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RESEARCH ARTICLE Open Access
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Rusty Lansford10, Christine Leterrier11, Andrew Loudon12, Andrew S. Mason1, Simone L. Meddle1,

Francis Minvielle13, Patrick Minx8, Frédérique Pitel2, J. Patrick Seiler4, Tsuyoshi Shimmura14, Chad Tomlinson8,

Alain Vignal2, Robert G. Webster4, Takashi Yoshimura15, Wesley C. Warren16 and Jacqueline Smith1

Abstract

Background: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly

significant model species in avian developmental, behavioural and disease research.

Results: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33

chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the

quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome

through three diverse applications. First, we identify selection signatures and candidate genes associated with

social behaviour in the quail genome, an important agricultural and domestication trait. Second, we

investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail

medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response

of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were

downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1.

Conclusions: We have produced a high-quality genome of the quail which will facilitate further studies into

diverse research questions using the quail as a model avian species.
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Background
Japanese quail (Coturnix japonica) is a migratory bird

indigenous to East Asia and is a popular domestic

poultry species raised for meat and eggs in Asia and

Europe. Quail have been used in genetics research

since 1940 [1] and are an increasingly important

model in developmental biology, behaviour and bio-

medical studies [2]. Quail belong to the same family

as chickens (Phasianidae) but have several advantages

over chickens as a research model. They are small

and easy to raise, have a rapid growth rate and a

short life cycle, becoming sexually mature only 7 to

8 weeks after hatching [3]. Quail are key for com-

parative biology research among Galliformes, showing

key differences to chickens and other model fowl spe-

cies, including migratory and seasonal behaviour and

immune function [2].

Quail have become a key model in several research fields

[4]. The avian embryo has long been a popular model for

studying developmental biology due to the accessibility of

the embryo, which permits fate mapping studies [5, 6] and

dynamic imaging of embryogenesis [7–9]. Several trans-

genic lines that express fluorescent proteins now exist,

which greatly facilitates time-lapse imaging and tissue

transplantation [7, 10–13].
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The quail embryo survives manipulation and culture

better than chicken embryos making them ideal for

this type of research [3]. Quail have been used as a

model for stem cell differentiation, for example a cul-

ture system that mimics the development of haemato-

poietic stem cells has been recently developed, as

quail show greater cell multiplication in these cultures

than chickens [14].

Quail are also used to study the genetics underlying

social behaviours [15], sexual behaviour [16, 17], pre-

and post-natal stress programming [18] and emotional

reactivity [19–22]. Japanese quail have a fast and reliable

reproductive response to increased photoperiod, making

them an important model species for investigation into

seasonal behaviour and reproduction in birds [23–25].

The molecular mechanisms behind seasonality including

metabolism and growth, immunity, reproduction, behav-

iour and feather moult is poorly understood despite its

importance in the management of avian species.

Quail are also important in disease research [26].

Different strains of quail have been developed as

models of human disease such as albinism [27] or

necrotizing enterocolitis in neonates [28]. Quail lines

have also been selected on their immunological re-

sponse [29]. There are key differences in the immu-

nogenetics of quail and chicken—particularly in the

major histocompatibility complex (MHC) [30, 31]. In-

vestigating the immunology of quail is important for

understanding infectious disease spread and control in

poultry. For example they are an important species

for influenza transmission, with previous research

showing that quail may play a key role as an inter-

mediate host in evolution of avian influenza [32–34].

Zoonotic H5N1 influenza strains have crossed from

quail to human causing mortality in the past [35, 36],

making them a potential pandemic source.

We have produced a high-quality annotated genome

of the Japanese quail (Coturnix japonica) and herein de-

scribe the assembly and annotation of the quail genome

and demonstrate key uses of the genome in immunoge-

netics, disease, seasonality and behavioural research

demonstrating its utility as an avian model species.

Results
Genome assembly and annotation

Using an Illumina HiSeq 2500 instrument, we sequenced

a male Coturnix japonica individual from a partially in-

bred quail line (F > 0.6), obtained through four generations

of full-sib mating from a partially inbred base population.

Total sequence genome input coverage of Illumina reads

was ~ 73×, using a genome size estimate of 1.1 Gb. Add-

itionally, 20× coverage of long PacBio reads were se-

quenced and used to close gaps. The male genome

Coturnix japonica 2.0 was assembled using ALLPATHS2

software [37] and is made up of a total of 2531 scaffolds

(including single contigs with no scaffold association) with

an N50 scaffold length of 2.9Mb (N50 contig length is

511 kb). The assembly sequence size is 0.927 Gb with only

1.7% (16Mb) not assigned to 33 total chromosomes.

Coturnix japonica 2.0 assembly metrics were comparable

to previous assemblies of Galliformes, and superior to

other genomes of other quail species [38, 39] in ungapped

(contigs) sequence length metrics (Table 1). Specifically,

in comparison to recently published genomic data from

the Japanese quail [39], our genome is substantially less

fragmented (contig N50 of 0.511Mb vs 0.027Mb), has

been assigned to more chromosomes and has more

complete annotation with ncRNA, mRNA and pseudo-

genes predicted. Our estimate of total interspersed repeti-

tive elements was 19% genome-wide based on masking

with Windowmasker [40]. In the genomes of other quail

species, the estimated repeat content was much lower, ~

10% less in both species [38].

To improve the quantity and quality of data used for the

annotation of the genome, we sequenced RNA extracted

from seven tissues sampled from the same animal used

for the genome assembly. Using the same inbred animal

increases the alignment rate and accuracy. The amount of

data produced for annotation from the 7 tissues is (in Gb)

as follows: 18.9 in brain, 35.6 in heart, 19.3 in intestine,

27.8 in kidney, 39.0 in liver, 18.8 in lung and 34.0 in

muscle. High sequencing depth was aimed for in these tis-

sues, to help detect low expression genes including those

that are tissue-specific. In total, we predicted 16,057

protein-coding genes and 39,075 transcripts in the

Table 1 Representative assembly metrics for sequenced Galliform genomes

Common name Assembled version N50 contig (Mb) N50 scaffold (Mb) Total assembly
size (Gb)

Assembled
chromosomes

Japanese quail Coturnix japonica 2.0 0.511 3.0 0.93 33

Japanese quail Wu et al. PMID: 29762663 0.027 1.8 0.90 30

Chicken Gallus gallus 5.0 2.895 6.3 1.20 34

Scaled quail ASM221830v1 0.154 1.0 1.01 NA

Northern bobwhite ASM59946v2 0.056 2.0 1.13 NA

Turkey Turkey 5.0 0.036 3.8 1.13 33

All species-specific assembly metrics derived from the NCBI assembly archive
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Coturnix japonica genome (Table 2). In comparison to

other assembled and annotated Galliformes, transcript and

protein alignments of known chicken RefSeq proteins to

Coturnix japonica suggest the gene representation is suffi-

cient for all analyses described herein (Table 3). However, we

find ~ 1000 fewer protein-coding genes in the Japanese quail

than the northern bobwhite (Colinus virginianus) and scaled

quail (Callipepla squamata) genomes [38]. We attribute this

to the use of different gene prediction algorithms, and the

slightly lower assembled size of Japanese quail, 927Mb com-

pared to 1 Gb in other quail genomes [38] (Table 1).

For further annotation, a set of genes unnamed by the au-

tomated pipeline were manually annotated. As part of an on-

going project to investigate hemogenic endothelium

commitment and HSC production [14], transcriptomes were

produced for two cultured cell fractions. Study of these cells

is critical for developmental biology and regenerative medi-

cine, and quail are an excellent model for studying these as

they produce much more haematopoietic cells than similar

chicken cultures. Approximately 8000 genes were expressed

in these cells lines which lacked gene names or annotation

from the automated annotation pipeline. Using BLAST [41]

searches to identify homology to other genes, 3119 of these

were manually annotated (Additional file 1).

Genome completeness was also quantitatively assessed

by analysing 4915 single-copy, orthologous genes derived

from OrthoDB v7 and v9 [42]. Presence and contiguity

of these conserved, avian-specific genes were tested with

BUSCO v3.0.2 [43]. A comparison with the chicken as-

sembly [44] (Gallus gallus 5.0) indicates that 95% of

these genes are present and full length in all three as-

semblies. The percentage of duplicated, fragmented and

missing genes are also very similar between the assem-

blies (Additional file 2: Figure S1). The quail genome has

10 more missing and 23 more fragmented genes than

the Gallus gallus 5.0 assembly. However, relative to the

total number of genes in the benchmarking set, these in-

creases amount to just 0.2% and 0.5%, respectively. This

indicates that the quail genome, like the chicken gen-

ome, is highly contiguous and, in terms of its expected

gene content, is close to complete.

Galliforme genome synteny

Comparative mapping of the quail and chicken genomes re-

vealed a high conservation of the chromosomal arrangement

(Fig. 1; Additional file 3), with no major rearrangements

since the divergence of the two species approximately 23

MYA [45]. All identified quail chromosomes showed synteny

conservation to their chicken chromosomal counterparts. By

comparison, the turkey (Meleagris gallopavo) genome is

more highly rearranged with two chromosomes having syn-

teny conservation to each of chicken and quail chromosomes

2 and 4 [46]. No large intra-chromosomal translocations

were seen between chicken and quail chromosomes, com-

pared to the two seen in the turkey [46, 47]. Inversions and

inter-chromosomal translocations were common, with

33 large (> 1Mb) inversions or translocations occur-

ring between chicken and quail chromosomes (Fig. 1;

Additional file 3). The quail chromosomes are more

compact than their chicken and turkey counterparts

(14% smaller on average). This may be linked to the

metabolic cost of migratory flight in quails, as previ-

ous studies have demonstrated smaller genomes and

higher deletion rates in flying birds compared to

flightless birds [48].

Orthologous genes between quail and closely related

species were identified through reciprocal BLAST

searches. One-to-one orthologs in chicken were identi-

fied for 78.2% of all quail genes and 91.8% of protein-

coding quail genes (Additional file 4), indicating a high

degree of genic conservation in the quail genome. Fewer

orthologs were seen between turkey and quail genes

(69.3%), although the number of orthologs of protein-

coding genes was similar (91.7%), so the discrepancy is

likely due to missing non-coding gene predictions in the

turkey genome. As expected, conservation of one-to-one

orthologs was lower with the mallard duck (Anas platyr-

hynchos), with duck orthologs identified for 64.5% of

quail genes (78.9% protein-coding genes).

Endogenous retroviruses (ERVs)

ERVs represent retroviral integrations into the germline

over millions of years and are the only long terminal re-

peat (LTR) retrotransposons which remain in avian ge-

nomes [49, 50]. While the majority of ERVs have been

degraded or epigenetically silenced, more recent integra-

tions retain the ability to produce retroviral proteins,

impacting the host immune response to novel exogen-

ous infections [51, 52]. A total of 19.4 Mb of the Cotur-

nix japonica 2.0 assembly was identified as ERV

Table 2 Representative gene annotation measures for assembled Galliform genomes

Common name Assembled version Protein-coding genes Total ncRNA mRNAs

Japanese quail Coturnix japonica 2.0 16,057 4108 39,075

Japanese quail Wu et al. PMID: 29762663 16,210 NA NA

Chicken Gallus gallus 5.0 19,137 6550 46,334

Turkey Turkey 5.0 18,511 8552 33,308

All species-specific gene annotation metrics derived from the NCBI RefSeq database
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sequence using the LocaTR pipeline [49] (Additional file 5

and Additional file 6). ERVs therefore account for 2.1%

of the quail genome sequence, levels similar to those in

the chicken and turkey [44] (Additional file 7), and simi-

larly analysed passerine birds [49].

The majority of ERV sequences in all three genomes were

short and fragmented, but 393 intact ERVs were identified in

the quail, most of which were identified as alpha-, beta- or

gamma-retroviral sequences by reverse transcriptase hom-

ology. It is possible that the smaller genome size of the quail

compared to other birds reflects a more limited expansion of

ERVs and other repeats (such as the LINE CR1 element;

Additional file 7) within the genome, following the basal

avian lineage genome contraction [48, 50]. However, ERV

content is highly species-specific [49].

Despite variation in total and intact ERV content, the

overall genomic ERV distribution in these three gallin-

aceous birds was highly similar. ERV sequence density

was strongly correlated with chromosome length on the

macrochromosomes and Z chromosome (r > 0.97; P <

0.001), but there was no significant correlation across

the other smaller chromosomes. Furthermore, ERV

density on each Z chromosome was at least 50% greater

than would be expected on an autosome of equal length.

These results support the depletion of repetitive ele-

ments in gene dense areas of the genome, and the per-

sistence of insertions in poorly recombining regions, as

was seen in the chicken [49]. This is further supported

by the presence of clusters of intact ERVs (where density

was five times the genome-wide level) on the macro-

chromosomes and sex chromosomes (Additional file 7).

Selection for social motivation

Quail has been used as a model to study the genetic deter-

minism of behaviour traits such as social behaviours and

emotional reactivity [21, 22, 53], these being major factors

in animal adaptation. Moreover, quail selected with a low

social motivation behave in a way that can be related to

autistic-like traits, so the genes and causal variants are of

wider interest to the biomedical community. Here we use

the new quail genome assembly to improve previous re-

sults on the detection of selection signatures in lines

Table 3 Estimates of gene and protein representation for sequenced Galliform genomes

Transcript1 Protein2

Common name Assembled version Average % identity Average % coverage Average % identity Average % coverage

Japanese quail Coturnix japonica 2.0 93.4 96.2 80.0 85.0

Chicken Gallus gallus 5.0 90.4 84.3 78.0 84.6

Turkey Turkey 5.0 NA NA 80.7 80.1

1Predicted transcripts per species aligned to Aves known RefSeq transcripts (n = 8776)
2Predicted proteins per species aligned to Aves known RefSeq (n = 7733)

Fig. 1 Synteny map of chicken (red) and quail (blue) chromosomes
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selected for sociability. Due to the non-availability of a

useable quail reference genome at the start of these stud-

ies, genomic sequence data produced from two DNA

pools of 10 individuals each from two quail lines diverging

for social motivation had been aligned to the chicken ref-

erence genome, GallusWU2.58 [54]. As a result, only 55%

of the reads had mapped in proper pairs, whereas by using

our quail genome as a reference, this number increased to

92%. This corresponds to an improvement of the averaged

coverage from 9× to 20× and of the number of analysed

SNPs from 12,364,867 to 13,506,139.

The FLK [55] and local [54] score analysis led to the

detection of 32 significant selection signature regions

(p < 0.05) (Additional file 8); Additional file 2: Figure S2

shows an example of such a region on Chr20. This rep-

resents a substantial improvement in the number of de-

tected regions, compared with the 10 regions obtained

when using the chicken genome as a reference [54]. Of

the 32 detected regions, six may be merged in pairs due

to their physical proximity, four regions map to new

linkage groups absent in the previous analysis, and eight

correspond with results obtained in the previous study

(Additional file 8). Altogether, 17 new regions were de-

tected. Of these, eight could be seen in the previous ana-

lysis, but had not been considered as they did not reach

the significance threshold, and nine are solely due to the

availability of our quail assembly. Two very short selec-

tion signatures previously detected using the chicken as-

sembly as reference are not recovered here and were

most probably false positives.

These results confirm the selection signature regions

harbouring genes involved in human autistic disorders

or being related to social behaviour [54] (PTPRE,

ARL13B, IMPK, CTNNA2). Among the genes localised

in the newly detected genomic regions, several have also

been shown to be implicated in autism spectrum disor-

ders or synaptogenic activity (Additional file 8): muta-

tions in the EEF1A2 gene (eukaryotic elongation factor

1, alpha-2) have been discovered in patients with autistic

behaviours [56]; EHMT1 (Euchromatin Histone Methyl-

transferase 1) is involved in autistic syndrome and social

behaviour disorders in human and mouse [56–59];

LRRTM4 (Leucine Rich Repeat Transmembrane Neur-

onal 4) is a synapse organising protein, member of the

LRRTM family, involved in mechanisms underlying

experience-dependent synaptic plasticity [60].

A model for avian seasonal biology

Quail is an important model for studying seasonal biol-

ogy. Seminal work in quail established that pineal mela-

tonin [61, 62] is regulated by the circadian clock [63]. In

mammals, photo-sensing is dependent on a single retinal

photoreceptor melanopsin (OPN4) that regulates pineal

melatonin release. Nocturnal melatonin is critical for

mammalian neuroendocrine response to photoperiod

and is likely to target melatonin receptors in the pars

tuberalis [64] (PT). Birds have a distinct non-retinal

mechanism for photoreception through deep-brain pho-

toreceptors [65] and melatonin does not appear to be

critical for most avian seasonal cycles [66]. The medial

basal hypothalamus (MBH) seems to be a critical region

for avian perception of photoperiod [67]. There are cur-

rently three main candidates for avian deep-brain photo-

receptors that communicate the photoperiod signal to

seasonal cycles: OPN4 [68], neuropsin [69] (OPN5) and

vertebrate ancient [70] (VA).

While melatonin may not be a critical component to

avian photoperiod signal transduction, it may play a role.

Photoperiodic regulation of gonadotropin-inhibitory hor-

mone (GnIH), first identified in quail, has been shown to

be regulated by melatonin [71]. Melatonin receptors are

also located in the quail PT [72], and like the mammalian

PT [73], the expression of core clock genes in the quail

PT [74] are phase-shifted with photoperiod. Previously,

two studies [67, 75] have examined temperature-

dependent effects of photoperiod on core clock genes,

TSHβ in the PT and DIO2 and DIO3 in the MBH. Here,

we leverage the new quail genome for genome-wide ana-

lysis to determine how photoperiod and temperature

interact to determine the MBH transcriptome (Fig. 2a).

We examined the effect of short- (SD) and long-day

(LD) photoperiod (SD, 6L18D & LD, 20L4D) and

temperature (9 °C and 23 °C) at 12 h after light on

(ZT18) (Fig. 2a; Additional file 2: Figure S3) on genome-

wide transcription and identified 269 significantly differ-

entially expressed genes (DEGs; FDR < 0.05, log2FC > 1;

Additional file 9). A total of 127 DEGs were regulated ir-

respective of temperature, 60 and 82 DEGs were specific

to the contrast with SD 9 °C and 23 °C, respectively. As a

single time point was sampled at ZT18, the differential

expression reported inevitably captures both circadian

effects, such as shifts in phase/period/amplitude, and

photoperiod-dependent effects. Resolving photoperiod

responses and circadian effects would require a longer

time-series with samples across 24 h. Additionally,

photoperiod-dependent effects include both acute and

expression dependent on the photoperiod history. The

ZT18 time point in LD is 12 h after dark and 2 h before

dark in SD, so may include acute light-dark photo-

perception.

We identified 16 temperature-dependent DEGs with

a large modulating effect of temperature (log2FC > 1)

(Fig. 2e). With the exception of aldehyde dehydrogen-

ase (ALDH1A1), the temperature-dependent photo-

period effected DEGs were downregulated in LD. There

was an equal division of genes between temperature-

dependent amplification and suppression of LD down-

regulated genes.
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The MBH shows strong TSHβ induction in LD (Fig. 2c,

d, log2FC = 7.96 at 9 °C, 8.36 at 23 °C), indicating the

stamp contains the adjacent PT as well as the MBH. Pre-

vious in situ data [75] support the localisation of TSHβ

in the quail PT. Consistent with previous MBH findings

[75], we observed significant upregulation of DIO2 and

downregulation of DIO3, in LD. We also observed a sig-

nificant effect of cold (9 °C) in short days as an amplifier

of DIO3 LP downregulation (Fig. 2e, log2FC = − 3.86 at

9 °C, − 2.51 at 23 °C). We were unable to confirm any

significant effect of cold on DIO2. We note significant

photoperiod-dependent downregulation of the thyroid

Fig. 2 Genome-wide analysis of temperature-dependent transcriptome responses to photoperiod in quail. Experimental design showing the 3

time-points each sampled after 4 weeks of the target photoperiod (circled) with RNA-Seq at n = 4 a. Intersection of DEGs between LD 23 °C vs SD

23 °C and LD 23 °C vs SD 9 °C b. Volcano plots comparing LD 23 °C vs SD 23 °C showing 71 up (yellow) and 42 down (blue) DEGs c and LD 23 °C

vs SD 23 °C d. Grey labels do not pass fold change threshold at 23 °C. Temperature-dependent effects on fold change in DEGs when comparing

SD at 23 °C and SD 9 °C. Arrows point from 23 to 9 °C and indicate a significant amplifying (green) or dampening (orange) effect of 9 °C on

photoperiod response e significantly enriched pathways in DEG genes at LD vs SD 23 °C (grey) and LD vs SD 9 °C (teal) q-value thresholds f.

Network of up (yellow), down (blue) and no significant change (white) regulated inter-connected genes (LD vs SD) using the String database. The

left side of a node indicates the expression change at 23 °C and right at 9 °C. Edges are weighted by the combined score, and green edges

represent experimental support g. Summary of upregulated and downregulated pathways h

Morris et al. BMC Biology           (2020) 18:14 Page 6 of 18



hormone-specific transporter SLC16A2 in LP that was

amplified at 9 °C (log2FC = − 1.19 at 9 °C, − 1.63 at

23 °C).

Differential regulation of G-protein coupled receptor

(GPCR) signalling was the most enriched pathway regu-

lated by photoperiod (Fig. 2f; Additional file 10). It also

emerged as the largest connecting component within the

String interaction network of DEG genes (Fig. 2g). TSHβ

itself binds to the GPCR THR [76]. G-protein signalling

is also critical for opsin signalling [77]. We also observed

transcriptional regulation in other GPCR hormone re-

ceptors, including Relaxin, Vasopressin, LH, Prolactin

and GH. GnRH is associated with VA opsins in AVT

neurones and has been suggested as a photoperiod sen-

sor [70]. We also noted downregulation of the neuron-

ally important GPCR GPR20 (Fig. 2g). In mice,

deficiency of GPR20 is associated with hyperactivity and

may play a role in cAMP-dependent mitogenesis [78].

There was a strong enrichment of collagen biosynthetic

processes and extracellular matrix organisation processes

(Fig. 2f) and a large body of genes associated with cell

differentiation and development (Fig. 2h).

We observed photoperiod-dependent regulation of a

single clock gene, CRY4. CRY4 is upregulated in LP

(log2FC = 0.85 at 23 °C, 1.37 at 9 °C). This is consistent

with the finding of Yasuo et al. [67] that the expression of

PER2-3, CLOCK, BMAL1, CRY1-2 and E4BP4 remain

stable across photoperiods. CRY4 has recently been the

subject of considerable research in migratory birds [79,

80] and the observed variation across photoperiods in a

non-migratory Galliform suggest quail could be an inter-

esting model to further investigate SP-dependent non-

migratory CRY4 function in the MBH.

We detected photoperiod effects on OPN4 transcripts,

which were upregulated in LD. Photoperiod-dependent

expression in OPN4 may well play a role in the

photoperiod-refractory response. Encephalopsin (OPN3)

was found to be highly expressed in the MBH (2.31 to

2.42 log2CPM) but without significant changes in ex-

pression. OPN3 has recently been identified in the hypo-

thalamus of chick hatchlings [81] but not as yet to the

MBH of adult birds. OPN5 (− 0.46 to 0.89 log2CPM)

and VA (− 0.11 to 0.31 log2CPM) were also unchanging

and expressed at a low level in the MBH sample. These

findings confirm the importance of temperature and

photoperiod-dependent regulation of thyroid hormone

metabolism in the avian MBH (Fig. 3).

Quail immune gene repertoire

We investigated the immune genes in the quail genome

in detail due to the importance of quail as a model in

disease research. The MHC-B complex of the quail has

been previously sequenced and found to be generally

conserved compared to chicken in terms of gene content

and order [30, 31]. However, the quail MHC contains a

higher copy number of several gene families within the

MHC-B [30] and shows increased structural flexibility

[31], as well as an inversion in the TAP region [30]. The

MHC-B sequence in the quail genome extends from the

previously sequenced scaffold, and this additional region

also contains similar gene content and order to chicken,

but with gene copy number variations. As in the

chicken, the CD1A and B genes are found downstream

of the MHC I region, while many TRIM family genes

and IL4I1 are encoded upstream. The BG region, which

encodes a family of butrophylin genes known as BG

genes in the chicken, was also present in the quail.

Within this region, six BG genes were identified in the

quail, compared to 13 in the chicken [82]. At least five

of these BG genes are transcribed in the quail lung and

ileum. The chicken and turkey have an additional MHC

locus known as the Rfp-Y or MHC-Y locus, which con-

tains several copies of non-classical MHCI-Y and

MHCIIB-Y genes. However, no MHC-Y genes have been

previously identified in quail. BLAST searches of both

the quail genome and quail transcriptomes, as well as

the bobwhite and scaled quail genomes, failed to identify

any MHC-Y genes, indicating this locus probably does

not exist in the quail.

Cathelicidins and defensins are two families of anti-

microbial peptides that have activities against a broad

range of pathogens and exhibit immune-modulatory ef-

fects. Orthologs of all four chicken cathelicidins and of

13 chicken defensins [83] were identified in the quail

genome (Additional file 11). Due to their high diver-

gence, of the 13 defensins, only four were annotated

through the annotation pipeline, with the remainder

identified through BLAST and HMMer searches with

chicken defensins. The only poultry defensin missing

from the quail genome is AvBD7. The defensins are

encoded in a 42 kb cluster on quail chromosome 3, as in

chickens. A 4 kb gap in the scaffold in this region may

explain the missing AvBD7 sequence.

Several genes are thought to be crucial for influenza re-

sistance in both humans and birds, including RIG-I, TLR

and IFITM genes. RIG-I has not previously been identified

in chicken, despite being present in ducks and many other

bird orders, and is considered highly likely to be deleted

from the chicken genome [84]. In addition, an important

RIG-I binding protein RNF135 has also not been identi-

fied in chicken [85]. Likewise, an ortholog of RIG-I or

RNF135 could not be identified in the quail genome or

transcriptomes through BLAST and HMMer searches and

therefore is likely missing in the quail also. Orthologs of

all five chicken IFITM genes (IFITM1, 2, 3, 5 and 10) were

identified in the quail genome and transcriptomes. In

addition, orthologs of each chicken toll-like receptors

(TLRs), including key TLRs for viral recognition, TLR4
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and TLR7, were identified in the quail genome, except that

of TLR1A. TLR1A was not identified through BLAST and

HMMer searches of the quail genome. In chicken, TLR1A

and TLR1B are located between the genes KLF3 and

FAM11A1. However, in the quail genome, there is only

one gene at this location. We extracted TLR1-like se-

quences from other Galliform genomes and Zebrafinch

and created a phylogeny with TLR2 and 4 as outgroups

(Additional file 2: Figure S4). This phylogeny indicates sin-

gle highly supported clades of TLR1A and B, indicating

that the duplication occurred in an ancestor of Neog-

nathae avians. TLR1A was identified in the other two

quail species’ genomes. The absence of TLR1A from the

quail genome assembly suggests it has been lost from the

quail genome, although an assembly error cannot be ruled

out.

Quail response to H5N1 influenza

Highly pathogenic influenza A viruses (HPAI), such as

strains of H5N1, are responsible for enormous economic

losses in the poultry industry and pose a serious threat

to public health. While quail can survive infection with

low pathogenic influenza viruses (LPAI), they experience

high mortality when infected with strains of HPAI [86].

Quail are more susceptible than chickens to infection by

some strains of H5N1 including one that caused human

mortality (A/Hong Kong/156/97) [36]. Previous research

has shown that quail may play a key role as an inter-

mediate host in the evolution of avian influenza, allow-

ing viral strains to spread from wild birds to chickens

and mammals [32, 33, 36, 87]. Unlike quail and chicken,

aquatic reservoir species such as duck are tolerant of

most HPAI strains [88]. The generation of a high-quality

quail genome has enabled us to perform a differential

transcriptomic analysis of gene expression in quail in-

fected with LPAI and HPAI, to better understand the re-

sponse of quail to influenza infection. Lung and ileum

samples were collected at 1 day post infection (1dpi) and

3 days post infection (3dpi). We also reanalysed previous

data collected from duck and chickens [89] and compare

this to the quail response.

To provide an overview of the response to LPAI and

HPAI in quail, we examined pathway and GO term enrich-

ment of DEGs (see Additional file 12, Additional file 13

and Additional file 2; Figures S5-S8). In response to LPAI

infection, pathways enriched in the ileum included metab-

olism, JAK/STAT signalling, IL6 signalling and regulation

of T cells (Additional file 2: Figure S5). In the lung, path-

ways upregulated included complement, IL8 signalling and

leukocyte activation (Additional file 2: Figure S6). In the

Fig. 3 Photoperiod signalling in the MBH incorporating observations from RNA-Seq
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lung at 3dpi, highly enriched GO terms included “re-

sponse to interferon-gamma”, “regulation of NF-

kappaB”, “granulocyte chemotaxis” and “response to

virus” (Additional file 2: Figure S7), which are key in-

fluenza responses. This indicates an active immune

response occurs to LPAI infection in quail, involving

both ileum and lung, but with the strongest immune

response occurring in the lung.

Genes upregulated in response to HPAI in the ileum were

related to metabolism and transport, while inflammatory re-

sponse was downregulated at 1dpi (Additional file 2: Figure

S7). Downregulated pathways at 1dpi included IL-6, IL-9

andneuro-inflammation signallingpathways (Additional file 2:

Figure S7). In the quail lung, many genes were downregu-

lated after HPAI infection (Additional file 12). At 3dpi, most

downregulated pathways and terms were linked to immune

system processes. GO terms with the highest fold enrich-

ment in downregulated genes at this time included T and B

cell proliferation, TNF signalling pathway, TLR pathway and

IFN-G production (Additional file 13). Pathways downregu-

lated included both Th1 and Th2 pathways, T cell, B cell

and macrophage signalling pathways (Additional file 2: Fig-

ure S8). This indicates that crucial immune responses in

quail are downregulated in ileum, and particularly in the

lung at day 3, following HPAI infection.

To compare the response of quail, duck and chicken,

clustering of gene counts was examined using BioLayout

3D [90]. This revealed a cluster of 189 genes that were

strongly upregulated at 1dpi in the duck following HPAI

infection, which showed no or very low response in

chicken and quail (Additional file 14). This cluster was

dominated by RIG-I pathway and IFN response genes

including IFNG, DDX60, DHX58, IRF1, IRF2 and MX1.

Pathways associated with this cluster include MHCI pro-

cessing and death receptor signalling (Additional file 2:

Figure S9). Thus, the lack of this early anti-viral response

may be key to the susceptibility of Galliformes to HPAI.

To further compare the responses between the three

species, enrichment of pathways in each species was

examined (Fig. 4; Additional file 2: Figure S10). In LPAI

infection, comparison between ileum samples was lim-

ited due to low number of DEGs, but in lung, many

pathways were shared between the species, primarily

immune pathways. In HPAI, pathway analysis revealed

very few commonly regulated pathways between the

three species. However, at 1dpi in the ileum and 3dpi in

the lung, there were many pathways that were downreg-

ulated in the quail, not altered in chicken and upregu-

lated in the duck. In the ileum at 1dpi, this included

pattern recognition and death receptor signalling. In the

lung at 3dpi, this involved host of immune-related path-

ways including production of NOS by macrophages, pat-

tern recognition, B and T cell signalling and NK-KB, IL8

and IL2 signalling.

The proportion of genes commonly regulated between

quail, chicken and duck to LPAI and HPAI infection was

also examined (Fig. 5; Additional file 2: Figure S11). The

responses to LPAI showed a high level of commonly reg-

ulated genes between the three species; for example,

50.5% of chicken DEGs and 42.5% of duck DEGs in lung

at day 1 were also differentially expressed in quail. In

HPAI, consistent with the heatmap comparison (Fig. 4),

the responses of chicken, quail and duck were largely

unique, with few genes commonly differentially expressed.

There was a large set of genes that were upregulated in

duck, while being downregulated in quail at 3dpi, in both

ileum and lung. In lung, these genes were related primarily

to innate immune system pathways, including pattern rec-

ognition pathways, cytokine production, leukocyte adhe-

sion, TNF production, interferon production, B cell

signalling and response to virus (Additional file 13). Genes

with the greatest differential expression included RSAD2

which inhibits viruses including influenza, IFIT5 which

senses viral RNA and OASL which has anti-viral activity.

These differences further highlight that the anti-viral im-

mune response is dysregulated in quail. Additionally in

both ileum and lung, the apoptosis pathway was enriched

in duck, but not in quail (Additional file 13). Apoptosis is

known to be a critical difference in the response of chick-

ens and ducks to HPAI infection [91].

Lastly, we examined the response of key families involved

in influenza and immune response, focussing on the lung

(Additional file 15). IFITM genes have previously been

found to have a crucial role in HPAI resistance [89] and

may block AIV from entering cells [92]. Consistent with

previous findings in the chicken [89], quail showed no sig-

nificant upregulation of IFITM genes, while these genes in

duck were strongly upregulated (Additional file 15), TLRs

and MHC receptors are involved in recognition of foreign

molecules and triggering either an innate (TLR) or adaptive

(MHC) immune response. TLR3, 4 and 7, which bind viral

RNAs, were upregulated in response to LPAI in quail. A re-

versal was seen in response to HPAI, with TLR4 and 7 sub-

stantially downregulated. Likewise, genes of both MHC

class I and II were upregulated in response to LPAI and

downregulated in response to HPAI. By comparison there

was no perturbation of TLR and MHC genes in chicken

and upregulation of class I genes in duck. The quail seems

to have a highly dysfunctional response to HPAI infection

with key innate and adaptive immune markers downregu-

lated at 3dpi, which contrasts with the strong immune re-

sponse mounted by the duck and minimal immune

response in the chicken.

Discussion
We have assembled, annotated and analysed a high-quality

quail genome. Quails are a crucial model in developmental

biology, behaviour and photoperiod research and also
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disease studies. Using this genome, we have made import-

ant discoveries in these fields of research.

The quail genome assembly is highly comparable to the

chicken genome assembly (Gallus gallus 5.0) in terms of

contiguity, assembly statistics, annotation, gene content and

chromosomal organisation. It is also a superior assembly to

other quail family and Galliform genome assemblies. The

quail genome shows high conservation to the chicken both

in chromosomal synteny, in gene orthology and in ERV

genomic density. The immune gene complement in the

quail genome is similar to that of chicken but with some

important differences, including changes to the MHC in-

cluding a likely lack of the MHC-Y locus and of the avian

TLR1A gene.

Quail are used as a model to study the genetics of be-

haviour, and leveraging the quail genome we examined se-

lection signatures in lines selected for sociability. This

confirmed selection on regions harbouring genes known

to be involved in human autistic disorders or related to so-

cial behaviour. Autistic spectrum disorders are observed

in several disorders that have very different aetiology, in-

cluding fragile X Syndrome, Rett Syndrome or Foetal

Fig. 4 Heatmap comparison between pathways upregulated (orange) and downregulated (orange) in quail, chicken and duck following HPAI

infection. Ileum day 1 a, ileum day 3 b, lung day 1 c and lung day 3 d
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Anticonvulsant Syndrome. While these disorders have

very different underlying etiologies, they share common

qualitative behavioural abnormalities in domains particu-

larly relevant for social behaviours such as language, com-

munication and social interaction [93, 94]. In line with

this, several experiments conducted on high social (HSR)

and low social (LSR) reinstatement behaviour quail indi-

cate that the selection program carried out with these

lines is not limited to selection on a single response, social

reinstatement, but affect more generally the ability of the

quail to process social information [18]. Differences in so-

cial motivation, but also individual recognition have been

described between LSR and HSR quail [95, 96]. Inter-

individual distances are longer in LSR quail [95] and LSR

young quail have decreased interest in unfamiliar birds

[97] and lower isolation distress than HSR ones [20].

Further experiments will be required to examine the pos-

sible functional link between the selected genes and the

divergent phenotype observed in these lines. Also, by ana-

lyses of genes known to be differentially expressed in the

zebra finch during song learning, we hope to compara-

tively understand molecular systems linked to behaviour

in the avian brain.

Quail is a key model species for studying seasonal biology.

We have added to this body of work by using the quail gen-

ome for genome-wide analysis to determine how photo-

period and temperature interact to determine the medial

basal hypothalamus transcriptome. We confirm the import-

ance of temperature and photoperiod-dependent regulation

of thyroid hormone metabolism in the avian MBH.

Temperature-dependent amplification and suppression of

the photoperiod response may indicate qualitative differences

Fig. 5 Proportion of genes commonly regulated between quail and chicken or duck to H5N1 infection on day 3. Ileum a and lung b
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in the MBH pathways or simply reflect different stages of

progression through seasonally phased processes. This could

be further investigated by contrasting across time-series at

different temperatures. We also observed concurrent regula-

tion of multiple hormonal signalling pathways, this may re-

flect a diversity of pathways and cell types in the MBH or

reflect a corrective mechanism to account for cross-talk with

other GPCR pathways. We observed LH, PRL, and GH re-

ceptor transcript changes which may indicate modulation of

a GnRH-anterior pituitary feedback mechanism. In addition

to observing high OPN3 expression in the MBH, we also

noted LD overexpression of OPN4, which could provide a

potential component for an avian photoperiod-refractory

mechanism. This study demonstrated the utility of genome-

wide transcriptome analysis in quail to provide valuable in-

sights and novel hypotheses for avian seasonal biology.

Quails are important for disease research, particularly

in influenza where they act as a key intermediate host in

the evolution of avian influenza [32–34], allowing viral

strains to spread from wild birds to mammals and do-

mesticated chickens. We found that quail have a robust

immune response to infection with LPAI, allowing them

to survive the infection. However, they show dysregula-

tion of the immune response after infection with HPAI,

and this may explain their susceptibility to HPAI strains.

Quail, chicken and duck showed similar responses to

LPAI. After HPAI infection, while ducks showed a ro-

bust immune response, quails did not. This difference

may be a result of the higher viral dose the ducks were

infected with; however, the lower dose given in chickens

and quail still resulted in replicative virus and mortality

of all chickens and quails by 5dpi, and therefore should

have induced an anti-viral immune response. A more

substantial immune response may have developed in the

short period between 3dpi and time of death of the

quails (between 3 and 4dpi); however, this was too late

to prevent mortality. An IFITM response was not seen

against HPAI while genes associated with apoptosis were

downregulated, mechanisms previously found to be im-

portant in resistance to HPAI [89, 91], which potentially

allows the virus to easily enter cells and spread early in

infection. Anti-viral and innate immune genes, including

those involved in antigen recognition, immune system

activation and anti-viral responses were downregulated

at 3dpi, which would prevent an effective immune re-

sponse and viral clearance once infection is established.

This study provides crucial data that can be used to

understand the differing response of bird species to AIV,

which will be critical for managing and mitigating these

diseases in the future.

Conclusions
Here we describe the assembly, annotation and use of a

high-quality quail genome, an important avian model in

biological and biomedical research. This genome will be

crucial for future comparative avian genomic and evolu-

tionary studies. It provides essential genetic and genomic

reference information for making precise primers and

nucleic acid probes, and accurate perturbation reagents

including morpholinos, RNA inactivation tools, and

CRISPR-Cas9 constructs. We have demonstrated the

utility of this genome in both infectious disease and be-

havioural research providing further confirmation of the

importance of quail as a research model, and for its role

in agricultural and animal health studies. Specifically, the

availability of this genome has allowed us to make sig-

nificant discoveries in the unique response of quail to

highly pathogenic avian influenza infection, helping elu-

cidate the basis for extreme susceptibility seen in this

species. It has also allowed us to identify and confirm

genes and genomic regions associated with social behav-

iours. Furthermore, we have shown that genome-wide

transcriptomics using this genome facilitated further in-

sights and hypothesis into the mechanism of photo-

periodism in avian seasonal biology. Moving forward,

the availability of a high-quality quail genome will facili-

tate the study of diverse topics in both avian and human

biology including disease, behaviour, comparative gen-

omics, seasonality and developmental biology.

Methods
Whole genome sequencing and assembly

To facilitate genome assembly by avoiding polymorph-

ism, we produced an individual as inbred as possible.

We started with a quail line previously selected for early

egg production and having a high inbreeding coefficient

[98] and four generations of brother-sister matings pro-

duced a dedicated line “ConsDD” (F > 0.6) (PEAT,

INRAE Tours, France). A 15-week-old male Coturnix ja-

ponica (id. 7356) was then selected from this line for the

sequencing project. Genomic DNA was extracted from a

blood sample using a high-salt extraction method [99].

Our sequencing plan followed the recommendations

provided in the ALLPATHS2 assembler [37]. This model

requires 45× sequence coverage of each fragment (over-

lapping paired reads ~ 180 bp length) from 3 kb paired-

end (PE) reads as well as 5× coverage of 8 kb PE reads.

These sequences were generated on the HiSeq2500 Illu-

mina instrument. Long reads used for gap filling were

generated at 20× coverage on the same DNA source

using a RSII instrument (Pacific Biosciences). The Illu-

mina sequence reads were assembled using ALLPATHS2

software [37] using default parameter settings and where

possible, and scaffold gaps were closed by mapping and

local assembly of long reads using PBJelly [100]. As most

scaffold gaps were small, long-read data was only needed

to correct around 1Mb of the assembly. The Illumina

long insert paired-end reads (3 kb and 8 kb PE) were
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used to further extend assembled scaffolds using

SSPACE [101]. The draft assembly scaffolds were then

aligned to the genetic linkage map [53] and the Galgal4.0

chicken reference (GenBank accession: GCA_

000002315.2) to construct chromosome files following

previously established methods [44]. Finally, all contam-

inating contigs identified by NCBI filters (alignments to

non-avian species at the highest BLAST score obtained)

and all contigs < 200 bp were removed prior to final as-

sembly submission.

Gene annotation

Specific RNA-Seq data for the genome annotation was

produced from the same animal used for the genome as-

sembly. RNA was extracted from heart, kidney, lung,

brain, liver, intestine and muscle using Trizol and the

Nucleospin® RNA II kit (MACHEREY-NAGEL), follow-

ing the manufacturer’s protocol.

The Coturnix japonica assembly was annotated using

the NCBI pipeline, including masking of repeats prior to

ab initio gene predictions, for evidence-supported gene

model building. We utilised an extensive variety of

RNA-Seq data to further improve gene model accuracy

by alignment to nascent gene models that are necessary

to delineate boundaries of untranslated regions as well

as to identify genes not found through interspecific simi-

larity evidence from other species. A full description of

the NCBI gene annotation pipeline was previously de-

scribed [102]. Around 8000 lacked gene symbols from

this pipeline, and these were further annotated manually

by using BLAST searches using the corresponding se-

quences and extracting protein names from Uniprot.

Comparative analyses

A set of single copy, orthologous, avian-specific genes

were selected from OrthoDB v. 9 [42] and their status

(present, duplicated, fragment or missing) were tested

with BUSCO v.3.0.2 [43] in the Gallus gallus 5.0 and

Coturnix japonica 2.0 genomes. Ab initio gene predic-

tions were done within the BUSCO framework using

tBLASTn matches followed by avian-specific gene pre-

dictions with Augustus v. 3.3 [103]. Gene status was

assessed by running HMMER [104] with the BUSCO

HMM profiles of the orthologous sequences. Compara-

tive maps and breakpoint data were generated using

AutoGRAPH [105] using chicken and quail gff annota-

tion files, using default settings. The TLR1A phylogeny

was constructed in MEGA7 [106] using the Neighbour-

Joining method [107].

Endogenous retrovirus identification

Endogenous retroviruses (ERVs) were identified in the

Coturnix japonica 2.0 and Turkey 5.0 genome assem-

blies using the LocaTR identification pipeline [49] and

compared to a previous analysis of ERVs in the Gallus

gallus 5.0 genome assembly [44]. LocaTR is an iterative

pipeline which incorporates LTR_STRUC [108],

LTRharvest [109], MGEScan_LTR [110] and RepeatMas-

ker [111] (http://repeatmasker.org) search algorithms.

Sociability selection study

The data and methods used have been described previ-

ously [54]. Briefly, two quail lines were used, divergently

selected on their sociability [19]: high social (HSR) and

low social (LSR) reinstatement behaviour. A total of 10

individuals from generation 50 of each quail line were

sequenced after equimolar DNA pooling. Sequencing

was performed (paired-ends, 100 bp) on a HiSeq 2000

sequencer (Illumina), using one lane per line (TruSeq

sbs kit version 3). The reads (190,159,084 and 230,805,

732 reads, respectively, for the HSR and LSR lines) were

mapped to the CoJa2.2 genome assembly using BWA

[112], with the mem algorithm. Data are publicly avail-

able under SRA accession number SRP047364. Within

each line, the frequency of the reference allele was esti-

mated for all SNPs covered by at least 5 reads, using

Pool-HMM [113]. This analysis provided 13,506,139

SNPs with allele frequency estimates in the two lines.

FLK values [55] were computed for all these SNPs, and

the local score method [54] was applied to the p value

on single-marker tests.

Photoperiod study

MBH tissue was collected as previously [75]. Male 4-

week-old quail were obtained from a local dealer in

Japan and kept under SD conditions (6L18D) for 4

weeks. At 8 weeks of age, quail were transferred to LD

conditions (20L4D) and kept under LD conditions for 4

weeks to develop their testes. And then, 12-week-old LD

quail were transferred to short-day and low-temperature

(SL: 6L18D 9C) conditions for another 4 weeks to fully

regress their testes. All samples were collected at 18 h

after light on (ZT18), which for SD birds is 12 h after

dark onset, and for LD birds 2 h before dark onset.

(Lights on is same for LD and SD and lights off was ex-

tended in LD group). RNA-Seq was performed using a

TruSeq stranded mRNA prep (Revision E 15031047)

with 125 bp paired-end reads on a HiSeq Illumina 2500

with four replicates in each of the three conditions.

Reads were quality (Phred>25) and adapter trimmed

with Trim Galore (version 0.4.5). Tophat (version 2.1.0)

[114] with bowtie2 (version 2.2.6) was used to map reads

to the quail genome (GCA_001577835.1 Coturnix japon-

ica 2.0), using the NCBI annotation. We determined fea-

ture counts for gene loci using the featureCounts program

[115] in the subread (version 1.5.0) package [116]. Statis-

tical analysis was performed using the limma package

[117] (version 3.36.1) in the R programming environment
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(version 3.5.0). The trimmed mean of M-values normalisa-

tion method (TMM) was used for normalisation with

Voom for error estimation (Additional file 2: Figure S3).

We retained gene loci with more than 10× coverage in

three replicates in at least two conditions. A categorical

least squared regression model was fitted using LD 23 °C,

SD 23 °C and SD 9 °C conditions. Statistics for pairwise

comparisons were then recalculated by refitting contrasts

to the model for LD 23 °C vs SD 23 °C, LD 23 °C vs SD

9 °C and SD 23 °C vs SD. The Benjamini-Hochberg ap-

proach [118] was used to estimate the false discovery rate.

For reporting numbers of photoperiod significant genes,

we applied thresholds of FDR < 0.05, log2 CPM> 0 and

absolute log2 fold change > 1. Temperature-dependent

genes are reported as those with a photoperiod significant

effect at either 23 °C or 9 °C and a significant effect when

contrasting SD 9 °C and SD 23 °C at the same thresholds

defined across photoperiods.

Influenza response study

All experiments involving animals were approved by the

Animal Care and Use Committee of St. Jude Children’s

Research Hospital and performed in compliance with rele-

vant policies of the National Institutes of Health and the

Animal Welfare Act. All animal challenge experiments

were performed in animal biosafety level 2 containment

facilities for the LPAI challenges and in biosafety level 3

enhanced containment laboratories for the HPAI chal-

lenges. Viral challenges of quail, tissue collection, RNA ex-

tractions and sequencing were carried out as previously

described for chicken [89]. Fifteen quail, 15 chickens and

15 ducks were challenged with 106 EID50 intranasally,

intratracheally and intraocularly of LPAI A/Mallard/Brit-

ish Columbia/500/2005 (H5N2) in phosphate buffered sa-

line (PBS). Fifteen quail and 15 chickens were challenged

with 101.5 EID50 intranasally, intratracheally and intraocu-

larly of HPAI A/Vietnam/1203/2004 (H5N1) in PBS.

Twelve ducks were challenged with 106 EID50 intranasally,

intratracheally and intraocularly of HPAI A/Vietnam/

1203/2004 (H5N1) in PBS. Mock infection control groups

for quails (n = 12), chickens (n = 10) and ducks (n = 15)

were also inoculated, receiving an equivalent volume of

PBS via the same route of administration. Birds were ran-

domly allocated to experimental groups. Oropharyngeal

and cloacal swabs were taken from all birds and virus ti-

tres are shown in (Additional file 2: Tables S1–3). Animals

were monitored daily for clinical signs. Lung and ileum

samples were collected from all birds on 1dpi and 3 dpi.

RNA extractions were performed using Trizol and QIA-

GEN’s RNeasy kit. For sequencing, 36-cycle single-ended

sequencing was carried out on the Genome Analyser IIx

using Illumina v3 Sequencing by Synthesis kits.

All quail, as well as duck and chicken RNA-Seq reads

from the previous study [89], were analysed as follows:

Ileum and lung RNAs were analysed from PBS infected

control (3 samples from each of 1dpi and 3dpi), H5N1-

infected (3 samples from each of 1dpi and 3dpi, except

quail ileum 1dpi which had 2 samples) and H5N2-

infected (3 samples from each of 1dpi and 3dpi). A total

of 251 million reads of 36 nucleotides in length were

generated for quail. Reads were quality checked using

FastQC (version 0.11.2) and trimmed for quality using

Trim Galore (version 0.4.0). Mapping was performed to

the quail genome (GCA_001577835.1 Coturnix_japon-

ica_2.0), chicken genome (GCA_000002315.3 Gallus_

gallus-5.0) and duck (GCA_000355885.1 BGI_duck_1.0)

using Tophat2 [114] (version 2.1.0) using default options

including the default multi-mapping cutoff of 20 loca-

tions. Mapping of reads was also performed to H5N1

and H5N2 genomes using Kallisto [119] (version 0.42.4;

Additional file 16). For quantification and differential ana-

lysis, the following pipeline was used. First, transcripts

were assembled and quantified using cufflinks [120],

guided with the NCBI annotation for the relevant genome,

and the multi-read correct option was used to more ac-

curately estimate abundances of multi-mapped reads. The

transcriptomes were merged using stringtie merge [121],

and cuffdiff [115] was used for differential analysis using

default settings. To determine orthology between quail,

duck and chicken genes, reciprocal BLAST searches were

performed. For analysis of GO term enrichment, the

PANTHER overrepresentation test [122] was used, and

for pathway analysis, Ingenuity Pathway Analysis software

(QIAGEN) was used. For clustering analysis, BioLayout

3D [90] was used using default settings except 1.4 inflation

for Markov clustering.
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