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ABSTRACT

We discuss some applications of 3-manifold topology to cryptography. In
particular, we propose a public-key and a symmetric-key cryptographic
scheme based on the Thurston norm on the first cohomology of hyperbolic
manifolds.
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1. Introduction

Geometric group theory and low-dimensional topology have developed many powerful tools for
studying groups, and many group-theoretic ideas have been productive in group-based cryptogra-
phy. Here, we propose importing ideas from hyperbolic geometry to build new cryptoschemes with
certain security advantages.

Specifically, we consider the Thurston norm onH1(M,R), the first cohomology of a finite volume
hyperbolic 3-manifold, as introduced in [30]. The Thurston norm measures the Euler characteris-
tic of the simplest surface in M which represents a second homology class which is Poincaré dual
to an integral cohomology class and extends it to the entirety of H1(M,R). The Thurston norm
has a remarkable linear nature which makes computations with it tractable, and as outlined below,
organizes the fibrations of a fibred hyperbolic 3-manifold.

We will use the Thurston norm to build a new symmetric-key cryptographic scheme. Combined
with a certain group-based public key exchange, we obtain a public-key cryptoscheme which has two
levels of security and in which all communications are over public channels.

National Security Agency (NSA) announced plans to upgrade current security standards in 2015;
the goal is to replace all deployed cryptographic protocols with quantum secure protocols, due to
the increasing possibility of quantum attacks. This transition requires a new, post-quantum, security
standard to be accepted by the National Institute of Standards and Technology (NIST). Proposals for
quantum secure cryptosystems and protocols have been submitted for the standardization process.
There are sixmain primitives currently proposed to be quantum-safe: (1) lattice-based (2) code-based
(3) isogeny-based (4)multivariate-based (5) hash-based, and (6) group-based cryptographic schemes.
Applications to post-quantum group-based cryptography could be shown if the underlying security
problem is NP-complete or unsolvable; ideally one could analyse the relationship of the problems
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under consideration here to the hidden subgroup problem (HSP), then analyse Grover’s search prob-
lem. As for the relationship to the HSP, the groups under consideration are infinite and so a practical
way to process them needs to be developed.

In [18], a practical cryptanalysis ofWalnutDSAwas proposed, a platformwhich was given in 2016
in [4] as a post-quantum cryptosystem using braid groups and conjugacy search problem, submitted
to NIST competition in 2017.

There are other group-theoretic problems and classes of groups which have been proposed for
post-quantum group-based cryptography, as we summarize here. The pioneers in this field were
Wagner-Magyarik, who in [32] used a right-angled Artin group as a platform, relying on the
word problem and the word choice problem; this approach was later improved by Levy-Perret in
[25]. At the same time, Birget–Magliveras–Sramka [6] proposed a new protocol based on different
groups that share some properties with Higman–Thompson groups. Later on, Flores–Kahrobaei and
Flores–Kahrobaei–Koberda proposed right-angled Artin groups as a platform for various crypto-
graphic protocols [13,14]. Eick and Kahrobaei proposed polycyclic groups as a platform, using the
conjugacy search problem as a basis for security [11]. Gryak–Kahrobaei proposed other group-
theoretic problems for consideration for polycyclic group platforms [15]. Kahrobaei–Koupparis [20]
proposed a post-quantumdigital signature using polycyclic groups. Kahrobaei–Khan [19] proposed a
public-key cryptosystemusing polycyclic groups [19]. Habeeb–Kahrobaei–Koupparis–Shpilrain pro-
posed public key exchanges using semidirect products of semigroups in [16]. Thompson’s groups
have been considered by Shpilrain–Ushakov, with cryptoschemes based on the decomposition search
problem [28]. Hyperbolic groups have been proposed by Chatterji–Kahrobaei–Lu, relying on prop-
erties of subgroup distortion and the geodesic length problem [9]. Cavallo–Habeeb–Kahrobaei–
Shpilrain proposed using small cancellation groups for secret sharing scheme [8,17]. Free metabelian
groups have been proposed as a platform by Shpilrain–Zapata, with the scheme based on the sub-
group membership search problem [29]. Kahrobaei–Shpilrain proposed free nilpotent p-groups as a
platform for a semidirect product public key [22]. Linear groups were proposed by Baumslag-Fine-
Xu [5], and Grigorchuk’s group have been proposed in [26]. Finally in [21], arithmetic groups were
proposed as platform for a symmetric-key cryptographic scheme.

2. Hyperbolic 3-manifolds and the Thurston norm

We review somewell-known background about hyperbolic 3-manifolds and the Thurston norm [30],
concentrating on the case of fibred hyperbolic 3-manifolds.

2.1. Generalities about the Thurston norm

Let M = Mψ be a fibred hyperbolic 3-manifold. That is to say, there is an orientable surface S with
negative Euler characteristic and a mapping class ψ ∈ Mod(S) such that M is the mapping torus of
ψ . Observe that the rank ofH1(M,R) is at least one, since π1(M) surjects toZ. Rational cohomology
classes ofM which correspond to fibrations ofM are called fibred cohomology classes ofM. Precisely
what is meant by this correspondence is the following: first, replace the given cohomology class by the
smallest nonzero multiple which is integral. A cohomology class φ ∈ H1(M,Z) is a homomorphism
to Z, which by standard arguments from algebraic topology is induced by a based map of spaces
� : M → S1. After modifying � by a homotopy, the generic preimage of a point will be a subsurface
S ofM which is Poincaré dual to φ. If� is chosen carefully enough, Swill be a fibre of a fibration over
S1. The fibration can also be built by pulling the form dθ from S1 back under � and integrating it.
See [30] for more details.

A fibred 3-manifold M is called atoroidal if it does not contain a non-peripheral incompressible
torus. Here, this means that if T ⊂ M is a π1-injective copy of the torus, then T can be pushed into a
cusp ofM. It is a famous result of Thurston that a fibred 3-manifold admits a finite volume hyperbolic
metric if and only if it is atoroidal, which in turn will happen if and only if no power of the mapping
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class ψ fixes the homotopy class of a simple closed loop on S. Here, a simple closed loop on S is an
essential copy of S1 which is not parallel to a puncture or boundary component of S. Such a mapping
class ψ is called pseudo-Anosov.

It is a standard result from foliation theory that if the rank of H1(M,R) is at least two, then small
perturbations of a fibred cohomology class φ ∈ H1(M,Q) ⊂ H1(M,R) will give new fibrations of
M over the circle which are inequivalent to φ. Thurston’s work [30] organized the fibrations of M
by defining a norm ‖ · ‖T on H1(M,R), called the Thurston norm. The norm of a cohomology class
‖φ‖T is given by minSφ

|χ(Sφ)|, where this minimum is taken over surfaces which are Poincaré dual
to φ. The following summarizes the relevant features of the Thurston norm:

Theorem 2.1: LetM be a compact atoroidal 3-manifold with χ(M) = 0, and let ‖ · ‖T be the Thurston
norm.

(1) ‖ · ‖T is a nondegenerate norm on the vector space H1(M,R);
(2) The unit norm ball is a convex polytope, all of whose vertices lie at rational points in H1(M,R);
(3) Let φ ∈ H1(M,Z) be a fibred cohomology class of M. Then there is a maximum dimensional face

F of the unit ball of ‖ · ‖T such that φ ∈ R · F. Moreover, every primitive integral cohomology class
φ ∈ R · F is fibred. The face F is called a fibered face of the unit norm ball.

Here, an integral cohomology class if called primitive if it is nonzero and if it is not an integer
multiple of another integral cohomology class. Viewed as a tuple of vectors, an integral cohomology
class is primitive if and only if the entries of the tuple are relatively prime and not all zero.

Let φ ∈ H1(M,Z) be a fibred cohomology class. ThenM fibres over the circle with fiber S = Sφ ,
where π1(S) < π1(M) is identified with kerφ. The following proposition is standard and we include
its proof for the convenience of the reader.

Proposition 2.1: Suppose M is hyperbolic, and let S be the fibre of a fibration of M over S1. Then
π1(S) < π1(M) is exponentially distorted, and the membership problem for π1(S) is solvable in linear
time.

Proof: We have that π1(M) is a semidirect product of Z with π1(S), where the conjugation action of
a generator t of Z is given by a pseudo-Anosov mapping class of π1(S). If 1 �= γ ∈ π1(S) and ψ is a
pseudo-Anosov mapping class which has been lifted to an automorphism of π1(S), then the length
of the shortest representative in the conjugacy class of ψn(γ ) grows like λnψ , where λψ > 1 is a real
number called the stretch factor ofψ . Since conjugation by t acts onπ1(S) byψ , we have thatψn(γ ) =
t−nγ tn, a word whose length is linear in n. It follows that π1(S) < π1(M) is exponentially distorted.
We refer the reader to Exposé 10 of [12] for details on word growth entropy and pseudo-Anosov
mapping classes.

Now suppose that g ∈ π1(M) is a given element, and we wish to determine if g ∈ π1(S). The group
π1(M) surjects to Z by a homomorphism φ, and the kernel of this map is exactly π1(S). If π1(M) =
〈g1, . . . , gk〉, then φ is determined by its values on the generators of π1(M). If g ∈ π1(M) is a product
of N generators of π1(M), we compute the value of φ on the N generators needed to represent g
and add them up, which requires computational resources bounded by a linear function in N. If the
resulting sum is zero, then g ∈ π1(S). If the sum is nonzero then g /∈ π1(S). �

2.2. Examples

From the general description, the Thurston norm seems very difficult to compute and hence unwieldy
for many practical applications. However, there are many situations in which the Thurston norm can
be computed, at least in a cone over a fibred face.

In, McMullen defined the Teichmüller polynomial associated to a fibred face and gave a prac-
tically implementable algorithm for computing it. From the Teichmüller norm (computed from
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the Teichmüller polynomial) and the Alexander norm (computed from the Alexander polynomial)
on H1(M,R) for a fibred hyperbolic 3-manifold M, one can compute a fibred face of the unit
Thurston norm ball, the cone over which contains the given fibred cohomology class. He indicates
how to carry out these computations for certain pseudo-Anosov braids of the 4-times punctured
sphere.

A very detailed computation of the Alexander and Teichmüller norm for a particular two-cusped
hyperbolic 3-manifold, namely the sibling of the Whitehead link complement, was carried out by
Aaber–Dunfield [1]. The authors of that paper explicitly computed the Alexander and Teichmüller
polynomials of the sibling of the Whitehead link complement, as well as the whole Thurston norm
ball, which is a square with unit side length centred at the origin. They show that all four faces of the
square are fibred, and so that every primitive cohomology class of the manifold is fibred except the
ones lying on the two lines passing through the corners of the square.

For other 3-manifolds presented as mapping tori of multiply punctured disks, an algorithm for
computing the Teichmüller polynomial (as well as further topological data associated to other fibra-
tions of the manifold) was proposed by Lanneau–Valdez [23]. Thus, the theory we apply in this paper
is rich with computationally tractable examples.

3. An application to public-key cryptography

We now propose a cryptographic scheme which uses the Thurston norm. Alice and Bob are
communicating over an insecure channel. The following information is public:

• A fibred hyperbolic 3-manifoldM withH1(M,R) of rank at least two, a fixed finite presentation of
π1(M), and a fibred face F of the Thurston normball. For instance, one could use Thurston’s exam-
ple of the simplest pseudo-Anosov braid, or alternatively Aaber–Dunfield’s example, as described
above.

• For every primitive integral cohomology classφ ∈ R+ · F, a standard presentationPφ of the corre-
sponding fibre group π1(Sφ), a stable letter tφ ∈ π1(M), and an automorphismψφ of π1(Sφ) such
that π1(M) is the semidirect product of π1(Sφ) with Z with the conjugation action of tφ given
by ψφ . An explicit isomorphism between π1(M) with its fixed presentation and this semidirect
product presentation

〈Pφ , tφ | tφxt−1
φ = ψφ(x)〉

corresponding to the fibred classφ is included in the data.Wewrite Prim(R+ · F) for the collection
of such primitive integral cohomology classes. Here, the choice of the stable letter is not strictly
necessary, but it precludes the need for an extra conjugacy decision later on in the cryptoscheme.
Strictly speaking, Prim(R+ · F) is an infinite collection of data, so it is necessary to define precisely
what it means to share it. In practice, one would have a searchable database which is large enough
to give Alice and Bob a rich collection of choices, and so that over a course of their communication,
no repeats would be necessary. One could restrict the database to primitive rational cohomology
classes in F whose denominators are at most some arbitrary large cut-off say 1012.

• A finitely generated group G suitable for a public-key cryptographic scheme such as the
Anshel–Anshel–Goldfeld protocol (see [3]) and an efficiently computable function

f : G → Prim(R+ · F).

Here, a standard presentation for a fibre group is either a presentation of a free group with
finitely many generators and no relations, or the standard presentation of a closed surface group of
genus g:

π1(Sg) = 〈a1, b1, . . . , ag , bg | [a1, b1] · · · [ag , bg] = 1〉.
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The scheme is as follows:

(1) Alice and Bob use a public-key cryptographic scheme in order to produce a shared private key
g ∈ G.

(2) Using the public function f, Alice and Bob agree on the fibred cohomology class φ = f (g) with
corresponding fibre group π1(S) with presentation P and automorphism ψ .

(3) Alice chooses an arbitrary positive integer N and computes the length of ψN(s) for every gener-
ator of π1(S) in the presentation P . The key is the maximum length ℓmax obtained in this way,
on the generator smax in P .

(4) Over a public channel, Alice sends a finite collection {x1, . . . , xt} ⊂ π1(M), written in terms of
the fixed generators for π1(M), and of length comparable to N. She chooses these elements in
such away that ifXφ is the generating set in the presentationPφ , thenψN(Xφ) ⊂ {x1, . . . , xt}, but
so that all but |Xφ | of the elements {x1, . . . , xt} do not belong to π1(S). We assume that |Xφ | ≪ t.

(5) Bob checks which of these elements lie in π1(S).
(6) Bob uses the fact that ψ is given by conjugation by an element of π1(M) to recover N.
(7) Bob computes the length of ψN(s) for each generator of π1(S) and recovers ℓmax.

We remark that the value of ℓmax is uniquely determined by Alice’s initial choice of N.

4. An explicit example

We consider the example of a fibred 3-manifold coming from the simplest pseudo-Anosov braid, as
worked out in [24].

4.1. The 3-manifold

The initial fibre is S0, which is identified with the thrice punctured disk, and whose mapping class
group is identified with the three-stranded braid group B3. In the standard braid generating set
{σ1, σ2}, the simplest pseudo-Anosov braid is given by β = σ1σ

−1
2 .

We have that π1(S0) = 〈x, y, z〉 ∼= F3, where these generators are identified with small based loops
about the three punctures of S0. We have

σ1 : (x, y, z) | (y, y−1xy, z)

and

σ−1
2 : (x, y, z) �→ (x, yzy−1, y).

Thus, we have

β : (x, y, z) �→ (yzy−1, yz−1y−1xyzy−1, y).

A presentation for the fundamental group of the fibred 3-manifold associated to β can be written as

π1(M) = 〈t, x, y, z | t−1xt = yzy−1, t−1yt = yz−1y−1xyzy−1, t−1zt = y〉.

It is easy to see that β acts transitively on the punctures of S0, and so that H1(M,Z) ∼= Z2. If
φ ∈ H1(M,Z), then φ is determined by its values on t and on x, so that wemay write φ = (a, b) ∈ Z2

for the cohomology class which satisfies φ(t) = a and φ(x) = b. McMullen computes the Thurston
norm on H1(M,R) and shows that it is given by

‖φ‖T = max{|2a|, |2b|}.

Each face of the Thurston unit norm ball is fibred. The face F whose cone contains (1, 0) is therefore
given by F = {1/2} × [−1/2, 1/2].
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4.2. From a public key to a new fibration

Let G be a finitely generated group suitable for the Anshel–Anshel–Goldfeld protocol, with a fixed
normal form. Thenwe can construct a computable functionwhich associates to elements ofG various
fibrations ofM. If g ∈ G, we write g in a normal form and let |g| denote the length of g in this normal
form. Then, we may set

f (g) = D(g)

(

{1/2},
{

|g|
|g| + 1

− 1/2

})

,

where here D(g) is chosen to be the smallest positive integer so that f (g) ∈ Z2. Note that D(g) ≤
lcm{2, |g| + 1}. Thus, we have associated to g ∈ G a new cohomology class f (g) which is defined by

f (g)(t) = D(g)/2

and

f (g)(x) = |g| · D(g)/(|g| + 1) − D(g)/2.

This cohomology class will represent a new fibration provided |g| �= 0. We remark that the function f
constructed here is just one possible example which would suit our purposes. There are many other
suitable candidates for f.

4.3. New fibre subgroups

Given φ ∈ H1(M,Z2). We have that the new fibre subgroupπ1(Sφ) is given by the kernel of φ, viewed
as the composition

π1(M) → H1(M,Z) → Z,

where the first map is the abelianization map and where the second map is φ. The group π1(Sφ) will
always be a finite rank free group, and its rank can be computed as ‖φ‖T + 1, since ‖φ‖T denotes the
absolute value of the Euler characteristic of the fibre. Finding a presentation for the fibre subgroup
is sometimes possible [7,10], although in general it may be difficult. This is why we assume that free
presentations for fibre subgroups are part of the public data.

4.4. Distortion of lengths

The advantage of the schemewepropose is that a very large integer is encoded by a relatively small one.
The essential point is that both Alice and Bob do computations inπ1(M), essentially just conjugation.
The secrecy of the scheme is entirely in the choice of fibration, which in turn gives a mapping class
and an exponentially distorted subgroup. Other than conjugation, which results in linear growth of
words inπ1(M), Proposition 2.1 shows thatmembership in the fibre subgroup is computable in linear
time. Alice and Bob use their common knowledge of the fibre subgroup to extract an integerN, which
is on the order of the logarithm of the shared key. It is in this last step, passing from N to ℓmax that
the exponentially distorted subgroup comes into play.

Alice picks N, and her key is the maximal length of ψN
φ applied to elements of the free generating

set of the fibre subgroup. To communicateN over the channel, she appliesψN
φ , viewed as conjugation

by the element of tφ ∈ π1(M). The resulting elements of π1(M) will have lengths which are linear in
N.WhenAlice sends information over the channel, Bob applies tφ successively to generators ofπ1(Sφ)

and checks to see if the generating set lies in {x1, . . . , xt}. This will require linearly many calculations
inN and t, since the word problem in hyperbolic 3-manifold groups has linear complexity. Once Bob
finds the first such N, this will be the same value ofN as chosen by Alice, since ψφ is pseudo-Anosov
and is therefore not periodic.
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The key that Alice and Bob wish to share is instead ℓmax, which is the maximal length of ψN
φ

applied to a generator ofπ1(Sφ), viewed as an element ofπ1(Sφ). Alice andBob nowboth knowN, and
thus can recover ℓmax, since ψφ is a public automorphism of the free group π1(Sφ). The size of ℓmax

will be exponential in N. The precise distortion can be computed from the Teichmüller polynomial.
McMullen computes the Teichmüller polynomial for that fibred face to be


(t, u) = 1 − t(1 + u + u−1) + t2.

Here, the polynomial
(t, u) is viewed as an element of the group ringZ[H, t±1], where hereH = 〈u〉
denotes theψφ–invariant homology of Sφ . In this case, the generator t can be identifiedwith the stable
letter t of the fibration defining M, and we can write the other generator as u = [x] + [y] + [z], the
sum of the homology classes of the three punctures. Then, we can write


(t, u) =
∑

g∈H1(M,Z)

agg,

with ag ∈ Z. If φ ∈ H1(M,Z), then we view φ as an element of Hom(π1(M),Z) and and we can write


(k) =
∑

g∈H1(M,Z)

agk
φ(g).

We set λφ to be the largest root of
(k), which will always be a real number which is greater than one.
Then we have ℓmax ∼ λNφ .

For the specific Teichmüller polynomial


(t, u) = 1 − t(1 + u + u−1) + t2,

we work out two examples of stretch factors λφ for two different fibred cohomology classes. The
canonical class φ = (1, 0) is the one describing the original fibred 3-manifold. In this case, we com-
pute φ(t) = 1 and φ(u) = 0.We thus obtain the polynomial
(k) = k2 − 3k + 1, whose largest root
is one more than the Golden Ratio (3 +

√
5)/2. This is well-known to be the stretch factor of β .

We also consider the class φ = (2, 1). It is easy to check that this class lies in the cone over F. We
obtain the polynomial 
(k) = k4 − k3 − k2 − k + 1, which one discovers by numerical calculation
to have a root at k ≈ 1.72208.

4.5. Generalization to other pairs of groups

In principle, there is nothing special about the pair (π1(M),π1(S)) for a fibre subgroup of a hyperbolic
3-manifold. For the applications, one could use any pair of a finitely generated group and a finitely
generated exponentially distorted subgroup (cf. [9]). The particular advantage of using the Thurston
norm is that from a single hyperbolic group, we obtain infinitely many different exponentially
distorted subgroups which are distorted in different ways. Moreover, the Teichmüller polynomial
organizes the different fibre subgroups in a computationally convenient way. In general, such a frame-
work does not exist for arbitrary such pairs of groups. A notable exception, on which one could also
base a similar cryptoscheme, is the class of free-by-cyclic groups [2,10].

5. An application to symmetric-key cryptography

The scheme developed in Sections 3 and 4 can be simplified somewhat to yield a symmetric-key
cryptographic scheme. Such a scheme would eschew the need for an initial private shared key. The
setup for this scheme would be as follows.
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Public information: The fibred hyperbolic manifold M, presented as a mapping torus, would be
public as before. A presentation for π1(M) would also be public.

Private information: Alice and Bob would agree beforehand on a fibred cohomology class φ of
M. This would yield a private fibred subgroup π1(Sφ) with a preferred presentation, and a private
automorphism ψφ of π1(Sφ).

The implementation of the cryptoscheme would be as follows:

(1) Alice chooses an arbitrary integer N.
(2) Alice communicates the integer N to Bob over a public channel.
(3) Alice and Bob both compute ψN

φ on the generators of π1(Sφ) in the preferred presentation and
compute the lengths of the resulting words.

(4) The shared key is ℓmax, the longest length of a word obtained by applying ψN
φ to the

generators.

6. Remarks on security

There are several layers of security which are built into the schemes we propose. In the public-key
scheme, the first layer of security lies in similar security assumptions of the public key-exchange
scheme à la Anshel–Anshel–Goldfeld (AAG). We recall that this is used by Alice and Bob to agree
on a fibred cohomology class. We note that there have been several proposals for the platform group
for the AAG protocol, such as braid groups, polycyclic groups, Grigorchuk groups, certain classes of
right-angled Artin groups and their subgroups, in which the simultaneous conjugacy search prob-
lem is difficult. Apart from a few proposed attacks (see [27,31] for attacks adapted to braid group
and linear group platforms as well as potential ripostes), the AAG scheme remains secure for suitable
choices of parameters. In the symmetric-key scheme, the use of AAG is unnecessary, thus removing
any vulnerabilities to attacks on that protocol.

In both schemes, the key that Alice and Bob share will be much larger than any of the public data
over the channel. Thus, even if the eavesdropper is able to guessN, the key ℓmax is exponentially longer
than N and would therefore be much more difficult to guess, short of knowing which cohomology
class Alice and Bob are using.

For Alice and Bob, computations inside the group π1(S) are easy since this group is either free or
a surface group, and hence computing word lengths and solving the word problem is relatively easy
(using small cancellation theory, for instance) from the standard presentations given in the public
data.

Finally, since the public data of the fibred classes is public and since for practical purposes it must
be truncated to be a finite list, it is conceivable that an eavesdropper would simply use the database
of fibrations and an efficient solution to the conjugacy problem to discover the key without knowing
the secret fibre. The eavesdropper could conceivably check each fixed presentation in the database
and look for words sent by Alice in which the stable letter appears with exponent sum zero. This
vulnerability can be overcome by making the database very large compared to the size of the key,
so that processing the whole database would be prohibitive. Thus, the key shared by Alice and Bob
would be obsolete by the time the eavesdropper could compute it.
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