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An Improved Sensor Calibration with Anomaly Detection and Removal

Xinwei Fanga, Iain Batea

aDepartment of Computer Science, University of York, York, UK

Abstract

Sensor calibration is a widely adopted process for improving data quality of low-cost sensors. However, such a process may not

address data issues caused by anomalies. Anomalies are considered as data errors that are inconsistent to the actual physical phe-

nomena. This paper presents an improved sensor calibration, which applies a process for detection and removal of anomalies before

the sensor calibration process. A Bayesian-based method is used for anomaly detection that takes advantage of cross-sensitive pa-

rameters in a sensor array. The method utilises dependencies between cross-sensitive parameters, which allows underlying physical

phenomena to be modelled and anomalies to be detected. The calibration approach is based on stepwise regression, which auto-

matically and systematically selects suitable supporting parameters for a calibration function. The evaluation for anomaly detection

shows that the results are better than the state-of-the-art methods, in terms of accuracy, precision and completeness. The overall

evaluation confirms that data quality can be further enhanced when anomalies are removed before the calibration.

1. Introduction

Regulatory environmental monitoring is a key approach

to understand urban environment and has been enforced by

law <1>. Currently, high-quality monitoring instruments,

which are also called reference instruments, are used for such

purpose <2; 3>. Reference instruments provide data with

good quality but they are extremely expensive. This limits

the number of reference instruments that have been deployed,

which further affects the spatial and temporal resolution of

data <4; 5; 6>.

To overcome the existing limitations on data, larger num-

bers of low-cost sensor have been considered <7>. Individual

low-cost sensors often trade data quality with usability, price,

power consumption and size <8; 9; 10; 11>. For example, the

data from an individual low-cost sensor may be significantly

inconsistent with reference data. This issue further magnifies

when sensors work in dynamic environments such as a city cen-

tre <12>. Compared to reference instruments, data from low-

cost sensor could have: 1) lower data accuracy, 2) a high per-

centage of anomalies, and 3) unexpected data patterns (i.e., con-

stant values) <13; 14; 15>. As a result, data from low-cost sen-

sors should not be utilised without proper processes <16; 17>.

Sensor calibration is a widely adopted process for improv-

ing data quality. The state-of-the-art approaches use multi-

ple variables to construct a calibration function. These ap-

proaches are referred to as the multivariate calibration in this

paper <16; 12; 18; 19; 20>. Using the calibration of NO2 as an

example, a multivariate calibration not only uses the parameters

of NO2 but also uses other monitored parameters. The other pa-

rameters, such as temperature and humidity, are referred to as

the supporting parameters in the multivariate calibration. The
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intuition of this is, if the response of NO2 is related to temper-

ature and humidity, a more accurate calibration of NO2 can be

derived when the calibration function includes these parameters

and considers their effects <16; 21; 22; 23>.

Even though existing studies show that multivariate calibra-

tions can significantly improve the data quality, their calibration

errors are still large <12; 22>. Many of data errors can oc-

cur randomly without a systematic pattern nor with zero mean.

Without knowing the actual root causes, such errors are diffi-

cult to compensate <24>. We assume that those data errors are

responsible for the large calibration errors as they would not be

compensated for by calibrations <25; 26>. In this work, we

consider those data errors as anomalies and further assume that

data quality can be improved if those anomalies are accurately

detected and removed. Anomalies should not be confused with

outliers as outliers are genuine but unusual measurements, e.g.

a data spike caused by a bus idling next to a sensor, whereas

anomalies are data spikes caused by a variety of reasons such

as communication errors. Simple techniques for isolating data

spikes such as using the difference between the data and a run-

ning mean are not utilising contextual information. These meth-

ods, therefore, may not be appropriate for anomaly detection in

this application as they may not be able to differentiate anoma-

lies from outliers (e.g. anomalies and outliers have a similar

mean value).

To identify anomalies, the ‘normal’ needs to be defined.

This ‘normal’ is denoted as the anomaly model in this work.

An anomaly is identified if a data instance deviates from the

anomaly model with a pre-defined threshold. Thus, the chal-

lenge of anomaly detection becomes how to determine a good

anomaly model. The state-of-the-art method utilises contex-

tual information to estimate anomaly models. This is due to

the fact that anomalies tend to be stochastically unrelated to

contextual information <27>. The spatial and the temporal de-
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pendencies are the mostly used contextual information for such

purposes <28>. Using a spatial dependency as an example,

anomalies are identified if the data from nearby sensors have

a significantly and un-explainable different data pattern. How-

ever, as spatial and temporal dependencies are often weak in ur-

ban environments <29>, obtaining an accurate anomaly model

is a challenging task.

This paper provides an improved sensor calibration, which

applies a process for detection and removal of anomalies before

the sensor calibration. The method of calibration is from <29>

and based on our previous publication <12> where advantage

is taken from using stepwise regression. This allows suitable

supporting parameters to be automatically and systematically

selected according to the context of use. Furthermore, a novel

anomaly detection approach is proposed using a Bayesian-

based method that takes advantage of cross-sensitive parame-

ters in a sensor array. The method utilises dependencies be-

tween cross-sensitive parameters, which allows anomaly model

to be determined and anomalies to be identified, i.e., a higher

than normal value of X may be considered as an anomaly if it

deviate from the estimated model by a threshold value.

The contributions of this particular paper over our previous

works in <12; 30; 29> are listed below.

• Demonstrate that the cross-sensitivity of sensors can be

used to derive an anomaly model (To the best of our

knowledge this is the first work).

• Demonstrate that the derived anomaly model is able to ob-

tain a better result than the one utilising temporal depen-

dency.

• Demonstrate an improved calibration result when anoma-

lies are removed.

• Application of the techniques to a second case study.

The rest of this paper is organised as follows. The novel

method for anomaly detection is firstly proposed in Section 2,

which is then followed by the method of calibration in Sec-

tion 3. Evaluations are presented in Section 4. Finally, in Sec-

tion 5, we summarise and discuss our findings.

2. Detection of anomalies

As discussed in Section 1, using a threshold value would only

identify outliers, which is not ideal for anomaly detection in this

work. Furthermore, as the data from the low-cost sensors and

reference instruments are inconsistent, using co-located refer-

ence data to identify anomalies can be insufficient <12; 22>.

Therefore, the challenge for anomaly detection is how to obtain

a good anomaly model <28; 27>.

The state-of-the-art methods utilise contextual information

to estimate anomaly model, such as spatial or temporal depen-

dencies of data. For example, measurements from neighbour-

ing sensors or adjacent time stamps are expected to be simi-

lar as they are sensing a similar environment. In that case, an

anomaly is identified if the measurement exhibits a significantly

different value (defined by a threshold) to it neighbouring sen-

sors (spatial) or adjacent measurements (temporal). However,

the confidence of an anomaly model would be significantly af-

fected when the spatial or the temporal dependencies are weak.

Considering the spatial and temporal dependency are generally

weak in an urban environment <28; 29>, we propose to use

new contextual information which is the dependency between

cross-sensitive parameters to estimate anomaly model. To the

best our knowledge, this is first time this feature being used for

anomaly detection. In this section, we first explain what cross-

sensitive parameters are, and then discuss how this dependency

is utilised for anomaly detection.

ALGORITHM 1: The pseudo code for detection of

anomalies

Data:

Cn×1: the measurements of the cross-sensitive

parameter

In×1: the measurements of the parameter of interest

(n indicates the number of measurements)

Result: the measurements with anomalies labelled

/* Remove invalid data (marked as NaN).

Assume the number of measurements

changes to m after this step. */

for i = 1 to n do

if (Ci == NaN) or (Ii == NaN) then
remove Ci and Ii;

end

end

begin

/* Produce the joint probability table,

P(I,C) */

classify Cm×1 into k classes;

classify Im×1 into j classes;

declare a frequency table: Tk× j;

for i = 1 to m do
x = C(i).class;

y = I(i).class;

T (x, y)← T (x, y) + 1;

end

P← T./m;

/* Labelling all the measurements */

for i = 1 to m do

if Ii is not in P(I,C) then
mark as anomaly(I(i));

end

/* the conditional distribution I by

using the index class of C */

p = P(I | C(i).class);

if p < threshold then
mark as anomaly(I(i));

end

end

end
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2.1. Cross-sensitive parameters

Cross-sensitivity is defined as the sensitivity to one substance

which renders the sensors sensitive to other substances. It is

known that low-cost sensors are often cross-sensitive to each

other, such as NO2 and O3. For example, the readings from

an NO2 sensor would be dependent on the concentration of O3

in the mixed air. In this case, O3 is considered to be a cross-

sensitive parameter of the NO2 sensor. Assuming an NO2 sen-

sor has a response to O3 at a rate of 50% due to the cross-

sensitivity. Then, if the NO2 sensor is exposed to 200ppm of

O3 only, the NO2 sensor will report 50% of 200ppm. If the

NO2 sensor is exposed to 100ppm NO2 and 200ppm O3, the

NO2 sensor would provide readings of 100ppm + 50% 200ppm.

This implies that changes in one sensor would lead to an effect

on another sensor. It is noted that the rate of cross-sensitivity

can vary in different conditions, and thus the dependency does

not have a fixed and a functional relationship <31>. In the next

section, we utilise this property of low-cost sensors to construct

anomaly model.

2.2. Learning the information

In this work, we employ a Bayesian-based method to learn

the dependency between cross-sensitive parameters (e.g., NO2

and O3). A Bayesian-based method is chosen as it allows the

likelihood of a particular value (i.e. the value sensed for the

parameter of interest) to be predicted given a number of other

values (i.e. its cross-sensitive parameters) occurring. If the like-

lihood is lower than a threshold then it can conclude an anomaly

exists. We characterise the learning method as follows:

• The set of measurements, I for the parameter of interest;

and C for the cross-sensitive parameter.

• An index of the measurements, i, where i ∈ Z+ and Z+

stands for all positive integers.

• A number of classes (bins) in I and C as j and k, where j

and k ≤ max(i).

• A joint probability, P(I,C)

• A conditional probability distribution, P(I | C(i).class)

• A conditional probability, P(I(i).class | C(i).class)

To determine the joint probability, it requires that the I and C

have the same number of measurements. As data may contain

invalid values (marked as NaN) <30>, a pre-process is used

first to unify the number of measurements (i.e. if one set have a

value of NaN for a particular time stamp then the corresponding

value is removed from the other set).

Bayesian methods rely on the data being assigned to bins,

and hence a bin size is important. A bin size that is too small

could result in the histogram having an non-distinct mode,

which makes anomalies inseparable from the data. A bin size

that is too large could reduce the precision of the method lead-

ing to more false positives. Our data is with two significant dig-

its. Using the data directly without further discretisation would

result in the bin size becoming too small, especially when the

number of samples in the dataset is relatively small (i.e., 4000

samples). Hence, a further discretisation is required for the

measurement sets, I and C. We determine the bin size using

a two dimensional histogram approach based on <32>. This

involves a wide range of bin sizes being tested. The “best” bin

size is not unique as long as each bin has a sufficient number

of counts and the histogram has a distinct mode. The process

of discretisation classifies the set I and C into j and k classes.

Then, a joint probability table can be obtained <33>.

2.3. Inferencing and detection

Once the joint probability table is determined, it can be

used as the anomaly model to make an inference and sta-

tistically identify anomalies. The probability distribution of

I at a given value of C(i) can be obtained according to the

class number, which is P(I | C(i).class). The probability of

I(i).class, at given value of C(i).class, can be determined as

P(I(i).class | C(i).class). If this probability is less than a thresh-

old value, this measurement is considered as an anomaly and

removed from the data. As the threshold value is sensitive to

the use of data, expert or domain knowledge is required to de-

termine a ‘good’ threshold value. We will discuss some obser-

vations for selecting a ‘good’ threshold value in Section 4.3.2.

The overall method for the detection of anomalies is in Algo-

rithm 1.

3. Calibration

In this section, we introduce the calibration method. The

method was used in <29> and is a refinement of the work <12>.

The key difference is this method tests for whether both adding

and removing of a variable would improve the calibration,

whereas the method in work <12> only considered effects of

adding variables. As this method terminates when no single

step improves the model, the calibration result by design is un-

likely sensitive to a different sequence of steps.

3.1. Regression for calibration

Regression methods have been widely used for the calibra-

tion of low-cost sensors, such as uni-variate calibrations <34>

and multivariate calibrations <18>. Regression is often opti-

mised by the ordinary least square method that minimises the

difference between the “independent variables” and the “depen-

dent variable” <35>. For the sensor calibration, the indepen-

dent variables and the dependent variable can be considered as

the parameter of interest with other supporting parameters and

the reference respectively.

Assuming there are j number of independent variables X

and one dependent variable Y . A multivariate linear regression

model at any time instance i can be constructed as shown in

Equation 1.

Yi = β0 + β1 · Xi,1 + β2 · Xi,2 + · · ·β j · Xi, j + εi (1)

The calibration function is to determine the coefficients, β,

when the error term, ε, is minimised as shown in Equation 2.
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minimise

N∑

i=1

ε2
i (2)

3.2. Two-way interaction terms

According to Equation 1, the variables X in the calibration

function are independent, which means the changing of one

variable would not affect another one. However, this is not the

case in real environment. For example, a higher temperature

could result in a higher chemical reaction rate. This rate can

then affect the actual concentration of a parameter and further

reflect on the sensor readings. In this section, two-way inter-

action terms are utilised to uncover the relationships between

parameters <36>.

An interaction term, which is also known as a moderation

term, is a multiplication of any two variables. Assuming the

calibration of a parameter of interest only needs one supporting

parameter. A calibration function can be simplified presented

in Equation 3.

Y ∼ β0 + β1 · X1 + β2 · X2 (3)

Adding a two-way interaction term into Equation 3 gives

Equation 4:

Y ∼ β′0 + β
′
1 · X1 + β

′
2 · X2 + β

′
3 · (X1 · X2) (4)

which can be re-written as Equation 5:

Y ∼ β′0 + (β′1 + β
′
3 · X2) · X1 + β

′
2 · X2 (5)

According to the Equation 5, the variable X2 is associated

with the variable X1 as the variation of the X2 would impact

the coefficient of the X1. Hence, the variation of one variable

can also affect the value of another. In this work, we include

interaction of parameters in the calibration process to maximise

the relationship among parameters.

3.3. Stepwise regression

The parameters available depends on the sensor units used;

and the important parameters are dependent on both the par-

ticular sensor unit and where it is deployed. As a result, the

selection of the parameters can be important to ensure the cal-

ibration result. Stepwise regression differs from multivariate

regression by first performing a systematic selection of the pa-

rameters to be used in the regression. Only the parameters that

have positive contribution to the calibration are chosen. This

enables automatic and systematic selection of supporting pa-

rameters, which significantly reduces the human intervention

in this process.

For all monitored parameters including their interaction

terms, the method starts with fitting a model using just one term.

At each step, p-value for an F-test of the change in the sum of

squared error (SSE) when adding or removing one term are cal-

culated. The p-value is used to make decisions whether to add

to remove terms. If the term is not currently in the model, the

ALGORITHM 2: The pseudo code for calibration us-

ing stepwise regression

Data: /* V indexes the use of parameters in

X */

X = {x1(n), x2(n), · · · , xm(n)} ∈ Rm×n;

Y = {y(n)} ∈ R1×n;

V = {V1,V2, · · · ,Vm}.

Result: Calibration Function: Y = f(V)

/* add intersection terms */

begin
k ← m + 1;

for i = 1 to m do

for j = i + 1 to m do
xk ← xi × x j;

X.append(xk);

V .append(Vk);

k ← k + 1;

end

end

end

/* perform stepwise regression */

begin
Vc = {∅};

do

/* try to add terms */

do

for Vi in V do
P candidate = evaluate p value with(Vi)

& p<0.05;

end

/* Vk is the candidate term */

k← find the lowest p(P candidate);

Vc.append(Vk);

V .remove(Vk);

while P candidate , ∅;

/* try to remove terms */

for Vi in Vc do
P candidate = evaluate p value without(Vi)

& p>0.05;

end

k← find the highest p(P candidate);

Vc.remove(Vk);

V .append(Vk);

while Vc has changed();

calculate coefficients(Y , X, Vc);

end

4



null hypothesis is that the added new term would have a zero co-

efficient in the model. If there is sufficient evidence (p < 0.05)

to reject the null hypothesis, the term with the lowest p-value

is added to the model. Conversely, if a term is currently in the

model, the null hypothesis is that the term has a zero coeffi-

cient. If the null hypothesis fails to be rejected (p > 0.05), the

term with the highest p-value is removed from the model. This

method applies the following steps:

1. Construct the initial model using just one term.

2. For terms not in the current model with p-values less than

a threshold (p < 0.05), add the one with the lowest p-value

and repeat this step; otherwise, go to step 3.

3. Terms in the model with p-values less than a threshold (p

> 0.05), remove the one with the highest p-value and go to

step 2; otherwise, end.

Since the method terminates when no single step improves

the model, a different sequence of steps would not lead to a

better result. Compared to the method used in <12> which

only considered how results would improve by adding terms,

this method also tests whether remove a term in the existing

model would further improve the result. The revised approach

can be more robust as the sequence of adding the parameters

is unlikely to influence the result. The overall method for the

proposed sensor calibration is illustrated in Algorithm 2.

4. Experiment and evaluation

In this section, we first introduce the real datasets used in the

evaluation. Then, we discuss a data pre-processing that per-

formed before the calibration, i.e., aggregating data with differ-

ent temporal resolutions. Finally, we evaluate the methods in

both artificial and real datasets.

4.1. Datasets

There were two real datasets used in the evaluation. One

dataset was obtained from our own deployment by an ELM

unit. The ELM unit is a product from Perkin Elmer <37>. Mul-

tiple parameters were monitored, which are nitrogen dioxide

(NO2), ozone (O3), nitrogen oxide (NO), temperature (T ) and

humidity (H). The NO2 and O3 were measured by metal-oxide

sensors and a dielectric film was used to measure temperature

and humidity. The ELM unit was located at the city centre next

to a busy junction and co-located with a reference instrument in

early 2016 as illustrated in Figure 1. The reference instrument

(EU Site ID: GB0919A) is jointly managed by the City of York

Council and Automatic Rural and Urban Networks (ARUN).

The temporal resolution is 20 seconds for the ELM data and 1

hour for the reference data.

The second dataset was obtained in Beijing in 2017 and

used in <38>. The dataset contains NO2, O3, carbon monox-

ide (CO), T , H and volatile organic compounds (VOC). It is

noted that parameters, NO2, O3, CO and VOC, were moni-

tored by multiple identical low-cost sensors. To enable cross-

comparison with <38>, the median value across identical sen-

sors was used to represent the concentration of the parameters

Figure 1: Sensors at Fishergate, York

in the evaluation. This dataset and the reference has the tempo-

ral resolution of one minute. More detail on this dataset can be

found in <39>.

4.2. Data pre-processing

Regression-based method requires the dependent and inde-

pendent variables to have the same number of measurements.

Since the data from ELM unit has a different temporal reso-

lution to the reference, a pre-processing of the data is needed.

Extrapolating the reference data from an hour to 20 seconds

may introduce a large uncertainty. Therefore, the data pre-

processing aggregates the ELM data (20 seconds) into the same

temporal resolution as the reference (hourly). In this work,

the hourly aggregation is based on a window from the current

whole hour to the next whole hour. For example the value for

12:00:00 is obtained from the samples between (≥) 12:00:00

and (<) 13:00:00. We tested a wide range of windows, the ag-

gregation result did not have a noticeable difference in terms of

correlation.

There are many techniques available for data aggregation.

Taking the arithmetic mean and median over samples in a win-

dow are most commonly used ones. The arithmetic mean is the

sum of the received values divided by the number of counts.

Thus, the confidence level of the aggregation result is by defi-

nition sensitive to the number of samples received in each win-

dow. Moreover, the arithmetic mean is sensitive to extreme val-

ues. For example, the mean value could be biased if extreme

but erroneous value existed in the samples. Even with anomaly

detection, these could still exist. However, it does not imply

that using the median value is always a better option. As the

median value is a single value, it will not be representative of

other samples. If spikes are caused by real events, taking the

median value would ignore that information. In addition, the

median value would still be biased if the percentage of anoma-

lies is more than 50% in the samples. Considering the number

of samples received in an hour can be significantly inconsis-

tent <29> and the anomalies are unlikely to be more than 50%

of the hourly samples, the median is selected to aggregate the

data. The process of the data pre-processing is illustrated in

Algorithm 3

It is noted that if there is not enough data to be averaged

(the number of samples within a window is less than 5) or if

5



ALGORITHM 3: Pseudo code for data pre-processing

Data:

Dataset from low-cost sensors, Dm×n

/* The first column is a time array, which

stores the time when the sample was

taken. The rest of the column stores

the measurements taken at the

corresponding time. The number of rows

indicates the number of samples. */

Reference, Rr×2

/* The first column is a time array, ti ⊂ T.

T (:, 1), which stores a consistent

time-stamp with the date on an hourly

basis (Date.Month.Year

00:00:00,Date.Month.Year

01:00:00,Date.Month.Year 02:00:00 ...).

The second column stores the reference

value for the parameter of interest.

(Hourly reference which may contain Not

a Number (NaN). */

Result: The dataset that the first column stores the time

and the second column stores the reference data.

The rest of the columns are the averaged data

from low-cost sensors.

/* Hourly averaged data for low-cost

sensors (contains NaN) */

for i = 0 to m-1 do

for j = 2 to n do

/* Determine all values that measured

within that hour */

D∗ = D(find(ti 6 D(:, 1) < ti+1),j);

if D∗.size < 5 then
T(i,j) = NaN;

else

/* The nan-median takes median

without considerin the NaN */

T(i,j) = nan-median(D∗);

end

end

end

Join the R with T according to the time-stamp and

remove all NaN instances in the dataset.

data gaps occurred in the reference, the relevant data from the

corresponding sensors are removed for consistency.

4.3. Evaluation of the anomaly detection

Obtaining the ground truth for anomalies in the real dataset

is practically difficult. Hence, a synthetic dataset was used for

the evaluation of anomaly detection. The evaluation was car-

ried out in a similar way to other research determining accu-

racy, precision and completeness. We firstly introduce how the

synthetic dataset was generated in Section 4.3.1. Then, we il-

lustrate how the performance of the method is related to the dif-

ferent threshold values in Section 4.3.2, and cross-compare the

proposed method to the one that uses temporal dependence in

Section 4.3.3. Finally, in section 4.3.4 we discuss our findings

as well as the limitations of the method.

4.3.1. Synthetic data

The synthetic data was constructed by injecting anomalies

into a clean dataset. The use of a clean dataset is to avoid un-

wanted false positives as any anomalies exhibit in the base sig-

nal would not be correctly labelled as the anomaly. The base

signal of the clean dataset was taken from a reference instru-

ment with a temporal resolution of a minute. The dataset con-

tains four days of measurements of NO2 and O3. We manually

removed any suspicious measurements and filled the gap using

linear interpolation. This process maximises the consistency of

temporal information which enables a fair comparison to the

method that utilises temporal dependency. The clean dataset

after this process is free from anomalies and temporally consis-

tent.

Since an extremely high magnitude of anomalies can be clas-

sified by a simple threshold value, and an extremely small mag-

nitude of anomalies would not significantly affect the data pro-

cess (e.g. calibration), the magnitude of anomalies that will

be injected back to the dataset was randomly chosen between

10% to 60% of the maximum values of the clean signal. Fur-

thermore, we decided to inject 8% of the anomalies to the

clean dataset as there was 8% of outliers in the low-cost sen-

sor dataset <29>. It is noted that the realism of the injected

anomalies is not significant to the final intended outcome, i.e.

the dataset allows the evaluation of whether the processing tech-

niques advocated in this paper improve the signal over the state-

of-the-art methods. Later in the paper, the overall processing

techniques is then evaluated in real datasets with potentially real

anomalies to show whether an improvement is also achieved.

The constructed synthetic data for NO2 is illustrated in Fig-

ure 2. In the figure, the clean base signal is in red and the in-

jected anomalies are in blue.

4.3.2. Threshold Value

As discussed in Section 2, the determination of a threshold

can be difficult as it often requires expert knowledge and can be

data dependent. Therefore in this section we demonstrate how

the results of anomaly detection are related to threshold values.

The results should assist experts to make more appropriate se-

lection.

The results of the anomaly detection are evaluated in terms

of accuracy, precision and completeness, which are normalised

in the range from 0 to 1. Those metrics are defined as in Equa-

tion 6 to 8.

Accuracy =
(#True Positives + #True Negatives)

#Samples
(6)

Precision =
#True Positives

#True Positives + #False Positives
(7)
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Figure 2: The synthetic dataset

Completeness =
#True Positives

#True Positives + #True Negatives
(8)

Figure 3 presents the detection result in terms of accuracy,

precision and completeness when the value of the threshold was

gradually increase. The x-axis indicates the threshold value and

the y-axis presents the normalised results. The figure shows that

the accuracy is much less affected by the increase of the thresh-

old comparing to the precision and the completeness. A clear

trade-off can be observed between the precision and the com-

pleteness as they expose an opposite tend. The completeness

starts around 0.2 and gradually increases up to 0.87, whereas

the precision starts at a high value and drops to around 0.35.

This finding suggests that the selection of a threshold needs to

balance the trade-off between precision and completeness. A

smaller threshold value tends to obtain a result with better pre-

cision but less completeness. Since the purpose of anomaly

detection in this work is to improve calibration by removing

anomalies, the precision can be more important than the com-

pleteness. Therefore, the threshold value of 15 was chosen. In

practice, it would be expected users would try different thresh-

old values and determine which ones best meet their needs.

4.3.3. Evaluation anomaly detection in synthetic data

For this evaluation, we compare the results from using cross-

sensitive parameter against the one using temporal dependency.

The same learning process was applied to both methods. Fig-

ure 4 shows the results in term of detection accuracy, preci-

sion and completeness. One hundred test runs were performed

which generate using the approach defined in Section 4.3.1.

Each boxplot indicates the variation of the result from the 100

tests. The results in Figure 4 suggest that using cross-sensitive

parameters is able to produce a better detection result as the ac-

curacy, the precision and the completeness are on average 2%,

17% and 325% better than the one using the temporal depen-

dency.

Figure 3: The detection results when using different threshold values

In the first experiment, anomalies were only injected into

NO2. As anomalies can affect all parameters, in the follow-

ing experiment, anomalies were injected in both NO2 and O3

data. The percentage and magnitude of the O3 anomalies were

determined in the same way as described in Section 4.3.1. For

the second experiment, the injection of NO2 remained the same

as in the previous experiment. 10% of the samples in the clean

O3 data were randomly added by values that had a magnitude

in the range of 10% to 60% of maximal O3.

Figure 5 shows that the accuracy, the precision and the com-

pleteness of using the cross-sensitive parameter are still on av-

erage significantly better (i.e. 2%, 16% and 283%) than using

the temporal information after 10% of anomalies were added

into the O3 data.

4.3.4. Findings and limitations

The results for both experiments are summarised in Table 1.

These experiments demonstrate that utilising the dependency

between cross-sensitive parameters not only can sufficiently de-

tect anomalies in the data, but the detection results are also bet-

ter than the one that utilises temporal dependency. The results

suggest the dependency between cross-sensitive parameters can

be used for anomaly detection. This finding can be particularly

valuable as it can be used in conditions when spatial and tem-

poral dependencies are weak. In addition, cross-sensitivity of

sensors are widely reported, which is not unique for NO2 and

O3 sensors. Therefore, this method could also apply to other

sensors for identifying their data anomalies. Combining cross-

sensitive dependency with spatial and temporal dependencies

could be investigated as part of future work.

According to lessons that we learnt from our experiment, the

limitations of the method for anomaly detection are discussed

below:

• The method is built upon the assumption that measure-

ments from a cross-sensitive parameter is able to indirectly
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Figure 4: Detection results when anomalies were injected in NO2

Figure 5: Detection results when anomalies were injected in NO2 and O3

indicate the ’normal’ of the target parameter. It would re-

quire a strong dependency between target parameter and

its cross-sensitive parameter. If the dependency was weak

or not strong enough, the anomalies may not be sufficiently

identified. Understanding the minimum requirement of

such dependency that can be used for sufficiently detect-

ing anomalies is one of important question to answer in

the future research.

• Applying an appropriate threshold value is another key

step for obtaining a good detection result. This issue is not

unique for this method as it would be a general problem for

anomaly detection. We demonstrated the relationship be-

tween an increased threshold value and the detection result

in our experiment, which can be used for selecting optimal

threshold value. However, such demonstration would only

be possible given the fact that the ground truth of anoma-

lies were available. Since it is still an open challenge to

obtain ground truth of anomalies in real dataset, it would

not be possible to obtain such relationship in real dataset.

Even though the smaller threshold value would often in-

dicate a better precision and less completeness, the exact

threshold value would require expert judgement to obtain.

As a result, the appropriateness of such threshold often be

difficult to justify or to evaluate.

• Joint probability table was used to represent the depen-

dency between target parameter and its cross-sensitive

parameter. The joint probability is calculated accord-

ing to the number of samples fall in each bin. The

higher/lower the number of sample in each bin indicates

the higher/lower probability. The method assumes that the

anomalies are the samples in bins that their probability is

below a threshold value. A problem we encountered is that

some high concentration values have very small number of

samples, which are often mis-classified as anomalies. To

avoid such situation, we trained our anomalies model for

classifying anomalies only for data that span 0 to 99 per-

centiles. The difference in term of result is shown in Fig-

ure 6. Figure 6 again shows the trade-off between com-

pleteness and precision as our alternative approach fails

to identify higher concentrated anomalies while preserves

high concentrated normal measurements.

Even though our method has many practical limitations, our

experiment demonstrated an improved result for anomaly de-

tection in comparison to the state-of-the-art method. It suggests

that the proposed concept and method is able to sufficiently de-

tect anomalies. In the following sections, we will illustrate how

the calibration of low-cost sensors can benefit from applying

the proposed anomaly detection.

4.4. Evaluation of the overall approach on real data

The overall evaluation of the approach were performed on

two real datasets independently. The datasets were introduced

in Section 4.1.
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Figure 6: The scatter plot before and after anomalies removals against the ground truth of anomalies.

Table 1: Mean value from two experiments

Cross-sensitive Parameter Temporal Information

Accuracy Precision Completeness Accuracy Precision Completeness

Exp. 1 0.9398 0.8028 0.5113 0.9103 0.6842 0.1268

Exp. 2 0.9381 0.7977 0.4657 0.9101 0.6859 0.1243

4.4.1. Evaluation on ELM dataset

The ELM dataset was initially pre-processed according to the

method in Algorithm 3 in Section 4.2. After pre-processing, the

dataset contains around 4,000 samples with the temporal reso-

lution of an hour, and the available parameters are NO2, O3,

NO, T and H. According to <29>, using a slightly larger train-

ing dataset than the testing dataset would get a better calibration

result. Thus, the dataset is sequentially and evenly divided into

three partitions. The first two partitions are used for determin-

ing the calibration function, and the calibration function evalu-

ated using the last partition. The results for calibrating NO2 are

represented in Figure 7 and Table 2.

In Table 2, we list the parameters that were used to construct-

ing the calibration function in the first row. We use a wide

range of metrics to evaluate the calibration to avoid biased re-

sults <29>. The standard deviation and the mean error were

calculated from the point-wise, the difference between the ref-

erence and the predicted value. A mean error close to zero rep-

resents the smaller difference, which implies a better calibration

result. The positive and negative sign of the mean error indicate

the under and over estimation of the result. The standard devia-

tion is related to the mean value. In general, a smaller standard

deviation indicates a better calibration. The RMSE and R are

commonly used metrics for the evaluation of sensor calibration,

the smaller RMSE and higher R value are often associated with

a better calibration. We also calculated a linear function be-

tween the reference and the predicted value, which is referred

to as linearity in the table. The predicted value is expected to

be as close to the reference as possible, which implies that the

slope and offset of the linearity function need to be close to 1

and 0 respectively.

Figure 7 shows a series of scatter plots between the reference

and the data trace from the ELM. Figure 7-(a) shows the corre-

lation between the reference and the raw data from the low-cost

sensor. The raw data is ELM data after the pre-processing. The

figure shows that the raw data varies from 0 to 200. We empha-

sis this variation by using the red colour as it is much greater

than the reference. A significant number of zero readings can

also be observed in the raw data. These are often considered as

anomalies <32>. The result confirms that the data from low-

cost sensors may not be useful without a proper process.

Figure 7-(b) shows the result of the calibration using the lin-

ear uni-variate calibration where only the parameter of NO2

was used in the calibration. The figure shows that the varia-

tion of the ELM data sufficiently reduced as the predicted value

varies in the same range as the reference. Table 2 also shows

that the RMSE and the standard deviation are all reduced by

about 50%. However, the predicted value still contains a large

number of constant values (the zero readings in the raw data

have been transferred by the calibration), resulting in an irregu-

lar data pattern and low correlation (0.77) between the predicted

value and the reference. This shows and confirms that the uni-

variate calibration is insufficient for the calibration of low-cost

sensors, which is in line with <16; 40; 19>.

Figure 7-(c) shows a calibration by the linear multivariate

calibration. It is noted that the calibration function in Figure 7-

(c) was determined in a different environmental condition than

the environment of the operation. As a result, a negative corre-

lation between the predicted value and the reference is observed

in the figure. In Table 2, it has the highest errors (i.e. RMSE
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Figure 7: The NO2 data trace of the low-cost sensor in comparison to the reference data; Figure-(a) shows the correlation between the reference and the raw data

from the low-cost sensor; Figure-(b) shows the correlation between the reference and the data of low-cost sensor being calibrated using linear uni-variate calibration;

Figure-(c) shows the correlation between the reference and the data of low-cost sensor being calibrated using linear multivariate calibration, where the calibration

function was determined in a different environmental condition; Figure-(d) shows the correlation between the reference and the data of low-cost sensor being

calibrated using linear multivariate calibration, where the calibration function was determined in-situ; Figure-(e) shows the correlation between the reference and

the data of low-cost sensor being calibrated using the proposed calibration; Figure-(f) shows the correlation between the reference and the data of low-cost sensor

being treated by the proposed two-phased approach

28.66 and Mean error 17.02) and the worst linearity. The result

confirms that the calibration function determined in one place is

not necessarily applicable to another place due to the different

environmental conditions.

Figure 7-(d) shows the calibration used the same method as

Figure 7-(c) with the difference that the calibration function was

determined on-site in the environment of operation. In compar-

ison to Figure 7-(c), Figure 7-(d) shows an improved correlation

(0.92). Comparing the evaluation metrics in Table 2, the errors

are reduced significantly with the respect to the (a), (b) and (c)

by at least 35% for mean error and 52% for RMSE. The result

shows the importance of using multiple parameters in the cal-

ibration of low-cost sensors and the necessity of determining

calibration functions in the environment of operation.

Figure 7-(e) shows the result of calibration that used the pro-

posed calibration method without removing anomalies. Com-

paring the result with the one in Figure 7-(d), the calibration

errors and the linearity are further improved. The RMSE im-

proves by 7.5%, and the slope and offset are closer to 1 and 0

respectively. The result indicates that by introducing interaction

terms and selecting the use of parameters the calibration result

can be further improved.

Figure 7-(f) shows the calibration result that anomalies in

the NO2 data were removed before using the proposed calibra-

tion method. In comparison to Figure 7-(e) where the anoma-

lies were not removed, the results of calibration in Figure 7-(f)

are further improved. The standard deviation, mean error and

RMSE are further reduced by 1.38, 1.73 and 1.89 respectively,

which equates to an improvement of 20%, 53% and 25% re-

spectively. The result in Figure 7-(f) has the best calibration

among all the methods used, which implies that the calibra-

tion result can be further enhanced when the anomalies were

removed in advance. The result shows the proposed approach

is able to further improve the quality of data than current prac-

tices, and suggests the importance of removing random errors

before the calibration process.

4.4.2. Evaluation on Beijing dataset

The evaluation was also carried out on a different dataset

which was used in <38>. To enable a fair cross comparison,

we took the best effort to follow their process and the evalua-

tion is presented in the same way as they did. We compare the

Gaussian Process (GP) that produced the best calibration result

in their paper to our approaches. Our approaches are simplified

as Algorithm 1 and Algorithm 2 in the following context. Al-

gorithm 1 calibrates NO2 directly using the method discussed

in Section 3.3 without removing anomalies; whereas Algorithm

2 applies the process for detection and removal of anomalies

before the sensor calibration.

For the first experiment, the first 8490 data instances were

separated from the dataset for training and the rest of the data

instances (i.e. 24557 samples) were used for testing. After dis-
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(a) (b) (c) (d) (e) (f)

Parameters used None NO2 NO2,O3,NO,T ,H NO2,O3,NO,T ,H

NO2,O3,NO,H,

NO2*O3,NO2*H,NO2*NO,

O3*H

NO2,O3,NO,T ,H,

NO2*O3,NO2*H,NO2*NO,

O3*T ,O3*H,O3*NO,

T*H

Standard deviation 24.22 11.64 23.06 7.51 6.84 5.46

Mean error -1.09 4.23 17.02 3.13 3.24 1.51

RMSE 24.23 12.39 28.66 8.13 7.56 5.67

R 0.77 0.77 -0.86 0.92 0.93 0.94

Linearity Y = 0.38x + 17.04 Y = 1.42X-5.73 Y = -0.22X+52.24 Y = 1.24X - 2.92 Y= 1.16X - 0.76 Y = 1.09X-0.76

Table 2: This table presents the calibration results in terms of parameters used in the calibration, standard deviation, mean error, RMSE, R and linearity among the

different calibrations that demonstrated in Figure 7. The (a) to (f) are indices that differentiate the calibrations as in Figure 7.

carding the samples with empty values, there were 8437 sam-

ples left for training and 23249 samples for testing. We fol-

lowed their process to implement the GP algorithm that uses the

same python library and kernels as they specified in the paper.

However, we failed to reproduce their results due to the incon-

sistent data size between their experiment and the data that we

were downloaded. The result is presented in Table 3.

Bin Range
NRMSE(RMSE/ppb) Number of

GP Algorithm 1 Algorithm 2 Samples Anomalies

0% - 25% 0.39(7.5) 0.29(5.4) 0.28(5.3) 22738 197

25% - 50% 0.14(10.3) 0.13(9.8) 0.12(8.9) 473 105

50% - 75% 0.3(42.4) 0.28(37.5) 0.37(49.5) 32 24

75% - 100% 0.25(45.97) 0.13(23.6) N/A 6 6

Overall RMSE (ppb) (7.78) (5.74) (5.54)

Table 3: The bin range indicates the what samples were used to calculate the

NRMSE and RMSE. The NRMSEs were shown in the table without brackets

and the RMSEs were shown in the brackets as (RMSE/ppb). The Gaussian

Process (GP) were implemented according to the description in <38>. The

Algorithm 1 shows the results by using the proposed calibration method only,

whereas the anomaly detection and removal was applied before the calibration

in Algorithm 2. The number of samples in each bin and the number of anoma-

lies identified in each are presented in the last two columns of the table. The

overall RMSEs for different methods were presented in the last row of the table

and shaded in gray.

The evaluation were taken in the same way as the one

in <38> which determines how the data quality is related to

different ranges of concentration. The samples in the testing

dataset were placed in 4 bins. The 4 bins were determined ac-

cording the percentage of the maximum concentration of refer-

ence NO2 in the testing dataset, which are bin1 (0%-25%), bin2

(25%-50%), bin3 (50%-75%) and bin4 (75%-100%). The num-

ber of samples in each bin from bin 1 to 4 were 22738, 473,

32 and 6 respectively. The RMSEs between reference NO2 and

calibrated NO2 in each bin were firstly calculated. The NRM-

SEs were then normalised accordingly by dividing the RMSEs

by the mean concentration for the respective bin. Our results

(in italics) are cross-compared to GP in Table 3.

In Table 3, the overall RMSE for Algorithm 2 is placed the

highest. In comparison to the GP, our approaches are more than

30% better for the overall RMSE value. Comparing results be-

tween Algorithm 1 and Algorithm 2, the overall RMSE further

increased by more than 5% when the anomalies removed before

the calibration. Considering the number of sample in bin 3 and

bin 4 are extremely small (i.e. 32 and 6 samples respectively),

the confidence level of the results in those bins can be signifi-

cantly lower than results in bin 1 and bin 2. For this reason, the

comparison is focused on bin 1 and bin 2 in which the Algo-

rithm 2 outperforms the Algorithm 1 by average 4.5% and GP

by average 20% respectively.

The samples in bin 4 and majority of samples in bin 3 were

identified as anomalies. However, the largest number of anoma-

lies were identified in bin 1 and bin 2. This suggests that the

method for anomaly detection is not simply removing extreme

value.

This evaluation shows that the proposed method calibration

is able to obtain a good calibration result, and these results can

be further enhanced when anomalies were identified and re-

moved in advance. Since we could not reproduce their result

due to the inconsistent dataset, we extend the comparison fur-

ther to determine how the calibration result would be different

when the training and testing dataset were different.

For this experiment, the Beijing dataset were sequentially di-

vided into 4 partitions with each partition has a similar number

of samples (Partition 1 to 4 have samples of 7921 7921 7921

7923 respectively). In the following context, we use partition

number to refer what datasets were used for training and test-

ing. Partition 1 + 2 indicates that the dataset is combined from

partition 1 and 2. The results of calibration that use different

datasets for training and testing are presented in Figure 8 and 9:

Figure 8 shows the calibration result in terms of RMSE val-

ues. The result suggests that the RMSE is sensitive the training

and testing datasets. This indirectly explains why our repro-

duced result was not the same as showed in <38> as different

training and testing datasets were used. From the figure, the

calibration results from our approach consistently better than

the GP. The results determined after the removal of anomalies

are no worse than the result without anomalies removal, and

produce better calibration results in 5 out of 6 experiments.

Figure 9 shows the calibration result in terms of errors. The

first plot is the calibration errors. We can observe a large num-

ber of outliers in the first plot. As those outliers hinder the

variation of errors, we made the second plot that exclude the

outliers. The second plot shows a better view on the variation

and median value of the errors. From the figure, we can see the

error profiles are consistent with the result of RMSE in Figure 8.

The number of extreme errors (i.e. outliers point in the fist plot)

from the method with anomalies removal (i.e. Algorithm 2) is

less than other methods without anomalies removal (i.e. Algo-

rithm 1 and GP). This suggests that the removal of anomalies

is able to improve sensor calibration. The variation of errors

from the proposed calibrations (i.e. Algorithm 1 and Algorithm
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Figure 8: The figure shows the RMSE value for calibrations done by different methods and using different training and testing datasets

Figure 9: The figure shows errors and errors without outliers for calibrations done by different methods and using different training and testing datasets

2) is generally better than the GP, and the Algorithm 1 and Al-

gorithm 2 has similar variation of errors. This is a reasonable

result as applying anomaly detection before the calibration is

not expected to change the error profile dramatically.

It is noted that the median errors of GP in some cases is bet-

ter (i.e. closer to zero) than the ones from the Algorithm 1 and

2 even though its variation is consistently larger than others. It

suggests that GP is more unlikely to under or over predict value

but it would be sensitive to extreme values. This implies that

the GP could produce better results if the environment has a

consistent level and the sensors do not have anomalies. How-

ever this situation would be extremely unusual. Otherwise the

proposed method provides improved results.

These evaluations indicate that all calibrations are sensitive

to the use of training and testing datasets. The results show that

the proposed calibrations (i.e. Algorithm 1 and Algorithm 2)

are able to consistently obtain a better calibration result, and

the results can be further enhanced when anomalies were iden-

tified and removed before the calibration. This is inline with the

result that obtained using the ELM dataset, which suggests that

data quality of low-cost sensor can benefit from the proposed

calibration method with anomaly detection and removal.

5. Conclusion and future work

This paper presents an improved sensor calibration, which

applies a process for detection and removal of anomalies be-

fore the sensor calibration. The detection of anomalies utilises
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the dependency between cross-sensitive parameters, for which

the results in terms of detection accuracy, precision and com-

pleteness are all better than the state-of-the-art approaches. The

method of calibration takes the advantage of stepwise regres-

sion and the interaction terms, which provides a good calibra-

tion result comparing to the state-of-the-art methods, includ-

ing machine learning algorithms. The evaluations carried out

on two real datasets show a consistent better calibration result

when anomalies were removed from the datasets. It suggests

that the accurate detection and removal of anomalies will fur-

ther improve the calibration of low-cost sensors.

For the future work, it is worth to investigate whether com-

bining multiple contextual information would further improve

the performance of anomaly detection. In addition, considering

many anomalies would be associated with a systematic cause,

e.g. communication errors, understanding the root causes of

anomalies can be important in the future work.
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