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Causal structures give us a way to under-

stand the origin of observed correlations.

These were developed for classical scenar-

ios, but quantum mechanical experiments

necessitate their generalisation. Here we

study causal structures in a broad range

of theories, which include both quantum

and classical theory as special cases. We

propose a method for analysing differences

between such theories based on the so-

called measurement entropy. We apply

this method to several causal structures,

deriving new relations that separate clas-

sical, quantum and more general theories

within these causal structures. The con-

straints we derive for the most general the-

ories are in a sense minimal requirements

of any causal explanation in these scenar-

ios. In addition, we make several techni-

cal contributions that give insight for the

entropic analysis of quantum causal struc-

tures. In particular, we prove that for any

causal structure and for any generalised

probabilistic theory, the set of achievable

entropy vectors form a convex cone.

Given a set of observed variables, some of
which may be correlated, a causal structure gives
a more detailed picture of how the correlations
come about. Depending on the situation, this
causal structure may posit the existence of hid-
den common causes and the nature of these de-
pends on the physical theory. For instance, the
experimental violation of a Bell inequality [1] can
be explained either by adapting the causal struc-
ture within the realm of classical physics (at the
expense of resorting to fine-tuning [2]) or by al-
lowing hidden systems to be non-classical.
Causal structures also provide a suitable basis
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Roger Colbeck: roger.colbeck@york.ac.uk

for analysing the features of different theories by
allowing us to phrase communication and cryp-
tographic protocols in terms of the dependencies
among the involved systems. They help us pre-
dict the success of players engaged in a protocol
when restricted according to different theories,
for example, in random access coding and the re-
lated principle of Information Causality [3, 4].

The differences between the observable corre-
lations that can be achieved with classical and
quantum resources within a given causal struc-
ture have been extensively analysed, starting
with the derivation of several classical constraints
and their quantum violations [5, 6], and progress-
ing to a systematic analysis [7–11]. Less work has
been dedicated to understanding the limitations
of quantum systems [9, 12, 13] and of the be-
haviour of theories beyond. For the latter, there
have been analyses of the implications of the no-
signalling principle on causal structures [14, 15].
More generally, understanding the differences of
generalised probabilistic theories (GPTs) with re-
spect to different tasks may inform the search for
principles that single out quantum mechanics.

In this work, we introduce a technique for de-
riving constraints on the observable correlations
that are achievable in different causal structures
according to different GPTs, with the aim of
moving towards a systematic analysis of the dif-
ferences between such theories. Our approach
is based on measurement entropy [16, 17] and in-
spired by entropic approaches to analysing causal
structures involving classical and quantum re-
sources [8, 9, 18–22]. That such a generalisation
is possible, was not at all clear, since work re-
garding the definition of entropy in GPTs showed
that there is no entropy measure that retains
the relevant properties of the von Neumann en-
tropy [16, 17]. In particular, the additivity of en-
tropy under the composition of different systems
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is not retained by the proposed measures, which
in previous entropic approaches for analysing
causal structures was crucial for encoding causal
constraints.

One of the key points that allows us to over-
come these issues is to explicitly include the con-
ditional entropy in the analysis. Nevertheless,
since our final results are stated in terms of the
Shannon entropy they can be directly compared
to those obtained with previous entropic tech-
niques.

We apply our method to various causal struc-
tures, generating a series of entropic constraints
that exclude certain causal explanations of ob-
served correlations when restricted by arbitrary
GPTs. This allows us to compare different causal
structures with respect to the correlations they
allow in different theories (in particular, we com-
pare classical, quantum and arbitrary GPTs). In
some cases we find the same sets of entropic de-
scription regardless of the theory (here known
quantum inequalities also apply to GPTs), while
in others we can show an entropic separation. For
instance, we apply our technique to Information
Causality [3], a candidate principle for singling
out quantum theory, showing that our method
improves upon that of [15], yielding the stronger
inequalities of [23]. Although the maximally non-
local GPT, box-world does not satisfy the notion
of Information Causality, we identify minimal no-
tions of causation that are satisfied.

In addition to providing a method for
analysing causal structures with GPT resources,
we make technical contributions by showing that
any set of achievable entropy vectors for the ob-
served variables in a causal structure involving
quantum or other generalised probabilistic re-
sources is a convex cone. Previously this had
only been shown for the entropy vectors of clas-
sical resources [8, 20, 22, 24]. This insight allows
for easy comparison of the entropic sets within
different theories, and in some cases enables us
to prove that a given characterisation is complete
by showing that all extremal points are achiev-
able. We also give some insights into the entropic
analysis of quantum causal structures.

1 Preliminaries

For every system A in a GPT, there is an asso-
ciated state space SA, a compact convex subset

of a real vector space V and an associated space
of effects, FA. An effect e ∈ FA is a linear map
SA → [0, 1] (thus, e is a vector in the dual space
to V ). There is a special effect, uA ∈ FA, called
the unit effect, with the property that uA(s) = 1
for all s ∈ SA. A measurement M is a collection
of effects whose sum is the unit effect, i.e., we can
write M = {ex ∈ FA :

∑

x ex = uA}. We use EA

to represent the set of allowed measurements on
A. The interpretation of ex(s) is the probability
of outcome x when M is performed on a system
in state s.
Consider two measurements on A: M =
{ex}x∈RM

and N = {fy}y∈RN
. If there exists

a map F : RM → RN such that

∑

x∈RM :F (x)=y

ex = fy ∀y ∈ RN (1)

we say that M is a refinement of N (equivalently,
N is a coarse-graining of M).1 A refinement is
trivial if for all x ∈ RM , ex = c(x) fF (x) for
some c(x) ∈ ❘>0. The subset of fine-grained

measurements, E∗
A, are those for which there are

no non-trivial refinements. Throughout this ar-
ticle we restrict to GPTs where there is at least
one finite-outcome fine-grained measurement (in
classical and quantum theory this is a restriction
to finite-dimensional systems).
Transformations of systems are represented by

linear maps between state spaces, T : SA → SB

and the set of such transformations is denoted
TA→B. The set TA→A, contains the identity
transformation, IA, and is closed under composi-
tion. Furthermore, a transformation followed by
a measurement is a valid measurement.
Two systems A and B can be thought of as

parts of a single joint system AB. We do not
specify precisely what the joint state space is,
but a minimal requirement is that if sA ∈ SA and
sB ∈ SB then sA⊗ sB ∈ SAB. States that can be
written as sA⊗ sB are called product and convex
combinations thereof are separable. Analogously,
measurements M = {ex}x∈RM

∈ EA and N =
{fy}y∈RN

∈ EB can be composed into L = M ⊗
N ∈ EAB with outcome set RL = RM × RN

and effects gx,y = ex⊗ fy. Product effects act on
product states according to (ex ⊗ fy)(sA ⊗ sB) =
ex(sA)fy(sB).

1If F is bijective, (1) is a relabelling. The set of mea-
surements EA is assumed to be closed under relabelling
and coarse-graining.
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This implies that we have non-signalling the-
ories: Suppose {ex

a}x ∈ EA and {ey
b}y ∈ EB

are measurements for a = 1, . . . , na and b =
1, . . . , nb, then, for example,

p(y|a, b) =
∑

x

(ex
a ⊗ fy

b )(sAB) = (uA ⊗ fy
b )(sAB) ,

which is independent of a.

We also assume that there are well-defined re-
duced states: ∀sAB ∈ SAB ∃sA ∈ SA s.t. ∀e ∈
FA, e(sA) = (e⊗uB)sAB. The post-measurement
state on A after a measurement on B with out-
come x is

sA|x =
(IA ⊗ ex)(sAB)

ex(sB)
. (2)

If the system A is classical, then SA is a sim-
plex and (up to relabelling) there is only one fine-
grained measurement that is not a trivial refine-
ment of another fine-grained measurement. We
call this a standard classical measurement. Note
that classical systems can be represented in any
GPT and composing them maintains separabil-
ity.

Box world [25] is the GPT in which the joint
state space of several systems is in one-to-one
correspondence with the set of no-signalling dis-
tributions amongst those systems, i.e., its state
space in this sense the largest possible within the
framework.

2 Measurement entropy and its prop-

erties

The approach to analysing causal structures that
we use in this work is based on measurement en-
tropy. In this section we introduce this and out-
line some of its properties.

Measurement entropy was first introduced
in [17, 23]; we follow the exposition of [23] here.
The measurement entropy, H+, is the minimal
Shannon entropy of the outcome distribution af-
ter a fine-grained measurement, i.e., for sA ∈ SA,

H+(A) = inf
{ex}∈E∗

A

−
∑

x

ex(sA) log2 ex(sA). (3)

Several ways to define the conditional measure-
ment entropy have been proposed [17, 23], of
which we use the following [23]. For any state

sAB ∈ SAB with reduced state sB ∈ SB, the con-
ditional measurement entropy is

H+(A|B) = inf
{fy}∈EB

∑

y

fy(sB)H+

(

A|y

)

, (4)

where H+

(

A|y

)

is the entropy of the state on

A after a measurement on B with outcome y,
sA|y. For classical systems these entropies coin-
cide with the Shannon entropy, H.

The measurement entropy satisfies a list of
properties that are useful to this work. Some
of these have previously been derived in [17, 23],
others are new to this work. In the remainder
of this section, SA, SAB etc. refer to state spaces
within an arbitrary GPT. For the proofs of the
first two properties we refer to [23].

Property 1 (Positivity [23]). H+(A) ≥ 0 for all
sA ∈ SA and H+(A|B) ≥ 0 for all sAB ∈ SAB.

Property 2 (Reduction to Shannon entropy [17,
23]). Let A and B be classical systems and sAB ∈
SAB, then H+(A) = H(A) and H+(A|B) =
H(A|B).

Property 3 (Data processing). Let sAB ∈ SAB,
T ∈ TB→C and sAC = (IA ⊗ T )(sAB). Then
H+(A|B) ≤ H+(A|C).

Proof. If {f j} form a measurement on C, then
{gj} form a measurement on B, where gj : sB 7→
f j(T (sB)). It follows that

H+(A|C) = inf
{fj}∈EC

∑

j

f j(sC)H+

(

A|j

)

= inf
{fj}∈EC

∑

j

gj(sB)H+

(

A|j

)

≥ inf
{gj}∈EB

∑

j

gj(sB)H+

(

A|j

)

= H+(A|B)

Property 4 (Independence). If two systems A
and B are independent, i.e., sAB = sA⊗sB, then
H+(A|B) = H+(A).

Proof. If A and B are independent, after any
measurement {ej} ∈ EB on B the post-
measurement state on A is sA, independent of
the outcome of the measurement. Therefore
H+(A|B) = H+(A).

Property 5 (Classical subsystem inequalities).
For a joint state sABC ∈ SABC with classical sub-
systems A and B, H+(AB|C) ≥ H+(A|C).
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Proof. For any measurement {f j} ∈ EC we have

∑

j

f j(sC)H(AB)
s

j
AB

≥
∑

j

f j(sC)H(A)
s

j
A

≥ H+(A|C) .

Applying this to a sequence of measurements that
converge to H+(AB|C) establishes the claimed
result.

Property 6 (Subadditivity [17, 23]). In GPTs
for which M ∈ E∗

A and N ∈ E∗
B im-

ply M ⊗ N ∈ E∗
AB (which holds for lo-

cally tomographic theories, including box-world)
H+(A) + H+(B) ≥ H+(AB).

We refer to [23] or Appendix A for a proof of
Property 6. Note further that Property 6 is the
only one that does not hold in arbitrary GPTs.

Property 7 (Lemma C2 of [23]). For sABC ∈
SABC where A and B are classical systems,
H+(A|BC) ≥ H+(AB|C)−H+(B).

We refer to [23] or Appendix A for a proof of
Property 7.

Property 8. For sABC ∈ SABC ,
where B is a classical subsystem,
H+(A|BC) ≤ H+(AB|C)−H+(B|C). If C
is also classical then this holds with equality.

We prove this property in Appendix A. Note
that Properties 7 and 8 are both relaxations of
the chain rule, H(A|BC) = H(AB|C)−H(B|C),
that holds for Shannon and von Neumann en-
tropy.

3 Entropy vector method for causal

structures in GPTs

A causal structure is a set of nodes arranged in a
directed acyclic graph, some of which are labelled
observed. Each observed node has a correspond-
ing random variable, while the other, unobserved
nodes correspond to resources from a GPT. For
a causal structure C we use CC, CQ, CB or CG

depending on whether the resources are classical,
quantum, box-world systems or from some un-
specified GPT respectively. For each unobserved
node we associate a subsystem with each of its
outgoing edges. An example for this is displayed
in Figure 1.

A direct arrow from a node A in a causal struc-
ture to a node Z means that A is a parent of Z;
a directed path from A to Z means that A is
an ancestor of Z. For an unobserved node A,
all subsystems associated with its outgoing edges
are considered parents/ancestors of each its chil-
dren/descendants. Given a causal structure, a
coexisting set of systems [9, 22] is one for which
a joint state can be defined. In general, no co-
existing set includes all nodes, since there is no
joint state of a system and the output obtained
from a measurement on it (unless the system is
classical).

Our method to generate new inequalities for
causal structures with GPT resources begins by
considering an entropy vector whose components
are the entropies and conditional entropies of all
coexisting sets. Conditional entropies composed
entirely of classical subsystems are excluded be-
cause they are linear combinations of other en-
tropies (e.g., H(X|Y ) = H(XY )−H(Y )).

We then impose a system of linear
(in)equalities that are necessary for a vec-
tor to be realisable as an entropy vector in a
causal structure. These inequalities are con-
structed using the properties of the measurement
entropy explained earlier and strong subadditiv-
ity in the cases where the measurement entropy
reduces to the Shannon entropy. In the case of
locally-tomographic GPTs, such as box-world,
there is one additional property (Property 6)
that does not hold in all GPTs. Further con-
straints come from the causal structure: two sets
of nodes are independent if they do not share
any ancestors in the causal structure. In general,
there may be further independencies among the
observed variables (see Theorem 22(i) of [14]
and Appendix D). This system of inequalities
constrains a polyhedral cone, which can be
projected to a marginal cone that contains no
components involving unobserved systems. The
projection is performed with a Fourier-Motzkin
elimination algorithm [26]. An example that
illustrates this procedure in detail is provided at
the beginning of Section 5.1.

When dealing with causal structures for
which computing all entropy inequalities for the
marginal scenarios of interest is computationally
impractical or even not possible with the com-
putational resources at hand, due to the scaling
of Fourier-Motzkin elimination [27], we can still
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derive valid entropy inequalities by marginalising
subsets of all valid inequalities.

Furthermore, given a particular observed dis-
tribution that we suspect to be incompatible with
a causal structure (either for classical theory,
quantum theory or boxworld), it is not necessary
to go through the marginalisation procedure dis-
cussed here. Instead we can look for a certificate
of incompatibility using a linear program. This
program can be set up by computing the entropy
vector for the distribution in question and then
adding this as a list of equalities (one for each
of its components) to the list of valid entropy
inequalities for the causal structure. If the re-
sulting system of linear (in)equalities is infeasi-
ble, then the distribution in question is certified
as incompatible with the causal structure within
the theory under consideration.
For some causal structures, the entropic con-

straints derived using Property 6 are also valid for
GPTs that are not locally tomographic, which is
the content of the following proposition.

Proposition 1. Let C be a causal structure in
which there are no nodes with two or more unob-
served parents. For any GPT G, any correlations
achievable with a finite number of finite-outcome
measurements in CG are achievable in CB.

This proposition follows from the insight pre-
sented in the proof of Lemma 2 in [28] that any
joint measurement on a classical and a GPT sys-
tem can be written as a measurement on the clas-
sical system followed by an outcome-dependent
measurement on the other (see also Lemma 4 in
Appendix A).

Proof. Since each node has at most one unob-
served parent, by Lemma 4 at each node we
can assume a standard classical measurement on
the classical subsystems followed by a measure-
ment on the GPT subsystem depending on the
result. Consider then sA1A2... ∈ S

G
A1A2... and let

{ex
a}x ∈ EA1 for a ∈ {1, 2, . . . , ma}, {f

y
b }y ∈ EA2

for b ∈ {1, 2, . . . , mb} etc. Since the outcome dis-
tribution p(x, y, . . . |a, b, . . .) is no-signalling and
since (by definition) all no-signalling distribu-
tions can be realised by states in box-world, there
exists s′

A1A2... ∈ S
B
A1A2... and box-world measure-

ments on A1, A2, . . . that give rise to the same
correlations.

Note that the same argument does not hold if
there are multiple unobserved parents at a single

node. This is because some joint measurements
cannot be expressed as a measurement on one
system followed by a measurement on the other
conditioned on the first (cf. Lemma 4), for exam-
ple a measurement in the Bell basis in quantum
mechanics.

The method presented in this section recovers
previous entropic approaches for describing clas-
sical [8, 20] and quantum [9] causal structures as
special cases. In the classical case, the measure-
ment entropy and its conditional version coincide
with the Shannon entropy and all variables in a
causal structure (observed and unobserved ones)
coexist. In this case, our method is equivalent
to that of [8, 20].2 For the quantum case, the
recovery of the method proposed in [9] from ours
is less obvious and is explained in Section 4.

When considering different causal structures,
convexity of the sets of achievable entropy vec-
tors of the observed variables is useful for their
comparison: for instance, it allows us to prove
that the achievable entropies in one case are con-
tained in those of another by considering only the
extreme points. The following theorem (proven
in Appendix B) establishes convexity in general
and is therefore an important structural insight.

Theorem 1. For any causal structure CG the
closure of the set of achievable entropy vectors of
the observed variables is a convex cone.

3.1 Causal structures and post-selection

For a causal structure involving a parentless ob-
served node X that takes values 1, 2, . . . , n, we
can also analyse an adapted causal structure
where each descendant of X is split into n-
variables and X is dropped, e.g., a descendant
Y is split into Y|X=1, . . . , Y|X=n. The resulting
causal structure is said to be post-selected on X
(see Figure 5 for an example, and [9, 22] for fur-
ther details of this procedure). For some causal
structures, C, post-selection is necessary for de-
riving entropy inequalities that distinguish be-
tween CC, CQ and CB [9, 18, 29]. When post-
selecting on parentless nodes, convexity of the
set of achievable entropy vectors of the observed
variables also holds by the following corollary of
Theorem 1, which is also proven in Appendix B.

2In this case Property 5 imposes that the entropy is
strongly subadditive.
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Corollary 1. For any causal structure CG in
which one or more nodes have been split into al-
ternatives by post-selecting on parentless observed
nodes, the closure of the set of achievable entropy
vectors for the coexisting observed variables is a
convex cone.

4 Quantum causal structures

For quantum causal structures there is an en-
tropy vector method in which the components
are the unconditional von Neumann entropies,
H, of all coexisting sets [9]. Conditional en-
tropies are not explicitly included, but, because
H(A|B) = H(AB) − H(B), relations involving
conditional entropy can still be encoded. It is
natural to ask whether the technique introduced
earlier in this paper could yield different results
to the existing entropic approach to quantum
causal structures. In this section, we consider
this question.

Following the approach outlined earlier in the
paper we consider including all entropy inequal-
ities from [9] (see Appendix D for a full descrip-
tion of the method employed in [9]). These are
automatically part of our approach, since the
unconditional measurement entropy—for which
we include all inequalities valid in the theory at
hand—coincides with the von Neumann entropy
in the quantum case. In addition, we also take
into account inequalities for conditional measure-
ment entropies, which are always positive and dif-
fer from the conditional von Neumann entropy.
Thus, our approach could lead to more restric-
tive inequalities than the previous quantum one.
With the following proposition we show that
the previous method for quantum causal struc-
tures [9] can be refined in a way that makes the
additional variables corresponding to conditional
measurement entropies superfluous.

Proposition 2. Consider a causal structure CQ

and suppose that, in addition to any causal con-
straints, we use positivity of unconditional en-
tropies, strong subadditivity and additionally im-
pose positivity of conditional entropies for all
combinations of variables that occur in a co-
existing set. If we then eliminate all variables
corresponding to unobserved systems, the result-
ing entropic inequalities for the observed vari-
ables are all valid.

As a result, all valid inequalities for condi-
tional measurement entropy can be imposed for
the conditional von Neumann entropy instead,
and can hence be encoded as linear constraints
on the (unconditional) von Neumann entropy. In
other words, although the conditional von Neu-
mann entropy can be negative for some quan-
tum states, by constraining it to be positive and
eliminating unobserved variables, we obtain valid
entropy inequalities for the observed variables in
CQ. This was not used in previous entropic anal-
yses of quantum causal structures [9].

Previous quantum methods [9, 22] instead
analysed quantum causal structures by consider-
ing the von Neumann entropy of coexisting sets
and imposing positivity of the entropy, strong-
subadditivity as well as the weak monotonicity
constraints that for any state ρXY Z , H(X|Y ) +
H(X|Z) ≥ 0 [30]. Weak monotonicity con-
straints are not needed in the statement of Propo-
sition 2 because they are implied by the positiv-
ity of conditional entropies. See Appendix C for
the full proof of Proposition 2 and for a complete
account of previous quantum methods.

This also gives an important insight into the
entropy vector method: the difference between
the inequalities that result from using the en-
tropy vector method in the classical [8, 20] and
quantum [9] cases is entirely due to the fact that
in the quantum case not all variables coexist and
does not arise from the different properties of the
Shannon and von Neumann entropy (see also Ap-
pendix C for further discussion).

For most causal structures of interest we can
prove that our refined entropy vector method
does not allow us to find any tighter entropy
inequalities than that of [9] (see Lemma 8 in
Appendix D). Nonetheless, the possibility of
using positivity of conditional entropy instead
of weak monotonicity simplifies the quantum
method even in these cases.

5 Applications: Entropic characterisa-

tion of causal structures with GPT re-

sources

In this section we illustrate the techniques intro-
duced above through a series of examples that
are chosen to show the different types of result
that can occur. We summarize our findings here,
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before presenting these cases in detail.
First, in Section 5.1, we consider the case with-

out post-selection and give three types of exam-
ple:

• A causal structure in which the actual
entropic cones for classical, quantum and
GPTs are provably the same is in given in
Section 5.1.1.

• A causal structure in which our methods
lead to the same outer approximations to the
entropy cones in the classical, quantum and
GPTs cases is given in Section 5.1.2.

• Two causal structures for which our methods
yield the same outer approximations of the
entropy cones in the classical and quantum
cases, but a different outer approximation is
obtained for GPTs is given in Sections 5.1.3
and 5.1.4. In these cases we are not aware of
any GPT correlations that violate the clas-
sical/quantum inequalities.

Note that we already know of a case (the triangle
causal structure) where we have different outer
approximations of the entropy cones in the clas-
sical and quantum cases [10]. We are currently
unaware of a case without post-selection in which
the outer approximations of the entropy cones
between two theories are different and in which
we know of correlations in one theory that vio-
late those in another. In other words, it remains
possible that the gaps we find in the outer ap-
proximations are a symptom of the method used,
rather than features of the actual entropy cones.
Then, in Section 5.2 we move to the use of

post-selection and show that:

• For the bilocality causal structure there are
different entropy cones for classical, quan-
tum and locally tomographic GPTs (Sec-
tion 5.2.1). We also identify distributions
that certify that the true entropy cones are
indeed different for all three cases.

• We can use our methods to obtain entropic
inequalities for the Information Causality
scenario in arbitrary GPTs (Section 5.2.2).

5.1 Analysis of causal structures without post-

selection

In this section we illustrate that our method for
GPTs can recover the classically valid entropy

YZ

AYAZ

X

A

Figure 1: The instrumental causal structure. The nodes
labelled X, Y and Z correspond to observations, mod-
elled as random variables. The node A labels a resource-
system with subsystems AY and AZ associated to its
outgoing edges.

inequalities for some causal structures (the first
two examples), and that for other causal struc-
tures we recover different inequalities (the last
two examples).

5.1.1 Instrumental Scenario

In the classical literature, one well-studied causal
structure is the instrumental causal structure [31]
of Figure 1. The quantum version of this causal
structure has also been studied [13, 32].

In this case, the coexisting sets are all sub-
sets of {AY , AZ , X}, {AY , X, Z} and {X, Y, Z}.
The second set implies that the entropy vector
includes components corresponding to H+(AY ),

H+(X), H+(Z), H+(AY X), H+(AY Z), H+(XZ),

H+(AY XZ), H+(AY |X), H+(AY |Z), H+(AY |XZ),

H+(AY X|Z), H+(AY Z|X), H+(X|AY ), H+(X|AY Z),

H+(XZ|AY ), H+(Z|AY ), H+(Z|AY X), and similarly
for the other two, leading to a vector with 35
components.
For these we impose all entropy inequal-

ities of Properties 1 to 8 as well as the
independencies of the subsystems of A and
X, such as H+(AY AZ |X) = H+(AY AZ) or
H+(X|AY AZ) = H+(X).

Eliminating all other variables in order to ob-
tain inequalities that only involve the compo-
nents (H(X), H(Y ), H(Z), H(XY ), H(XZ),
H(Y Z), H(XY Z)), we obtain the Shannon in-

equalities (positivity of entropy and conditional
entropy, and strong subadditivity) for three vari-
ables and

I(X : Y Z) ≤ H(Z) , (5)

which form a polyhedral cone Γ. Valid entropy
vectors for distributions compatible with the in-
strumental scenario for a system A of some lo-
cally tomographic GPT are necessarily within Γ.
For this causal structure, it is known that being
in Γ is necessary and sufficient for being in the
closure of the set of valid entropy vectors when
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Figure 2: Causal Structure where our outer approxima-
tions for classical, quantum and box-world resources co-
incide.

A is classical or quantum [10, 14, 33]. Since clas-
sical systems are a special case of systems in a
GPT, it follows that membership of Γ is also suf-
ficient for locally tomographic GPTs. We have
hence found all valid entropy inequalities in this
scenario for such theories.

According to Proposition 1, (5) holds in
any (not necessarily locally tomographic) GPT3.
Thus, in the instrumental causal structure, Γ
completely characterises the set of achievable en-
tropy vectors independently of whether system A
is classical, quantum or any GPT system.

5.1.2 Causal structure of Figure 2

Applied to the causal structure of Figure 2, our
method leads to the following entropy inequali-
ties for the observed variables when A and B are
taken to be box-world systems:

I(C : E|D) = 0 (6)

I(C : DEF ) ≤ H(D) (7)

I(C : EF ) ≤ H(E) (8)

and the Shannon inequalities. In [14] the same
inequalities were derived for classical A and B. It
follows from Proposition 2 (see below), that these
constraints also hold in the quantum case. Thus,
for all three theories we obtain the same outer
approximation of the respective entropy cones4.
Violation of any of these inequalities excludes this
causal structure as a possible explanation of the
observed correlations, irrespective of the nature
of the pre-shared resources.

3It is already clear that it holds in any GPT satisfy-
ing the premise of Property 6. Note that Proposition 1
implies that the set of correlations in C

B is at least as
large as those in C

G, so any valid restriction that holds
for correlations in C

B holds also for correlations in C
G.

4This may change if we were to take non-Shannon in-
equalities into account prior to Fourier-Motzkin elimina-
tion.

In this example, these outer approximations
are not tight: there are further valid en-
tropy inequalities for the classical systems C,
D, E and F—so-called non-Shannon inequali-
ties—that lead to tighter approximations, e.g.
the following inequality (from [24]):

I(D : E|F ) + I(D : E|C) + I(F : C)− I(D : E)

+I(D : F |E) + I(E : F |D) + I(D : E|F ) ≥ 0.
(9)

5.1.3 Causal structure of Figure 3(a)

With resources A and B that are allowed in box-
world we obtain the Shannon inequalities and

I(C : EF ) ≤ H(E), (10)

I(C : DEF ) ≤ H(D). (11)

Classical and quantum resources A and B lead to
slightly tighter inequalities, namely the Shannon
inequalities and

I(C : EF ) ≤ H(E) (12)

I(C : DEF ) + I(D : F |E) ≤ H(D). (13)

The question of whether or not there exist box-
world distributions that violate one of these in-
equalities remains open5.

5.1.4 Causal structure of Figure 3(b)

With resources A and B that are allowed ac-
cording to the theory of box-world we obtain the
Shannon inequalities and

I(C : D) = 0, (14)

I(F |CE) ≤ H(CF |DE), (15)

I(D : CEF ) ≤ H(E). (16)

Classical and quantum resources lead to slightly
tighter inequalities, namely the Shannon inequal-
ities, Equation (14), Inequality (15) and

I(D : CEF ) ≤ H(E|C). (17)

5In general, the methods used here lead to outer ap-
proximations to the entropy cone of a causal structure. In
some cases we can show these to be tight, see e.g. [29, 34],
but not always. It could thus be the case that while there
is a gap between the outer approximations of these cones,
there is still no gap between the true cones.
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Figure 3: Causal structures where there are different en-
tropic bounds depending on the nature of the unobserved
A and B.

Note that the classical case was treated in [14].

In general, such comparisons are interesting for
analysing the nature of causation in different the-
ories. In a sense the box-world inequalities can be
thought of as minimal requirements for a theory
with a reasonable notion of causation. Develop-
ing a systematic understanding of this may hint
at ways to find a physical principle that singles
out quantum correlations in general scenarios.

5.2 Analysis of causal structures with post-

selection

In this section we apply our method to post-
selected causal structure and show how this al-
lows us to distinguish the correlations obtained in
different GPTs. We give two examples for this.6

5.2.1 Bilocality

The bilocal causal structure, first analysed in [36,
37], characterises the situation we encounter in
scenarios where we rely on entanglement swap-
ping [38], see Figure 4(a). Technologically,
this scenario is encountered, for instance, in
quantum repeaters [39] or event-ready detection
schemes [40].
The entropy vector method provides us with a

convenient means to compare the observable cor-
relations when the sources L1 and L2 come from
different theories. Applying the entropy vec-
tor method to the bilocal causal structure with
sources from a locally tomographic GPT, apart
from the Shannon inequalities we find only

H(X0Z0) = H(X0) + H(Z0) (18)

up to symmetry (exchanging X0 and X1 as well
as Z0 and Z1).

6These constraints can be useful even in the classical
case, where there is already the inflation technique for
deriving incompatibility constraints [11, 35], if the cardi-
nality of the variables is high, for instance.

Applying the entropy vector method to the
bilocal causal structure in the quantum case we
find the Shannon inequalities as well as

H(X0Z0) = H(X0) + H(Z0) (19)

I(X0Y0 : Z0) ≤ H(Y0|X1) (20)

I(X1 : Z1|Y0) ≤ H(Y0|X0) + H(Y0|Z0)−H(Y0),
(21)

up to symmetry. [There are 4 instances of (19)
(obtained by exchanging X0 and X1 as well as
Z0 and Z1), 16 of (20) (obtained by exchanging
X0 and X1, Y0 and Y1, or Z0 and Z1 and by
exchanging the roles of X and Z) and 8 of (21)
(obtained by exchanging X0 and X1, Y0 and Y1,
or Z0 and Z1).]
The equality constraints are found in both the

quantum and GPT case, while the quantum de-
scription is tighter, and in this case the gap
is provably significant. An example of a box-
world distribution that violates (21) is obtained
by taking the systems L1 and L2 to be PR-boxes,
A ∈ {0, 1} is the uniform input and X ∈ {0, 1}
the output on the left, and analogously for C and
Z on the right. B ∈ {0, 1} is with probability 1

2
input into the first and with probability 1

2 input
into the second box and the respective output
serves as an input for the other, where Y is equal
to the outputs of the two boxes. This distribution
also violates the classical inequalities below and
is, to the best of our knowledge, the first mani-
festation of such a violation with a GPT correla-
tion that is proven to be achievable in the bilocal
causal structure. [Note that when the violation of
the classical inequalities of [20] was discussed, a
tripartite box was considered directly (and with-
out proof that it can be generated from a GPT
in the bilocal causal structure)7.]

For classical sources L1 and L2, we obtain
a convex cone constrained by Shannon inequal-
ities and 53 other independent classes of lin-
ear inequalities. We list one representative of
each of these 53 classes in Appendix E. Note
that the (in)equalities obtained in the quan-
tum case (cf. (19)–(21)) are present. A quan-
tum distribution that leads to an entropy vec-
tor outside this cone and which is thus not
achievable with classical resources in this causal
structure is, for instance, the following: Sup-
pose L1 and L2 share a singlet state each

7Note also that we have a slight difference from [20]:
they did not consider B.
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Figure 4: Bilocal causal structure. (a) The nodes la-
belled A, B, C, X, Y and Z correspond to observations,
modelled as random variables. The nodes A and B la-
bel a resource-system which in this case we take to be
quantum. (b) Post-selected version of the bilocal causal
structure, where X0 stands for X|A=0 and similarly for
X1 as well as the corresponding Y and Z.

and at the nodes the output is made accord-
ing to projective measurements Πθ in the basis
{cos θ|0〉+ sin θ|1〉, sin θ|0〉 − cos θ|1〉}. The an-
gles are chosen as follows: for X0, θ = x, for
X1, θ = 3x, for Z0, θ = 0, for Z1, θ = 2x and
for Y0 we consider θ = 0 on the state shared by
L1 and θ = (2y0 + 1)x on the other, for Y1 we
consider θ = 2x on the state shared by L1 and
θ = (2y0 + 1)x on the other system, where the
output is made up of the outputs of both mea-
surements in both cases and where x = 0.1 and
y0 denotes the outcome of the first measurement.
This distribution violates several of our inequal-
ities, for instance one inequality from class 31
from Appendix E). Note also that for the en-
tropic inequalities derived in [20] for the bilocal
causal structure with classical sources, no quan-
tum violations are known, so, as far as we know,
the characterisation reported here is the first en-
tropic one that is provably able to resolve this
gap.

5.2.2 Information Causality

Information causality [3] is a candidate principle
for singling out quantum theory. Roughly speak-
ing the principle is that that sending n bit of
classical information from one party to another
cannot give the recipient access to more than n
bits of previously unknown information regard-
less of any pre-shared resources the parties may
have. The associated causal structure is shown
in Figure 5, and information causality is obeyed

if

I(X1 : Y|R=1) + I(X2 : Y|R=2) ≤ H(Z) . (22)

This relation is known to hold in both classical
and quantum theory, while it is violated in box-
world.8

Using the technique of the present paper, we
find that the following relations hold for under-
lying box-world systems

I(X1X2 : Y|R=1Z) ≤ H(Z) (23)

I(X1X2 : Y|R=2Z) ≤ H(Z) . (24)

These are valid in any GPT (see Proposi-
tion 1) for the entropy vectors H containing
the entropies of all 23 subsets of the coexisting
sets {X1, X2, Y|R=1, Z} and {X1, X2, Y|R=2, Z}.
Thus, although information causality does not
hold in general, some minimal notion of causa-
tion remains (beyond no-signalling).

We remark that the information causality sce-
nario in boxworld was also considered in [15],
but in a slightly different way. There the rela-
tions I(X1 : Y|R=1) ≤ H(Z) and I(X2 : Y|R=2) ≤
H(Z) were postulated. We are able to re-
cover these with our approach in the fol-
lowing way. If, instead of considering all
joint entropies of coexisting variables, only
the restricted entropy vectors with components
HR = (H(X1), H(X2), H(Y|R=1), H(Y|R=2),
H(Z), H(X1Y|R=1), H(X2Y|R=2)) are consid-
ered, the inequalities I(X1 : Y|R=1) ≤ H(Z) and
I(X2 : Y|R=2) ≤ H(Z) emerge. Since all extremal
vertices of the entropy cone of vectors HR are
achievable (as was shown in [15]) and, according
to Corollary 1, the (closure of the) set of achiev-
able entropy vectors HR is convex, this is the
true entropy cone for this restricted marginal sce-
nario. However, we don’t see a clear motivation
for excluding the additional observed entropies.

The two inequalities (23) and (24) were al-
ready derived in [23] for box-world, but here they
emerge systematically from our method (and our
results imply that they hold for any GPT). They
are the only inequalities (other than Shannon
inequalities) that follow from our method as it
was introduced above. However, further inequal-
ities hold for this scenario, for instance the non-

8In fact, tighter entropy inequalities have since been
shown to hold in the quantum (and classical) case [9].
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Y|R=1

Y|R=2Z

X1

X2

A

Figure 5: Causal structure of the Information Causality
scenario. (a) Alice holds two pieces of information X1

and X2 and is allowed to send a message Z to Bob. Bob
then has to make a guess of either X1 or X2, depending
on the request of a referee, R = 1 or R = 2. A is a pre-
shared resource the parties may use. (b) We divide Y
into two variables, Y|R=1 and Y|R=2, depending on the
question R. While for classical A Bob can always com-
pute the value of both Y|R=1 and Y|R=2, more generally
these have to be understood as alternatives, of which
only one is generated.

Shannon inequality [24]

I(X2 : Y|R=1|Z) + I(X2 : Y|R=1|X1) + I(Z : X1)

−I(X2 :Y|R=1)+I(X2 :Z|Y|R=1)+I(Y|R=1 :Z|X2)

+I(X2 : Y|R=1|Z) ≥ 0 .

Because a complete set of non-Shannon inequal-
ities is not known, we do not have a complete
characterisation of the entropy cone of vectors
H for this scenario (which may require infinitely
many linear inequalities).

6 Limitations and directions to over-

come them

As is the case for previous entropic methods [8,
9, 20], there are causal structures for which this
method does not imply any entropic constraints
for the observed variables (except Shannon in-
equalities), an example being the triangle causal
structure [7, 9–11, 14, 19, 41].9 Furthermore, all
known strategies that certify incompatibility of
entropy vectors relying on GPT resources with
classical and quantum scenarios rely on post-
selection (cf. Figure 5). If post-selection is nec-
essary for this, for some causal structures (such
as the triangle causal structure) current entropic
techniques cannot certify this distinction. This
is not a severe limitation, since most experimen-
tally interesting causal structures involve mea-
surement settings, which we can post-select on.

Considering entropy vectors rather than the
corresponding joint probability distributions

9However, the triangle causal structure with inputs can
be treated with our method.

gives a computational advantage and provides
constraints that are valid independently of the di-
mension of the involved resources. However, this
advantage comes with restricted precision (see for
instance [29]). In particular, there are distribu-
tions between observed variables that are realis-
able with box-world resources but not with clas-
sical or quantum systems but which the method
cannot certify as such. How to overcome this
remains an open question, although the ideas
in [42] may form a useful starting point (notwith-
standing the limitations of the ideas of [42] iden-
tified in [43]).

While we found that our method strictly im-
proves on previous entropic methods [15], an-
other promising research avenue is to generalise
the inflation technique to GPTs. This research
has been started in [11], where it was pointed
out that certain inflations are valid for any GPT
and hence some general constraints can be de-
rived with it. The question of how these con-
straints relate to the ones found with our method
is left for future work. One key difference is that
the method presented in [11] does not distinguish
what GPT the latent systems are described by
(e.g. whether they are quantum and box-world
systems). Considering the latent variables ex-
plicitly allows us to make this distinction and to
certify that different sets of correlations are pro-
duced within different GPTs (e.g. quantum the-
ory and box-world).
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A Further details regarding the inequalities for the measurement entropy in GPTs

Before getting to the additional properties, we need a few lemmas. The first is the concavity of H+,
proven in [17, 23], which follows from the concavity of the Shannon entropy.

Lemma 1. For s1, s2 ∈ SA and 0 ≤ p ≤ 1, H+(A)ps1+(1−p)s2
≥ pH+(A)s1

+ (1− p)H+(A)s2
.

The next lemma says that the infimum in the definition of conditional measurement entropy can be
restricted to fine-grained measurements.

Lemma 2. Let sAB ∈ SAB, then H+(A|B) = inf{fy}∈E∗
B

∑

y fy(sB)H+

(

A|y

)

.

Proof. Let {fy}ny=1 ∈ EB and consider the coarse-graining that combines the last two effects in {fy}ny=1

to give a new measurement {gy}n−1
y=1 where gy = fy for y = 1, . . . , n − 2 and gn−1 = f = fn−1 + fn.

We have

n−1
∑

y=1

gy(sB)H+

(

A|y

)

=
n−2
∑

y=1

fy(sB)H+

(

A|y

)

+ (fn−1(sB) + fn(sB))H+

(

αsA|n−1 + (1− α)sA|n

)

,

where α = fn−1(sB)/(fn−1(sB) + fn(sB)). Using concavity, we have

n−1
∑

y=1

gy(sB)H+(A)sA|y
≥

n−2
∑

y=1

fy(sB)H+(A)sA|y
+ fn−1(sB)H+

(

sA|n−1

)

+ fn(sB)H+

(

sA|n

)

=
n

∑

y=1

fy(sB)H+(A)sA|y
,

i.e., for this coarse-graining the measurement on Bob cannot decrease the expected measurement
entropy on Alice conditioned on the result. Since all coarse-grainings can be formed by a sequence of
such combinations, it follows that the infimum on Bob’s measurements can be restricted to fine-grained
measurements.

It is also worth noting the following.

Lemma 3. Let {fy} ∈ EB be a trivial refinement of {ex} ∈ EB. Then
∑

y fy(sB)H+

(

A|y

)

=
∑

x ex(sB)H+

(

A|x

)

.

Proof. Consider the case in which one of the effects in {ex}nx=1 is split into two to form {fy}n+1
y=1 with

fy = ey for y = 1, . . . , n− 1 and fn + fn+1 = en. We have H+

(

A|n+1

)

= H+

(

A|n

)

and hence in this

case the claim follows from fn+1 + fn = en. Since any trivial refinement can be formed by combining
such splittings, the result generalizes to all trivial refinements.

The following lemma is in essence a restatement of part of the proof of Lemma 2 from [28].
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Lemma 4. Let A be classical and B be a system from an arbitrary GPT. For any measurement M ∈
EAB there exists an n-outcome measurement NA ∈ EA and measurements Nx

B ∈ EB for x = 1, 2, . . . , n
such that M is equivalent to performing NA, then performing Nx

B (where x is the result of NA).

Proof. Let M = {er} and let {fx} be a standard classical measurement on A. We can define a new
set of effects on B that act as er

x : sB 7→ er(sx
A ⊗ sB), where {sx

A} are a set of states on A for which
fx(sy

A) = δx,y. For each x, the set {er
x}r form a measurement on B:

∑

r

er
x(sB) =

∑

r

er(sx
A ⊗ sB) = 1 for all sB ∈ SB .

If we take NA = {fx} and Nx
B = {er

x}r, then this is equivalent to measuring M :

p(r) =
∑

x

p(x)p(r|x) =
∑

x

p(x)er
x(sB|x) =

∑

x

fx(sA)er(sx
A ⊗ sB|x) =

∑

x

er(sx
A ⊗ (fx ⊗ IB)(sAB))

=
∑

x

er((sx
Afx ⊗ IB)(sAB)) = er(sAB) ,

where we have used that
∑

x sx
Afx is the identity transformation on the classical system A.

We will in particular rely on the following corollary of this lemma.

Corollary 2. Let A be classical and B be a system from an arbitrary GPT. For any fine-grained
measurement M ∈ E∗

AB there exists an n-outcome fine-grained measurement NA ∈ E
∗
A, and fine-

grained measurements Nx
B ∈ E

∗
B for x = 1, 2, . . . , n such that M is equivalent to performing NA, then

performing Nx
B (where x is the result of NA).

Proof. We have already shown that NA can be taken to be fine-grained. Suppose N1
B is not fine

grained, and consider N̂1
B in which et

1 is split into other effects et1
1 and et2

1 satisfying et1
1 + et2

1 = et
1

in a non-trivial way, i.e., with et1
1 and et2

1 not proportional to one another or to any other effect ej
1

with j 6= t. The measurement that involves measuring NA and then N̂1
B if x = 1 and otherwise Nx

B

depending on the result is a non-trivial fine-graining of M . Thus, if M is fine-grained, so are Nx
B for

all x.

Proof of Property 6. For any measurements {ex} ∈ E∗
A and {fy} ∈ E∗

B and any state sAB ∈ SAB we
have

−
∑

x

ex(sA) log(ex(sA))−
∑

y

fy(sB) log(fy(sB)) ≥ −
∑

xy

(ex ⊗ fy)(sAB) log((ex ⊗ fy)(sAB))

≥ H+(AB) ,

where the first inequality uses subadditivity of the Shannon entropy and the last line follows because
{ex⊗fy}x,y is a measurement on AB and is hence at least as large as the infimum over joint measure-
ments in H+(AB). Then the fact that H+(A) and H+(B) are infima over fine-grained measurements
means that {ex} and {fy} can be chosen such that −

∑

x ex(sA) log(ex(sA))−
∑

y fy(sB) log(fy(sB))
is arbitrarily close to H+(A) + H+(B) implies result.

Proof of Property 7. Using Corollary 2, the measurement on BC in H+(A|BC) can be decomposed
into a standard measurement on B, yielding y, followed by a fine grained measurement on C depending
on the value of y obtained, i.e.,

H+(A|BC) =
∑

y

ey(sB) inf
{hz

y}z∈E∗
C

∑

z

hz
y(sC|y)H(A|yz) .

For some fixed set {hz
y}z ∈ E

∗
C , the right hand side (without the inf) takes the form

∑

yz

p(y, z)H(A|yz) = H(A|Y Z) = H(AY |Z)−H(Y |Z) ≥ H(AB|Z)−H(Y )

= H(AB|Z)−H+(B) ≥ H+(AB|C)−H+(B) ,
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where we have used that there is a standard measurement achieving the infimum for classical systems
in H+(B) and the subadditivity of the Shannon entropy. The result follows because we can choose
{hz

y}z ∈ E
∗
C such that the left hand side is arbitrarily close to H+(A|BC).

Proof of Property 8. We start from the definition of H+(AB|C), and use Corollary 2 to give

H+(AB|C)= inf
{fz}∈EC ,{ex

z }x∈E∗
AB

−
∑

z

fz(sC)
∑

x

ex
z (sAB|z) log(ex

z (sAB|z))

= inf
{fz}∈EC ,{gx

yz}x∈E∗
A

−
∑

z

fz(sC)
∑

xy

hy(sB|z)gx
yz(sA|yz) log(hy(sB|z)gx

yz(sA|yz))

= inf
{fz}∈EC ,{gx

yz}x∈E∗
A

−
∑

z

fz(sC)

[

∑

y

hy(sB|z) log(hy(sB|z))+
∑

xy

hy(sB|z)gx
yz(sA|yz) log(gx

yz(sA|yz))

]

≥ inf
{fz}∈EC

−
∑

z

fz(sC)
∑

y

hy(sB|z) log(hy(sB|z)) +

inf
{fz}∈EC ,{gx

yz}x∈E∗
A

−
∑

z

fz(sC)
∑

xy

hy(sB|z)gx
yz(sA|yz) log(gx

yz(sA|yz))

≥ H+(B|C) + H+(A|BC) .

In the last inequality we use that a measurement on C followed by a fine-grained measurement on A
is a joint measurement on sAC , so the infimum over all joint measurements cannot be larger than this
term.

If C is classical then we can drop inf{fz}∈EC
and take C to always be measured with a standard

classical measurement. This gives equality in both inequalities in the above proof.

B Proof of Theorem 1 and Corollary 1

The proof relies on the following Lemmas.

Lemma 5. For any causal structure CG where all observed variables share one observed ancestor the
topological closure of the set of achievable entropy vectors of the observed variables is convex.

Proof. We first prove convexity, and then show that the set form a cone.
Let CG have n observed variables and m unobserved ones. Let H1 and H2 be two achievable

entropy vectors for the n observed variables in CG. In the following, we show that for any 0 ≤ p ≤ 1,
there is a sequence of entropy vectors H′

k
within CG, such that limk→∞ H′

k
= pH1 + (1− p)H2.

For i = 1, 2, suppose that Hi is generated by using states {Y i
j }

m
j=1 for the m unobserved nodes and

that the observed random variables are {Xi
j}

n
j=1. The strategy for achieving the convex combination

is as follows. The common observed variable is taken to be X ′
1(k) = (A, Z) where

(A, Z) =















(0, 0) with probability k−1
k

(1, (X1
1 )k) with probability p

k

(2, (X2
1 )k) with probability 1−p

k

and where Xk denotes k i.i.d. copies of a random variable X. Each of the unobserved nodes is prepared
in state

Y ′
j = (Y 1

j )⊗k ⊗ (Y 2
j )⊗k .

Each of the other observed nodes then behaves as follows. The children of X1 have access to A. If
A = 0 they output X ′

j(k) = (0, 0). If A = 1 they perform the operation that would have led to H1

k times independently, acting on the first k subsystems of any GPT resources they have access to.
They then output X ′

j(k) = (1, (X1
j )k). If A = 2, the procedure is the same except that the operation

that would have led to H2 is repeated k times by acting on the second k subsystems of any GPT
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resources and the output is X ′
j(k) = (2, (X2

j )k). Note that the first part of the argument is equal to
A, so, in this way, the value of A is transferred to all descendants. An analogous strategy is then used
for subsequent generations.

For any subset S of the observed random variables {X ′
j(k)}nj=1 we have

H ′
k(S) = H ′

k(A) + pH1(S) + (1− p)H2(S) ,

where H ′
k refers to the entropy in the new strategy and H1 and H2 refer to the entropies in the original

strategies (i.e., according to H1 or H2). Noting that

H ′
k(A) = −

k − 1

k
log

k − 1

k
−

p

k
log

p

k
−

1− p

k
log

1− p

k

tends to 0 as k tends to ∞, we have limk→∞ H′
k

= pH1 + (1− p)H2.
If H1 and H2 are themselves only achievable as limits of entropy vectors the above argument can be

followed for each vector in the corresponding sequences tending to H1 and H2 respectively and thus
also holds for H1 and H2. This shows that the closure of the set of entropy vectors is convex.

The next lemma extends this beyond the case where there is a common observed ancestor.

Lemma 6. For any causal structure CG the topological closure of the set of achievable entropy vectors
of the observed variables is convex.

Proof. If all observed variables in CG have a common observed ancestor, the statement follows by
Lemma 5. Otherwise, there are 1 < l ≤ n observed nodes without any observed ancestors, which
we label X1, . . . , Xl (all other observed nodes (Xl+1, . . . , Xn) are descendants of at least one of these
nodes). We construct a larger causal structure C ′ by introducing an observed parent node Ai for each
Xi with i = 1, . . . , l, where Ai has no direct link to any variable except for Xi. Note that a distribution
over the observed variables X1, . . . , Xn is compatible with CG if and only if it is the marginal of a
distribution over X1, . . . , Xn, A1, . . . , Al that is compatible with C ′.

Now let C ′′ be another causal structure that is constructed from C ′ by adding a directed link from
A1 to all other Ai with 2 ≤ i ≤ l. A distribution over X1, . . . , Xn, A1, . . . , Al is compatible with C ′ if
and only if it is compatible with C ′′ and, at the same time, obeys I(A1 : Ai) = 0 for all 2 ≤ i ≤ l.

The “if” condition follows because any distribution in C ′ obeys I(A1 : Ai) = 0 for all 2 ≤ i ≤ l and
it can be realised in C ′′ without using the additional causal links A1 → Ai.

For the “only if”, we use that I(A1 : Ai) = 0 holds if and only if p(aia1) = p(ai)p(a1)10, so that any
distribution in C ′′ obeying I(A1 : Ai) = 0 for all 2 ≤ i ≤ l can be written as

p(x1, . . . , xn, a1, . . . , al) = p(xl+1, . . . , xn|x1, . . . , xl)p(x1|a1) . . . p(xl|al)p(a1) . . . p(al) , (25)

with the right hand side compatible with C ′.
Hence, a distribution over X1, . . . , Xn is compatible with CG if and only if it is the marginal of a

distribution over X1, . . . Xn, A1, . . . , Al that is compatible with C ′′ and obeys I(A1 : Ai) = 0 for all
2 ≤ i ≤ l.

The closure of the set of entropy vectors of the observed variables that are compatible with C ′′

(without any additional constraints) is convex by Lemma 5. The closure of the set of achievable
entropy vectors in CG is the closure of the set of achievable entropy vectors in of C ′′ restricted by
the linear equalities I(A1 : Ai) = 0 for all 2 ≤ i ≤ l and projected to the marginals involving only
X1, . . . , Xn. Because these operations preserve convexity, the closure of the set of achievable entropy
vectors of CG is convex.

The main theorem of this section now follows as a corollary.

10This can for instance be seen by writing the mutual information in terms of the relative entropy and using Klein’s
inequality [44].
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Proof of Theorem 1. Convexity of the set of achievable entropy vectors follows by Lemma 6. That it
is a cone follows because if H is an achievable entropy vector, then kH for k ∈ N is achievable by
taking k independent copies of all systems in the strategy achieving H. Furthermore, in any causal
structure CG, H = 0 is achievable by taking all observed variables to be 0 with probability 1. Hence,
by taking convex combinations, if H is achievable, so is λH for any λ ∈ R≥0.

Corollary 1 then follows in a similar way.

Proof of Corollary 1. Consider first postselecting on one of the parentless variables in CG, and suppose
that this variable has k possible values. Let X1, . . . , Xn be the set of all the observed descendants
of the variable that has been postselected on and Y1, . . . , Ym be the set of all other observed nodes.
In other words, for a fixed distribution, PY1,...,Ym , of all other observed nodes we consider k different
ways to form X1, . . . , Xn to give PX1

1 ···X1
n−1X1

nY 1
1 ,··· ,Y 1

m
, . . . , PXk

1 ···Xk
n−1Xk

nY k
1 ,··· ,Y k

m
respectively. For these

distributions we define an entropy vector with k(2n+m− 1) components by concatenating the entropy
vectors of each of them. Since the marginal distributions obey PY 1

1 ···Y 1
m

= · · · = PY k
1 ···Y k

m
, (k−1)(2m−1)

components can be removed from the vector. If H1 and H2 are two such achievable entropy vectors,
then for any 0 ≤ p ≤ 1, pH1 + (1 − p)H2 is also such an achievable entropy vector. This follows
by applying the technique used to prove Lemma 6 separately to the causal structure including only
one of the k alternatives (i.e., the causal structure formed from the post-selected causal structure by
removing all nodes associated with other alternatives). This strategy leads to the same distribution
on Y1, . . . , Ym for each alternative and hence the overall entropy vector has the same entropies for all
subsets of {Y1, . . . , Ym}. We can then postselect on further parentless variables in a similar way.

C Proof of Proposition 2

We use X1, . . . , Xn for the observed variables and Y1, . . . , Ym for the unobserved nodes in C. For each
unobserved node Yi we use Y j

i with 1 ≤ j ≤ ki for the subsystems associated with the ki outgoing

edges, sometimes using Y = {Y j
i }

m, ki

i=1,j=1 and X = X1, . . . , Xn as a shorthand. For any unobserved

node Yi with 1 ≤ i ≤ m and for any 1 ≤ j ≤ ki, we show how to modify Y j
i to Ỹ j

i such that, if

Ỹ j
i is shared along the jth outgoing edge instead of Y j

i , the same distributions among the observed

variables are obtained. This construction of Ỹ j
i will make all conditional entropies of unobserved

systems positive.

If H(Y j
i |Y ∪X\Y j

i ) ≥ 0, we set Ỹ j
i = Y j

i . Otherwise, we let Ỹ j
i = Y j

i ⊗αj
i , where αj

i =
∑

a pj
i (a)|a〉〈a|

is a system that is uncorrelated with any other system and obeys H(αj
i ) = H(Y j

i ). Then, H(Ỹ j
i ) =

H(Y j
i ) + H(αj

i ) and Ỹ j
i can be used to produce the same observed distributions as Y j

i , since αj
i may

be ignored when processing the unobserved systems Ỹ j
i to obtain observed variables. Furthermore,

due to the independence of the αj
i and by weak monotonicity, for any Ỹ j

i and any set of variables, S,

coexisting with Ỹ j
i ,

H(Ỹ j
i |S) = H(Y j

i |S) + H(αj
i ) ≥ −H(Y j

i ) + H(αj
i ) = 0, (26)

where the last equality follows by construction. (Note that for an observed variable X and a set S
coexisting with X, the analogous relation H(X|S) ≥ 0 already holds.)

We now show that for any two coexisting sets S, T ⊂ U with S ∩ T = ∅ and where U is a maximal
coexisting set, the conditional entropy H(S|T ) is positive. First of all, by strong subadditivity,

H(S|T ) ≥ H(S|U \ S). (27)

Positivity of H(S|U \ S) can be shown inductively in the cardinality of S. For cardinality 1 this is
implied by (27) and (26). Assuming that this holds for any set with cardinality q, the following shows
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that it also holds for any set with cardinality q +1. Let there be a set of variables S ⊆ U of a maximal
coexisting set U with cardinality q + 1 and a one element subset S1 ⊆ S, Writing S = S1S̄1, then

H(S|U \ S) = H(S1|U \ S) + H(S̄1|(U \ S) ∪ S1)

= H(S1|U \ S) + H(S̄1|U \ S̄1),

which is at least 0 by the inductive hypothesis. It then follows from (27) that H(S|T ) ≥ 0 for all
T ⊆ (U \ S).

D Remarks on the quantum entropy vector method

This appendix gives additional information regarding the role of Proposition 2 for the quantum entropy
vector method introduced in [9] (see also [22] for a review). For completeness, we first briefly introduce
the details of this method.
The quantum entropy vector method is based on the von Neumann entropy. For any joint state of

coexisting systems associated with some of the nodes (and edges) of a causal structure a joint entropy
can be defined, where the notion of coexisting sets is the one discussed for the measurement entropy
in the main text. However, the quantum method does not take the conditional entropies as separate
variables (these would be redundant because H(X|Y ) = H(XY )−H(Y )). For all variables within a
coexisting set, the following inequalities hold,11

• Strong subadditivity: For any state ρXY Z , H(XY Z) + H(Z) ≤ H(XZ) + H(Y Z).

• Weak monotonicity: For any state ρXY Z , H(X|Y ) + H(X|Z) ≥ 0.

Note that whenever there is no entanglement between two subsystems X and Y of a state ρXY ,
the stronger monotonicity statement H(X|Y ) ≥ 0 holds. Since it is always possible to purify an
unobserved quantum state ρA1···An , we can impose the following.

• Purification for unobserved systems: For an unobserved system in state ρA1···An we can
take H(A1 · · ·An) = 0 and for any subsystem S ⊂ {A1, . . . , An} we can take H(S) =
H({A1, . . . , An} \ S).12

Among the variables of different coexisting sets data processing inequalities hold.

• Data Processing: Let ρXY be the joint state of two sets of coexisting nodes X and Y and let E be
a completely positive trace preserving map taking Y to Z such that (I ⊗ E)(ρXY ) = ρXZ , then
H(X|Y ) ≤ H(X|Z).13

In addition, the causal structure will in general imply independence constraints among observed as
well as among unobserved systems. These are based on the notion of d-separation: for three pairwise
disjoint sets of variables X, Y and Z, X and Y are d-separated by Z, if Z blocks any path from any
node in X to any node in Y . A path is blocked by Z, if it contains one of the following: i → z → j
or i← z → j for nodes i, j and a node z ∈ Z in that path, or if it contains i→ k ← j, where k /∈ Z.
Note that it is possible that Z = ∅.

• Independences (following Theorem 22 (i) from [14]): For three pairwise disjoint sets of observed
variables, X, Y and Z, if X and Y are d-separated by Z, then H(X|Z) = H(X|Y Z). (Note that
Z = ∅ is allowed.)

We show with the following Lemma that weak monotonicity constraints are not relevant in this
approach when considering causal structures where none of the unobserved nodes have any parents.
These are the scenarios that are usually considered in the literature.

11In both inequalities X, Y , Z are all coexisting and may each be made up of subsystems associated with several
nodes.

12This can be seen by considering the Schmidt decomposition of the purified state [22].

13For a discussion on which data processing inequalities are relevant for computing constraints on entropy vectors we
refer to [22].
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Lemma 7. For any causal structure CQ in which the unobserved quantum nodes do not have any
parents, all weak monotonicity inequalities are implied by the other inequalities, i.e., for any two
coexisting sets S1, S2 with S1 ∩ S2 6= ∅,

H(S1 ∩ S2|S1 \ S2) + H(S1 ∩ S2|S2 \ S1) ≥ 0 (28)

is redundant.

Proof. Let A denote the collection of subsystems of all unobserved nodes and S be the maximal
coexisting set that includes all unobserved systems A. Then for the coexisting sets S1, S2 with S1∩S2 6=
∅ we divide into three cases.
Case 1: S1, S2 ⊆ S. Let R1 = S1∩A and R2 = S2∩A. We use the purification of unobserved systems
to rewrite,14

H(S1 ∩ S2|S1 \ S2)+H(S1 ∩ S2|S2 \ S1)

=H(R1)−H(R1\R2)+H(S1\R1)−H((S1\R1)\S2)+H(R2)−H(R2\R1)+H(S2\R2)−H((S2\R2)\S1)

=H(R1)−H(R1\R2)+H(A\R2)−H(A\(R2\R1))+H((S1∩S2)\A|(S1\S2)\A)+H((S1∩S2)\A|(S2\S1)\A),
(29)

where to obtain the first equality we used that ρS1 = ρR1 ⊗ ρS1\R1
and ρS2 = ρR2 ⊗ ρS2\R2

and
R1 \ S2 = R1 \ R2 and R2 \ S1 = R2 \ R1; in the second line we used the purity of ρA. The last two
terms in (29) are positive because these are classical conditional entropies (none of the sets contain
elements of A). The sum of the remaining four terms is then positive by strong subadditivity.
Case 2: S1∩S2 ⊆ S and either S1 6⊆ S or S2 6⊆ S, or both. In this case we use data-processing to give

H(S1 ∩ S2|S1 \ S2) + H(S1 ∩ S2|S2 \ S1) ≥ H(S1 ∩ S2|T1) + H(S1 ∩ S2|T2), (30)

where T1, T2 ⊆ S are the sets of variables that are processed to S1 \S2 and S2 \S1 respectively. Since
S1 ∩ S2 ⊆ S, S1 ∩ S2 = T1 ∩ T2 and so positivity of the remaining expression follows using Case 1.
Case 3: S1∩S2 6⊆ S. In this case we can find R1 ⊆ S and R2 with R2∩S = ∅ such that S1∩S2 = R1∪R2,
and rewrite

H(S1∩S2|S1\S2)+H(S1∩S2|S2\S1)=H(R1|S1\S2)+H(R2|S1\R2)+H(R1|S2\S1)+H(R2|S2\R2) .
(31)

The second and fourth terms are positive since R2 is classical. The first and third terms correspond to a
weak monotonicity inequality like that considered in case Case 2, and so their sum is also positive.

By Proposition 2, instead of purifying the unobserved systems and dropping weak monotonicity, we
could alternatively replace all weak monotonicity constraints by monotonicity (doing so prevents us
from purifying the unobserved quantum systems). The question then arises as to the implications of
each for deriving new entropy inequalities for the observed variables. The following lemma shows that
the quantum approach outlined in this section (which takes the purification of unobserved systems
into account) leads to entropy inequalities that are at least as tight as those obtained by considering
monotonicity instead.
Constraints on the observed variables are usually derived starting from:

(1) The Shannon constraints for the observed variables.

(2) All independences among observed and unobserved variables that C implies.

(3) Data processing inequalities.

(4) Positivity of all entropies.

14As the unobserved nodes do not have any parents the systems associated with a particular node are independent of
those associated with another node as well as independent of other variables coexisting with them.
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(5) Positivity of the conditional mutual information (strong subadditivity).

(6) Positivity of the conditional entropy (monotonicity) between subsets that cannot be entangled.

(7) Weak monotonicity between subsets that can be entangled.

Proposition 2 implies that we can add

(8) Monotonicity between subsets that can be entangled.

and Lemma 7 implies that in the case where all the quantum nodes are parentless, instead of (8) we
can add

(8′) The unobserved systems originating at a node are in a pure state, e.g., for a node A with subsystems
A1, A2 they obey H(A1, A2) = 0 and H(A1) = H(A2).

Lemma 8. Let CQ be a causal structure in which each unobserved node is parentless and has at
most two children. Consider starting with the constraints (1)–(7) and performing a Fourier-Motzkin
elimination to give a set of constraints on the entropies of observed variables. Call the resulting cone
Γ. Consider also Γ2 formed analogously but with (8) in addition to (1)–(7) and likewise Γ′

2 with (8′)
in addition to (1)–(7). We have Γ ⊆ Γ2 and Γ ⊆ Γ′

2.

In other words, including either (8) or (8′) does not give a tighter approximation on the set of
achievable entropy vectors of the observed variables.

Proof. For any unobserved node A in C, the subsystems A1 and A2 only occur jointly in coexisting
sets whose state can be written as ρA1A2 ⊗ ρR where R contains all other systems in that coexisting
set. This implies that for any R1 ⊆ R,

H(A1A2R1) = H(A1A2) + H(R1) (32)

H(A1R1) = H(A1) + H(R1) (33)

H(A2R1) = H(A2) + H(R1). (34)

and hence that H(A1A2R1), H(A1R1) and H(A2R1) can be eliminated from all valid inequalities.
Strong-subadditivity and monotonicity inequalities that include any of these three are redundant
since they decompose into terms that only involve A1 and A2 and terms that do not involve those
variables, both of which are separately implied by another valid inequality.15

The remaining types of inequalities involving both A1 and A2 are those with the form (up to
exchange of A1 and A2)

H(A1) + H(A2) ≥ H(A1A2) (35)

H(T1|A1S2R′
2) ≥ H(T1|A1A2R2) (36)

H(A1T1|S2R′
2) ≥ H(A1T1|A2R2) , (37)

where R1, R2, T1 ⊆ R, S2 is obtained by processing A2 and R2, the set T1 coexists with S2, and R′
2 is

the subset of all observed variables in R2.
By (32) and (34), the inequalities of types (36) and (37) are equivalent to

H(T1|A1S2R′
2) ≥ H(T1|R2), (38)

H(A1T1|S2R′
2) ≥ H(T1|R2) + H(A1A2)−H(A2). (39)

For (8) we have the additional inequalities

H(A1A2) ≥ H(A1) (40)

H(A1A2) ≥ H(A2) (41)

15Since monotonicity is only included for cq-states, the reduction does not lead to any decompositions that would
require positivity of H(A1|A2) or H(A2|A1) to be implied.
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and for (8′),

H(A1A2) = 0 (42)

H(A1) = H(A2). (43)

In the following we show that neither (40) and (41) nor (42) and (43) imply any inequalities for the
observed variables other than the ones that follow without them.

For (8), the only remaining inequalities containing H(A1A2) are (35) and (39), both of which have
H(A1A2) as a lower bound to other entropies as well as (40) and (41), where H(A1A2) is an upper
bound. After eliminating H(A1A2), we hence obtain H(A1) + H(A2) ≥ H(A1) and H(A1) + H(A2) ≥
H(A2) as well as H(A1T1|S2R′

2) ≥ H(T1|R2) and H(A1T1|S2R′
2) ≥ H(T1|R2)+H(A1)−H(A2), where

the first two immediately follow from positivity of the entropy and the third is implied by (38) and
H(A1T1|S2R′

2) = H(T1|A1S2R′
2) + H(A1|S2R′

2).
If we were not to impose the inequalities (40) and (41), the variable elimination would lead to

H(A1)+H(A2) ≥ 0 and H(A1T1|S2R′
2) ≥ H(T1|R2)−H(A2), the first of which is implied by positivity

and the second by (38) and monotonicity for cq-states. We now show that after the elimination of
H(A2) and H(A1) the additional inequalities we obtained from (40) and (41),

H(A2) ≥ −(H(A1T1|S2R′
2)−H(T1|R2)) + H(A1) (44)

H(A1) ≥ −(H(A2T1|S1R′
1)−H(T1|R1)) + H(A2) (45)

become redundant (here we have put back the relation where A1 and A2 are interchanged). To
see this, assume that in addition the constraint H(A2) ≥ H(A1) holds (which could always be
achieved by adding an independent system in a maximally mixed state to A2 and which also pre-
serves H(A1|A2) ≥ 0 and H(A2|A1) ≥ 0). This implies all inequalities (44). Since it is then the only
inequality where H(A2) upper bounds other entropies, it is in the elimination of H(A2) combined with
all inequalities that involve H(A2). It furthermore renders (45) redundant after elimination (since only
the inequalities (44) have H(A2) as an upper bound). Since there is no inequality left with H(A1)
as an upper bound, the subsequent elimination of H(A1) leads to the same inequalities as we obtain
without including H(A1|A2) ≥ 0, H(A2|A1) ≥ 0 and H(A2) ≥ H(A1).

For (8′), using H(A1A2) = 0 changes (35) and (39) to H(A1) + H(A2) ≥ 0 and H(A1T1|S2R′
2) ≥

H(T1|R2) − H(A2) respectively, which we have seen to be the inequalities that also follow upon
elimination of H(A1A2) if (42) is not imposed and which we have also seen to be redundant.

Now, in all inequalities where H(A1) or H(A2) occur, they are lower bounds (see (38)) or as
H(A1) ≥ 0 or H(A2) ≥ 0. Thus, setting H(A2) = H(A1) and then eliminating H(A1) is equivalent
to eliminating them each separately.
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E Inequalities for the bilocal causal structure with classical variables

In the following we give one representative of each of the 53 types of entropy inequalities for the
bilocal causal structure. The remaining inequalities can be generated by using the symmetries under
exchange of X0 and X1, Y0 and Y1 as well as Z0 and Z1 and the exchange of the pairs of variables
(X0, X1) with (Z0, Z1). We list them in terms of the coefficients of the entropies in the inequalities
such that each row understood as a vector v imposes an inequality v.H ≥ 0 for the entropy vectors
H.

# H(X0) H(X1) H(Y0) H(Y1) H(Z0) H(Z1) H(X0Y0) H(X0Y1) H(X0Z0) H(X0Z1) H(X1Y0) H(X1Y1) H(X1Z0) H(X1Z1) H(Y0Z0)

1 0 −1 0 0 0 −1 0 0 0 0 0 0 0 1 0
2 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
4 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
5 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
6 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
7 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
8 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
9 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0

10 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
11 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 −1
12 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 0
13 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −1
14 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −1
15 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
16 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
17 0 −1 0 0 0 −1 0 0 0 0 0 0 0 0 0
18 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −2
19 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 0
20 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 0
21 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 0
22 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 −1
23 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 −1
24 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −1
25 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −1
26 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −1
27 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −1
28 0 −1 0 0 0 −1 0 −1 0 0 0 0 0 0 0
29 0 −1 −1 0 0 −1 0 0 0 0 0 0 0 0 0
30 0 −1 −1 0 0 −1 0 0 0 0 0 0 0 0 0
31 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 0
32 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 0
33 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 0
34 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −2
35 0 −1 0 0 0 −1 0 −1 0 0 0 1 0 0 −2
36 0 −1 0 0 0 −1 0 −1 0 0 0 0 0 0 0
37 0 −1 −1 0 0 −1 0 0 0 0 0 0 0 0 0
38 0 −1 −1 0 0 −1 0 0 0 0 0 0 0 0 0
39 0 0 0 −1 0 0 0 0 0 −1 0 0 −1 0 0
40 0 0 0 −1 0 0 0 0 0 −1 0 0 −1 0 0
41 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 −1
42 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 −1
43 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 −1
44 0 −1 0 0 0 −1 0 0 0 0 0 −1 0 0 −1
45 0 −1 0 0 0 −1 0 −1 0 0 0 0 0 0 −1
46 0 −1 0 0 0 −1 0 −1 0 0 0 0 0 0 −1
47 0 −1 0 0 0 −1 0 −1 0 0 0 0 0 0 −1
48 0 −1 0 0 0 −1 0 −1 0 0 0 0 0 0 −1
49 0 −1 0 0 0 −1 0 −1 0 0 −1 1 0 0 0
50 0 −1 0 0 0 −1 0 −1 0 0 −1 1 0 0 0
51 0 −1 0 0 0 −1 0 −1 0 0 −1 1 0 0 −1
52 0 −1 0 0 0 −1 0 −1 0 0 −1 1 0 0 −1
53 0 −1 0 0 0 −1 −1 −1 0 0 1 0 0 0 0
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# H(Y0Z1) H(Y1Z0) H(Y1Z1) H(X0Y0Z0) H(X0Y0Z1) H(X0Y1Z0) H(X0Y1Z1) H(X1Y0Z0) H(X1Y0Z1) H(X1Y1Z0) H(X1Y1Z1)

1 0 0 0 0 0 0 0 0 0 0 0
2 0 −1 1 0 0 0 0 0 0 1 0
3 0 0 −1 0 0 −1 1 0 0 1 1
4 0 0 −1 0 0 −1 1 0 0 1 1
5 0 0 −1 0 −1 0 1 0 1 0 1
6 0 0 −1 −1 0 0 1 1 0 0 1
7 0 −1 0 0 −1 1 0 0 1 0 1
8 0 −1 0 0 −1 0 1 0 1 1 0
9 0 −1 0 −1 0 1 0 1 0 0 1

10 0 −1 0 −1 0 0 1 1 0 1 0
11 1 0 0 0 0 0 0 0 0 1 1
12 0 −1 1 0 0 1 0 0 0 0 0
13 0 0 0 1 0 0 0 0 1 0 0
14 0 0 0 0 1 0 0 1 0 0 0
15 0 −2 1 0 0 1 −1 0 0 1 1
16 0 −2 1 0 −1 1 0 0 1 1 0
17 0 −2 1 −1 0 1 0 1 0 1 0
18 1 0 0 1 0 0 0 1 0 0 0
19 0 0 −1 −1 0 0 1 0 1 1 1
20 0 −1 1 0 0 1 −1 0 0 1 1
21 0 −1 0 −1 0 1 0 0 1 1 1
22 1 0 0 1 −1 0 0 0 0 1 1
23 1 0 0 0 0 0 0 1 −1 1 1
24 0 0 0 1 0 1 0 0 1 −1 0
25 0 0 0 1 0 0 1 0 1 0 −1
26 0 0 0 0 1 1 0 1 0 −1 0
27 0 0 0 0 1 0 1 1 0 0 −1
28 0 −1 0 −1 0 1 1 0 1 1 0
29 0 −1 1 1 0 0 −1 0 1 1 0
30 0 −1 1 0 1 0 −1 1 0 1 0
31 0 0 −1 −2 1 0 1 1 0 1 1
32 0 −1 0 −2 1 1 0 1 0 1 1
33 0 −2 1 0 0 1 1 0 0 1 −1
34 1 0 0 1 0 1 0 1 0 −1 0
35 1 0 0 1 0 0 1 1 0 0 −1
36 0 −1 0 −2 1 1 1 1 0 1 0
37 0 −1 1 1 0 1 −2 0 1 0 1
38 0 −1 1 0 1 1 −2 1 0 0 1
39 0 0 0 0 1 −1 1 1 −1 1 1
40 0 0 0 −1 1 1 1 1 −1 1 0
41 1 0 −1 0 −1 0 1 0 1 1 1
42 1 0 −1 −1 0 0 1 1 0 1 1
43 1 −1 0 0 −1 1 0 0 1 1 1
44 1 −1 0 −1 0 1 0 1 0 1 1
45 1 0 −1 0 −1 1 1 0 1 0 1
46 1 0 −1 −1 0 1 1 1 0 0 1
47 1 −1 0 0 −1 1 1 0 1 1 0
48 1 −1 0 −1 0 1 1 1 0 1 0
49 −1 0 0 0 1 0 1 1 1 −1 0
50 −1 −1 1 0 1 0 0 1 1 0 0
51 0 0 0 1 0 0 1 1 1 −1 0
52 0 −1 1 1 0 0 0 1 1 0 0
53 0 0 −1 0 1 1 1 −1 0 0 1
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