome b sequence analysis
reveals differential molecular evolution in African mole-rats of the chromosomally hyperdiverse
genus Fukomys (Bathyergidae, Rodentia) from the Zambezian region. Molecular Phylogenetics

and Evolution 45(1):142–157 DOI 10.1016/j.ympev.2007.04.008.

Vickerton P, Jarvis J, Jeffery N. 2013. Concentration-dependent specimen shrinkage in
iodine-enhanced microCT. Journal of Anatomy 223(2):185–193 DOI 10.1111/joa.12068.

Visser JH, Bennett NC, Jansen Van Vuuren B. 2019. Phylogeny and biogeography of the African
Bathyergidae: a review of patterns and processes. PeerJ 7(4):e7730 DOI 10.7717/peerj.7730.

Weijs WA, Dantuma R. 1975. Electromyography and mechanics of mastication in the albino rat.
Journal of Morphology 146(1):1–33 DOI 10.1002/jmor.1051460102.

Wilson DE, Lacher TE, Mittermeier RA. 2016. Handbook of the mammals of the world Vol. 6.

Lagomorphs and rodents I. Barcelona: Lynx Edicions.

Wood AE. 1965. Grades and clades among rodents. Evolution 19(1):115–130
DOI 10.1111/j.1558-5646.1965.tb01696.x.

Wood AE. 1985. The relationships, origin and dispersal of the hystricognathous rodents.
In: Luckett WP, Hartenberger JL, eds. Evolutionary Relationships Among Rodents: A

Multidisciplinary Analysis. New York: Plenum Press, 475–513.

Woods CA. 1972. Comparative myology of jaw, hyoid, and pectoral appendicular regions of New
and Old World hystricomorph rodents. Bulletin of the American Museum of Natural History

147:115–198.

Woods CA, Hermanson JW. 1985. Myology of hystricognath rodents: an analysis of form,
function and phylogeny. In: Luckett WP, Hartenberger JL, eds. Evolutionary Relationships
among Rodents: A Multidisciplinary Analysis. New York: Plenum Press, 685–712.

Woods CA, Howland EB. 1979. Adaptive radiation of capromyid rodents: anatomy of the
masticatory apparatus. Journal of Mammalogy 60(1):95–116 DOI 10.2307/1379762.

Cox et al. (2020), PeerJ, DOI 10.7717/peerj.8847 19/19


	Masticatory musculature of the African mole-rats (Rodentia: Bathyergidae)
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	flink6
	References


