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IRREDUCIBLE MODULES FOR PSEUDO-REDUCTIVE GROUPS

MICHAEL BATE AND DAVID I. STEWART

Abstract. We classify the irreducible representations of smooth, connected affine algebraic groups
over a field, by tackling the case of pseudo-reductive groups. We reduce the problem of calculating
the dimension for pseudo-split pseudo-reductive groups to the split reductive case and the pseudo-
split pseudo-reductive commutative case. Moreover, we give the first results on the latter, including
a rather complete description of the rank one case.

1. Introduction

Let k be a field and let G be a smooth connected affine algebraic k-group. We are interested in the
irreducible k-representations of G. Since the only irreducible representation of a unipotent k-group
is the trivial representation k itself, any normal unipotent subgroup of G must act trivially on any
irreducible representation of G. In particular, the k-unipotent radical Ru,k(G)—that is to say the
largest smooth connected normal unipotent k-subgroup of G—acts trivially and so we may as well
assume Ru,k(G) = 1; in other words G is a pseudo-reductive group. The main result of this paper
is to classify the irreducible representations of G in terms of those of a maximal torus, effectively
completing a programme started in the fifties by Chevalley.

Pseudo-reductive groups have been the focus of a high degree of interest in recent years, due for
the most part to the monograph [CGP15] which gives a remarkably transparent structure theory.
It says that almost all the time, G is standard: that is, isomorphic to a certain type of systematic
modification of Weil restrictions of connected reductive groups; the modification process involves
changing a Cartan subgroup—which is typically far from a torus. For simplicity of exposition all
our reductive groups are henceforth assumed to be connected.

When G is reductive and split, the representation theory of G over arbitrary fields is rather exten-
sive; the reader is referred to [Jan03] to see this in all its glory, but we mention some highlights.
Firstly, there is, due to Chevalley, a parametrisation of the simple representations by dominant
weights, with such representations arising as the socles of certain universal induced modules which
are defined over Z—the latter have an elegant formula for their characters and dimensions courtesy
of Weyl. If the characteristic of k is 0, these induced modules are irreducible, but even when they
are not, there are effective methods of calculating the characters of their simple socles in many
cases, using the Anderson–Jantzen sum formula, and informed by the so-called alcove geometry
induced by the affine Weyl group (in particular the Linkage Principle). These methods have been
implemented algorithmically by Frank Lübeck [Lüb01] and thousands of characters (in arbitrary
characteristic) are now available. Furthermore, when the characteristic is huge relative to the root
system, it is a result of a number of authors that Lusztig’s character formula holds, relating the
characters of simple modules to those of the induced modules via Kazhdan–Lusztig polynomials;
technically, this gives information only about the principal block, but the remaining characters can
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2 M. BATE AND DAVID I. STEWART

be deduced by use of Jantzen’s translation functors and Steinberg’s tensor product theorem. It
should be mentioned that work of G. Williamson [Wil17] tells us that the characteristic must be at
least exponential in the rank of simple factors for Lusztig’s formula to hold, so that there remains
a conceptual hole in the theory, but one which continues to be closed as time goes on; see [RW18]
for the latest developments, including a replacement conjecture.

The representation theory of split reductive groups is all predicated on the commutative case: a split
reductive commutative group is simply a product of copies of the multiplicative group of the field and
its representations are all well-known to be semisimple, being just sums of one-dimensional weight
spaces. Since this is completely false in the context of commutative pseudo-reductive groups—and
their classification is thought to be out of reach—it has been expected that their representation
theory should be intractable. However, in the case where G is pseudo-split—that is, it contains a
split maximal torus—we are able to classify the simple representations by dominant weights and
reduce the case of giving a dimension formula to understanding the commutative pseudo-reductive
case together with the reductive case.

The possibility for a breakthrough owes itself to the following crucial theorem, [CGP15, Thm. 3.4.6]
(or the simpler proof of [CP17, Thm. 5.4.4]):

Theorem 1.1 (Conrad–Gabber–Prasad). Let G be a pseudo-split pseudo-reductive k-group with

split maximal torus T . Then G has a Levi k-subgroup M containing T .

Recall that M is a Levi subgroup of G if M is reductive and Gk̄ = Mk̄ ⋉Ru(Gk̄), where Ru(Gk̄) is
the unipotent radical of Gk̄. Our main theorem constructs a correspondence between the irreducible
G-modules and the irreducible M -modules and reduces a description of the dimension of irreducible
G-modules to that of M -modules and C-modules where C is a Cartan subgroup of G.

Theorem 1.2. Let G be a pseudo-split pseudo-reductive group with Cartan subgroup C containing

a split maximal torus T . Let M be a Levi subgroup of G containing T . Then the isomorphism

classes of irreducible representations of G are in 1-1 correspondence with the dominant weights of

M . If X(T )+ denotes the set of dominant weights for T ⊆ M , then for λ ∈ X(T )+ we denote

by LG(λ) the corresponding irreducible representation. On restriction, LG(λ) is M -isotypic and

semisimple. Furthermore,

dimLG(λ) = dimLM (λ) · dimLC(λ).

For the dimension formula, note that since a Cartan subgroup C contains a split maximal torus T
which must be its Levi subgroup, the first part of the theorem guarantees a representation LC(λ)
unique up to isomorphism for any weight λ ∈ X(T ).

As mentioned above, a complete description of dimLM (λ) is thought to be out of reach for p small
compared to the root system of M , though at least there are algorithms that in principle compute
any given example. By contrast, there are no results at all on dimLC(λ). We can give a formula for
the latter in the case C = Rk′/k(Gm) for k′ a finite non-zero reduced purely inseparable k-algebra
(Theorem 5.8). Here is the simpler version of this theorem when k′ is a purely inseparable field
extension. In order to state the result, we need some notation: let k′/k be a purely inseparable
extension of fields of degree q = pr and let λ ∈ Z. Then we let k′(λ) denote the subfield of k′

generated by k and (k′)λ. Note that if λ is coprime to p and k′/k is purely inseparable, then the
kernel of the group homomorphism x 7→ xλ on (k′)∗ is contained in k. The fundamental theorem
of homomorphisms now implies that any element of (k′)∗ lies in the product of k and the image of

this map, so in this case k′(λ) = k′. More generally, one can see that if we write λ = pνp(λ)µ with

µ coprime to p then k′(λ) = k′(pνp(λ)).
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Theorem 1.3. Let k′/k be a purely inseparable extension of fields of degree q = pr and let C =
Rk′/k(Gm). Then for any λ ∈ Z we have

dim(LC(λ)) = [k′(λ) : k].

This is a good moment to point out that if G is a general pseudo-split pseudo-reductive group,
most simple G-modules are not absolutely irreducible, in contrast with the split reductive case. If
V is an absolutely irreducible G-module then Vk̄ is an irreducible Gk̄-module and the Lie–Kolchin
theorem implies that Ru(Gk̄) must act trivially. For example, if G = C is as in the theorem above,
we have Gk̄

∼= Gm×Ru(Gk̄), so that the simple Gk̄-modules are 1-dimensional, whereas this is true
of simple G-modules if and only if k′(λ) = k. Indeed, for any pseudo-split, pseudo-reductive G,
unless dim(LC(λ)) = 1, we have LG(λ) is not even absolutely semisimple, though it is absolutely
indecomposable, since the socle of LG(λ)k′ is still irreducible for any extension of fields k′/k; see
Remark 4.7 below.

For split reductive G′, as the action of G′ on LG′(λ) factors through the Frobenius map F νp(λ), we
have that Rk′(λ)/k(LG′(λ)) furnishes us with a G-module with the correct highest weight and the
right dimension. Furthermore, the Weil restriction of a reductive k′-group G′ across a field extension
k′/k is pseudo-split if and only if G′ is split and k′/k is purely inseparable (see [CGP15, A.5.15]).
Hence, the following consequence of Theorem 1.3 is immediate.

Corollary 1.4. Let k′/k be a purely inseparable extension of fields. If G = Rk′/k(G
′) for G′ split

reductive, then LG(λ) = Rk′(λ)/k(LG′(λ)).

We finish this introduction by returning to the general question of classifiying the irreducible
representations for an arbitrary smooth connected affine algebraic k-group. First recall that the
paper [Tit71] describes how to relate the irreducible representations for a non-split reductive k-
group G to a split reductive group GK via Galois cohomology, where K/k is an appropriate Galois
extension. One associates isomorphism classes of irreducible representations to orbits of the Galois
group Γ = Gal(K/k) on the dominant weights of a maximal torus T of GK . The same programme
is straightforward to apply in our situation, reducing the classification of irreducible modules for
general pseudo-reductive groups to the pseudo-split case, and giving rise to the following theorem.

Theorem 1.5. Let G be a smooth connected affine algebraic k group, and let G′ = G/Ru,k(G) be

its maximal pseudo-reductive quotient. Given a maximal torus T ′ of G′, there is a finite Galois

extension K/k so that G′
K is pseudo-split with split maximal torus T ′

K . The Galois group Γ =
Gal(K/k) acts on the dominant weights X(T ′

K)+, and there is a one-one correspondence between

Γ-orbits in X(T ′
K)+ and isomorphism classes of irreducible representations of G.

Moreover, if V is an irreducible representation of G corresponding to the Γ-orbit {λ1, . . . , λr}, then
VK decomposes as a direct sum of the irreducible G′

K-modules LG′

K
(λi), each of which appears with

the same multiplicity.

2. Preliminaries

We collect some basic material in this section. Our main references for the theory of algebraic
groups are [CGP15] and [Jan03] and our notation will be kept consistent with those monographs.
In particular all rings are commutative and unital.
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For k a ring, let G be an affine algebraic k-group, that is a functor k−Alg → Grp which is
represented by a finitely presented k-algebra k[G], in other words G(?) ∼= Homk−Alg(k[G], ?). Note
that we do not insist that algebraic groups be smooth.

2.1. G-modules. Let M be a k-module (possibly infinite-dimensional). Then we may define a
group functor Ma : k−Alg → Grp so that Ma(A) = M ⊗k A inherits a group structure from the
additive group on A. Note that, even when k is a field, Ma is only an algebraic group when M
is finite-dimensional. Recall that an action of G on a k-functor X is a morphism (i.e. a natural
transformation) φ : G × X → X such that φ(A) : G(A) × X(A) → X(A) is an action of the
group G(A) on X(A) for each k-algebra A. In case G acts on Ma such that the action of G(A) on
M(A) is A-linear for each k-algebra A, we say M is a representation for G, or more frequently in
this paper, a G-module. Equivalently, one may use the Hopf algebra structure on k[G] to define a
G-module M to be a comodule for k[G]. These definitions permit the possibility of working with
infinite-dimensional modules, though if V is a finite-dimensional G-module then it corresponds to a
homomorphism G→ GL(V ) of algebraic groups. Of course, if k → k′ is a homomorphism of rings
and M is a G-module then Mk′ := M ⊗ k′ acquires an action of the base change Gk′ of G making
it into a Gk′-module.

Remark 2.1. If G is smooth and k is an algebraically closed field then one may more straightfor-
wardly define a G-module to be a vector space M over k on which G(k) acts rationally through
k-linear maps. Here to act rationally means that if g ∈ G(k) and (vi)i∈I is a basis for M then
g.vi =

∑

j∈J fji(g)vi for fji ∈ k[G] with cofinitely many of the fij being zero.

The collection of G-modules forms a category G-Mod, with morphisms being G-equivariant k-linear
maps. If M and M ′ are G-modules, the full collection of such morphisms is written HomG(M,M ′).
An important fact [Jan03, I.2.10(7)] is that the HomG bifunctor commutes with base change across
flat extensions, i.e.

(1) HomG(V,W )⊗ k′ ∼= HomGk′
(V ⊗ k′,W ⊗ k′).

If G is flat, then it is an immediate consequence of the definitions that all G-modules are locally

finite, that is to say that for any m ∈M(k) there is a unique minimal finitely generated submodule
G-submodule kGm of M containing m. It follows that all simple G-modules over a field are finite-
dimensional. Furthermore, the category of G-modules is abelian.

One may consult [Jan03, §I.2] for more details.

2.2. Representations of Gm. The Z-defined group scheme Gm is the functor Rng→ Grp which

returns the group of units R× of any ring R. (It is represented by the algebra Z[t, t−1].) Let k be
a ring and let W be a non-zero (Gm)k-module. If there is λ ∈ Z such that a · w = aλw for any
k-algebra A, w ∈W (A) and a ∈ (Gm)k(A) = A×, then we say W is a weight module (of weight λ).
More typically k will be a field and so W (k) will be a vector space over k, in which case we refer
to it as a weight space (of weight λ). By [Jan03, I.2.14(4)], any (Gm)k-module V is semisimple,
breaking into a sum of 1-dimensional irreducible weight spaces; the resulting weights are referred
to as the weights of V . If λ is a weight of V then Vλ is the sum of all submodules of V which are
weight modules of weight λ. When k is a field, then an irreducible representation is a 1-dimensional
weight space. We denote by kλ a 1-dimensional weight space of weight λ. We will usually abuse
notation by identifying the character group X(Gm) with Z.
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In many cases it will be simpler to consider Gm as a k-group over some ring k (which will usually
be a field), in which case we will just write Gm in place of (Gm)k.

2.3. Representations of unipotent groups. In this section let k be a field. Recall that a k-
group U is unipotent if it is isomorphic to a closed subgroup of the group Un of strictly upper
triangular n× n matrices over k for some n. In the case that k is a field of characteristic p and U
is a smooth k-group, for U to be unipotent, it suffices for there to be some e such that the pe-map
on U factors through the identity. In order to apply the Lie–Kolchin theorem to a solvable group
G, one needs G to be split (which happens in the case k is algebraically closed), but when G is a
unipotent k-group one can show, [SGA3, Exp.XVII, Prop. 3.2]:

Proposition 2.2. Let U be any unipotent k-group. Then the only simple U -module is the 1-
dimensional trivial module, k.

2.4. Induction. We construct simple modules by induction. The archetypal use of induction for
reductive algebraic groups is of simple modules for a maximal torus, lifted to a Borel subgroup B
and induced to G. Such modules are then finite-dimensional since G/B is a projective variety. The
reader is warned that the induced modules we consider are generally infinite-dimensional.

The essential definition is this: Let k be a unital ring and M be an H-module for H a closed flat
subgroup scheme of the flat k-group scheme G and let Ma be the underlying k-group functor of M .
Then from [Jan03, I.3.3] we have

IndGH(M) = {f ∈ Mor(G,Ma) | f(gh) = h−1f(g) for all g ∈ G(A), h ∈ H(A) and all k-algebras A},

is a G-module via (g1 · f)(g) = f(g−1
1 g). Of course, if H = 1 is the trivial subgroup of G we have

IndGH(k) = k[G] is the co-ordinate algebra of G, considered as a left G-module.

A key feature of induction is Frobenius reciprocity. For a G-module N and H-module M , we have

(2) HomG(N, IndGH(M)) ∼= HomH(ResGH(N),M),

where ResGH(N) = N |H is the obvious H-module obtained by restriction.

If G is unipotent and k is a field then, then Prop. 2.2 implies that k is the only simple module, and
taking H = 1, the above equation gives

(3) k ∼= HomH(k, k) ∼= HomG(k, Ind
G
1 (k)) = HomG(k, k[G]).

Thus k[G] has a unique simple module in its socle (and is therefore indecomposable).

This argument can be run in reverse, so that if one shows an induced module has a simple socle
then it will follow that there is exactly one simple G-module up to isomorphism which has an
H-homomorphism to the H-module being induced.

Another fact we need is that induction commutes with base change, [Jan03, I.3.5(3)]. Let k′ be a
flat k-algebra. Then we have for each H-module M a canonical isomorphism

(4) IndGH(M)⊗ k′ ∼= Ind
Gk′

Hk′
(M ⊗ k′).

Lastly, we recall the tensor identity, [Jan03, I.3.6]. Let N be a G-module that is flat over k. For
any closed flat subgroup scheme H of G and any H-module M there is a canonical isomorphism of
G-modules

(5) IndGH(M ⊗ ResGH(N)) ∼= IndGH(M)⊗N.
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2.5. Weil restriction. Since the notion of Weil restriction is at the heart of the structure theory of
pseudo-reductive groups, we recall some of the important features from [CGP15, §A.5]. If B → B′

is a finite flat map of Noetherian rings, and X ′ a quasi-projective B′-scheme, one may define the
Weil restriction X := RB′/B(X

′). Then X is a B-scheme of finite type satisfying the universal
property

X(A) = X ′(B′ ⊗B A),

for A any B-algebra.

A key fact is that Weil restriction is right adjoint to base change along Spec(B)→ Spec(B′). That
is to say that there is a bijection

(6) HomB(Y,RB′/B(X
′)) ∼= HomB′(YB′ , X ′),

which is natural in X ′ and the B-scheme Y . Two situations are particularly important. If X ′ = ZB′

for a B-scheme B′ then taking Y = Z in (6), one has the identity map on the right-hand side,
giving a canonical map Z → RB′/B(X

′); [CGP15, A.5.7] implies that this map is a closed immersion
provided Spec(B′) → Spec(B) is surjective (which will be true if B is a field and B′ is non-zero,
since then Spec(B) is a single point). Conversely, if we take Y = RB′/B(X

′) the identity map on
the left-hand side corresponds to a canonical map q : RB′/B(X

′)B′ → X ′; [CGP15, A.5.10] implies
this map is is surjective on all A-points for A a B-algebra provided B is a field and B′ is a finite
local B-algebra with a purely inseparable residue field over B.

In case X ′ = G′ is a B′-group, we find G := X is a B-group. When B = k is a field, and B′ = k′

is a nonzero finite reduced k-algebra, then G′ is pseudo-reductive whenever G is reductive. If G′ is
defined over k and we choose a k-descent H of G′, then the remarks above show that H embeds as
a canonical subgroup in G; in particular this holds in the case that G′ is split reductive, hence:

(7) If G is a split reductive k-group, then G embeds as a canonical subgroup of Rk′/k(Gk′).

3. Existence and uniqueness

Let k be an imperfect field of characteristic p and let G be a pseudo-split, pseudo-reductive k-group.
Then by [CGP15, Thm. 3.4.6], G has a Levi subgroup M , containing a split torus T . A choice of
Borel subgroup BM ⊇ T in M containing negative root groups defines a partial ordering on weights
together with a set of dominant weights X(T )+. Since everything is flat over k, we may apply all
the results of the previous section. Moreover, by [Jan03, II.2.4], each simple module for M has a
unique highest weight λ ∈ X(T )+, and any such is isomorphic to LM (λ) := SocM (IndMBM

(λ)).

Having fixed this notation, we prove essentially the same is true forG. DefineQG(λ) := IndGM (LM (λ))
and let k′ be the minimal field of definition of the unipotent radical of G, so that Gk′

∼= Mk′ ⋉
Ru,k′(Gk′). Therefore, theMk′-module LMk′

(λ) inherits aGk′-structure by allowing U := Ru,k′(Gk′)
to act trivially on LMk′

(λ); conversely U acts trivially on any simple Gk′-module, so this structure
is unique. Write LGk′

(λ) for this module.

Theorem 3.1. The socle of QG(λ) is a simple G-module LG(λ). Any simple module for G is

isomorphic to LG(λ) for precisely one λ ∈ X(T )+.

Proof. Let λ ∈ X(T )+. Define LG(λ) := SocG(QG(λ)) = SocG(Ind
G
M (LM (λ))). Then LG(λ) is

non-zero if and only if there is a module V such that HomG(V,QG(λ)) 6= 0, which is true if and
only if 0 6= HomG(V,QG(λ))k′ ∼= HomGk′

(Vk′ , QG(λ)k′), using (1).
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By Frobenius reciprocity and (4) we have

HomGk′
(LGk′

(λ), QG(λ)k′) ∼= HomMk′
(LMk′

(λ), LMk′
(λ)) ∼= k′

and in particular QG(λ) 6= 0. Furthermore, since Ru,k′(Gk′) acts trivially on any simple Gk′-
module, any simple Gk′-module is isomorphic to LGk′

(µ) for some µ. In particular, we have
dimk′ HomGk′

(LGk′
(µ), QG(λ)k′) = δλµ, so QG(λ)k′—thus also QG(λ)—is indecomposable, with

simple socle. Therefore LG(λ) = SocG(QG(λ)) is a simple G-module as required. Furthermore,
sinceQG(λ)k′ has simple socle LGk′

(λ), an isomorphism LG(λ) ∼= LG(µ) implies LMk′
(λ) ∼= LMk′

(µ),
so that λ = µ.

Finally take any simple G-module V . This is finite-dimensional by local finiteness and so ResGM (V )
has a simple M -quotient isomorphic to LM (λ), say, with λ ∈ X(T )+. By Frobenius reciprocity, we
get a homomorphism V → QG(λ), giving an isomorphism V ∼= LG(λ). �

Remarks 3.2. (i). The proof of the theorem actually shows that for any affine algebraic group G
over a field k (not necessarily connected or smooth), if G admits a subgroup M such that for some
field extension k′/k, we have Gk′

∼= Mk′ ⋉ U for some unipotent k′-group U , then its isomorphism
classes of irreducible representations are in one-to-one correspondence with those of M .

(ii). The relationship between LG(λ)k′ and LGk′
(λ) is not as straightforward as the notation might

suggest; in particular, LG(λ)k′ is not even semisimple in general. See Remark 4.7(i) below.

4. Dimension formula and restriction to M

Keep the notation of the previous section. Let C = ZG(T ) be a Cartan k-subgroup of G. Then by
Theorem 3.1, there is a unique simple C-module for any λ ∈ X(T ). (Note that C is commutative
so all weights are dominant for C.) Here we prove the following.

Theorem 4.1. Let λ ∈ X(T )+. Then

dimLG(λ) = dimLM (λ) · dimLC(λ).

Following [CGP15, §2.1], as G is pseudo-split, we may take λ a regular cocharacter with C = ZG(λ).
We may define B := PG(λ) as the subgroup whose A-points for any k-algebra A is the collection

PG(λ)(A) := {g ∈ G(A) | lim
t→0

λ(t)gλ(t)−1 exists}.

Then B is a minimal pseudo-parabolic subgroup or pseudo-Borel subgroup, and we may assume
that it corresponds to the negative roots. Define also B+ := PG(λ

−1), the corresponding opposite
pseudo-Borel. We have the decompositions B := C⋉U and B+ := C⋉U+ where U := UG(λ) with

UG(λ)(A) := {g ∈ G(A) | lim
t→0

λ(t)gλ(t)−1 = 1},

and U+ := UG(λ
−1); indeed U = Ru,k(B) and U+ = Ru,k(B

+). Furthermore, B ∩ B+ = C, by
inspection.

The commutativity of C implies that any weight space for T ⊆ C is stable under C. From Theorem
3.1 we therefore must have a submodule isomorphic to LC(µ) in the C-module LG(λ)λ for some
µ ∈ X(T ). It is straightforward to see that we must have λ = µ. Thus the λ-weight space of LG(λ)
is dimension at least LC(λ). We aim to exhibit a G-module whose highest weight is λ and whose
λ-weight space is dimension LC(λ). Thence we will observe that Res

G
M (LG(λ)) is M -semisimple and

isotypic and the dimension formula will follow. For this we follow the programme of [Jan03, §II.2].
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For a G-module V , the fact that U and U+ are unipotent implies that SocU (V ) and SocU+(V ) are

non-zero modules for U with trivial composition factors. Thus V U and V U+

(the subspaces of U -
and U+-fixed vectors) are both non-zero.

As C normalises U (resp. U+), V U (resp. V U+

) is a B-submodule (resp. B+-submodule) of V on

which U (resp. U+) acts trivially. A simple B-submodule W of V U (resp. B+-submodule of V U+

),
restricts to a simple C-module W |C ∼= LC(λ) (resp. W |C ∼= LC(λ

′)) guaranteed by Theorem 3.1;
we denote the isomorphism class of W by LB(λ) (resp. LB+(λ′)). We have thus:

there are λ, λ′ ∈ X(T ) with HomB(LB(λ), V ) 6= 0 6= HomB+(LB(λ
′), V ).

If V is finite-dimensional (for example if V is simple), then we may apply the above to V ∗ and
dualise to get

there are λ, λ′ ∈ X(T ) with HomB(V, LB(λ)) 6= 0 6= HomB+(V, LB+(λ′)).

Now, using Frobenius reciprocity (2), we get

Lemma 4.2. If dimV <∞, then there are λ, λ′ ∈ X(T ) with

HomG(V, Ind
G
B(LB(λ))) 6= 0 6= HomG(V, Ind

G
B+(LB+(λ′)))

Denote the module IndGB(LB(λ)) by H0(λ).

From [CGP15, Prop. 2.1.8(3)] we have:

(8) U+B and UB+ are dense in G.

With this in hand, we can prove:

Proposition 4.3. Let λ ∈ X(T ) with H0(λ) 6= 0.

(a) We have dimH0(λ)U
+

= dimLB(λ) and H0(λ)U
+

= H0(λ)λ.
(b) Each weight µ of H0(λ) satisfies w0(λ) ≤ µ ≤ λ, where w0 denotes the longest element in

the Weyl group W .

Proof. Recall that

H0(λ) = {f ∈ Mor(G,LC(λ))|f(gb) = b−1f(g) for all g ∈ G(A), b ∈ B(A) and all A}.

The action of G is given by left translation. Since U+ acts trivially on H0(λ)U
+

and U ⊆ B, given

f ∈ H0(λ)U
+

we have

f(u1cu2) = c−1f(1)

for all u1 ∈ U+(A), c ∈ C(A), u2 ∈ U(A), and all A. Thus f(1) determines the restriction of f to
U+B, and hence in fact determines f itself as U+B is dense in G by (8). Now f(1) ∈ LB(λ), so

dimH0(λ)U
+

≤ dimLB(λ). Moreover, the evaluation map ǫ : H0(λ) → LB(λ) given by f 7→ f(1)

is a homomorphism of B-modules which is injective on H0(λ)U
+

. This implies

H0(λ)U
+

⊆ H0(λ)λ.

If µ is a maximal weight of H0(λ) then H0(λ)µ ⊆ H0(λ)U
+

⊆ H0(λ)λ, but this allows us to conclude

both that H0(λ)U
+

= H0(λ)λ and that µ ≤ λ for any weight µ of H0(λ).
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Now, restricting to the Levi subgroup M of G, we see that if µ is a weight, then so is w0(µ)
by [Jan03, II.1.19(1)], hence w0(µ) ≤ λ and w0(λ) ≤ µ. �

We have thus found a module H0(λ) of highest weight λ whose λ-weight space is of dimension
dimLC(λ) = dimLB(λ) as required. In fact, one also sees:

Corollary 4.4. If H0(λ) 6= 0 then SocG(H
0(λ)) is simple.

Proof. If L1 and L2 are two simple submodules of H0(λ) then L1⊕L2 ⊆ H0(λ) hence LU+

1 ⊕LU+

2 ⊆

H0(λ)U
+

and dimH0(λ)U
+

≥ 2 · dimLC(λ), contradicting Prop. 4.3(a). �

In order to finish, we first need to show that SocG(H
0(λ)) coincides with LG(λ) as defined in the

previous section. Just for the following proof let us denote L̃G(λ) := SocG(H
0(λ)).

Lemma 4.5. We have L̃G(λ) ∼= LG(λ).

Proof. Denote H0
M (λ) := IndMBM

(λ) where BM is the lower Borel subgroup of M . This module is
the injective hull of LM (λ) in the category of modules with weights µ ≤ λ; see [Jan03, A.6]. Since

L̃G(λ) has weights µ ≤ λ it therefore admits a non-zero M -homomorphism to H0
M (λ). Hence, by

Frobenius reciprocity we get a non-zero homomorphism from L̃G(λ) to IndGM (H0
M (λ)). Since there

is an injection LM (λ) → H0
M (λ), the left-exactness of the IndGM functor means that there is also

an injection QG(λ) → IndGM (H0
M (λ)). But as LG(λ) is the socle of QG(λ) we will be done if we

can show that IndGM (H0
M (λ)) has a simple socle, for then LG(λ) and L̃G(λ) must both map to that

simple socle. As in the proof of Theorem 3.1, base change everything to k′ and consider

HomGk′
(LGk′

(µ), Ind
Gk′

Mk′
(H0

M (λ)k′)) ∼= HomMk′
(LMk′

(µ), H0
M (λ)k′),

using Frobenius reciprocity. The latter has dimension δλµ over k′ owing to the simplicity of the
socle of H0

M (λ)k′ ∼= H0
Mk′

(λ). This proves the claim. �

Corollary 4.6. The simple G-module LG(λ) is isotypic and semisimple on restriction to M .

Proof. In view of Lemma 4.5 and Prop. 4.3(b) the weights µ of LG(λ) all satisfy µ ≤ λ. The Weyl
module VM (λ) is the projective cover of LM (λ) in the category of M -modules with this condition
on weights, by [Jan03, A.6] again. Thus it follows that any M -submodule of LG(λ) whose head is
isomorphic to LM (λ) is the image of VM (λ). Suppose the image of VM (λ) is not precisely LM (λ).
Then LG(λ) has an M -submodule LM (µ) for some µ < λ. Thus

0 6= HomM (LM (µ), LG(λ)) ∼= HomM (LG(λ)
∗, LM (µ)∗).

We have LG(λ)
∗ ∼= LG(−w0(λ)) (resp. LM (µ)∗ ∼= LM (−w0(µ))) since the former is a simple

module of weight −w0(λ) (resp. −w0(µ))—see [Jan03, II.2.5]. So using Frobenius reciprocity we
get a non-trivial G-homomorphism from LG(−w0(λ))→ QG(−w0(µ)). The simplicity of the socle
of QG(−w0(µ)) implies λ = µ, a contradiction.

Hence, the M -socle of LG(λ) contains all M -composition factors of the form LM (λ). If there are
any other composition factors, then for some µ < λ we have

0 6= HomM (LG(λ), LM (µ)) ∼= HomG(LG(λ), QG(µ));

again, we conclude λ = µ, a contradiction. We have, incidentally, shown that ResGM (LG(λ)) is equal
to its socle, hence is semisimple. �
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Proof of Theorem 4.1. Since dimH0(λ)λ = dimLC(λ), dimLM (λ)λ = 1 and LG(λ) is M -isotypic
with factors LM (λ), we are done. �

Remarks 4.7. (i). The proof of Theorem 3.1 shows that the Gk′-module QG(λ)k′ has a simple socle;
hence so does its submodule LG(λ)k′ . As LG(λ)k′ has a total of dimLC(λ) Gk′-composition factors,
by Theorem 4.1, it is rarely semisimple. Hence, LG(λ) is usually not absolutely semisimple. This
is at odds with the situation for a finite group G, where k′ is a splitting field for G iff it contains all
the |G|th roots of unity. This entails that any simple kG-module is split by a separable extension
of k. Using a Galois decent argument, it follows that any semisimple kG-module is absolutely
semisimple. See [CR90, Cor. 7.11].

(ii). If one of the root groups of G has dimension strictly bigger than one1 then QG(λ) will not
be isotypic (for G, or equivalently for its restriction to M). To see this, observe that QG(λ)k′ ∼=
LM (λ)k′⊗k

′[U ], by [Jan03, I.3.8(2)], where Gk′
∼= Mk′⋉U . Here, U acts on k′[U ] by left translation,

trivially on LM (λ)k′ and M acts by conjugation on k′[U ]. Since U contains non-trivial parts of the
root groups of G which are not in M , the weights of Mk′ on Gk′-module subquotients of U are not
all zero. Ultimately, the same follows for k′[U ]. Hence k′[U ] contains M -composition factors which
are not trivial; but it also contains the submodule isomorphic to the trivial module generated by the
constants. It follows that LM (λ)k′ ⊗ k′[U ] is not M -isotypic. It would be interesting to understand
the structure of QG(λ) further, even in the case that G is a Weil restriction.

5. On representations of commutative pseudo-reductive groups

Recall our assumption that k is imperfect of characteristic p. In this section, we (amongst other
things) calculate dimLC(λ) whenever C is the Weil restriction Rk′/k(Gm) for k′ a non-zero finite
reduced k-algebra whose factor fields are all purely inseparable over k. This assumption guarantees
that C is pseudo-split, so that by Theorem 3.1, the isomorphism classes of simple C-modules are
in 1–1 correspondence with the weights of a maximal torus of C.

To start with we may make some general remarks.

5.1. Blocks of commutative pseudo-split pseudo-reductive groups. Let C be a commuta-
tive pseudo-split pseudo-reductive group with maximal split torus T . If V is any non-zero C-module,
and λ is any T -weight of C on V then Vλ is a C-submodule, using the commutativity of C. By
Theorem 3.1, Vλ is isotypic, with composition factors all isomorphic to LC(λ). Indeed the projec-
tion prλ of V to Vλ is a C-module map which splits. In particular Ext1C(LC(λ), LC(µ)) 6= 0 only if
λ = µ, so it follows that the blocks of C are in bijection with X(T ).

Remark 5.1. Any commutative (connected) reductive group G is linearly reductive, hence all
ExtnG(V,W ) vanish for all G-modules V , W and integers n > 0. This in contrast to the pseudo-
reductive case: for example if G = Rk′/k(Gm) for k′/k a purely inseparable field extension then G
acts on the unipotent group G/Gm, hence on k[G/Gm]. By (3), k[G/Gm] is indecomposable, and
infinite dimensional. In particular Ext1G(k, k) 6= 0.

5.2. The case Rk′/k(Gm) for k′ a field. For the time being, we let k′ be a purely inseparable
field extension of k. We recall that the exponent of such an extension is the minimal e such that
k′p

e
⊆ k. Set C = Rk′/k(C

′), where C ′ = Gm. Following (7) we denote by T the canonical copy of
Gm inside C. Of course, T is a Levi subgroup of C.

1This condition on the root groups is equivalent to the statement that G/Z(G) 6∼= M/Z(M). We are thankful to
Brian Conrad for confirmation of this point.
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5.2.1. The standard module. We identify C ′ with GL1, acting faithfully on the 1-dimensional vector
group S′ ∼= Ga. Applying the Weil restriction function Rk′/k we have that C acts faithfully on the
[k′ : k]-dimensional vector group S = Rk′/k(S

′). Let k′ have basis {1 = α1, α2, . . . , αq} as a k-
vector space. This choice allows us to identify C with a k-subgroup of GL[k′:k], where the matrix
of g ∈ C(A) ∼= Gm(k′ ⊗k A) on S(A) is calculated by acting on S′(k′ ⊗k A) and taking coordinates
relative to the given k-basis.

Since C ′(k′) = (k′)× has two orbits on the vector space S′(k′) = k′ (one trivial and one non-trivial)
we see that C(k) has also two orbits on S(k) = S′(k′). Thus we conclude that S is an irreducible
module for C and refer to it as the standard (or natural) module for C. It is easy to see that the
canonical subgroup T of G acts on C as scalars; more precisely, if a ∈ T (A) = A× for a k-algebra

A, then a · s = as for all s ∈ S(A). In other words, ResCT S = (k1)
⊕[k′:k], the direct sum of [k′ : k]

copies of the weight space k1 with weight 1. Of course, in light of Theorem 3.1 we must have

(9) S ∼= LC(1),

and so dimLC(1) = dimS = [k′ : k].

Following [Jan03, I.2.15] we may twist any representation of any algebraic group G by precomposing
with an endomorphism σ of G. If V is a G-module then we denote the resulting representation
by σV . This gives rise to a functor G-Mod → G-Mod by V 7→ σ∗(V ) = σV . For λ ∈ Z, by
precomposing the representation of C ′ on S′ by the function σ′

λ : C ′ → C ′ via c 7→ cλ, we get a
representation (σ′

λ)
∗(S′) on which C ′ acts with weight λ, indeed (σ′

λ)
∗(S′) ∼= kλ. Taking the Weil

restriction of this representation then gives the representation σ∗
λ(S) where σλ : C → C via c 7→ cλ

also.

If p ∤ λ it is quite easy to see that (σλ)
∗(S) is irreducible, giving us the dimension in this case, but

we will show something stronger, namely that σ∗
λ is an equivalence of categories, in fact, that σ∗

λ
has an inverse τ . In order to do this, we will want to understand the coordinate algebra k[C] a
little better. We prove more than we need and give a complete description.

5.2.2. Description of k[Rk′/k(Gm)]. Recall our choice of k-basis {1 = α1, α2, . . . , αq} of k′. The

coordinate algebra of C ′ is k′[C ′] = k′[t, t−1]. To find the coordinate algebra of C = Rk′/k(C
′), we

should rewrite the generators t and t−1 in terms of our chosen k-basis of k′. So we introduce new
functions α̂i on C and write t =

∑q
i=1 αiα̂i. Equivalently, when we identify C with a subgroup of

GL[k′:k] via its (left) action on S, the α̂i can be identified with the matrix coordinate functions from
the first column, i.e., for g ∈ C(A), α̂i(g) gives the coefficient of αi in g · 1. If e is the exponent of
the extension k′/k then the pe-power map takes (k′)× into k×. Hence it takes C into its canonical

copy of Gm, which we have denoted T . We thus get a 1-dimensional representation d̂ of C, i.e. an
element of the character group X(C). The function d̂ is a polynomial of degree pe in the functions
α̂i. Given any k-algebra A and any g ∈ C(A), gp

e
is represented by a scalar matrix with diagonal

entries all equal to d̂(g) ∈ A×. Let det denote the element of k[C] given by taking determinants of
matrices—then we see that for any g ∈ C(A) we have

det(gp
e
) = (d̂(g))q,

so (det)p
e
= d̂q. We conclude that the function det is a power of the function d̂ in k[C]. Now we can

write t−1 = tp
e−1/tp

e
in terms of the α̂i and the function d̂−1. Evidently α̂i and d̂−1 are elements

of k[C].
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Proposition 5.2. The natural map

F : k[α̂i, d̂
−1]1≤i≤q → k[C],

is an isomorphism.

As a C-module, the action of T induces a grading on the generators so that α̂i is in degree 1 and

d̂ is in degree pe.

To see that F is an isomorphism it suffices to see that it is an isomorphism after extension to k̄. We
have Ck̄

∼= Gm×U , where U is the unipotent radical of Ck̄ and the quotient Gm of Ck̄ corresponds

to the subalgebra k̄[α̂1, α̂
−1
1 ] of k̄[C]. Since U is a connected unipotent algebraic group we have

k̄[U ] ∼= k̄[β2, . . . , βq], for some indeterminates βi in the image of the comorphism k̄[Ck̄]→ k̄[U ]. We
can find appropriate choices for the βi from the following, which uses the natural embedding of C
in Aq:

Lemma 5.3. Let A be a k̄-algebra and a = (a1, . . . , aq) ∈ Ck̄(A) ⊆ Aq(A). Then a ∈ U(A) if and

only if a1 = 1−
∑

2≤i≤q aiαi.

Proof. It is an elementary calculation using the multiplication inherited from (k′)× as a k-group to
see that the given condition on a defines a subgroup all of whose elements are unipotent. Since it
is evidently (q − 1)-dimensional, the claim follows. �

Proof of Proposition 5.2. Consider the short exact sequence 1 → U
i
→ Ck̄

q

→ Gm → 1, where q is
the canonical map described in §2.5. At the level of k-algebras, this corresponds to

0→ IGm · k̄[Ck̄]
q∗
→ k̄[Ck̄]

i∗
→ k̄[U ]→ 0,

where IGm is the image in k̄[Ck̄] of the augmentation ideal in k̄[Gm]. The lemma implies that

k̄[U ] is the quotient of k̄[Ck̄] by the ideal generated by α̂1 − 1 +
∑

2≤i≤q αiα̂i = d̂p
−e
− 1; thus

IGm · k̄[Ck̄] = (d̂p
−e
− 1)k̄[Ck̄], and k̄[Gm] = k̄[d̂p

−e
, d̂−p−e

]. Since the values of the α̂i on a point of
Ck̄ determine it completely, and U is isomorphic to affine (q− 1)-space, we may choose βi = i∗(α̂i)

for 2 ≤ i ≤ q. Now, R := k̄[α̂1, . . . , α̂q, d̂
−1] = k̄[α̂1, . . . , α̂q, d̂

−p−e
]: the inclusion ⊆ is obvious, and

for the other direction, note d̂p
−e
∈ R. But as Ck̄ is a semidirect product, we have

k̄[Ck̄]
∼= k̄[Gm]⊗ k̄[Aq−1]

= k̄[d̂p
−e
, d̂−p−e

]⊗ k̄[α̂2, . . . , α̂q]

= k̄[α̂1, . . . , α̂q, d̂
−p−e

]

= R.

It remains to prove the second part. We define a grading by setting deg(f) = j if z · f = z−jf for
any z ∈ T (k) = k×. By definition α̂i(g) is the coefficient of αi in g · 1, so that z · α̂i(g) = α̂i(z

−1g)
gives the coefficient of αi in z−1g ·1. But this is clearly just z−1α̂i(g), and so α̂i is in degree 1. Now
if f = gh is a product of functions in k[C], then f(z−1g) = g(z−1g)h(z−1g) so that a monomial in

j of the α̂i’s is in degree j. Lastly, d̂ is by definition a function for which z · d̂ = z−pe d̂ so that d̂ is
in degree pe. �

Remark 5.4. In [Fri10, §1] a general method for computing the coordinate rings of Weil restrictions is
given. Applied to non-trivial separable field extensions this generally gives a much more complicated
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presentation than the one we have shown above. For example, if one takes C ′ = Gm, k = R and k′ =
C, then k′[C ′] = k′[x, y]/(xy− 1) and k[Rk′/k(C

′)] = k[x1, x2, y1, y2]/(x1y1− x2y2− 1, x2y1 + y2x1).

For the benefit of the reader, we give some concrete examples to illustrate the constructions above.

Example 5.5. (i). Suppose p = 3 and k′/k is a purely inseparable extension of fields of degree 3.
Write k′ = k(s) so that k′ has k-basis 1, s, s2. Then the matrix representation of G gives matrices
of the form:





a cs3 bs3

b a cs3

c b a



 .

One can check that the cubing map sends such a matrix to a diagonal matrix with diagonal entries
a3 + b3s3 + c3s6. Thus, if the functions α̂1, α̂2, α̂3 are the coordinate functions for the first column,
the function d̂ = α̂3

1+s3α̂3
2+s6α̂3

3. One can also check that in this case we get the same function by
taking determinants of these matrices. Now k′[G′] = k′[t, t−1] and we can write t = α̂1+sα̂2+s2α̂3.
Then we calculate:

t−1 =
1

α̂1 + sα̂2 + s2α̂3
=

(α̂1 + sα̂2 + s2α̂3)
2

d̂
,

which is a polynomial function of the α̂i and d̂−1.

(ii). Suppose p = 2 and k′/k is a purely inseparable extension of degree 4 such that k′ = k[s, u]
with s2, u2 ∈ k \ k2. Then k′ has k-basis 1, s, u, su and the extension has exponent e = 1. This
time our matrices have the form:









a bs2 cu2 ds2u2

b a du2 cu2

c ds2 a bs2

d c b a









.

One checks that the function d̂ = α̂2
1 + s2α̂2

2 + u2α̂2
3 + s2u2α̂2

4. The function coming from the

determinant is d̂2.

5.2.3. Irreducible modules L(λ) with p ∤ λ. We can now define an inverse to σ∗
λ when p ∤ λ. Let

d̂ be the 1-dimensional representation from Section 5.2.2. Recall that d̂ arises from the pe-power
map for e the exponent of k′/k, and we have (pe, λ) = 1. This means that we may take µ ∈ Z to
be an inverse to λ in their projections to Z/(pe), i.e., we can choose µ so that λµ = 1 + rpe for

some r. Then set τ to be the composition of σ∗
µ with the tensor product functor ? ⊗ d̂−r. Thus

τ(V ) = σ∗
µ(V )⊗ d̂−r.

Proposition 5.6. The functors τ and σ := σ∗
λ are mutually inverse.

Proof. To see this, simply note that the map C → C;x 7→ xλµx−rpe is the identity on C. Since
C acts on (τ ◦ σ)(V ) as xλµx−rpe acts on V (considering x−rpe as an element of k), it follows that
τ ◦ σ and σ ◦ τ are both the identity functor on C-Mod as required. �

We conclude from above that τ and σ are equivalences of categories, i.e. Morita equivalences. Since
the latter sends representations of weight 1 to representations of weight λ, of the same dimension,
we deduce that for p ∤ λ,
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(10) σ∗
λ(LC(1)) ∼= LC(λ)

(11) dimLC(λ) = [k′ : k]

5.2.4. Irreducible modules L(λ) with p | λ. Let k̃ be the field generated by k and the pth powers in
k′ (this is the field k′(p) in the notation introduced before the statement of Theorem 1.3). Then

k̃ is in fact the k-span of the pth powers in k′. We see C̃ := Rk̃/k(C
′) naturally as a subgroup of

C because k̃ ⊆ k′. We also have a quotient C1 of C which we can realise as a subgroup of C̃. Let
F : Gm → Gm denote the geometric Frobenius map (with comorphism t 7→ tp). Then since k′p ⊆ k̃

we can see that Rk′/k(F ) : C → C̃. Let C1 be the image of this map; in general C1 is a k-subgroup

of C̃, but may not be all of C̃.

We have a k-basis α1, . . . , αq of k′, so αp
1, . . . , α

p
q span k̃ over k. It follows that the group algebra

kC1(k) = kC̃(k). Since also the k-points of each of C1 and C are dense in those groups, we deduce

(12) a C̃-module V is irreducible if and only if it is irreducible on restriction to C1.

(Both groups of course are defined over k, hence V is in particular a k-module by definition.)

We now prove the counterparts to the last section.

Proposition 5.7. Let λ ∈ X(T ). We have LC(pλ) ∼= (Rk′/k(F ))∗(LC̃(λ)). Furthermore,

dimLC(λ) = [k′(λ) : k].

Proof. Since LC̃(λ) is irreducible, (12) implies that Rk′/k(F )∗(LC̃(λ)) is irreducible for C. Since
F ∗(kλ) ∼= kpλ as T -modules, the first statement follows.

For the second, we proceed by induction on [k′ : k]. If p ∤ λ then we are done by (11), otherwise,

let λ = pλ′. Then by induction, dimLC̃(λ
′) = [k̃(λ′) : k] = [k′(p)(λ′) : k] = [k′(λ) : k], and we are

done by the first part. �

5.3. The case Rk′/k(Gm) for k′ a non-zero finite reduced k-algebra. With the results of the
previous section in hand, we can now give a dimension formula in the case where C = Rk′/k(Gm)
for k′ a non-zero finite reduced k-algebra. This is precisely the case where C =

∏

1≤i≤nRki/k(Gm),

and the ki are the factor fields of k
′. Since we insist C is pseudo-split, we must have that the ki are

all purely inseparable extensions of k and so k′ is a purely inseparable k-algebra. By [CGP15, A.7.8]
the minimal field of definition of the unipotent radical of each factor Rki/k(Gm) is ki itself. Since

each ki is a finite field extension it embeds into the algebraic closure k̄ and the unique minimal field
of definition K ′ for Ru(Gk̄) is the subfield of k̄ generated by the ki.

Let T be the canonical Levi subgroup
∏

1≤i≤nGm inside C. By Theorem 3.1 there is up to isomor-

phism a unique simple C-module LC(λ) of weight λ = (λ1, . . . , λn) ∈ X(T ) ∼= Zn. The following
theorem calculates its dimension:

Theorem 5.8. We have dimLC(λ) = [K : k], where K is the subfield of K ′ generated by k together

with ki(λi) for each 1 ≤ i ≤ n.
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Proof. We must exhibit an irreducible module of weight λ and the correct dimension. For each i
write λi = peiµi where p ∤ µi and put k̃i = ki(p

ei). Since ki/k is purely inseparable we must have

k̃i = ki(λi) and hence K is generated by the k̃i. From §5.2.4 recall there is a map Rki/k(F
ei) :

Rki/k(Gm) → Rk̃i/k
(Gm). Precomposing a module M of weight ν for Rk̃i/k

(Gm) with Rki/k(F
ei)

gives a module Rki/k(F
ei)∗(M) of weight peν for Rki/k(Gm).

Now by definition of K, we have each k̃i a subfield of K and hence we get an embedding ιi :
Rk̃i/k

(Gm) →֒ RK/k(Gm) for each i. We also get a map RK/k(µ) :
∏

1≤i≤nRK/k(Gm)→ RK/k(Gm)

corresponding to the weight µ = (µ1, . . . , µn).

Now form the composite map

(13) X : G ∼=
∏

i

Rki/k(Gm)

∏
i Rki/k

(F ei )
−−−−−−−−−→

∏

i

Rk̃i/k
(Gm)

∏
i ιi−−−→

∏

i

RK/k(Gm)
RK/k(µ)
−−−−−→ RK/k(Gm).

Then if S is the natural module for RK/k(Gm) one sees easily that X ∗(S) is a module for C of
weight λ. We must see that X ∗(S) is irreducible; in other words, X ∗(S) ∼= LC(λ).

But as S is irreducible for RK/k(Gm)(k) we need only see that X induces a surjection of group
algebras k(C(k)) → k(RK/k(Gm))(k) = K. This follows essentially from the definition of K:

we have kX (C)(k) contains k̃i = kRk̃i/k
(Gm)(k) = kk̃×i for each i and so kX (C)(k) = K as

required. �

Remark 5.9. We are indebted to the referee for the following observation. Starting from a pseudo-
split k-group C of the form Rk′/k(Gm) for k′ a finite non-zero reduced k-algebra, one may recover
the k-algebra k′ up to (usually non-unique) isomorphism. For, let the factor fields of k′ be k1, . . . , kr.
Then if K is a field which is minimal subject to the requirement that CK contains a direct Gm-
factor, then without loss of generality, K contains k1 say, and as Ck1 has a direct Gm-factor, we
have K = k1 by minimality. Thus C has a direct factor Rk1/k(Gm). Taking the quotient of C by
this factor yields another k-group of the same form and we are done by induction.

5.4. Rank 1 pseudo-split pseudo-reductive commutative groups. Let C be a pseudo-split
pseudo-reductive commutative group with a maximal split torus T . If k′ is the minimal field
of definition of the unipotent radical of C then we may form C := Rk′/k(Ck′) ∼= Rk′/k(Tk′ ⋉
Ru,k′(Ck′)) = Rk′/k(Tk′) ⋉ U , where U = Rk′/k(Ru,k′(Ck′)) is a unipotent normal subgroup of C .
By the usual properties of Weil restriction, C embeds as a canonical k-subgroup of C . Since U acts
trivially on any simple C -module, and since T can be naturally identified as a maximal torus in C ,
in view of Theorem 3.1 we have natural correspondences

simple C-modules←→ X(T )←→ simple Rk′/k(Tk′)-modules←→ simple C -modules,

and thus we may proceed by assuming that C is a subgroup of D := Rk′/k(Tk′). Now, we know the
dimensions of the simple D-modules, by the work of the previous sections, so it is natural to ask
how these modules restrict to C. In this section we give an answer when the dimension of T is 1.
Let us start with a lemma:

Lemma 5.10. Suppose k′/k is a finite extension and let G = Rk′/k(Gm). Let W be a proper non-

trivial k-subspace of k′, and let S = StabG(W ). Then there exists an intermediate field k ⊆ E ( k′

such that S ⊆ RE/k(Gm).
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Proof. First recall that for the subspace W we have the corresponding (additive) group functor Wa

given by Wa(A) := W ⊗k A (see Section 2.1). Then S is an algebraic subgroup scheme of G and
for every k-algebra A we have, by [Jan03, I.2.12]

S(A) = {g ∈ G(A) | gWa(A) ⊆Wa(A)}.

Now, since all multiplication here is commutative, given any nonzero w ∈ W = Wa(k) we can see
that S also stabilizes the k-subspace w−1W of k′. Hence, we may assume that 1 ∈W .

Now let E denote the intersection of all k-subspaces of k′ containing 1 and stabilized by S (i.e., the
intersection of all k-subspaces X such that 1 ∈ X and S(A)(X ⊗k A) ⊆ X ⊗k A for all k-algebras
A). We show that E is an intermediate field and that S ⊆ Ea. Given this, S is then contained in
the corresponding multiplicative unit group, which is precisely RE/k(Gm).

To see that E is a field we just need to show E \ {0} is a group under multiplication. So let
x ∈ E \ {0}. Appealing to the commutativity of multiplication again, we see that the k-subspace
x−1E is S-stable and contains x−1x = 1, so we must have x−1E = E, as required. Since W is
proper, E is properly contained in k′. The final step is to note that since 1 ∈ E and E is S-stable,
we have S(A) ⊆ Ea(A) for all k-algebras A. Hence S ⊆ Ea. �

Proposition 5.11. Let C be a pseudo-split commutative pseudo-reductive group of rank 1 and let k′

be the minimal field of definition of its unipotent radical. Set D = Rk′/k(Gm). Then the restriction

of LD(λ) to C is irreducible.

Proof. Pick a weight λ = peµ. Then the irreducible LD(λ) identifies with the field k′(λ) = k(pe)
inside k′, and this contains a copy of the irreducible LC(λ). Now, by the argument in the proof
of Lemma 5.10, we may assume that LC(λ) contains some C-stable subfield E; but LC(λ) is
irreducible, so E = LC(λ). Therefore, the image of C under the representation is contained in
RE/k(Gm). Let E′ ⊆ k′ be the set of x such that xp

e
∈ E (the preimage of E under Frobenius).

Then E′ is a subfield of k′ containing k because E is a subfield of k′ and k ⊆ E′ obviously. Also, C
is contained in RE′/k(Gm), so actually E′ = k′ by minimality of k′. But then E must be k′(λ) by
definition of k′(λ). �

Remark 5.12. As a closing remark, we note that similar arguments using the observations at the
start of this section and Lemma 5.10 show that for any commutative pseudo-split pseudo-reductive
group C, the irreducible module LC(λ) is a subfield of the minimal field of definition of the unipotent
radical of C. Similar results have been proved by Brion [Bri18, Prop. 3.1] in a slightly different
context, and using a different approach.
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