
This is a repository copy of Cache-aware task scheduling for maximizing control
performance.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/157534/

Version: Accepted Version

Proceedings Paper:
Chang, Wanli orcid.org/0000-0002-4053-8898, Roy, Debayan, Hu, Sharon et al. (1 more
author) (2018) Cache-aware task scheduling for maximizing control performance. In: 2018
Design, Automation and Test in Europe Conference and Exhibition (DATE). , pp. 694-699.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Cache-Aware Task Scheduling for Maximizing
Control Performance

Wanli Chang∗, Debayan Roy†, Xiaobo Sharon Hu‡ and Samarjit Chakraborty†
∗Infocomm Technology Cluster, Singapore Institute of Technology

†Chair of Real-Time Computer Systems, TU Munich
‡Department of Computer Science and Engineering, University of Notre Dame

Abstract—Embedded control applications are widely imple-
mented on small, low-cost and resource-constrained microcon-
trollers, e.g., in the automotive domain. Conventionally, control
algorithms are designed using model-based approaches, without
considering the details of the implementation platform. This leads
to inefficient utilization of the resources. With the emergence
of the cyber-physical system (CPS)-oriented thinking, there has
lately been a strong interest in co-design of control algorithms
and their implementation platforms. Some recent efforts have
shown that a schedule on multiple applications with more on-
chip cache reuse is able to improve the control performance.
However, it has not been studied how the control performance
can be maximized for a given schedule and how an optimal
schedule can be computed. In this work, we propose a two-
stage framework to compute the schedule maximizing the overall
control performance of all the applications. First, a holistic
controller design taking all the sampling periods and sensing-
to-actuation delays in a schedule into account is presented,
aiming to maximize the overall control performance. Second,
a hybrid search algorithm for discrete decision space is reported
to efficiently compute an optimal schedule. Experimental results
on a case study with multiple automotive applications show that
a significant improvement of 10-20% in control performance can
be achieved by the proposed cache-aware scheduling approach.

I. INTRODUCTION

Embedded control applications are mainly implemented on

microcontrollers with limited computation, communication,

and memory resources. Traditionally, control system design

and implementation were strictly separated, the former being

pursued by control theorists and the latter by embedded

system engineers. Though this design paradigm is able to

achieve the required control performance, it often leads to

inefficient utilization of the resources. With the emergence

of the cyber-physical system (CPS)-oriented thinking, there

has lately been a strong interest in co-design of control

algorithms and their implementation platforms, motivating

works on communication-aware design of networked control

systems [1], [2], [3] and computation-aware embedded control

system design [4], [5], [6]. Many of the papers consider

the characteristics of the communication and computation

resources while tackling the scheduling problem of embedded

control systems.

An embedded implementation platform is often shared by

multiple control applications. Each application is realized by a

sequence of (repeated) tasks. For feedback control applications

considered in this work, each task completes a control loop

within one sampling period, which is counted from the starting

This work was partially supported by Deutsche Forschungsgemeinschaft
(DFG) through the TUM International Graduate School of Science and
Engineering (IGSSE).

time instant of one task to the starting time instant of the

next task belonging to the same application. Task scheduling

to improve cache reuse [7], [8], with the aim of minimizing

worst-case execution time (WCET), has been widely studied in

the literature. Some recent efforts have shown that a schedule

with more on-chip cache reuse is able to improve the control

performance [9]. However, it has not been investigated how the

control performance can be maximized for a given schedule

and how an optimal schedule can be computed.

In this work, we perform task scheduling and control perfor-

mance optimization by judiciously reuse cache. In particular,

we aim to compute a task schedule that maximizes the overall

control performance of all given control applications. There

are two main challenges. First, for a given schedule, the

overall control performance depends on the controller design.

We consider non-uniform sampling (i.e., tasks of one control

application may have varying sampling periods) and propose

a holistic method taking all the sampling periods and sensing-

to-actuation delays in a schedule into account. The control

performance is measured by settling time, which is the key

metric for many real-time control applications and more diffi-

cult to optimize than quadratic cost. System constraints (e.g.,

input saturation) need to be respected. Second, the number of

periodic schedules under consideration grows exponentially

with the number of applications. The control performance

evaluation of each schedule is computationally intensive. We

introduce a hybrid search algorithm for discrete decision space

to compute an optimal schedule efficiently. It is based on

gradient descent and equipped with features of simulated

annealing.

The rest of the paper is organized as follows. Fundamen-

tals of the cache-aware embedded control system design are

described in Section II. The controller design method to maxi-

mize the control performance of a given schedule is presented

in Section III. In Section IV, the hybrid search algorithm

to find an optimal schedule is reported. Experimental results

are shown in Section V and Section VI makes concluding

remarks.

II. FUNDAMENTALS OF CACHE-AWARE EMBEDDED

CONTROL SYSTEM DESIGN

In this work, we consider periodic schedules of n feedback

control applications {C1, C2, . . . , Cn} running on the micro-

controller with a single processor, an on-chip cache, and

a flash memory. The cache size is assumed to be smaller

than the size of a control program, since our focus is on

embedded control systems with limited hardware resources.

Controller: u[k] = f(x[k]) Plant: x[k + 1] = Ax[k] + Bu[k]
u[k]

x[k]

Fig. 1. A discrete-time feedback control system.

For any application Ci, where i ∈ {1, 2, . . . , n}, the number of

consecutively executed tasks in one schedule period is denoted

by mi. Then, we have the periodically repeating schedule

denoted by (m1,m2, . . . ,mn). Interleaved schedules will be

briefly discussed at the end of this paper and left for future

work. Compared with the conventional round-robin schedule

(1, 1, . . . , 1), consecutively executing tasks of one application

increases the cache reuse and reduces the WCET, yet resulting

in non-uniform sampling periods. This will be exploited by the

controller design presented in the next section to achieve better

control performance.

This paper focuses on instruction cache, since majority

of control algorithms utilize the freshest sensor reading for

computing the control inputs and do not consider obsolete

sensor values. This further implies that such algorithms require

little data memory and their control performances are mostly

driven by the instruction cache. In this section, we describe

fundamentals of cache-aware embedded control system design,

including basics of the discrete-time feedback control system

under consideration, cache analysis, and control timing param-

eter derivation.

A. Basics of discrete-time feedback control systems

Discrete-time control systems: In this work, we consider

discrete-time linear time-invariant (LTI) single-input single-

output (SISO) feedback control applications. Majority of the

applications in practice are modeled as LTI systems and many

nonlinear applications are linearized. The approach proposed

in this paper can be easily adapted for multiple-input multiple-

output (MIMO) applications. The system dynamics of an

application is described as follows,

x[k + 1] = Ax[k] +Bu[k], y[k] = Cx[k], (1)

where x[k] ∈ R
l and y[k] are the system state and the system

output respectively at the time instant tk. The control input

computed based on x[k] (state-feedback control) is denoted

as u[k]. The number of system states is l. We assume that

the system state x[k] is measurable. The system output y[k] is

expected to track a reference r. Sampling instants are t = tk
(k = 1, 2, 3, · · ·) and the sampling period h is tk+1 − tk. It

should be noted that h might not be a constant. A, B and C

are constant matrices of appropriate dimensions depending on

the application characteristics and the sampling period. The

relationship between the controller and the plant is illustrated

in Figure 1.

Overall control performance: The control performance can

be quantified by various metrics. In this work, we consider

settling time as the performance index, which is the key

metric for many real-time control applications, such as the

electric motor control, steering control and braking control in

automobiles [10]. The control goal is to make y[k] → r as

soon as possible. The time it takes for y[k] to reach and stay

START C1(1) C1(2) C2(1)

C2(2)C3(1)C3(2)

cold cache cache reuse cold cache

cache reuse

cold cachecache reuse

cold cache

Fig. 2. Cache analysis of an example schedule (2, 2, 2). After the first task
Ci(1) is executed, some instructions in the cache can be reused and thus the
WCET of the following task is shortened.

in a closed region around r (e.g., 0.98r to 1.02r) is the settling

time. Shorter settling time implies better control performance.

For an application, we consider the worst-case settling time

by assuming that the reference tracking starts after its last

consecutive task in a schedule.

The overall control performance is defined as a weighted

sum of application control performances, which are normal-

ized to be comparable. Assuming that the settling time of an

application Ci is si and the normalization reference is s0i , then

the control performance is defined to be 1− si
s0
i

. Since both si

and s0i are positive numbers, the control performance is less

than 1. The overall control performance can be calculated as

Pall =

n
∑

i=1

wiPi =

n
∑

i=1

wi(1−
si

s0i
), (2)

where wi is the weight of the application Ci and the sum of

weights is 1.

Constraints: We consider four constraints in this work. First,

all control systems must be stable. Second, in almost every

real-world system, there is a maximum available control input.

The controller needs to be designed such that the maximum

value of u[k] does not exceed this limit Umax, i.e., u[k] ≤ Umax.

For example, in electric motor control, the magnitude of the

input current is always limited. Third, when an application

Ci is safety-critical, there is usually a maximum settling time

(i.e., settling deadline) smax
i that cannot be violated [11]. This

is the reason why the worst-case settling time is considered

as discussed above. We use this deadline as the normalization

reference, i.e., s0i = smax
i . The constraint is then,

∀i ∈ {1, 2, . . . , n},
Pi ≥ 0. (3)

Fourth, for an application Ci, there is a maximum allowed idle

time tidle
i to prevent the application from being driven to an

unsafe state by perturbations. The idle time is defined as the

interval between two consecutive sampling instants and thus

equal to the sampling period. Denoting hmax
i to be the longest

sampling period of Ci in a schedule, we must have

∀i ∈ {1, 2, . . . , n},
hmax
i ≤ tidle

i . (4)

B. Cache analysis

An example schedule (2, 2, 2) with three applications for

cache analysis is illustrated in Figure 2, where each application

Ci (i ∈ {1, 2, 3}) consecutively executes two tasks in one

schedule period and Ci(j) (j ∈ {1, 2}) denotes the jth task.

computation: actual execution time Eac ≤ Ewc

sensing actuation sensing

worst-case execution time Ewc

sensing-to-actuation delay τ sa

sampling period h

Fig. 3. The general timing model of a control loop.

Before the first task Ci(1) is executed, the cache is either

empty (i.e., cold cache) or filled with instructions from other

applications, that are not used by Ci (equivalent to cold cache).

The WCET of Ci(1) can be computed by existing standard

techniques [12]. Before the second task Ci(2) is executed,

the instructions in the cache are from the same application

Ci and thus can be reused. This results in more cache hits

and hence shorter WCET. The reduction in WCET depends

on the execution path. The guaranteed WCET reduction of

Ci(2) can be computed using program analysis techniques,

such as those in [13]. The effective WCET of Ci(2) can then

be calculated by subtracting this guaranteed reduction due

to cache reuse from the WCET considering cold cache. It

is noted that the branches within the application have been

taken into account by the above WCET analysis. We consider

no branches between applications, which is the usual case in

practice.

C. Control timing parameters

The state-feedback control loop completed by a control

task performs three operations: sensing (measuring the system

states x[k] with sensors), computation (computing the control

input u[k] based on x[k]), and actuation (applying u[k] to the

plant). The general timing model is illustrated in Figure 3,

assuming that sensing and actuation operations are done in-

stantaneously. The computation operation executes the control

program, which takes Eac time units. The sampling period h is

the time duration between two consecutive sensing operations.

The time interval between the sensing and the correspond-

ing actuation operations in the same sampling period is the

sensing-to-actuation delay τ sa, which is equal to the control

program WCET Ewc.

The relationship between WCETs and control timing pa-

rameters (sampling periods and sensing-to-actuation delays)

in the schedule (2, 2, 2) is illustrated in Figure 4. Denoting

Ewc
i (j) to be the WCET of the jth task for Ci in a schedule

period and E
gu
i to be the guaranteed WCET reduction,

∀i ∈ {1, 2, 3},

Ewc
i (2) = Ewc

i (1)− E
gu
i . (5)

From these varying WCETs, the sampling periods of all the

three applications can be calculated. Taking C1 as an example,

there are two sampling periods h1(1) and h1(2), which repeat

themselves periodically,

h1(1) = Ewc
1 (1), h1(2) = Ewc

1 (2) + ∆, (6)

where ∆ is computed as

∆ =
∑

i=2,3

∑

j=1,2

Ewc
i (j). (7)

Similar derivation can be done for C2 and C3. It can be seen

that the sampling periods are constrained by WCETs of the

control programs. Moreover, the corresponding sensing-to-

actuation delay τ sa
i (j) is

∀i ∈ {1, 2, 3},

τ sa
i (1) = hi(1) = Ewc

i (1), τ sa
i (2) = Ewc

i (2). (8)

With the fundamentals of cache-aware embedded control

system design explained, we can now proceed to discuss

task scheduling for maximizing control performance involving

two stages. First, the overall control performance for a given

schedule is maximized with a holistic controller design taking

all the sampling periods and sensing-to-actuation delays in the

schedule into account. Second, an optimal schedule is found

with the hybrid search algorithm.

III. CONTROLLER DESIGN FOR CONTROL PERFORMANCE

MAXIMIZATION OF A GIVEN SCHEDULE

This section presents the controller design to maximize

the control performance of a given schedule. The example

schedule (2, 2, 2) is used for illustration. Generalization to any

periodic schedule as defined at the beginning of Section II

is straightforward. Given a schedule, it is assumed that the

controller designs of different applications are independent.

Therefore, we first maximize the control performance of each

application running on the microcontroller and then obtain the

maximum overall control performance with the weighted sum

as per (2).

In a state-feedback controller, we need to design u[k]
utilizing the system state x[k]. The general structure is,

u[k] = K · x[k] + F · r, (9)

where K is the feedback gain and F is the static feedforward

gain. With this feedback controller, the closed-loop system

dynamics is derived using (1) as

x[k + 1] = (A+BK)x[k] +BFr = Aclx[k] +BFr, (10)

where Acl is the closed-loop system matrix. Different locations

of closed-loop poles, i.e., eigenvalues of Acl, result in different

system behaviors and corresponding control performances. In

pole-placement, we place poles in desired locations (set eigen-

values) to optimize the control performance while respecting

the constraint on the control input. It is noted that we assume

the system in (1) is controllable, which is often the case.

All the poles must have absolute values of less than unity

in order to ensure stability. In this work, we use the particle

swarm optimization (PSO) technique for pole-placement [14].

Details are omitted due to the page limit. The feedback gain

K can be calculated according to the pole locations based on

Ackermann’s formula [15]. The static feedforward gain F is

designed to achieve y[k] → r and computed by

F =
1

C(I −A−BK)−1B
, (11)

where I is the identity matrix of appropriate dimension.

In order to maximize the control performance for an appli-

cation Ci, we propose a holistic method that designs controllers

for all the control inputs in a schedule period together while

C1(1) C1(2) C2(1) C2(2) C3(1) C3(2) C1(3) C1(4)

Ewc
1
(1)

τ sa
1
(1)

Ewc
1
(2)

τ sa
1
(2)

Ewc
2
(1)

τ sa
2
(1)

Ewc
2
(2)

τ sa
2
(2)

Ewc
3
(1)

τ sa
3
(1)

Ewc
3
(2)

τ sa
3
(2)

Ewc
1
(3)

τ sa
1
(3)

Ewc
1
(4)

τ sa
1
(4)

h1(1) h1(2) = Ewc
1
(2) + ∆ h1(1)

Fig. 4. In the example schedule (2, 2, 2), the times of two consecutive executions for the same control application vary, due to cache reuse. The sampling
period for a control application is non-uniform. The sensing-to-actuation delay τ sa

i
is equal to Ewc

i
.

hi(1) hi(2) hi(1) hi(2)

tk-2 tk-1 tk tk+1 tk+2Time:

x[k-2] x[k-1] x[k] x[k+1] x[k+2]Measure:

u[k-2] u[k-1] u[k] u[k+1]Actuate:

K1 K2 K1 K2
Gain:

Fig. 5. Periodically switched sampling periods for Ci in the schedule (2, 2, 2).

considering all the sampling periods and sensing-to-actuation

delays. The schedule (2, 2, 2) is used for illustration. As

shown in Figure 5, there are two sampling periods hi(1) and

hi(2), which are repeated periodically. The system dynamics

switches between the followings,

x[k] = A2x[k − 1] +B1
2u[k − 2] +B2

2u[k − 1],

x[k + 1] = A1x[k] +B1u[k − 1],
(12)

where A1 and B1 depend on the first sampling period hi(1).
A2, B1

2 and B2
2 depend on the second sampling period hi(2)

and the sensing-to-actuation delay of the second task τ sa
i (2).

The system output is y[k] = Cx[k]. It should be noted that

x[k] is influenced by not only u[k−2] but also u[k−1], since

τ sa
i (2) is smaller than hi(2), i.e., u[k−1] is applied before the

sensing of x[k]. Two control inputs are designed as

u[k − 2] = K1x[k − 2] + F1r,

u[k − 1] = K2x[k − 1] + F2r.
(13)

The feedback signals used by u[k−2] and u[k−1] are x[k−2]
and x[k − 1], respectively. The closed-loop system dynamics

are then

x[k] = (A2 +B2
2K2)x[k − 1] +B1

2K1x[k − 2]

+ (B1
2F1 +B2

2F2)r,
(14)

and

x[k + 1] = A1x[k] +B1K2x[k − 1] +B1F2r

= (A1A2 +A1B
2
2K2)x[k − 1]

+A1B
1
2K1x[k − 2]

+ (A1B
1
2F1 +A1B

2
2F2 +B1F2)r.

(15)

Introducing a new state z[k] =
[

x[k] x[k + 1]
]T

, we can

obtain

z[k] = Aholz[k − 2]

+

[

B1
2 B2

2

A1B
1
2 A1B

2
2 +B1

]

[

F1 F2

]T
r,

(16)

where

Ahol =

[

B1
2K1 A2 +B2

2K2

A1B
1
2K1 A1A2 +A1B

2
2K2

]

=

[

0 A2

0 A1A2

]

+

[

B1
2 B2

2

A2B
1
2 A2B

2
2

] [

K1 0

0 K2

]

.

The bold letter 0 is the zero matrix of appropriate dimension.

Ahol is the overall closed-loop system matrix. It is noted

that (16) is in a similar form to (10), where Ahol is the

counterpart of Acl. Therefore, the method explained at the

beginning of this section can be used to place the poles

and compute the gains. Ackermann’s formula needs to be

trivially extended to compute the feedback gains. The static

feedforward gains are computed with (11) referring to their

respective sampling periods,

∀j ∈ {1, 2},

Fj =
1

C(I −Aj −BjKj)−1Bj

, (17)

where B2 has not been mentioned yet and depends on the

second sampling period hi(2).
With this controller design method, both control inputs

in the schedule period are designed together taking all the

information (all the sampling periods and sensing-to-actuation

delays) into account. This is helpful for the control perfor-

mance maximization. On the other hand, Ahol is a 2l×2l square

matrix. The number of poles to place in Ahol is 2l, or mil in

general. Therefore, evaluating the control performance of one

schedule can be computationally intensive, especially when

the number of consecutively executed tasks mi is large. This

makes an efficient search for an optimal schedule desirable.

IV. COMPUTING AN OPTIMAL SCHEDULE

After presenting the method to evaluate the overall control

performance of one schedule, the next stage is to find an opti-

mal one among all the schedules. That is, we need to determine

m1,m2, . . . ,mn for n applications. The formulation is

max
{m1,m2,...,mn}

Pall

subject to {mi ∈ N
+|i ∈ {1, 2, . . . , n}}.

(18)

The objective to optimize is the overall control performance.

The constraints on schedule feasibility are shown in (3)

and (4). The number of dimensions in the decision space is

equal to n. This is a nonlinear discrete optimization problem

and the simplest method to solve it is exhaustive search.

Denoting the number of values that mi can take as |mi|, the

total number of schedules to evaluate is
n
∏

i=1

|mi|. Considering

that the overall control performance evaluation can be com-

putationally intensive, we need a more efficient method than

brute force.

Gradient-based search algorithms, such as sequential

quadratic programming (SQP), require a small number of

objective function (the overall control performance in this

work) evaluations. However, they are easily trapped by local

optima. Simulated annealing is able to find the solution close

to the global optimum, yet often needs to evaluate a large

number of objective functions. In this work, we propose a

hybrid search algorithm, which is based on SQP and takes the

features from simulated annealing, in order to efficiently find

a schedule close to the global optimum.

We first randomly initialize a point in the decision space.

For SQP with a continuous decision space, an n-dimensional

quadratic model on the point is built to derive the search direc-

tion with the steepest descent (for a minimization problem).

However, when the decision space is discrete, it is unlikely

that the computed direction is available. Besides, building

the n-dimensional quadratic model requires evaluating the

overall control performance 2n +
(

n
2

)

times, which is non-

polynomial on the number of applications n. Therefore, we

build a quadratic model for every dimension of the decision

space and compute the gradient. The direction with the largest

positive gradient is selected. The 1-dimensional quadratic

model requires evaluating the overall control performance of

two points on both sides of the current point. Since there

are n quadratic models, the search direction determination

takes 2n evaluations of overall control performance, at the

maximum. If some overall control performance values have

already been computed, this number can be smaller than 2n.

The step size is fixed to be 1. That is, the next point is always

the closest neighbor to the current point, along the selected

search direction. This process is iterated to locate one point

after another, until no improvement on the objective value

can be achieved. It is noted that feasibility must always be

ensured. That is, if the next point along the direction with the

best gradient violates the schedule feasibility constraints in (3)

and (4), we will go for the second best direction and so on.

We implement two techniques to prevent this gradient-based

search algorithm from being trapped by local optima. First,

parallel searches can be conducted. As the number of initial-

ized points is increased, the chance that the global optimum

can be found rises. Second, we do not insist improvement

on the objective value during the search process, which is

similar to the simulated annealing. An appropriate tolerance

threshold that can be empirically decided is likely to get rid

of local optima and help the search algorithm reach the global

optimum.

V. EXPERIMENTAL RESULTS

In the experiment, we investigate an automotive control

system case study with three applications C1, C2 and C3
running on a microcontroller with one processor and shared

cache (Infineon XC23xxB Series). A schedule is denoted as

(m1,m2,m3). C1 is position control of a servo motor that

can be used, e.g., in a steer-by-wire system [16]. C2 is speed

control of a DC motor that can be used in electric vehicle

TABLE I
WCET RESULTS WITH AND WITHOUT CACHE REUSE

Application C1 C2 C3
WCET w/o Cache Reuse 907.55 µs 645.25 µs 749.15 µs

Guaranteed WCET Reduction 455.40 µs 470.25 µs 514.80 µs
WCET w/ Cache Reuse 452.15 µs 175.00 µs 234.35 µs

TABLE II
APPLICATION PARAMETERS

Application C1 C2 C3
Weight (wi) 0.4 0.4 0.2

Settling deadline (smax
i

) 45 ms 20 ms 17.5 ms

Maximum allowed idle time (tidle
i

) 3.4 ms 3.9 ms 3.5 ms

TABLE III
CONTROL PERFORMANCE COMPARISON

Application C1 C2 C3
Settling time for (1, 1, 1) 43.2 ms 17.7 ms 17.3 ms
Settling time for (3, 2, 3) 37.7 ms 15.3 ms 14.4 ms

Control performance improvement 13% 14% 17%

cruise control [17]. C3 is control of the electronic wedge brake

system developed by Siemens as a brake-by-wire solution [18].

In the experimental configuration for the cache analysis,

the processor clock frequency is 20 MHz. The cache is set

to have 128 cache lines and each cache line is 16 bytes.

When there is a cache hit, it takes 1 clock cycle to fetch

the instruction and when there is a cache miss, it takes 100
clock cycles. The WCETs are calculated with the method

discussed in Section II-B and reported in Table I. Control

timing parameters of a given schedule can then be derived as

explained in Section II-C. As described in Section II-A, the

weights, settling deadlines and maximum allowed idle times

of all the three applications are presented in Table II. The

controller design presented in Section III is used to evaluate

the overall control performance of one schedule.

The hybrid search algorithm presented in Section IV is

deployed to find the optimal schedule. Two searches are run

in parallel, starting from two randomly initialized schedules

(4, 2, 2) and (1, 2, 1). Both reach the schedule (3, 2, 3). The

maximum overall control performance is 0.195. The optimal

schedule (3, 2, 3) is verified by the exhaustive search, which

evaluates 76 schedules, including 74 feasible schedules. Two

infeasible schedules violate the settling deadline constraint (3),

which is known only after the control performance evaluation.

Using the computer with an Intel i5 processor operating

at 2.6 GHz with 4 GB RAM, evaluating the application

control performance takes from seconds (when mi = 1) to

hours (when mi > 5). Completing the exhaustive search of

all the 76 schedules costs days. With our proposed hybrid

search algorithm, the search starting from (4, 2, 2) evaluates

9 schedules, which is 11.8% of the 76 schedules using brute

force. The search starting from (1, 2, 1) evaluates 18 schedules.

Comparison of the system output responses between the

conventional cache-oblivious round-robin schedule (1, 1, 1)
and the optimal cache-aware schedule (3, 2, 3) for all the

three control applications is presented in Figure 6. Control

performance comparison quantified by the settling times is

reported in Table III. It can be seen that with the cache-aware

task scheduling in the embedded control system design, a

significant improvement of 10-20% in the control performance

0 0.01 0.02 0.03 0.04 0.05
0

0.1

0.2

0.3
S

y
st

em
O

u
tp

u
t
y
[k
]

[r
ad

]

Application C1

0 0.01 0.02 0.03 0.04 0.05
80

100

120

S
y

st
em

O
u

tp
u

t
y
[k
]

[r
o

u
n

d
/s

] Application C2

0 0.01 0.02 0.03 0.04 0.05
0

1,000

2,000

S
y

st
em

O
u

tp
u

t
y
[k
]

[N
]

Application C3

Time [s]

Cache-Oblivious (1, 1, 1) Optimal Cache-Aware (3, 2, 3)

Fig. 6. Control system outputs of the cache-oblivious and optimal cache-
aware schedules.

is achieved. The settling time is derived from simulation and as

discussed in Section II-A, measured in the most conservative

manner. That is, the reference tracking for an application

starts after its last consecutive task in a schedule. In this

case, the cache-aware schedule with longer idle time before

the controller starts to make an effect is at a disadvantage.

Therefore, the control performance improvement can be even

more in practice.

VI. CONCLUDING REMARKS

This work deals with multiple embedded control applica-

tions running on a single processor with shared cache. It can

be naturally extended to a multi-core architecture, where each

core has its own cache. We maximize the overall control

performance by an optimal choice of schedule taking into

account the effects of cache reuse, in an integrated framework

of schedule computation and controller design. The proposed

method supported by the experimental results clearly shows

its benefit in terms of design optimality. It further establishes

potential impact of the memory hierarchy in the design of

embedded control systems.

In this work, periodic schedules (m1,m2, . . . ,mn) as de-

fined in Section II are considered. As part of the future

research, it should be studied whether more general interleaved

schedules, such as (m1(1),m2,m1(2),m3) (C1 is consecu-

tively executed m1(1) times, followed by C2 m2 times, C1

m1(2) times and C3 m3 times), result in better overall control

performance, and if they do, what is the optimal schedule.

This is a challenging problem to address, since the schedule

format is not fixed anymore and the number of schedules

to consider increases. In addition, we only consider static

schedules resulting in fixed timing that can be exploited by the

controller design to maximize the control performance. With

scheduling policies resulting in dynamic schedules, it is very

challenging to optimize the control performance and instead

some basic properties (such as stablity) are often resorted to.

This could be another interesting research direction.

REFERENCES

[1] Q. Leng, Y. Wei, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka,
“Improving control performance by minimizing jitter in RT-WiFi net-
works,” in Proceedings of the 35th. IEEE Real-Time Systems Symposium
(RTSS), 2014.

[2] S. Al-Areqi, D. Görges, and S. Liu, “Event-based control and scheduling
codesign: stochastic and robust approaches,” IEEE Transactions on
Automatic Control, vol. 60, no. 5, pp. 1291–1303, 2015.

[3] D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty, “Multi-
objective co-optimization of flexray-based distributed control systems,”
in Proceedings of the 22nd. IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2016.

[4] R. Castane, P. Marti, M. Velasco, A. Cervin, and D. Henriksson, “Re-
source management for control tasks based on the transient dynamics of
closed-loop systems,” in Proceedings of the 18th. Euromicro Conference
on Real-Time Systems (ECRTS), 2006.

[5] L. Greco, D. Fontanelli, and A. Bicchi, “Design and stability analysis
for anytime control via stochastic scheduling,” IEEE Transactions on
Automatic Control, vol. 56, no. 3, pp. 571–585, 2011.

[6] S. Chakraborty, M. A. A. Faruque, W. Chang, D. Goswami, M. Wolf, and
Q. Zhu, “Automotive cyber-physical systems: A tutorial introduction,”
IEEE Design & Test, vol. 33, no. 4, pp. 92–108, 2016.

[7] K. W. Batcher and R. A. Walker, “Dynamic round-robin task scheduling
to reduce cache misses for embedded systems,” in Proceedings of the
11th. Conference on Design, Automation and Test in Europe (DATE),
2008.

[8] A. Moonen, M. Bekooij, R. van den Berg, and J. van Meerbergen,
“Cache aware mapping of streaming applications on a multiprocessor
system-on-chip,” in Proceedings of the 11th. Conference on Design,
Automation and Test in Europe (DATE), 2008.

[9] W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. J. Xue, and
S. Andalam, “Memory-aware embedded control systems design,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 36, no. 4, pp. 586–599, 2017.

[10] I. Bate, P. Nightingale, and A. Cervin, “Establishing timing require-
ments and control attributes for control loops in real-time systems,” in
Proceedings of the 15th. Euromicro Conference on Real-Time Systems
(ECRTS), 2003.

[11] O. Ljungkrantz, H. Lönn, H. Blom, C. Ekelin, and D. Karlsson,
“Modelling of safety-related timing constraints for automotive embedded
systems,” in Proceedings of the 2012 International Conference on
Computer Safety, Reliability, and Security (SAFECOMP), 2012.

[12] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, and D. W.
et al., “The worst-case execution-time problem – overview of methods
and survey of tools,” ACM Transactions on Embedded Computing
Systems, vol. 7, no. 3, 2008.

[13] S. Chakraborty, T. Mitra, A. Roychoudhury, and L. Thiele, “Cache-aware
timing analysis of streaming applications,” Real-Time Systems, vol. 41,
no. 1, pp. 52–85, 2009.

[14] D. Sedighizadeh and E. Masehian, “Particle swarm optimization meth-
ods, taxonomy and applications,” International Journal of Computer
Theory and Engineering, vol. 1, no. 5, pp. 486–502, 2009.

[15] J. Ackermann and V. Utkin, “Sliding mode control design based on Ack-
ermann’s formula,” IEEE Transactions on Automatic Control, vol. 43,
no. 2, pp. 234–237, 1998.

[16] P. Yih, “Steer-by-wire: Implications for vehicle handling and safety,”
Ph.D. dissertation, Stanford University, 2005.

[17] W. Chang, A. Pröbstl, D. Goswami, M. Zamani, and S. Chakraborty,
“Battery- and aging-aware embedded control systems for electric vehi-
cles,” in Proceedings of the 35th. IEEE Real-Time Systems Symposium
(RTSS), 2014.

[18] J. Fox, R. Roberts, C. Baier, L. Ho, L. Lacraru, and B. Gombert,
“Modeling and control of a single motor electronic wedge brake,” SAE
Technical Paper, Tech. Rep., 2007.

