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The BER Analysis of MRC-aided Greedy Detection

for OFDM-IM in Presence of Uncertain CSI
Thien Van Luong, Student Member, IEEE, and Youngwook Ko, Senior Member, IEEE

Abstract—This letter investigates the bit error rate (BER)
performance of orthogonal frequency division multiplexing index
modulation, employing the maximal ratio combining based low-
complexity greedy detector (MRC-GD) and the PSK modulation.
For performance analysis, we derive tight expressions for both
index error probability (IEP) and BER, taking into account chan-
nel state information (CSI) uncertainty. This allows to provide an
insight into various impacts of CSI uncertainty on the diversity
gain and error floor of the IEP and the BER, respectively. We
clearly show that under imperfect CSI, the MRC-aided GD can
perform as like the MRC-maximum likelihood detector, at lower
complexity. Finally, simulation results are presented to verify the
accuracy of derived expressions and the theoretical analysis.

Index Terms—OFDM-IM, index modulation, maximal ratio
combining (MRC), bit error rate, imperfect CSI.

I. INTRODUCTION

Orthogonal frequency division multiplexing with index

modulation (OFDM-IM) [1] is an attractive multicarrier

scheme with higher energy efficiency and reliability over the

conventional OFDM. In particular, OFDM-IM transmits data

bits via not only the classical M -ary symbols but also the

indices of sub-carriers activated [2]. Thus, OFDM-IM can

provides an appealing trade-off between the spectral efficiency

(SE) and the error performance just by adjusting the number

of active sub-carriers.

A variety of IM concepts have been studied aiming to

enhance the SE or reliability of systems, which can be found in

the survey [3]. Notice that most of existing works investigate

the bit error rate (BER) of OFDM-IM with the maximum

likelihood (ML) detection [1], [2]. To reduce the complexity of

the ML, the log-likelihood ratio (LLR) [1] and modified ML

[4] detectors are studied. Recently, a low-complexity greedy

detector (GD) based on energy detection is proposed in [5].

The symbol error probability (SEP) and BER of this detector in

presence of channel estimation information (CSI) uncertainty

are presented in [6], [7], respectively. In [8], OFDM-IM with

the hybrid maximal ratio combining and greedy detection

(MRC-GD) is proposed, where the SEP is analyzed, but only

for perfect CSI. Since [6], [7] clearly show that the GD is

less sensitive to CSI uncertainty than the ML, it is worthy to

investigate how the low complexity MRC-GD detector helps

to decrease the sensitivity to CSI uncertainty.

In this letter, we provide a novel approach to derive the

index error probability (IEP) of OFDM-IM with MRC-GD
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and the PSK modulation, in the presence of CSI uncertainty,

which is then used to obtain the tight expression for the BER.

Analyzing derived expressions, we clearly show that due to

CSI uncertainty, the diversity order of the IEP is limited to

one, even with the MRC-aided GD, which is unlike previous

works [6], [7] where the IEP of the GD is not affected

by CSI uncertainty. Interestingly, we also find that the BER

suffers from an error floor, the level of which can decrease

exponentially with the number of antennas. Hence, for OFDM-

IM applications especially under uncertain CSI, the MRC-GD

is desired, obtaining the BER close to the MRC-ML detector.1

II. SYSTEM MODEL

A. OFDM-IM

Consider an OFDM-IM system where the transmitter has a

single antenna, while the receiver has L antennas. There are

a total of Nc sub-carriers that are partitioned into G clusters

of N sub-carriers. Due to the independent operation of each

cluster, we consider only one cluster hereinafter for simplicity.

In every transmission, K out of N sub-carriers are activated

to carry data bits via not only complex M -ary symbols but also

indices of the active sub-carriers. Particularly, p incoming bits

are divided into two groups of p1 and p2 bits. Based on the

look-up table or combinatorial method [1], the first p1 index

bits are mapped to a set of K active sub-carrier indices which

is denoted by θ = {α1, ..., αK}, where αk ∈ {1, ..., N} for

k = 1, ...,K . Notice that θ can be considered as an index

symbol. The p2 data symbol bits are mapped to K non-zero

M -ary symbols. As a result, we obtain p1 = ⌊log2 C (N,K)⌋
and p2 = K log2 M . Based on the K symbols and the

index set θ defined, the transmitted signal is generated as

x = [x (1) , ..., x (N)]
T
, where x (α) = 0 for α /∈ θ and

x (α) ∈ S for α ∈ θ, where S denotes the PSK constellation.

In the frequency domain, the received signals from L
antennas for each sub-carrier α is given by

yα = hαx (α) + nα, α = 1, ..., N (1)

where hα = [h1 (α) , ..., hL (α)]
T

denotes the Rayleigh fading

channel vector between the transmitter and L receiver antennas

with hl (α) ∼ CN (0, 1), and nα is the noise vector with its

elements nl (α) ∼ CN (0, N0). Denote by ϕEs the average

1Column vectors and matrices are denoted by lower and upper case boldface
letters, respectively. (.)T and ⌊.⌋ denote transposition and the floor function,
respectively. CN

(

0, σ2
)

is the complex Gaussian distribution with zero mean

and variance σ2, while N
(

0, σ2
)

is the real-valued Gaussian distribution.
E {.} and C (., .) are expectation and the binomial coefficient, respectively.
Γ (κ, β) is the Gamma distribution with the scale parameter β and shape
parameter κ. I0 (.) is the zero order modified Bessel function of first kind.



power per non-zero M -ary symbol, where ϕ = N/K is the

power allocation ratio. Hence, the average signal-to-noise ratio

(SNR) per active sub-carrier is γ̄ = ϕEs/N0.

B. Post-MRC Greedy Detector under CSI Uncertainty

In practical systems, the true channel hα in (1) is uncertainly

estimated into ĥα =
[
ĥ1 (α) , ..., ĥL (α)

]T
which satisfies [6]

hα = ĥα + eα, (2)

where eα denotes the channel estimation error with its ele-

ments el (α) ∼ CN
(
0, ǫ2

)
being independent of ĥl (α), and

ĥl (α) ∼ CN
(
0, 1− ǫ2

)
, where ǫ2 ∈ [0, 1) represents the

error variance. Using ĥα and the MRC as y (α) = ĥH
α yα, the

combined signal at sub-carrier α is

y (α) = h (α)x (α) + n (α) , (3)

where h (α) = ĥH
α hα and n (α) = ĥH

α nα.
The low complexity greedy detector (GD) uses the output of

the MRC, i.e., y (α) to detect signals via two steps. Firstly, the

GD estimates the active indices α̂ that are corresponding to K
sub-carriers having largest normalized MRC-output energies,

i.e., |ȳ (α)|2 , where ȳ (α) = y (α) /Tα with Tα = ĥH
α ĥα.

Secondly, K non-zero symbols are decoded using the ML

criterion to active sub-carrier α̂ as

x (α̂) = arg min
x(α̂)∈S

|y (α̂)− Tαx (α̂)|2 . (4)

It should be noted that the normalization of y (α) is neces-

sary to suppress severe effects of ĥH
α on the index detection

process, which is not clearly presented in [8] (Section II.B).

This significantly affects the accuracy of the IEP derivation as

shown in the next section.

Note that in [6], the GD is proved to be less affected by

CSI uncertainty than the ML. However, for OFDM-IM with

single antenna, the ML still considerably outperforms the GD

under certain CSI conditions when M is small (M = 2, 4).

This might be no longer true as the number of antennas L
increases. These motivate us to analyze the BER of OFDM-IM

when using the MRC-GD in the presence of CSI uncertainty.

III. BER ANALYSIS UNDER CSI UNCERTAINTY

Follow the approach in [7], we first derive the IEP of

OFDM-IM with MRC-GD, considering CSI uncertainty. After

the evaluation of IEP, the BER expression will be provided.

A. Index Error Probability

An index symbol error occurs when the index set θ is

incorrectly detected. Hence, the instantaneous IEP (iIEP) can

be given by [6]

PI ≤ K

N

N∑

α=1

N−K∑

α̃6=α=1

P (α → α̃) , (5)

where P (α → α̃) is the pairwise error probability (PEP) that

active sub-carrier α is incorrectly estimated as inactive one

α̃ 6= α. Based on the first step of the GD, the PEP is given by

P (α → α̃) = P
{
|ȳ (α̃)|2 > |ȳ (α)|2

}
(6)

Note that while [6]–[8] simply reuse the iIEP expression

from [5], this is impossible for the MRC-GD with uncertain

CSI. Thus, we develop a novel analytical approach to derive

the iIEP and its average of MRC-GD with uncertain CSI,

which are more accurate than that in [8]. In particular, the

iIEP is obtained using (5)-(6) in the following lemma.

Lemma 1: The iIEP expression of OFDM-IM with MRC-GD

under CSI uncertainty is given by

PI ≤ K

N

N∑

α=1

N−K∑

α̃ 6=α=1

Tα

δTα̃ + Tα
e
−

γ̄Tα̃Tα
δTα̃+Tα , (7)

where δ = 1 + γ̄ǫ2 and α̃ 6= α.

Proof: See Appendix A.

Notice that the iIEP expression in (7) is totally different

from that in [8, Eq. (10)], in which normalized MRC-output

energies are not taken into account as our derivation. In fact,

this makes [8] yield a less accurate IEP (under perfect CSI),

even in high SNR regions. By contrast, our proposed approach

provides the tighter IEP expression, even at low SNRs, under

both perfect and imperfect CSI, as in the following theorem.

Theorem 1: Consider OFDM-IM with MRC-GD detection.

The average IEP under CSI uncertainty is given by

P I ≤ δLΥ(2L− 1)!

[(L− 1)!]
2

∫ 1

0

xL (1− x)
L−1

dx

(1 + γ̄x− βγ̄x2)
2L

, (8)

where Υ = K (N −K) , β = 1− ǫ2 and δ = 1 + γ̄ǫ2.
Proof: See Appendix B.

As seen from (8), the IEP of MRC-GD depends on ǫ2, while

that of the GD with single antenna [6] is not affected by ǫ2.

Moreover, the derivation of the average IEP in Theorem 1 for

the MRC-GD under uncertain CSI is novel, and more challeng-

ing than that in [8] with perfect CSI, which is straightforward

from [5]. Finally, the following corollary provides an insight

into the impact of ǫ2 on P I .

Corollary 1: For given ǫ2 > 0 and at high SNRs, we obtain

P I ≈ (κγ̄)
−1

where κ is constant.

Proof: At large γ̄ and for given ǫ2 > 0, notice from

(8) that x ∈ (0, 1), we can approximate δL ≈
(
ǫ2γ̄

)L
and 1 + γ̄x − βγ̄x2 ≈ 1 + γ̄x. Thus, we attain P I ≈
AB, where A = Υǫ2L (2L− 1)!/ [(L− 1)!]2, and B =

γ̄L
∫ 1

0
xL(1−x)L−1dx

(1+γ̄x)2L
which relies on γ̄. Let u = 1 + γ̄x,

then B can be approximated, at high SNRs, by B ≈ Cγ̄−1,

where C =
∫ 1+γ̄

1
(u−1)L(1−u/γ̄)L−1du

u2L which is constant when

γ̄ tends to infinity. As a result, we obtain P I ≈ (κγ̄)
−1

where

κ−1 = AC.

Remark 1: Corollary 1 shows that the MRC-GD achieves

unit diversity order in terms of the average IEP for any ǫ2 > 0.

B. Bit Error Rate

Following the approach in [7] and utilizing P I , the BER of

the MRC-GD (denoted by Pb) can be approximated by

Pb ≈
(ηp1 +m)P I/2 +KPM

p1 + p2
, (9)

where PM is the average SEP of classical M -ary symbols (4)

when active indices are correctly detected, and m = log2 M ,



η = 1, 2 for N > 2 and N = 2, respectively. If the M -PSK

modulation is used, PM is provided by the following lemma.

Lemma 2: Consider OFDM-IM with MRC-GD detection.

The average SEP of the classical M -ary symbols is given by

PM ≈ ξ

12

[
1

(1 + βγ̄ρ/δ)
L
+

3

(1 + 4βγ̄ρ/3δ)
L

]
, (10)

where ξ = 1, 2 for M = 2 and M > 2, respectively, and

ρ = sin2 (π/M) .
Proof: See Appendix C.

Finally, inserting (8) and (10) into (9), the BER of MRC-GD

can be expressed as

Pb ≈
(ηp1 +m) δLΥ(2L− 1)!

2p [(L− 1)!]
2

∫ 1

0

xL (1− x)
L−1

dx

(1 + γ̄x− βγ̄x2)
2L

+
Kξ

12p

[
1

(1 + βγ̄ρ/δ)L
+

3

(1 + 4βγ̄ρ/3δ)L

]
. (11)

Remark 2: As seen from (11), for given ǫ2 > 0,

limγ̄→∞ βγ̄ρ/δ = βρ/ǫ2 > 0 and limγ̄→∞ P I = 0 (see

Corollary 1). Thus, there exists an error floor on the BER

which is defined only by M -ary symbol detection errors as

lim
γ̄→∞

Pb = Υ
[
(1 + µ)−L + 3 (1 + 4µ/3)−L

]
, (12)

where Υ = Kξ/12p and µ = βρ/ǫ2. It is worth noting that

the error floor in (12) decreases exponentially with L.

Remark 3: It is shown from (9) that PM is the same for

both the MRC-ML and the MRC-GD. Thus, when K increases

to N , the BERs of both detectors tend to that of the classical

OFDM with MRC, relying much more on the M -ary symbol

errors and less on the index errors. The intuition behind this

is that for large K , p1 is relatively small and P I in (8) gets

negligible.

IV. NUMERICAL AND SIMULATION RESULTS

We present simulation and theoretical results for the IEP

and BER of OFDM-IM with MRC-GD under both perfect

and imperfect CSI. Particularly, we consider OFDM-IM with

N ∈ {2, 4}, K ∈ {1, 2}, M ∈ {2, 4} and L ∈ {1, 2, 4, 6, 8}.

The performance of the MRC-ML is used for comparison.

Fig. 1 depicts the average IEP and BER of OFDM-IM

with MRC-GD/MRC-ML under both perfect (ǫ2 = 0) and

imperfect CSI (ǫ2 = 0.1). As seen from Fig. 1, the theoretical

bounds are accurate in a range of SNRs. In addition, for given

L, the CSI uncertainty significantly degrades the performance

of MRC-GD, especially at high SNRs. For example, in Fig.

1.a, the average IEPs at high SNRs are shown to have the

diversity order of one, for any L and ǫ2 = 0.1, which validates

Corollary 1 and Remark 1. In Fig. 1.b, we can see the error

floors on the BER caused by ǫ2 = 0.1. Moreover, when L
increases, the error floor decreases substantially. These confirm

Remark 2. Compared to the MRC-ML, it is shown via Fig.

1.b that under the CSI uncertainty, the BER performance gap

between two detectors is marginal, especially at high SNRs.

Meanwhile, under perfect CSI, the BER of the MRC-GD tends

to that of the MRC-ML for increasing L.

Fig. 1. Average IEP (a) and BER (b) of MRC-GD under perfect and imperfect
CSI, when (N,K,M) = (4, 2, 4), L ∈ {1, 2, 4, 6} and ǫ2 ∈ {0, 0.1}.

0 10 20 30 40

Es/No (dB)

10-5

10-4

10-3

10-2

10-1

100

B
E

R

L=1, GD

L=1, ML

L=2, MRC-GD

L=2, MRC-ML

L=4, MRC-GD

L=4, MRC-ML

L=8, MRC-GD

L=8, MRC-ML

Theo. MRC-GD

0 10 20 30 40

Es/No (dB)

10-5

10-4

10-3

10-2

10-1

100

B
E

R

L=1, GD

L=1, ML

L=2, MRC-GD

L=2, MRC-ML

L=4, MRC-GD

L=4, MRC-ML

L=8, MRC-GD

L=8, MRC-ML

Theo. MRC-GD

(a) (b)

variable CSIperfect CSI

Fig. 2. BER comparison between MRC-GD and MRC-ML under (a) perfect
CSI and (b) variable CSI, when (N,K,M) = (2, 1, 2) and L ∈ {1, 2, 4, 8}.

In Fig. 2, we compare the BER between the two detectors

under perfect and variable CSI, where ǫ2 varies as a decreasing

function of the SNR, i.e., ǫ2 = 1/ (1 + Es/N0) [7]. In Fig. 2.a,

the MRC-ML still significantly outperforms the MRC-GD for

small L (L = 1, 2). However, this is no longer true in Fig. 2.b

with variable CSI, where the gaps between the two detectors

are negligible (< 0.5 dB) for any L ≥ 2.

V. CONCLUSIONS

We derived the tight expression for the BER of OFDM-IM

with MRC-GD in the presence of CSI uncertainty. Particularly,

impacts of CSI uncertainty on both the IEP and the BER

were analyzed. We found out that for given ǫ2 > 0, the

index bits detection suffers from the limited diversity order

to be one for any number of antennas L, while the BER has

the error floor decreasing exponentially with L. Interestingly,

under imperfect CSI, the performance gap between the MRC-

GD and the MRC-ML is less than 0.5 dB as L ≥ 2, even for

small M , i.e., M = 2, 4. Hence, for OFDM-IM applications,

the MRC-GD is preferable to the MRC-ML, especially under

uncertain CSI and at larger L.



APPENDIX

A. Proof of Lemma 1

From (6), let Yα = |ȳ (α)|2 and Zα̃ = |ȳ (α̃)|2 . Due

to x (α̃) = 0, using (3) we have ȳ (α̃) = n (α̃) /Tα̃ ∼
CN (0, N0/Tα̃) with Tα̃ = ĥH

α̃ ĥα̃. This results in Zα̃ ∼
Γ
(
1, 1/T̂α̃

)
with T̂α̃ = Tα̃/N0. Thus, the probability density

function (PDF) of Zα̃ is

FZα̃
(x) = 1− e−T̂α̃x. (13)

Regarding the PDF of Yα, notice from (3) and (2) that

h (α) = ĥH
α

(
ĥα + eα

)
= Tα + ĥH

α eα, we can represent

ȳ (α) as ȳ (α) = x (α) + n̄ (α) , where n̄ (α) = ñ (α) /Tα ∼
CN

(
0, Ñ0/Tα

)
with ñ (α) = ĥH

α [eαx (α) + nα] and Ñ0 =

ϕEsǫ
2 + N0. Assume that x (α) =

√
ϕEse

jφ. Hence, ȳ (α)
can be rewritten by ȳ (α) = ejφ

[√
ϕEs + e−jφn̄ (α)

]
. Since

e−jφn̄ (α) ∼ CN
(
0, 1/T̂α

)
where T̂α = Tα/Ñ0, we can

assume e−jφn̄ (α) = a + jb where a, b ∼ N
(
0, 1/2T̂α

)

to obtain Yα = c2 + b2, where c =
√
ϕEs + a ∼

N
(√

ϕEs, 1/2T̂α

)
. Notice that Uα = 2T̂αYα is the non-

central chi-squared distribution with degree of freedoms of

two and the non-centrality parameter of λ = 2T̂αϕEs, i.e.,

Uα ∼ X 2
2 (λ) [9]. As a result, the PDF of Yα can be obtained

using fYα
(x) = 2T̂αfUα

(
2T̂αx

)
as

fYα
(x) = T̂αe

−T̂α(ϕEs+x)I0

(
2T̂α

√
ϕEsx

)
. (14)

From (6), the PEP is calculated using (13) and (14) as [5]

P (α → α̃) = P {Zα̃ > Yα} =

∫ ∞

0

∫ ∞

y

fYα
(y) fZα̃

(z)dydz

= T̂α

∫ ∞

0

e−(T̂α̃+T̂α)y−ϕEsT̂αI0

(
2T̂α

√
ϕEsy

)
dy.

(15)

Finally, the PEP in (15) can be attained with the aid of [10,

6.614-3], which leads to the instantaneous IEP (5) obtained

after some manipulations as (7).

B. Proof of Theorem 1

Let X1 = Tα̃ and X2 = Tα/δTα̃ + Tα. The average IEP

can be obtained by averaging (7) over X1 and X2 as

P I ≤ K (N −K)EX1,X2

{
X2e

−γ̄X1X2
}
. (16)

Let r = EX1,X2

{
X2e

−γ̄X1X2

}
. Notice that X2 ∈ (0, 1),

thus r can be expressed by

r =

∫ ∞

0

∫ 1

0

fX1,X2
(x1, x2)x2e

−γ̄x1x2dx1dx2, (17)

which prompts us to derive fX1,X2
(x1, x2) as follows.

We represent Tα and Tα̃ with respect to X1 and X2 as Tα̃ =
X1 and Tα = δX1X2/ (1−X2). This results in ∂Tα̃/∂X1 =
1, ∂Tα̃/∂X2 = 0 and ∂Tα/∂X2 = δX1/ (1−X2)

2
. As

a result, the Jacobian determinant is given by J (x1, x2) =
δx1/ (1− x2)

2
[9] . Moreover, due to the system model,

we have fTα̃
(x) = fTα

(x) = xL−1e−
x
β / (L− 1)!βL. Here,

using the Jacobian transformation, we obtain

fX1,X2
(x1, x2) = fTα̃

(x1) fTα

(
δx1x2

1− x2

)
J (x1, x2)

=
δLβ−2L

[(L− 1)!]
2 × x2L−1

1 xL−1
2 e

−
x1
β

(
1+

δx2
1−x2

)

(1− x2)
L+1

.

(18)

Plugging (18) into (17) leads to

r = Ψ

∫ 1

0

xL
2

∫∞

0
x2L−1
1 e

−
x1
β

(
1+

δx2
1−x2

+βγ̄x2

)

dx1

(1− x2)
L+1

dx2, (19)

where Ψ = δL/β2L [(L− 1)!]
2
. With the aid of [10, 3.381-3],

i.e.,
∫∞

0
xne−axdx = n!/an+1 and after simple manipulations,

r in (19) is given by

r =
(2L− 1)!δL

[(L− 1)!]
2

∫ 1

0

xL
2 (1− x2)

L−1
dx2

(1 + γ̄x2 − βγ̄x2
2)

2L
. (20)

Finally, P I is obtained by substituting (20) to (16).

C. Proof of Lemma 2

It is seen from (4) that under imperfect CSI, x (α)
is detected with an instantaneous SNR of γα =
ϕEsTα/

(
ϕEsǫ

2 +N0

)
= γ̄Tα/δ. Thus, the instantaneous

SEP of the M -ary PSK symbols is given by [7]

PM (α) ≈ ξ

12

(
e−γ̄Tαρ/δ + 3e−4γ̄Tαρ/3δ

)
, (21)

where ρ = sin2 (π/M) , and ξ = 1, 2 for M = 2 and M > 2.

Notice that the moment generating function (MGF) of

Tα given by MTα
(t) = (1− βt)

−L
. Finally, using MGF

approach to (21), we easily obtain PM as in (10).
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