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On the status of pointlike fields in integrable QFTs

Henning Bostelmann

University of York, Department of Mathematics, York YO10 5DD, United Kingdom

E-mail: henning.bostelmann@york.ac.uk

Abstract. In integrable models of quantum field theory, local fields are normally constructed
by means of the bootstrap-formfactor program. However, the convergence of their n-point
functions is unclear in this setting. An alternative approach uses fully convergent expressions
for fields with weaker localization properties in spacelike wedges, and deduces existence of
observables in bounded regions from there, but yields little information about their explicit
form. We propose a new, hybrid construction: We aim to describe pointlike local quantum
fields; but rather than exhibiting their n-point functions and verifying the Wightman axioms,
we establish them as closed operators affiliated with a net of local von Neumann algebras that
is known from the wedge-local approach. This is shown to work at least in the Ising model.

1. Introduction

Quantum field theory (QFT), describing the behaviour of subatomic particles at relativistic
speeds, is usually formulated in terms of the eponymous quantum fields: A quantum field Φ(x)—
and we will restrict to scalar Bose fields in all what follows—is a quantum observable localized at
the spacetime point x, where localization manifests itself in commutativity at spacelike distances:

[Φ(x),Φ(y)] = 0 if x is spacelike separated from y. (1)

However, localization at a single point x is an unphysical over-idealization. By Heisenberg’s
uncertainty relation, one expects a quantity localized arbitrarily sharp in time and space to be
arbitrarily delocalized in energy and momentum; in other words, these fields should have an
infinite energy-momentum transfer.

From a mathematical perspective, this over-idealization is reflected in singularities of the
fields. While often referred to as “operators on a Hilbert space” in the physics literature, the
Φ(x) are actually only defined as quadratic forms: Even in the simplest examples, Φ(x)ψ is
never a normalizable vector in the Hilbert space of the theory, regardless of the vector ψ, not
even if ψ = Ω is the vacuum vector. Only matrix elements 〈ψ1,Φ(x)ψ2〉 make sense as finite
numbers if both ψ1,2 are sufficiently “well-behaved” vectors, for example, with an energy cutoff.
Consequently, products Φ(x)Φ(y) of fields do not exist in general (or require some regularization
procedure), and there is no notion of spectral projections or (quasi-)eigenvalues of Φ(x), all of
which would be fundamental to a physical interpretation.

The usual remedy to this problem is to average the fields (or, mathematically, to treat them
as operator-valued distributions): If g is a smooth, compactly supported function on spacetime,
then Φ(g) :=

∫
dx g(x)Φ(x) can often be defined as an operator, at least on a dense set of

vectors. In other words, smearing in spacetime improves the high-energy singularities of the
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fields, and allows us to define their products etc. This approach, first formalized by Wightman
[1], is known to work at least in free theories as well as in the interacting P (Φ)2 and Φ4

3 models
[2]. However, can this procedure work in all QFTs with self-interaction? Even if that were the
case in principle, the operator domains of the Φ(g) are often hard to access in concrete models,
and their functional analytic properties remain difficult to obtain.

Here we investigate this problem in a specific, simplified model of interaction, namely
integrable QFTs in 1 + 1 spacetime dimensions. (We will recall their construction in Sec. 2.)
Traditionally, in this situation, one tries to define the fields Φ(g) or Φ(x) by specifying their
n-point functions, which are given as an infinite series. However, convergence of this series is
hard to control—yet another reflection of the singular nature of pointlike fields.

We present an alternative approach: We define the quantum field theory indirectly via a net
of local von Neumann algebras associated with spacetime regions. Then, we show that the Φ(g)
exist as (unbounded) operators that are affiliated with the algebras (Sec. 3), thus bypassing the
treatment of products of fields or of their n-point functions. In this way, we ameliorate (though
not eliminate) the convergence problem of the series, breaking it down to a problem that is
tractable at least in the simplest example, the massive Ising model.

The present paper contains a brief and mostly non-technical summary of these results; the
reader is referred to [3] for details.

2. Construction of integrable models

Integrable QFTs are quantum field theories on 1+1 dimensional Minkowski space with a
simplified kind of self-interaction: They describe particles under elastic scattering on the two-
particle level only; scattering between an arbitrary number of particles is merely a combination
of two-particle scattering processes, i.e., the model has a factorizing scattering matrix. There is
no particle creation or annihilation; the particle number as well as the momenta of individual
particles are conserved at all times. Hence, in order to specify such a theory, it is enough to
know the particle spectrum (masses and spin of elementary particles) and the scattering matrix
at the two-particle level. In the present article, we focus on one species of scalar particle of
mass µ > 0, with no bound states. The only input then required is the two-particle scattering
function S. In this section, we recall how a corresponding quantum field theory is constructed
from this data.

2.1. General setup

Our model is specified by the particle mass µ and a two-particle scattering function S, that is, a
meromorphic function which is analytic and bounded in the physical strip R+ i[0, π] and fulfills

S(ζ)−1 = S(−ζ) = S(ζ̄) = S(ζ + iπ). (2)

Examples include the massive Ising model, where S = −1, and the sinh-Gordon model, where

S(ζ) = sinh ζ−i sinBπ/2
sinh ζ+i sinBπ/2 with some B ∈ (0, 1).

Given such function S, one defines a representation of the Zamolodchikov-Faddeev algebra,
a modified CCR algebra with creators and annihilators z†(θ), z(θ), depending on rapidities θ,
which fulfill

z#(θ1)z
#(θ2) = S(θ1 − θ2) z

#(θ2)z
#(θ1) (z# = z†, z), (3)

z(θ1)z
†(θ2) = S(θ2 − θ1) z

†(θ2)z(θ1) + δ(θ1 − θ2) · 1. (4)

These act on a modified Fock space H spanned by n-particle vectors of the form

ψn =

∫

dnθ f(θ1, . . . , θn) z
†(θ1) · · · z†(θn)Ω, (5)
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where Ω is the Fock vacuum. If the support of f is such that the rapidities are in ascending,
respectively descending, order, then ψn can be interpreted as an outgoing, respectively incoming,
particle configuration with wave function f , although this interpretation can be justified only
after introducing local observables [4, Sec. 6].

Spacetime symmetries are represented on H as follows: translations Tx (for x ∈ R
2) and

boosts Bλ (for λ ∈ R) are fixed by the relations

U(Tx)z
†(θ)U(Tx)

∗ = eip(θ)·xz†(θ), U(Bλ)z
†(θ)U(Bλ)

∗ = z†(θ + λ) (6)

and U(Tx)Ω = U(Bλ)Ω = Ω; here p(θ) = µ(cosh θ, sinh θ). Most importantly, spacetime
reflections R act on ψn (as in (5)) by

U(R)ψn =

∫

dnθ f(θ1, . . . , θn) z
†(θn) · · · z†(θ1)Ω. (7)

The generator of time translations, i.e., the Hamiltonian H, is thus given by

Hψn =

∫

dnθ
( n∑

j=1

µ cosh θj

)

f(θ1, . . . , θn) z
†(θ1) · · · z†(θn)Ω. (8)

2.2. Form factor program

In order to construct quantum fields, the longest established approach is the form factor program

(see [5] for a review). Here one makes an ansatz for the local fields as follows. One formally
expands their n-point functions via an intermediate basis of sharp-rapidity states, for example
for n = 2,

〈Ω,Φ(x)Φ(y)Ω〉 =
∞∑

k=0

∫
dθ1 · · · dθk

k!

∣
∣ 〈z†(θ1) · · · z†(θk)Ω|Φ(0)Ω〉
︸ ︷︷ ︸

=:Fk(θ)

∣
∣2ei(y−x)·

∑
j p(θj) . (9)

It turns out that the expansion coefficients Fk, called the form factors (for which we use
slightly different conventions than usual), already determine all n-point functions. The expected
properties of the field Φ, such as locality and covariance under U , lead to restrictions on the
Fk, the form factor equations. Namely, the Fk have meromorphic continuations, analytic where
Im ζ1 < . . . < Im ζk < Im ζ1 + π with at most first-order poles at the boundary of this region,
and they fulfill, 1 ≤ j < k,

Fk(ζ) = S(ζj+1 − ζj)Fk(ζ1, . . . , ζj+1, ζj , . . . , ζk), (10)

Fk(ζ) = Fk(ζ2, . . . , ζk, ζ1 + 2πi), (11)

res
ζ2−ζ1=iπ

Fk(ζ) = − 1

2πi

(

1−
k∏

j=1

S(ζ1 − ζj)
)

Fk−2(ζ3, . . . , ζk). (12)

Given a specific S, explicit solutions of these equations can be found in relevant cases.
However, now returning to the infinite series (9), only very partial results are known about

its convergence [6], which remains the open mathematical point in the construction.

2.3. Algebraic construction

An alternative approach, initiated by Schroer [7], uses an indirect route to describe local
observables. We temporarily depart from pointlike localized objects; as already seen for smeared
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Figure 1. Fields localized in spacelike wedges Figure 2. Intersection of two wedges

fields Φ(g), weaker localization properties lead to milder high-energy singularities. An even less
strictly localized object is the following field:

φ(x) :=

∫

dθ
(

eip(θ)·xz†(θ) + e−ip(θ)·xz(θ)
)

. (13)

This φ is not local in the sense of Eq. (1). However, with φ′(x) := U(R)φ(−x)U(R), one finds

[φ(x), φ′(y)] = 0 if x is spacelike separated to the left of y. (14)

This can usefully be interpreted as follows: φ(x) is localized in the spacelike wedge W ′
x with tip

at x, opening to the left, and φ′(y) is localized in the wedge Wy with tip at y, opening to the
right; the fields commute if the wedges are spacelike separated (see Fig. 1).

As the main advantage of these wedge-local quantities, φ is easy to control mathematically—
it behaves almost like a free field and can be treated with same methods [8, Sec. X.7]. In
particular, the smeared field φ(g) is essentially selfadjoint, hence one can pass to its bounded
functions exp iφ(g), supp g ⊂ W ′

x. We call A(W ′
x) the von Neumann algebra generated by all

exp iφ(g) with supp g ⊂ W ′
x, and analogously we define A(Wy). Importantly, they fulfill

A(W ′
x) = A(Wx)

′, (15)

the prime on the right-hand side denoting the commutant of the von Neumann algebra.
Now for a bounded region O = W ′

x ∩Wy as in Fig. 2, set

A(O) := A(W ′
x) ∩ A(Wy). (16)

This algebra A(O) then contains strictly (though not pointlike) local operators. One can check
without much effort that these algebras are indeed local and covariant in the sense of the Haag-
Kastler axioms [9]. It is not so immediate that A(O) contains any operator except multiples of
the identity; but at least for certain S and for sufficiently large regions, one can establish that
A(O)Ω is indeed dense in H [4, 10].

This approach solves all mathematical convergence problems, but it has a quite different
shortcoming: the explicit form of the local operators A ∈ A(O) remains unclear. Their matrix
elements 〈z†(θ1) · · · z†(θk)Ω, AΩ〉 do fulfill the form factor equations [11]; but in the end, these
operators are “constructed” using the axiom of choice, and no further information about their
relation to pointlike fields or other generators is available.
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3. A combined approach

From the two approaches to local observables described in the previous section, it seems that
we face a binary choice: We can either describe pointlike fields explicitly, but lose control of
convergence issues at high particle numbers; or we can fully treat all convergence issues to obtain
local operators, but have no access to their explicit form.

The aim of this section is to present a construction that combines aspect of those two
approaches, and leads to fully convergent but explicitly accessible observables. We are going
to define these using the explicit expressions for pointlike fields known from the form factor
program. However, we want to interpret them differently: Our aim is not to compute the n-
point functions of the fields Φ(x), nor to investigate whether products of two fields Φ(g1)Φ(g2)
exist. Rather, we make use of the underlying (abstract) von Neumann algebras, and show that
the Φ(g) are affiliated with the local algebra A(O) if supp g ⊂ O. Here being affiliated (the
precise definition will be recalled in Sec. 3.4 below) is the closest possible way to say that Φ(g) is
an element of A(O): It cannot literally be contained in the algebra, since Φ(g) is unbounded but
A(O) consists of bounded operators; but when writing A = V

∫
λ dP (λ) in polar decomposition,

one demands that V and all P (λ) are contained in A(O).
For obtaining this result, we will proceed as follows.

(1) Define the field Φ(g) as a quadratic form. To this end, we use the well-known solutions of
the form factor equations;

(2) Show that Φ(g) is local. Here locality will be defined relative to the wedge-local field φ;

(3) Show that Φ(g) is closable. That is, we want to extend both Φ(g) and its adjoint to operators
on a dense domain, removing one of the particle number cutoffs. It is at this point that
convergence issues of an infinite series show up in the construction;

(4) Show that Φ(g) is affiliated with A(O). This will follow from locality (2) and closability (3)
by an abstract argument.

In the remainder of this section, we will comment briefly on each of these four aspects. Details
of the construction can be found in [3].

3.1. Definition of fields

Our starting point are the meromorphic functions Fk which are solutions of the form factor
equations (10)–(12). Let us give an example for the massive Ising model (i.e., for the case
S = −1): There, for the basic field or order parameter Φ(g), the form factors are given by

F2k+1(ζ) :=
1

(2πi)k
g̃(p(ζ))

∏

1≤i<j≤2k+1

tanh
ζi − ζj

2
, F2k(ζ) = 0. (17)

Compared with [12, 13], note the extra factor g̃(p(ζ)) resulting from averaging in configuration
space. Also, it is evident from (17) that the F2k+1 have poles at ζj − ζi = iπ, the so-called
kinematic poles required by Eq. (12); they will play a role in the following.

Given such a set of form factors F , we can then define our field Φ(g) as (cf. [14, 15])

Φ(g) :=
∞∑

m,n=0

∫
dmθdnη

m!n!
Fm+n(θ + i0,η + iπ − i0)z†(θ1) · · · z†(θm)z(η1) · · · z(ηn). (18)

This gives us Φ(g) as a quadratic form, with well-defined matrix elements 〈ψ1,Φ(g)ψ2〉 if ψj are
“suitable” vectors: First, they should both include a particle number cutoff, so that the sum
(18) is actually finite in matrix elements; hence no convergence issues arise at this point. Second
we demand that they decay sufficiently fast in momentum space; technically, we require that
‖exp(Hα)ψj‖ <∞ where H is the Hamiltonian (8), and α ∈ (0, 1) is fixed.
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3.2. Locality

We need to establish that our fields are local in a suitable sense. This cannot be done in the
usual way (1), since products of fields Φ(g), and hence their commutators, are not defined at
this point. Instead, we consider locality relative to the wedge-local field φ; we want to establish
that

[φ(hL),Φ(g)] = 0 = [φ′(hR),Φ(g)] (19)

when hL is supported spacelike to the left and hR to the right of g. Since φ changes the particle
number only by one, and hence preserves particle-number cutoffs, the commutators in (19) are
well-defined in matrix elements for suitable hL, hR. That the commutators do actually vanish
is then quite direct to verify; it is a consequence of the form factor equations, see [11, Secs. 4.3
and 5.3].

3.3. Closability

We now want to pass from a quadratic form Φ(g), where only matrix elements 〈ψ1,Φ(g)ψ2〉 are
defined, to an (unbounded) operator on a dense domain, that is, Φ(g)ψ should be a normalizable
vector for vectors ψ from a dense set. In other words, we wish to remove the particle cutoff and
energy damping from one side of the matrix element. In mathematical terms, we are aiming at
a densely defined, closed operator (cf. [16, Ch. 3.5]) that extends Φ(g), with a corresponding
extension for its adjoint; see [3, Def. 3.1] for the exact technical conditions.

In this step, convergence aspects of the infinite sum (18) play a role. A sufficient condition
on closability (i.e., the existence of such extension) turns out to be that

∞∑

m=0

2m/2

√
m!

(

‖Fm+n‖(α)m×n + ‖Fm+n‖(α)n×m

)

<∞ (20)

for all n ∈ N, where

‖Fm+n‖(α)m×n :=
1

2
‖T exp(−Hα)‖+ 1

2
‖exp(−Hα)T‖ (21)

and T is the integral operator with kernel Fm+n(θ + i0,η + iπ − i0), θ ∈ R
m, η ∈ R

n.
This summation condition can in fact be verified in the example (17) from the Ising model;

to that end, the test function g needs to be chosen such that g̃ and its derivatives decay faster
than exp(−‖p‖α) in momentum space, i.e., g needs to be of Jaffe class [17]. A main difficulty
in establishing (20) are the kinematical poles of the form factors: They mean that the kernels
Fm+n(θ + i0,η + iπ − i0) are boundary values of meromorphic functions at a pole, i.e., the

T are singular integral operators of non-convolution type. Estimating the norms ‖Fm+n‖(α)m×n

therefore requires considerable technical effort; see [3, Sec. 5.2] for the techniques used.

3.4. Affiliation

Our last step is to establish a relation between the operator Φ(g) and the abstractly defined von
Neumann algebras A(O), as introduced in Sec. 2.3. As mentioned, this is by way of affiliation.

We recall the definition: Let A be a closed operator on a dense domain D(A) ⊂ H, and
let N ⊂ B(H) be a von Neumann algebra. Since A is closed, it can be written in its polar
decomposition: A = V |A| = V

∫
λ dP (λ), where V is a partial isometry, and |A| =

∫
λ dP (λ) is

a positive operator written in spectral decomposition, with spectral projectors P (λ). Now A is
said to be affiliated with N if both V and all P (λ) are elements of N .

Equivalently [18, Thm. 3.16], A is affiliated with N if the following holds: For every operator
B ∈ N ′ (the commutant of N ), we have

BD(A) ⊂ D(A) and ABψ = BAψ for all ψ ∈ D(A). (22)
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Thus, “A is affiliated with N”, for unbounded operators A, generalizes the notion “A is
an element of N” in two equivalent ways: First, its polar data are elements of N ; second, it
commutes with the commutant of N .

The task is now to deduce that our field operators Φ(g) are actually affiliated with A(O),
where supp g ⊂ O. This turns out to be a consequence of locality (relative to the wedge-local
field) and closability. The argument is roughly as follows; details can be found in [3, Sec. 3].

Let O = W ′
x ∩Wy as in Fig. 2 and supp g ⊂ O. We restrict our attention to the Ising model,

where the wedge-local fields φ(h) are in fact bounded operators; they generate the algebras
A(W ′

y) if h varies over all test functions with supph ⊂ W ′
y. It follows from locality (19) that

[Φ(g), φ(h)] = 0, at least in matrix elements. Closability of Φ(g) allows us to maintain this
relation in the sense of operators on the domain of the unbounded operator Φ(g). By criterion
(22), Φ(g) is then affiliated with A(W ′

y)
′ = A(Wy)

′′ = A(Wy); we have used (15) here. By a
similar reasoning, Φ(g) is affiliated with A(W ′

x) as well. It is thus affiliated with A(Wy)∩A(W ′
x),

which equals A(O) by Eq. (16).
Outside the Ising model, where φ(h) is not bounded, the argument is somewhat more

complicated (see [3, Prop. 3.5]). One needs to work with the bounded generators exp iφ(h),
which in turn can be approximated by polynomials in the φ(h). Indeed, an extra technical
assumption is needed here, since it is not clear a priori that B = exp iφ(h) maps the domain of
A = Φ(g) into itself, as required for criterion (22).

4. Conclusions and outlook

As we have summarized in this paper (and as is laid out in more detail in [3]), we have established
the existence of smeared fields Φ(g) in the Ising model as closed operators affiliated with
the local algebras A(O). This was done for the basic field (order parameter), but the same
arguments apply to descendant fields, which are obtained by multiplying the form factors (17)
with symmetric Laurent polynomials in the variables eζj .

This construction bypasses the convergence problems of n-point functions that are inherent
in the form factor program, and replaces them with the summability criterion (20) which can in
fact be verified rigorously. On the other hand, we still retain explicit control about the matrix
elements of our local observables.

The existence of these fields in the Ising model is maybe not very surprising; the same model
has been constructed both in a Euclidean setting [19] and in the algebraic framework [20]. Our
point is rather a conceptual one: It is possible, and technically feasible, to treat the model
directly in Minkowski space, giving sense to the local fields without referring to their n-point
functions.

Whether the same construction applies for more general choices of S, for example in the
sinh-Gordon model [21], remains a point for further investigation. Our present results certainly
give hope that the problem could be settled also in this case, replacing the convergence problem
of the n-point functions with a milder one to show affiliation with the local algebras. However,
additional technical difficulties remain to be overcome. Not only is the structure of the form
factors increasingly intricate, complicating the estimates, but as mentioned in Sec. 3.4, additional
criteria on the domain of the field operators would need to be verified.
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