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ARTICLE

Enhanced energy-constrained quantum
communication over bosonic Gaussian channels
Kyungjoo Noh 1,2*, Stefano Pirandola 3,4 & Liang Jiang 1,2,5

Quantum communication is an important branch of quantum information science, promising

unconditional security to classical communication and providing the building block of a future

large-scale quantum network. Noise in realistic quantum communication channels imposes

fundamental limits on the communication rates of various quantum communication tasks. It

is therefore crucial to identify or bound the quantum capacities of a quantum channel. Here,

we consider Gaussian channels that model energy loss and thermal noise errors in realistic

optical and microwave communication channels and study their various quantum capacities

in the energy-constrained scenario. We provide improved lower bounds to various energy-

constrained quantum capacities of these fundamental channels and show that higher com-

munication rates can be attained than previously believed. Specifically, we show that one can

boost the transmission rates of quantum information and private classical information by

using a correlated multi-mode thermal state instead of the single-mode thermal state of the

same energy.
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Q
uantum communication is a field of quantum informa-
tion science that takes advantage of unique quantum
mechanical nature of information carriers to realize

secure classical communications1,2 and build a large-scale quan-
tum network3–5. Realistic quantum communication channels are
noisy and therefore quantum error correction or entanglement
distillation6–8 is essential to faithfully implement various quan-
tum communication tasks. Due to the resource overhead asso-
ciated with the error correction or entanglement distillation,
quantum communication rates are fundamentally limited by the
noise in quantum channels that are used to transmit quantum
information. Thus, determining the maximum achievable quan-
tum communication rates of an experimentally relevant noisy
quantum channel is of fundamental importance to the quantum
information science.

A celebrated result due to Shannon9 established that the
maximum achievable (classical) communication rate of a (clas-
sical) channel equals the channel’s mutual information, or the
channel’s (classical) capacity. The notion of (classical) channel
capacity has been generalized to the quantum realm10–12, and
there are various notions of quantum capacities that characterize
the channel’s maximum achievable quantum communication
rates for various quantum communication tasks (see, e.g., ref. 12

Sec. 8). For example, the regularized private information PregðN Þ
of a channel N quantifies the maximum achievable secure clas-
sical communication rate of the channel, also known as the
channel’s private capacity13. Similarly, the regularized coherent
information QregðN Þ quantifies the maximum achievable quan-
tum state transmission rate (without classical feedback assis-
tance), also known as the channel’s quantum capacity13–17.

Evaluation of these quantities, however, requires optimization
over all input states to infinitely many channels18–23, and there-
fore is generally intractable24,25 unless the channel has a special
structure such as degradability or anti-degradability26–28. More-
over, explicit formulas for the two-way quantum capacity (i.e.,
maximum quantum state transmission rate with two-way classi-
cal feedback assistance) are only known for so-called distillable
channels29 i.e., channels whose Choi matrices have relative
entropy of entanglement30–32 equal to the one-way distillable
entanglement. Even though the two-way quantum (and private)
capacities of these channels are known29 and also have suitable
generalizations to repeater chains and quantum networks of
arbitrary topology33,34, finding similar results for other types of
quantum channels is the subject of intensive investigation, espe-
cially within the setting of continuous variable systems35.

In this work, we consider bosonic Gaussian channels36 and
study their various quantum capacities in the energy-constrained
scenario37. Among Gaussian channels, thermal-loss channels
characterize energy loss and thermal-noise errors and thus model
realistic optical and microwave quantum communication chan-
nels, i.e., two leading platforms for quantum communication
technologies. Therefore, understanding the quantum capacities of
Gaussian channels is of great practical importance, as well as of
academic interest. Previously, it was shown that bosonic pure-loss
channels (a subclass of thermal-loss channels that do not have
thermal noise) are either degradable or anti-degradable27. Thus,
various quantum capacities of these subclass of Gaussian channels
are well understood and determined analytically29,38,39.

In practice, there is additional thermal noise added to the
communication channels, which can be induced by the laser noise
in optical communication or by the background thermal noise in
microwave communication40,41. Hence, it is important to under-
stand the quantum channel capacities for these more general
thermal-loss channels. However, thermal-loss channels are neither
degradable nor anti-degradable42,43 and only lower38,44–47, and

upper bounds29,38,47–49 are known for their various quantum and
private capacities (one-way, two-way, energy-constrained or
unconstrained).

In this paper, we establish improved lower bounds of various
energy-constrained quantum capacities of thermal-loss channels
that are stronger than the existing bounds. That is, we show that
higher quantum communication rates can be achieved than pre-
viously believed. Specifically, we construct a family of multimode
Gaussian states, called correlated multimode thermal states, and
show that they yield larger coherent information (per channel use)
than the corresponding single-mode thermal state of the same
energy in the low input energy regime. We also show that higher
two-way quantum communication rates can be achieved by using
correlated multimode thermal states and hybridizing forward and
backward strategies, instead of using single-mode thermal states and
exclusively using a forward or a backward strategy. Finally, we apply
a similar technique to further improve the lower bound of the
energy-constrained private capacity of the thermal-loss channel.

Results
Correlated multimode thermal states. We first construct a
family of Gaussian multimode states, called correlated multimode
thermal states, which is the key ingredient for improving the
lower bounds of various quantum capacities of Gaussian channels
(see ref. 36 or the Methods section for the definition of Gaussian
states and channels). Let τ̂ð�nÞ denote the single-mode thermal
state with an average photon number Tr½n̂τ̂ð�nÞ� ¼ �n, that is
τ̂ð�nÞ � P1

n¼0
�nn

ð1þ�nÞnþ1 nj i nh j, where n is a Fock state. Uncorrelated

multimode thermal states would then simply be given by a tensor

product of single-mode thermal states τ̂ð�nÞf g�N . Now, we define
correlated multimode thermal states as follows:

T̂ ðN;nÞ � Û
ðNÞ
GFT τ̂ð�n1Þf g�N1 � � � � � τ̂ð�nrÞf g�Nr

� �

Û
ðNÞ
GFT

� �y
:

ð1Þ
Here, N= (N1; � � � ;Nr) such that

Pr
k¼1 Nk ¼ N and n ¼ ð�n1;

� � � ; �nrÞ. Û
ðNÞ
GFT is the N-mode Gaussian Fourier transformation

whose action on the jth annihilation operator âj is defined as fol-

lows:

Û
ðNÞ
GFT

� �y
âjÛ

ðNÞ
GFT ¼ 1

ffiffiffiffi

N
p

X

N

k¼1

ei
2π
N ðj�1Þðk�1Þâk ð2Þ

which holds for all j ∈ {1; � � � ;N}. Hence, the correlated multimode

thermal state T̂ ðN;nÞ is a collection of single-mode thermal states
(where each of the first N1 modes supports on average �n1 photons,
each of the next N2 modes supports on average �n2 photons and so
on), which are uniformly mixed by the Gaussian Fourier transfor-

mation Û
ðNÞ
GFT (see Fig. 1). We remark that each mode in the cor-

related N-mode thermal state T̂ ðN;nÞ supports on average
�n ¼ 1

N

Pr
k¼1 Nk�nk photons.

A simple nontrivial example of correlated multimode thermal

states would be T̂ ðN;nÞ with N= (1, N− 1) and n ¼ ðN�n; 0Þ,
and its covariance matrix36 is given by

V ¼

ð�nþ 1
2
ÞI2 �nI2 � � � �nI2

�nI2 ð�nþ 1
2
ÞI2 � � � �nI2

.

.

.
.
.

.
.
.

.
.
.

.

�nI2 �nI2 � � � ð�nþ 1
2
ÞI2

2
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6

6

6

6

4

3

7

7

7

7
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5

; ð3Þ

where I2 is the 2 × 2 identity matrix. As can be seen from the
diagonal elements of the covariance matrix, every mode supports
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on average �n photons. Therefore, the reduced density matrix of
each mode is given by a single-mode thermal state τ̂ð�nÞ. On the
other hand, the off-diagonal elements of the covariance matrix
indicate that the position (or the momentum) quadratures of
every pair of modes are positively correlated: this is what

distinguishes T̂ ðN;nÞ from the uncorrelated N-mode thermal

state τ̂ð�nÞf g�N and why we call it a correlated multimode
thermal state.

We remark that correlated multimode thermal states can be
efficiently prepared because the Gaussian Fourier transformation

Û
ðNÞ
GFT can be implemented efficiently by using a variant of the fast

Fourier transform technique50.

Coherent information and quantum capacity. Let N be a
quantum channel and IcðN ; ρ̂Þ denote the channel’s coherent
information with respect to an input state ρ̂, i.e.,

IcðN ; ρ̂Þ � S Nðρ̂Þð Þ � S N cðρ̂Þð Þ; ð4Þ

where Sðρ̂Þ � �Tr½ρ̂ log2 ρ̂� is the quantum von Neumann
entropy of a state ρ̂ and N c

is the complementary channel of N .
The quantum capacity CQðN Þ of the channel N (i.e., the max-

imum achievable quantum state transmission rate without clas-
sical feedback assistance) is equal to the channel’s regularized
coherent information QregðN Þ13–17:

CQðN Þ ¼ QregðN Þ � lim
N!1

1

N
max
ρ̂

IcðN �N ; ρ̂Þ: ð5Þ

In the energy-constrained case, the coherent information should
be optimized over all input states that satisfy an energy-con-
straint, such that at most �n mean photons are fed to the channel
in each use.

The bosonic pure-loss channel N ½η; 0� with a transmissivity
η ∈ [0, 1] (or loss probability γ≡ 1− η) is either degradable
(η ∈ (1∕2, 1]) or anti-degradable (η ∈ [0, 1∕2])27. Therefore, the
regularization of its coherent information is unnecessary26–28,
and the optimal input state subject to an average photon number
constraint Tr½n̂kρ̂� � �n for all k ∈ {1, ⋯ , N} is shown to be the
single-mode thermal state τ̂ð�nÞ39,51 (see also ref. 49):

C��n
Q ðN ½η; 0�Þ ¼ lim

N!1
1

N
max

ρ̂:Tr½n̂k ρ̂���n8k
IcðN ½η; 0��N ; ρ̂Þ

¼ IcðN ½η; 0�; τ̂ð�nÞÞ ¼ gðη�nÞ � gðð1� ηÞ�nÞ;
ð6Þ

where gðxÞ � Sðτ̂ðxÞÞ ¼ ðx þ 1Þ log2ðx þ 1Þ � x log2 x is the
entropy of the thermal state τ̂ðxÞ52.

On the other hand, a general thermal-loss channel N ½η; �nth�
with a nonzero environmental thermal photon number �nth ≠ 0 is
neither degradable nor anti-degradable42,43. In this case, the
single-mode thermal state τ̂ð�nÞ is not necessarily the optimal
input state, and the associated coherent information (evaluated in
ref. 38) only lower bounds the quantum capacity, i.e.,

C��n
Q ðN ½η; �nth�Þ � IcðN ½η; �nth�; τ̂ð�nÞÞ

¼ gðη�nþ ð1� ηÞ�nthÞ

� g
Dþ ð1� ηÞð�n� �nthÞ � 1

2

� �

� g
D� ð1� ηÞð�n� �nthÞ � 1

2

� �

;

ð7Þ

where D �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðð1þ ηÞ�nþ ð1� ηÞ�nth þ 1Þ2 � 4η�nð�nþ 1Þ
q

. This is

the best-known lower bound for CQðN ½η; �nth�Þ to date before our

work. Below, we demonstrate that correlated multimode thermal
states can outperform the single-mode thermal state of the same
energy in the noisy channel (near-zero capacity) regime. By doing
so, we show that higher quantum state transmission rates can be
attained for thermal-loss channels than previously believed.

Theorem 1 Consider a correlated N-mode thermal state

T̂ ðN;nÞ with N= (M, N − M) and n ¼ ðN
M
�n; 0Þ and let x ¼ M

N
,

where M ∈ {1,⋯ , N}. Then, the coherent information with respect

to the input state T̂ ðN;nÞ is given by

1

N
Ic N ½η; �nth��N ; T̂ ðN;nÞ
� �

¼ xIc N ½η; �nth�; τ̂
�n

x

� �� �

: ð8Þ

Since x can be any rational number in (0, 1] and the set of
rational numbers is a dense subset of the set of real numbers, we
have the following improved lower bound of the quantum
capacity of thermal-loss channels.

C��n
Q ðN ½η; �nth�Þ � max

0�1
xIc N ½η; �nth�; τ̂

�n

x

� �� �

: ð9Þ

The proof of Theorem 1 is given in the Methods section. Note

that for N= (M, N−M) and n ¼ ðN
M
�n; 0Þ, Tr½n̂kT̂ ðN;nÞ� ¼ �n

holds for all k ∈ {1,⋯ , N}, and thus T̂ ðN;nÞ is a valid input state
that satisfies the energy constraint. Also, our new bound in Eq. (9)
is at least as tight as the previous bound in Eq. (7), since the
previous bound can be recovered by plugging in x= 1 to the
objective function. Below, we show that in the noisy channel
(near-zero capacity) regime, the optimal value of x can be strictly
<1, and thus our bound is strictly tighter than the previous
bound. We also explain this behavior in an intuitive manner by
using simple mathematical concepts such as convexity of a
function and convex hull of a non-convex region.

To demonstrate that our new bound can be strictly tighter than
the previous bound, we take a family of thermal-loss channels
N ½η; �nth� with �nth ¼ 1 and compute the new bound in Eq. (9) for
each η= 1− γ, assuming that the maximum allowed average
photon number per channel is �n ¼ 1. In Fig. 2a, we plot
the quantum state transmission rates achievable with the single-
mode thermal state τ̂ð�n ¼ 1Þ and with the correlated multimode

thermal states T̂ ðN;nÞ. When the loss probability is low (i.e., γ ≤
0.1775), the single-mode thermal state yields the largest coherent
information. However, when the loss probability is higher (γ ≥
0.1775), there exists a correlated multimode thermal state that
outperforms the single-mode thermal state. Thus, we established
a tighter lower bound to the quantum capacity of thermal-loss
channels than previously known38. In Fig. 2b, we plot the optimal
value of M∕N as a function of γ that allows such a higher
communication rate. It is important to note that only a finite

A1
(r)

∧

∧

∧

∧

(N, n)
∧

UGFT
(N )

AN1

(1)

ANr

(r )

A1
(1)

(n1)
∧

_
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_

(nr)
_

(nr)
_

Fig. 1 Generation of a correlated multimode thermal state. A correlated

multimode thermal state T̂ ðN; nÞ with N= (N1, ⋯ , Nr) and n ¼ ð�n1; � � � ;

�nrÞ (such that
Pr

k¼1 Nk ¼ N) can be generated by applying the N-mode

Gaussian Fourier transformation Û
ðNÞ
GFT to an uncorrelated thermal state

τ̂ð�n1Þf g�N1 � � � � � τ̂ð�nrÞf g�Nr .
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number of modes is required if the optimal value of x is a rational
number. For example, x? = 3∕8 corresponds to the correlated

eight-mode thermal state T̂ ðN;nÞ with N= (M, N − M) = (3, 5)
and n ¼ ð8�n=3; 0Þ. On the other hand, if x? is irrational, one
needs infinitely many modes to accurately obtain the rate
xIcðN ½η; �nth�; τ̂ð�n=xÞÞjx¼x? .

Convexity of coherent information and superadditivity. We
now explain the nontrivial behavior shown in Fig. 2 (i.e., x? < 1)
in an intuitive way. Specifically, we relate the observed nontrivial
behavior with the convexity of the coherent information
IcðN ½η; �nth�; τ̂ð�nÞÞ in the allowed average photon number �n for
fixed values of η and �nth. For concreteness, we take the thermal-
loss channel N ½η; �nth� with η= 0.81 (or γ= 0.19) and �nth ¼ 1,
and plot its coherent information IcðN ½η; �nth�; τ̂ð�nÞÞ with respect
to single-mode thermal states τ̂ð�nÞ as a function of �n. As can be
seen from the solid blue line in Fig. 3a, the coherent information
IcðN ½η; �nth�; τ̂ð�nÞÞ is convex in �n for small �n and concave
for large �n. Consider the region of rates achievable by the

single-mode thermal states A
ð1Þ
η;�nth

� fð�n;RÞj�n � 0 and R �
IcðN ½η; �nth�; τ̂ð�nÞÞg (shaded blue region in Fig. 3a) and also its

convex hull A
ð1Þ
η;�nth

� ConvexHullðAð1Þ
η;�nth

Þ (shaded red and blue

regions in Fig. 3a). We observe that the region A
ð1Þ
η;�nth

is achievable

by correlated multimode thermal states: consider a generic con-

vex combination of r points in A
ð1Þ
η;�nth

, i.e.,

X

r

k¼1

λk �nk; IcðN ½η; �nth�; τ̂ð�nkÞÞð Þ; ð10Þ

where λk ≥ 0 for all k ∈ {1,⋯ , r} and
Pr

k¼1 λk ¼ 1. Then, the rate
Pr

k¼1 λkIcðN ½η; �nth�; τ̂ð�nkÞÞ can be achieved by a correlated

multimode thermal state T̂ ðN;nÞ with N= (N1, ⋯ , Nr) and
n ¼ ð�n1; � � � ; �nrÞ such that λk=Nk∕N for all k ∈ {1, ⋯ , r}, where
N ¼ Pr

k¼1 Nk. Note that λk should be a rational number. Simi-
larly as above, however, by choosing a sufficiently large N one can
approximate any irrational λk to a desired accuracy, which can be
arbitrarily small.

Importantly, due to the convexity of the coherent information

IcðN ½η; �nth�; τ̂ð�nÞÞ in the small �n regime, the region A
ð1Þ
η;�nth

properly contains the region A
ð1Þ
η;�nth

, as indicated by the shaded

red region in Fig. 3a. This is why correlated multimode thermal
states outperform single-mode thermal states in the noisy channel
regime. In particular, the highest achievable rate can be obtained
by taking the convex combination of the origin (0, 0) and the
first-order contact point (�n?ðη; �nthÞ; IcðN ½η; �nth�; τ̂ð�n?ðη; �nthÞÞÞ
with some weights λ and 1− λ, respectively (see the solid red line
in Fig. 3). Note that the rate xIcðN ½η; �nth�; τ̂ð�n=xÞÞ in Eq. (9) can
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main text).
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be understood as the one that is derived from such a convex
combination with 1� λ ¼ x ¼ �n=�n?ðη; �nthÞ. For example, in the
case of thermal-loss channel N ½η; �nth� with η= 0.81 (or γ= 0.19)
and �nth ¼ 1, the first-order contact point is given by �n?ðη; �nthÞ ¼
2:458 (see Fig. 3) which corresponds to x= 0.407 for �n ¼ 1: this
agrees with the optimal value x? = 0.407 in Fig. 2b for η= 0.81
(or γ= 0.19), �nth ¼ 1, and �n ¼ 1.

We remark that the coherent information (with respect to
single-mode thermal states) of other Gaussian channels that are
neither degradable nor anti-degradable, such as additive Gaussian
noise channels and noisy amplification channels, also exhibit a
nontrivial behavior similarly to the thermal-loss channels (see
Methods for the definition of these other channels). More
specifically, the coherent information of the additive Gaussian
noise channel N B2

½σ� is given by

IcðN B2
½σ�; τ̂ð�nÞÞ ¼ gð�nþ σ2Þ � g

D0 þ σ2 � 1

2

� �

� g
D0 � σ2 � 1

2

� �

;

ð11Þ

where D0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�nþ σ2 þ 1Þ2 � 4�nð�nþ 1Þ
q

. Also, the coherent

information of the noisy amplifier channel A½G; �nth� is given by

IcðA½G; �nth�; τ̂ð�nÞÞ ¼ gðG�nþ ðG� 1Þð�nth þ 1ÞÞ

� g
D00 þ ðG� 1Þð�nþ �nth þ 1Þ � 1

2

� �

� g
D00 � ðG� 1Þð�nþ �nth þ 1Þ � 1

2

� �

;

ð12Þ
where

D00 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ððGþ 1Þ�nþ ðG� 1Þð�nth þ 1Þ þ 1Þ2 � 4G�nð�nþ 1Þ
q

:

ð13Þ
As can be seen from Fig. 3b, c, the coherent information of these
other channels also exhibit the same convex behavior in the small
�n regime. Therefore, higher quantum state transmission rates can
be achieved for these other Gaussian channels, as well by using
the correlated multimode thermal states instead of using the
single-mode thermal states, analogously to the case of thermal-
loss channels as shown here.

Reverse coherent information and two-way quantum capacity.
We show that a similar technique can be used to establish an
improved lower bound of the two-way quantum capacity of
thermal-loss channels. Let IrcðN ; ρ̂Þ be the reverse coherent
information of a bosonic channel N with respect to an input state
ρ̂45.

IrcðN ; ρ̂Þ � Sðρ̂Þ � S N cðρ̂Þð Þ: ð14Þ

Both the coherent information and the reverse coherent infor-
mation of a channel N are lower bounds of the channel’s two-
way quantum capacity:

CQ;$ðN Þ � max
ρ̂

max IcðN ; ρ̂Þ; IrcðN ; ρ̂Þð Þ½ �: ð15Þ

In the energy-constrained cases, the maximization should be
performed over all input states that satisfy the energy constraint.

The best-known lower bound (before our work) of the two-way
quantum capacity of a thermal-loss channel is either the channel’s
coherent information or reverse coherent information with

respect to a single-mode thermal state, i.e.,

C��n
Q;$ðN ½η; �nth�Þ �

IcðN ½η; �nth�; τ̂ð�nÞÞ �n � �nth

IrcðN ½η; �nth�; τ̂ð�nÞÞ �n> �nth

	

; ð16Þ

where IcðN ½η; �nth�; τ̂ð�nÞÞ is given in Eq. (7) and
IrcðN ½η; �nth�; τ̂ð�nÞÞ can be obtained by replacing gðη�nþ ð1�
ηÞ�nthÞ in Eq. (7) by gð�nÞ29,45, i.e.,

IrcðN ½η; �nth�; τ̂ð�nÞÞ ¼ gð�nÞ � g
Dþ ð1� ηÞð�n� �nthÞ � 1

2

� �

� g
D� ð1� ηÞð�n� �nthÞ � 1

2

� �

:

ð17Þ
In the special case where �nth ¼ 0 and �n ! 1, the lower bound in
Eq. (16) is given by − log2(1− η)45 and coincides with the upper
bound established in ref. 29. Except for this special case, it is an
open question whether the lower bound in Eq. (16) equals the
true two-way quantum capacity of thermal-loss channels: here,
we provide a negative answer to this question by showing that
higher two-way quantum state transmission rate can be achieved
by using correlated multimode thermal states.

Theorem 2 Consider a correlated N-mode thermal state

T̂ ðN;nÞ with N= (M, N−M) and n ¼ ð�n1; �n2Þ such that M�n1 þ
ðN �MÞ�n2 ¼ N�n and let x ¼ M

N
, where M ∈ {1, ⋯ , N}. The

following two-way quantum state transmission rate can be

achieved by using T̂ ðN;nÞ and hybridizing forward and backward
strategies:

M

N
IcðN ½η; �nth�; τ̂ð�n1ÞÞ þ

N �M

N
IrcðN ½η; �nth�; τ̂ð�n2ÞÞ: ð18Þ

Since x can be any rational number in (0, 1] and the set of
rational numbers is a dense subset of the set of real numbers, we
have the following improved lower bound for the two-way
energy-constrained quantum capacity of a thermal-loss channel:

C��n
Q;$ðN ½η; �nth�Þ � max

x;�n1;�n2
xIcðN ½η; �nth�; τ̂ð�n1ÞÞ½

þ ð1� xÞIrcðN ½η; �nth�; τ̂ð�n2ÞÞ�;
ð19Þ

where the maximization is performed subject to 0 ≤ x ≤ 1 and
x�n1 þ ð1� xÞ�n2 ¼ �n.

The proof of Theorem 2 is given in the Methods section. Our
new bound in Eq. (19) is at least as tight as the previous bound in
Eq. (16) because the previous bound can be realized by plugging
in x= 1 and �n1 ¼ �n or x= 0 and �n2 ¼ �n. Moreover, we show that
in the noisy channel (near-zero capacity) regime, correlated
multimode thermal states outperform single-mode thermal states
of the same energy and thus our bound is strictly tighter than the
previous bound.

To demonstrate that our new bound can be strictly tighter than
the previous bound, we take a family of thermal-loss channels
N ½η; �nth� with �nth ¼ 1. Then, we compute the new bound in Eq.
(19) for each η= 1− γ for three different maximum allowed
average photon numbers per channel use, i.e., �n ¼ 0:5 (Fig. 4a),
�n ¼ 1 (Fig. 4b), and �n ¼ 1:5 (Fig. 4c). As can be seen from the top
panel of Fig. 4, the coherent information IrcðN ½η; �nth�; τ̂ð�nÞÞ (blue
lines) is larger than, equal to, and smaller than the reverse
coherent information IrcðN ½η; �nth�; τ̂ð�nÞÞ (yellow lines) for
�n ¼ 0:5, �n ¼ 1, and �n ¼ 1:5, respectively. In all cases, our new
bound obtained by using correlated multimode thermal states
(red lines) can be strictly tighter than the previous bound in the
large loss probability regime, where the two-way quantum
capacity almost vanishes. In this regime, the best two-way
quantum state transmission rate is achieved by mixing forward
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(coherent information) and backward (reverse coherent informa-
tion) strategies, as can be seen from the bottom panels of Fig. 4.

Private information and private capacity. Lastly, we apply our
general technique to improve the lower bound of the energy-
constrained private capacity of the thermal-loss channel. Con-
sider a classical-quantum state σ̂ ¼

R

dxpðxÞ xj i xh j � ρ̂x , where
hxjx0i ¼ δðx � x0Þ and ∫dxp(x)= 1 and let ρ̂ �

R

dxpðxÞρ̂x . The
private capacity of a quantum channel characterizes the channel’s
maximum achievable secure classical communication rate. The
private information of channel N with respect to the classical-
quantum state σ̂ is defined as

IpðN ; σ̂Þ � S Nðρ̂Þð Þ � S N cðρ̂Þð Þ

�
Z

dxpðxÞ S Nðρ̂xÞ

 �

� S N cðρ̂xÞ

 �� �

:
ð20Þ

The private capacity CPðN Þ of a quantum channel N is equal to
the channel’s regularized private information PregðN Þ13:

CPðN Þ ¼ PregðN Þ � lim
N!1

1

N
max
σ̂

IpðN �N ; σ̂Þ: ð21Þ

In the energy-constrained case, the maximization should be
performed over all classical-quantum states σ̂ ¼

R

dxpðxÞ xj i xh j �
ρ̂x such that ρ̂ ¼

R

dxpðxÞρ̂x satisfies the energy constraint.
The quantum capacity of a channel N is always a lower bound

of the channel’s private capacity13 and thus the coherent
information IcðN ½η; �nth�; τ̂ð�nÞÞ in Eq. (7) is also a lower bound
of the private capacity of the thermal-loss channel N ½η; �nth�.
Correspondingly, our new bound of the quantum capacity in
Theorem 1 is also a valid lower bound of the private capacity
which can be strictly tighter than IcðN ½η; �nth�; τ̂ð�nÞÞ. However, it
was shown that higher secure classical communication rate (than
the coherent information IcðN ½η; �nth�; τ̂ð�nÞÞ) can be achieved by

using an ensemble of displaced thermal states47. More specifically,
by using a classical-quantum state

σ̂ð�n1; �n2Þ �
Z

d2α
e�jαj2=�n1

π�n1
αj i αh j � D̂ðαÞτ̂ð�n2ÞD̂

yðαÞ ð22Þ

such that �n1 þ �n2 ¼ �n, where α= αR + iαI and hαjα0i ¼
δð2Þðα� α0Þ, the private communication rate

IpðN ½η; �nth�; σ̂Þ ¼ IcðN ½η; �nth�; τ̂ð�n1 þ �n2ÞÞ
� IcðN ½η; �nth�; τ̂ð�n2ÞÞ

ð23Þ

can be achieved. Thus, we have the following lower bound of the
energy-constrained private capacity of thermal-loss channels:

C��n
P ðN ½η; �nth�Þ � f ðη; �nth; �nÞ

� max
0��n2��n

IcðN ½η; �nth�; τ̂ð�nÞÞ½

�IcðN ½η; �nth�; τ̂ð�n2ÞÞ�:
ð24Þ

Since the coherent information IcðN ½η; �nth�; τ̂ð�nÞÞ can be
recovered by plugging in �n2 ¼ 0, this bound is at least as tight
as the coherent information bound. In the noisy channel regime,
the bound in Eq. (24) is strictly tighter than the coherent
information bound (see the blue and yellow lines in Fig. 5a).
Moreover, it is also strictly larger than our new bound for the
quantum capacity in Eq. (9) (see the red and yellow lines in
Fig. 5a). Therefore, our new bound for the quantum capacity is
not the tightest lower bound for the private capacity. Never-
theless, we show below that our general technique can also be
used to further improve the bound in Eq. (24). We establish the
following result.
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Fig. 4 Achievable two-way quantum state transmission rate of thermal-loss channels.We plot the achievable two-way quantum state transmission rate

of a thermal-loss channel N ½η; �nth ¼ 1� subject to the maximum allowed average photon number (a) �n ¼ 0:5 (b) �n ¼ 1 (c) �n ¼ 1:5 per channel use. In a–c,

the blue and yellow lines, respectively, represent the coherent information IcðN ½η; �nth�; τ̂ð�nÞÞ and the reverse coherent information IrcðN ½η; �nth�; τ̂ð�nÞÞ with
respect to single-mode thermal states. The achievable two-way quantum state transmission rate of correlated multimode thermal states (red lines in (a–

c)) was evaluated by taking ðx?; �n?1 ; �n?2Þ ¼ argmaxx;�n1 ;�n2 ½xIcðN ½η; �nth�; τ̂ð�n1ÞÞ þ ð1� xÞIrcðN ½η; �nth�; τ̂ð�n2ÞÞ� subject to 0≤ x≤ 1 and x�n1 þ ð1� xÞ�n2 ¼ �n (see

Theorem 2). In d–f, the optimal values �n?1 and �n?2 are, respectively, represented by the blue and yellow lines for (d) �n ¼ 0:5 (e) �n ¼ 1 (f) �n ¼ 1:5. The

optimal value x? can be obtained by evaluating x? ¼ ð�n� �n?2Þ=ð�n?1 � �n?2Þ.
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Theorem 3 The energy-constrained private capacity of a
thermal-loss channel is lower bounded as follows:

C��n
P ðN ½η; �nth�Þ � Fðη; �nth; �nÞ � max

0�1
xf η; �nth;

�n

x

� �

; ð25Þ

where f ðη; �nth; �nÞ is defined in Eq. (24).
The proof of Theorem 3 is given in the Methods section. As

can be seen from Fig. 5a, our new bound in Eq. (25) is strictly
tighter than the bound in Eq. (24) in the noisy channel regime.
Similarly as above, this nontrivial advantage is due to the
convexity of the function f ðη; �nth; �nÞ in �n in the small �n regime
for fixed values of η and �nth. For illustration, we plot in Fig. 5b the
function f ðη; �nth; �nÞ as a function of �n for η= 0.79 (or γ= 0.21)
and �nth ¼ 1. Due to the convexity of f ðη; �nth; �nÞ in the small �n
regime, the convex hull of the achievable region fð�n;RÞj�n �
0 andR � f ðη; �nth; �nÞg properly contains the region itself (see
the shaded green region in Fig. 5b) and this explains the superior
performance of our new bound in Eq. (25).

Discussion
In this work, we have improved the lower bounds to the various
energy-constrained quantum capacities of the thermal-loss
channel, which is the basic model for realistic optical and
microwave communication channels. In this way, our work
shows that higher communication rates can be achieved for
various quantum communication tasks with these practically
relevant quantum channels than previously believed. Below, we
make several remarks and discuss possible new research
directions.

First, it was shown in a related work53 that a global encoding
scheme with a correlated Gaussian input state can yield larger
coherent information than a local encoding scheme with an
uncorrelated Gaussian input state for lossy bosonic channels with
correlated environmental noise. We remark that our work differs
from this previous work in that we show a correlated Gaussian
input state can outperform its uncorrelated counterpart even for
the usual thermal-loss channels with uncorrelated environmental
noise. Note that the loss model with uncorrelated environmental
noise which we consider here has greater practical relevance

because noise in realistic optical and microwave communication
channels is well approximated by thermal-loss channels with
uncorrelated environmental thermal noise40,41.

In addition, our result in Theorem 1 can be understood as the
establishment of the superadditivity of the coherent information
of thermal-loss channels with respect to Gaussian input states: as
shown in ref. 38, the single-mode thermal state τ̂ð�nÞ is the optimal
single-mode Gaussian input state for the coherent information of
thermal-loss channels. Since we show that multimode correlated
thermal states (which are Gaussian) sometimes outperform the
single-mode thermal state, it means that the coherent information
of thermal-loss channels is superadditive with respect to Gaussian
input states. On the other hand, it is still unclear whether the
coherent information of thermal-loss channels is genuinely
superadditive with respect to all input states. This is because
technically there is still a possibility that some non-Gaussian
input state may outperform all Gaussian input states. We leave
this optimality question in the non-Gaussian domain as an open
research direction.

Another interesting open question is whether the convexity
argument presented here can be adapted to explain the known
superadditivity behavior of the qubit depolarization18,54,55 and
dephrasure56–58 channels. To contrast, we remark that the
coherent information of a degradable channel is concave with
respect to input states and its quantum capacity is additive26–28

(see also ref. 59).
We also remark that our improvement of the lower bounds is

not strong enough to close the gap between the lower bounds and
the best-known upper bounds of various energy-constrained
quantum capacities of thermal-loss channels29,47–49. It will thus
be interesting to see whether it is possible to further improve the
lower and upper bounds to get a better understanding of the
various quantum capacities of thermal-loss channels.

Finally, we emphasize that we did not provide explicit strate-
gies to achieve various quantum communication rates established
in this work, but only proved their existence. This is because the
achievability of the coherent information, reverse coherent
information, and private information is based on random coding
arguments. Therefore, it will be an interesting research avenue to
look for explicit quantum communication protocols (e.g., by
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Fig. 5 Achievable private communication rate of thermal-loss channels. a Achievable private communication rate of a thermal-loss channelN ½η; �nth� with
�nth ¼ 1 subject to the maximum allowed average photon number �n ¼ 1 per channel use. The blue and red lines represent the achievable rates with the

single-mode thermal state (Eq. (7)) and correlated multimode thermal states (Eq. (9)), respectively, and are identical to the blue and red lines in Fig. 2a.

The yellow line represents the lower bound of ref. 47 (fðη;�nth; �nÞ; see also Eq. (24)) obtained by using the displaced thermal state in Eq. (22). The dashed

green line represents our improved lower bound (Fðη; �nth; �nÞ; see also Eq. (25)) obtained by using the classical-quantum state we constructed in Eq. (39).

b Achievable private communication rate of a thermal-loss channelN ½η; �nth� with η= 0.79 (or γ = 0.21) and �nth ¼ 1 as a function of the maximum allowed

average photon number �n. The yellow line represents the bound of ref. 47 (fðη; �nth; �nÞ) and the dashed green line represents our bound (Fðη; �nth; �nÞ).
Similarly as in the case of quantum state transmission (Figs. 2, 3), the nontrivial advantage of our classical-quantum state in Eq. (25) is due to the fact that

fðη; �nth; �nÞ is convex in the small �n regime, and thus the convex hull of the achievable region fð�n; RÞj�n � 0 and R � fðη; �nth; �nÞg properly contains the

region itself (see also the main text).
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using GKP codes60,61 or polar codes62,63) that can be imple-
mented efficiently while achieving (or even improving) the rates
we have established here.

Methods
Gaussian states and channels. A bosonic mode is described by its annihilation

and creation operators â and ây that satisfy the commutation relation ½â; ây� ¼ 1
(see, for example, ref. 35). Let x̂ � ðq̂1; � � � ; q̂N ; p̂1; � � � ; p̂NÞ be the quadrature

operators of N bosonic modes, where q̂k � ðâyk þ âkÞ=
ffiffiffi

2
p

and p̂k � iðâyk � âkÞ=
ffiffiffi

2
p

.
The quadrature operators satisfy the commutation relation ½x̂j; x̂k� ¼ iΩjk , where Ω

is defined as

Ω ¼ 0 IN

�IN 0

� 


ð26Þ

and IN is the N ×N identity matrix.
By definition, the characteristic function of a Gaussian state ρ̂ is Gaussian36:

χρ̂ðξÞ � Tr½ρ̂exp½ix̂TΩξ��

¼exp � 1

2
ξ
T ðΩVΩ

T Þξ � iðΩ�xÞTξ
� 


;
ð27Þ

where �x and V are the first and the second moments of the quadrature operator x̂.
A Gaussian state is thus fully characterized by its first two moments and one can
write ρ̂ ¼ ρ̂Gð�x;VÞ.

A Gaussian channel N is a completely positive and trace preserving map (a
CPTP map)64 that maps a Gaussian state ρ̂Gð�x;VÞ to another Gaussian state
ρ̂Gð�x0;V 0Þ. A Gaussian channel N is fully characterized by its action on Gaussian
states,

�x0 ¼T�x þ d;

V 0 ¼TVTT þ �N;
ð28Þ

i.e., by ðT; �N; dÞ. A thermal-loss channel N ½η; �nth� is a single-mode Gaussian
channel that has T ¼ ffiffiffi

η
p

I2 , �N ¼ ð1� ηÞð�nth þ 1
2
ÞI2 , and d= 0, where η ∈ [0, 1]

and �nth � 0. Thermal-loss channels are a good model for realistic optical and
microwave communication channels. A thermal-loss channel with �nth ¼ 0 is called
a bosonic pure-loss channel.

Other single-mode Gaussian channels include additive Gaussian noise channels
and amplifier channels. An additive Gaussian noise channel N B2

½σ� is characterized
by T= I2, �N ¼ σ2I2 , and d= 0, and is also called a Gaussian random displacement

channel. An amplifier channel A½G; �nth� is characterized by T ¼
ffiffiffiffi

G
p

I2 ,
�N ¼ ðG� 1Þð�nth þ 1

2
ÞI2 , and d= 0 where G ≥ 1. An amplifier channel is called a

quantum-limited amplification channel, if �nth ¼ 0 and a noisy amplification
channel if �nth > 0 (see Sec. V of ref. 36 for more details).

Gaussian Fourier transformation. We define the N-mode Gaussian Fourier

transformation Û
ðNÞ
GFT as a Gaussian operation that transforms the annihilation

operators by a discrete Fourier transformation:

Û
ðNÞ
GFT

� �y
âjÛ

ðNÞ
GFT ¼ 1

ffiffiffiffi

N
p

X

N

k¼1

ei
2π
N ðj�1Þðk�1Þâk: ð29Þ

The N-mode Gaussian Fourier transformation can also be understood as a
Gaussian (unitary) channel that is characterized by

T ¼

Rð0Þ Rð0Þ � � � Rð0Þ
Rð0Þ Rð2π

N
Þ � � � Rð2π

N
ðN � 1ÞÞ

.

.

.
.
.
.

.
.

.
.
.
.

Rð0Þ Rð2π
N
ðN � 1ÞÞ � � � Rð2π

N
ðN � 1Þ2Þ

2

6

6

6

6

6

4

3

7

7

7

7

7

5

; ð30Þ

N= 0, and d= 0, where

RðθÞ � cos θ �sin θ

sin θ cos θ

� 


: ð31Þ

Since T is an orthogonal matrix (i.e., TTT = TTT = I2N), the N-mode Gaussian
Fourier transformation is a passive linear optical operation that does not require
squeezing.

Proofs of Theorems 1 and 2. Let UðNÞ
GFTðρ̂Þ � Û

ðNÞ
GFTρ̂ðÛ

ðNÞ
GFTÞ

y
be the unitary

quantum channel associated with the N-mode Gaussian Fourier transformation.

Then, UðNÞ
GFT commutes with the tensor product of thermal-loss channels, i.e.,

UðNÞ
GFTN½η; �nth��N ¼ N ½η; �nth��NUðNÞ

GFT: ð32Þ
This is a direct consequence of the fact that the N-mode Gaussian Fourier trans-
formation is a passive linear optical operation with an orthogonal transformation

matrix T. Now, recall that the correlated multimode thermal state T̂ ðN; nÞ with

N= (N1, ⋯ , Nr) and n ¼ ð�n1; � � � ; �nrÞ is defined as

T̂ ðN;nÞ ¼ UðNÞ
GFT τ̂ð�n1Þf g�N1 � � � � � τ̂ð�nrÞf g�Nr


 �

: ð33Þ
Combining Eq. (32) and Eq. (33), one can see that sending the correlated

multimode thermal state T̂ ðN; nÞ to the N copies of thermal-loss channels is

equivalent to sending a collection of thermal states τ̂ð�n1Þf g�N1 � � � � � τ̂ð�nrÞf g�Nr

to the thermal-loss channels and then the receiver performing the Gaussian Fourier
transformation. Since any local operations are assumed to be free, the achievable

communication rates with the correlated multimode thermal state T̂ ðN; nÞ is the
same as the rates achievable with the collection of thermal states

τ̂ð�n1Þf g�N1 � � � � � τ̂ð�nrÞf g�Nr .
For quantum state transmission without any classical feedback assistance, the

achievable rate is given by the coherent information. Since

IcðN ½η; �nth��N ; T̂ ðN; nÞÞ ¼ Ic N ½η; �nth��N ; τ̂ð�n1Þf g�N1 � � � � � τ̂ð�nrÞf g�Nr

 �

¼
X

r

k¼1

NkIcðN ½η; �nth�; τ̂ð�nkÞÞ;

ð34Þ

the correlated multimode thermal state T̂ ðN;nÞ can achieve the quantum state
transmission rate

1

N

X

r

k¼1

NkIcðN ½η; �nth�; τ̂ð�nkÞÞ ð35Þ

per channel use. Specializing this to N= (M, N−M) and n ¼ ðN
M
�n; 0Þ, we get the

rate

M

N
Ic N½η; �nth�; τ̂

N

M
�n

� �� �

¼ xIc N ½η; �nth�; τ̂
�n

x

� �� �

ð36Þ

as stated in Eq. (8) in Theorem 1, where x≡M∕N. Following the rest of the
arguments given in Theorem 1, the theorem follows.

Note that it might appear that the use of Gaussian Fourier transformation is not
necessary because as shown in Eq. (34), the coherent information of the correlated

multimode thermal state T̂ ðN; nÞ is the same as the coherent information of the

uncorrelated multimode thermal state τ̂ð�n1Þf g�N1 � � � � � τ̂ð�nrÞf g�Nr . It is
nevertheless essential to use the Gaussian Fourier transformation because it
uniformly spreads the excessive photons in uncorrelated multimode thermal state
across all modes such that the energy constraint is fulfilled (see also the discussion
below Eq. (2)).

Now consider the two-way quantum state transmission rate and the correlated

multimode thermal states given in Theorem 2, i.e., T̂ ðN;nÞ with N= (M, N − M)
and n ¼ ð�n1; �n2Þ. As shown above, sending this state to a thermal-loss channel is

equivalent to sending the collection of thermal states τ̂ð�n1Þf g�M � τ̂ð�n2Þf g�N�M .
Since classical feedback assistance is allowed, the reverse coherent information is
also achievable in this case. By employing the forward strategy for the first M
modes and the backward strategy for the last N−M modes, we can achieve the two-
way quantum state transmission rate

M

N
IcðN ½η; �nth�; τ̂ð�n1ÞÞ þ

N �M

N
IrcðN ½η; �nth�; τ̂ð�n2ÞÞ ð37Þ

per channel use as stated in Eq. (18) in Theorem 2. Again, following the rest of the
arguments in Theorem 2, the theorem follows.

Proof of Theorem 3. Recall that the classical-quantum state

σ̂ð�n1; �n2Þ �
Z

d2α
e�jαj2=�n1

π�n1
αj i αh j � D̂ðαÞτ̂ð�n2ÞD̂

yðαÞ ð38Þ

with �n1 þ �n2 ¼ �n was used to establish the recent lower bound in Eq. (24). Similar
to construction of correlated multimode thermal states in Theorem 1, we construct
the following classical-quantum state

Σ̂ � σ̂
N

M
�n� �n?2 ; �n

?
2

� �	 ��M

� σ̂ð0; 0Þf g�N�M ; ð39Þ

where M ∈ {1, ⋯ , N}. Then, by choosing

�n?2 ¼ argmin
0��n2�N

M
�n

IcðN ½η; �nth�; �n2Þ; ð40Þ

we can see that the achievable private communication rate of the state Σ̂ is given by

M

N
f η; �nth;

N

M
�n

� �

¼ xf η; �nth;
�n

x

� �

ð41Þ

per channel use where x=M∕N ∈ (0, 1] is a rational number. Since the set of
rational numbers is a dense subset of the set of real numbers, the rate in Eq. (41) is
achievable for any real number x ∈ (0, 1] and the theorem follows.
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