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Three Reasons Why:
Framing the Challenges of Assuring Al

Xinwei Fang and Nikita Johnson

Department of Computer Science,
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{xinwei.fang, nikita.johnson}@york.ac.uk

Abstract. Assuring the safety of systems that use Artificial Intelligence
(AI), specifically Machine Learning (ML) components, is difficult because
of the unique challenges that AI presents for current assurance practice.
However, what is also missing is an overall understanding of this multi-
disciplinary problem space. In this paper, a model is given that frames
the challenges into three categories which are aligned to the reasons why
they occur. Armed with a common picture of where existing issues and
solutions “fit-in”, the aim is to help bridge cross-domain conceptual gaps
and provide a clearer understanding to safety practitioners, ML experts,
regulators and anyone involved in the assurance of a system with Al.
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1 Introduction

There are several advantages of adopting systems which use machine learning
(ML) components. These advantages range from improving mobility in the au-
tomotive industry to innovative uses in industrical control and hazardous zones.
It seems that very few safety-critical domains remain unaffected by this trend.

Whilst the scale and rate of adoption of ML is novel, the underlying ML tech-
nologies, such as Artificial Neural Networks, are not. Nor are many of the safety
assurance challenges we face when using artificial intelligence - Rushby’s 1988
report expertly explores the issues arising from attempting to assure knowledge-
based AI, and presents some approaches to address these [10]. Thirty years later,
many of the issues remain largely unresolved; one example is our poor under-
standing of software metrics that should take into account, not only the software
behaviour in isolation, but consider the human developer (knowledge, skills and
experience), the development and operational environment, and the objective of
the product [10, p.26]. Without this understanding or theory of software devel-
opment, our existing metrics applied to ML algorithms are still insufficient for
safety assurance.

There have been several research advances and approaches developed to im-
prove ML safety, such as - modelling safety assurance arguments for ML [3],
characterising viewpoints for ML assurance [4], developing appropriate testing
models and argument structures [7], creating models of how and when AT might
become unsafe [11]. However, there remains no consensus on how to resolve the
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assurance challenge, namely - how do we know that a system with ML is safe.
In addition, the introduction of ML components to a system not only creates
new challenges, but acts as a force multiplier for the existing problems in safety
assurance (such as the inheritance of context to subsystems, evidence sufficiency
for claims, epistemic uncertainty introduced during design, etc.).

In order to assure the safety of ML we must first understand assurance and
begin to build a picture of how these new and existing challenges and solutions
relate to each other. To this end, this paper will briefly discuss views of assur-
ance and current practice in Section 2; explore some of the specific differences
between traditional systems and systems with ML components in Section 3;
Section 4 explores the three core challenges that are the subject of this pa-
per; Followed by a dicussion in Section 5; lastly, Section 6 will conclude the
discussion by presenting a potential way forward for assurance of ML.

2 Assurance: Current Practice

At its core, assurance is concerned with managing uncertain negative outcomes.
This is reflected in the definition of assurance in safety standards across several
domains. Even though there is variance in the definitions, all of the standards
approach assurance from at least one of three perspectives.

2.1 Assurance as an Outcome

This is the reasoning why a system is safe. It can exist in the minds of those
developing the system; often as an argument and mental model of how safety
works for that system. It is usually a requirement that this reasoning or justified
true belief in the safety of the system be recorded for internal audit and external
evaluation by regulatory bodies. It is represented and communicated through a
combination of system artefacts, risk analysis models, test reports, justification
reports and safety cases, etc..

2.2 Assurance as a Process

This describes the steps required to develop and record the safety reasoning for
a system. Whilst the develop part of assurance is concerned with risk reduction
activities and good engineering (sometimes called ensurance), the record part
of the process is concerned with systematically documenting the activities, and
argumentation for building convincing reasoning. The result of this Assurance
Process is the Outcome.

2.3 Assurance as a Relationship

This is the relationship that exists between the person making the assurance
argument and the person whom they wish to persuade. There is an intuitive
understanding of this when phrases such as ”I assure you that ...”7 are used in
everyday speech; however the relationship is not as obvious from current assur-
ance practice and the standards. This is because there are implicit assumptions
and shared understanding, e.g. when utilising a standard, of who is making an
argument, and to whom it is being made.

Each of these perspectives present unique challenges when ML is incorporated
into a system.
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3 Differences Between Traditional and New

Having explored the existing assurance approaches in the previous section, the
difference between traditional (non-autonomous system) and new systems (au-
tonomous system) is discussed in this section.

Table 1. Differences Between AGV and SGV

AGYV (traditional system) SGV (new AI system)

Navigation along preplanned paths Unplanned paths

Static map of environment Dynamic environment modelling
Separation from humans and hazard zones |Interaction with humans

Linear sense function Complex non-linear sense function
e.g. detect magnetic strip e.g. detect ”a person”
Programmed decision-making Autonomous decision-making

Table 1 shows the differences between an Automated Guided Vehicle (AGV)
and Self-Guided Vehicle (SGV). Pre-programmed AGVs have been manufac-
tured and use for over thirty years, especially for applications where the tasks
are simple and repetitive, such as moving stock in a warehouse. SGV are new
systems because they allow for greater flexibility and capabilities through au-
tonomous interaction with the environment. One of the major differences is in
their sensing process. Both processes might have the sensing requirement not
to collide with an object. However, for the added capability of interacting with
humans, the SGV also needs to identify what a ’human’ is.

To formulate the sensing process, let us denote S as the sensing state in real
physical environment and X as the domain of sensors, and consider a sensing
process as a function S(): X — S. Then, a data mapping from the sensor X
can be formalised as S’(X) In the AGV application, the sensed data S(X) is
directly related to the sensing state S (the objects). For example, the output
of a proximity sensor is directly related to the presence of objects. Therefore,
the relationship between a sensing state and data can be represented as S (X)+
€, = S, where the e stands for uncertainties. We often say that data S(X) is
€, accurate with respect to the sensing state S, denoted as Q(g’(X),es). By
minimising €; and analysing the cause of it, the uncertainty e, can be bounded.
In that case, the requirements on data S (X) can be directly decomposed into
requirements on sensor X, and evidence can be collected by testing sensor X.

However, in the SGV application, since no sensors can physically and directly
sense a "human’, the sensed data S (X) is no longer directly related to the sensing
state S (human). For example, a camera produces images which are RGB values.
In order to identify a person from the images, a process of images is often needed.
We symbolise such process as F'(). As a result, the previous relationship can be
written as F(Q(S(X), €s)) + €x = S, where ¢, and ep are the accuracy for the
sensing and the processing respectively. Since it is difficult for system developers
to determine the F'(), ML is the alternative that provides an approximation for
F(). However, the F() determined by ML is sensitive to many variables such
as data distribution, sensor accuracy, or model parameters [2], which prevent
the safety requirements propagating through them. This causes issues for safety
assurance.
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4 Understanding Challenges for Assuring ML

The objective of safety assurance is to bound uncertainty and build belief in the
safety through various means, such as past experience, best practice and stan-
dards. Safety assurance often involves a number of tests such as code verification,
timing, independence and formal tests to evaluate whether lower level require-
ments can be met. This is based on the assumption that the lower level safety
requirements maintain the intent of higher level requirements through decompo-
sition [6], however since requirements are not decomposed in the traditional sense
with ML components, the assumptions that form the foundation for standards
are violated. Current practice is not directly applicable [2]. In this section, three
challenges related to assuring ML are identified. Figure 1 illustrates these.

C1
Description of acceptably
safe for the {System} in
{Operational Conext}.

G1
{System} is acceptably

safe to operate. Goal claim

Ki
P3 v reasoning
Stl
Argument over iden_ti_fied {Requirements} at Context context
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....................... 6 evidence
G2 c2
¢ | {Requirement} demonstrably Criteria for "good" in a given —_— asserted
: |addressed through evidence. [ : specific {Context} context
P2 P — asserted
i 3 vl i inference
Snl e — (hidden)
Evidence to argument
support structure
{Requirement}
: satisfaction.
: challenge
(P : :

Fig. 1. Argument structure showing ML assurance challenges

4.1 Challenge 1 - Specifying tests without considering contexts (P1)

The existing safety standards require a system to undertake a number of tests
(e.g. timing analysis). By passing those tests, evidence to support lower level re-
quirements is provided. In traditional system satisfying lower level requirements
leads to higher level requirements being satisfied because of the strong traceable
decomposition and context inheritance. However, current standards were not de-
signed for systems with ML, therefore it is possible for them to pass the tests,
but behaviour to be unsafe'. For example, the issues of reward hacking in ML
component is unrelated to how the software is coded [1].

! Note that this is true for traditional systems, however there is exponentially more
uncertainty for ML system behaviour.
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4.2 Challenge 2 - Specifying contexts without providing tests (P2)

The behaviour of a ML component is difficult to bound as it is sensitive to many
variables as discussed in Section 3. There are many works available that try to
bound the behaviours of a ML component [3,4,9]. Despite being from different
perspectives (e.g. argue from performance level [9], functional viewpoints [4],
and insufficiency [3]), they all provide a clear context that the behaviour of their
ML components can be bounded. However, the challenge then becomes how
to provide evidence to support their argument as no test options were given.
For example, one of a lower level goal in [3] is ‘The function is robust against
distributional shift in the environment’. Since it is not clear how evidence can
be collected to support this requirement, the problem is still unsolved.

4.3 Challenge 3 - Connecting to the overall safety argument (P3)

The primary requirement in current work for assuring ML components are not
related to the overall safety case. For example, the primary requirement in [3] is
‘The residual risk associated with functional insufficiencies in the object detection
function is acceptable’. This is analogous to using reliability as a measure for
safety. As a violation of these lower level requirements does not necessarily lead
to unsafe behaviours, nor does meeting these requirements guarantee safety. It is
therefore important to understand how the safety case for ML can be connected
to the overall one, and how domain specific concerns can be traded-off to produce
a safe system.

5 Implications

The statistic that that humans are the cause of 94% of road accidents [8] is
often used as motivation for the adoption of autonomous vehicles; it is implied
that the number of accidents would be reduced if the human driver was replaced
with AI. Whilst there are many issues with this claim, what this data does not
take in to account is all the accidents that human intervention prevented. By
its nature this kind of data is difficult to model, however it is paramount that
these subtle domain interactions are understood so that ”good” safety criteria
for ML algorithms can be established. This could be achieved through different
ways through assurance process and outcome.

5.1 Change in Process and Outcome

In current assurance arguments, higher level safety requirements are decom-
posed into several lower level requirements with respect to properties such as
hardware and software functionality. Therefore, it is proposed that decomposi-
tion of requirements through ML components should follow the same philosophy.
However, the decomposition should occur with respect to domain-specific safety
properties. This requires a deep understanding of the domain interactions, that
must be skilfully mapped to the new operational context. For example, the in-
tent of the heuristics that people use to avoid being on a designated AGV path
should be incorporated into the SGV design. This presents a paradigm shift that
goes well beyond the requirements specific only to the ML component, such as
mitigating the effects of distributional shift.
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5.2 Change in Relationship

Humans being assisted or replaced by systems that use Al necessitates a new way
of thinking about trust and confidence that is different to traditional human-
human assurance. The consideration of this area is outside the scope of this
paper, however there has been significant advances to understand what is oc-
curring inside the ML algorithm [5] which is likely to have a significant effect on
the assurance process and outcome.

6 Conclusion

The nature of ML systems means that, whilst there is a strong consensus on
many of the problems introduced, there is no unifying conceptualisation of the
problem of assuring ML. This forms a barrier of communication between safety,
ML developers, system engineers, etc.. In this paper, a new tripartite model
of the challenge of assuring ML was presented to address this understanding
issue. Using such a model for communication it is possible to co-ordinate inter-
disciplinary work and improve both the quality and safety of the system.

Acknowledgements. Thanks to the Assuring Autonomy International Pro-
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