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Abstract  26 

Empty fruit bunch (EFB) and palm oil mill effluent (POME) are the major wastes generated by the oil 27 

palm industry in Malaysia. The practice of EFB and POME digester sludge co-composting has shown 28 

positive results, both in mitigating otherwise environmentally damaging waste streams and in producing 29 

a useful product (compost) from these streams. In this study, the bacterial ecosystems of 12 week-old 30 

EFB-POME co-compost and POME biogas sludge from Felda Maokil, Johor were analysed using 16S 31 

metagenome sequencing. Over 10 phyla were detected with Chloroflexi being the predominant phylum, 32 

representing approximately 53% of compost and 23% of the POME microbiome reads. The main 33 

bacterial lineage found in compost and POME was Anaerolinaceae (Chloroflexi) with 30% and 18% of 34 

the total gene fragments, respectively. The significant differences between compost and POME 35 

communities were abundances of Syntrophobacter, Sulfuricurvum, and Coprococcus. No methanogens 36 

were identified due to the bias of general 16S primers to eubacteria. The preponderance of anaerobic 37 

species in the compost, and high abundance of secondary metabolite fermenting bacteria is due to an 38 

extended composting time, with anaerobic collapse of the pile in the tropical heat. Predictive functional 39 

profiles of the metagenomes using 16S rRNA marker genes suggest the presence of enzymes involved 40 

in polysaccharide degradation such as glucoamylase, endoglucanase, arabinofuranosidase, all of which 41 

were strongly active in POME. Eubacterial species associated with cellulytic methanogenesis were 42 

present in both samples. 43 

 44 

Keyword Oil palm empty fruit bunch. Palm oil mill effluent. Compost. Metagenomics. Microbial 45 

diversity. 46 

 47 

1.0 Introduction 48 

The Malaysian oil palm industry is growing rapidly and Malaysia has become the second largest 49 

producer of palm oil after Indonesia (MPOB 2017). Approximately 5.74 Mha of Malaysia’s land area 50 

was covered with oil palm plantations in 2016 (MPOB 2017) which produced 17,320,000 tonnes of 51 

palm oil. This in turn generated a large amount of oil palm derived waste. The oil palm industry 52 

produces millions of tonnes of oil palm biomass, especially empty fruit bunch (EFB). There is 1 kg of 53 
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biomass, such as empty fruit bunch (EFB), palm kernel shell (PKS) and mesocarp fibre (MF), generated 54 

for each kg of oil palm extracted (Sulaiman et al. 2011). Conversion of organic waste such as EFB into 55 

usable horticultural by-products has been found to be the most efficient way to reuse this raw waste 56 

material (Siddiquee et al. 2017). 57 

EFB and palm oil mill effluent (POME) are the most abundant waste produced in oil palm 58 

mills. At present, EFB and POME have been used as raw materials for co-composting and the resulting 59 

co-compost has been used in the oil palm plantations at Felda Maokil. In this case, POME was used to 60 

provide moisture to the compost. Composting is one of the most efficient solutions for sustainable 61 

management of organic waste, it is an aerobic process that effectively converts cellulosic organic waste 62 

into a nutrient-rich organic amendment for agricultural application (Neher et al. 2013). The conversion 63 

of organic waste to compost is carried out by a successive microbial community combining both 64 

mesophilic and thermophilic activities (Krishnan et al. 2017). However, the microbial community of 65 

end product compost in the tropics has not been well characterized. 66 

 Understanding the microbial diversity of compost systems is important in order to produce high 67 

quality compost and determine its effectiveness (Krishnan et al. 2017). Most studies that have explored 68 

this rich ecosystem have utilized culture-based methods (Ryckeboer et al. 2003; Ahmad et al. 2007; 69 

Vishan et al. 2017). But, culture-based methods are only useful for identifying less than 1% of the total 70 

microbial diversity, as the majority of microorganisms are unculturable under standard media and 71 

aerobic growth conditions (Handelsman 2004; Ito et al. 2018). The advent of Next-Generation 72 

Sequencing (NGS) and metagenomics has opened an avenue to perform comprehensive studies to 73 

characterize the total microbial diversity using a culture-independent method. Metagenomics is an 74 

alternative that has been widely applied over the last few years (Fernández-Arrojo et al. 2010). 75 

 Metagenomics refers to the direct isolation of DNA from an environmental sample 76 

(Handelsman 2004). There are two different approaches, amplicon sequencing and shotgun 77 

metagenomics (Escobar-Zepeda et al. 2015). Amplicon sequencing targets specific regions of DNA 78 

from communities by amplifying specific regions using taxonomical informative primer targets such as 79 

intergenic transcribed spacers (ITS) and the large ribosomal subunit (LSU) for eukaryotes and the 16S 80 

rRNA gene for prokaryotes (Sharpton 2014). Shotgun metagenomics randomly sequences all DNA 81 



4 
 

from a community, which produces a less biased assessment of species abundance but at greater cost. 82 

Metagenomics has been commonly used in large and complex samples containing organisms from 83 

different life domains or where less bias is required. 16S amplicon sequencing, or metaprofiling 84 

(Escobar-Zepeda et al. 2015), is currently the most cost-effective method for DNA library preparation 85 

in conjunction with sequencing by platforms such as the Illumina MiSeq. This approach has been widely 86 

utilized, not only for studying resident microbiota in wastewater and compost (Krishnan et al. 2017; 87 

Wang et al. 2016), but also for studying soil samples (Yan et al. 2016), hot springs (Chan et al. 2015), 88 

termite gut (Chew et al. 2018), faecal samples (Costea et al. 2017) and many others. 89 

 In the present study, the microbial community of the EFB-POME co-compost and POME 90 

biogas sludge has been studied using the culture independent 16S amplicon sequencing approach. 91 

Metagenomes from the EFB-POME co-compost and POME were directly isolated from the samples 92 

without any microorganism cultivation. The V3-V4 regions of prokaryotic 16S rRNA genes were 93 

amplified from the metagenome and directly sequenced using Illumina’s MiSeq platform. The detailed 94 

information on the microbial residents will support further research to improve the duration of the 95 

composting process and the quality of final compost by addition of specified microbial species.  96 

2.0 Materials and Methods 97 

2.1 Collection of samples 98 

The 12 weeks-old EFB-POME co-compost and POME were obtained from Felda Maokil, 99 

Labis, Johor (2°17'09.6"N 102°59'37.7"E). A 1 m height compost pile was made with the ratio of 40 100 

ton EFB: 120 ton POME, turned over every 3 days to provide aeration. The composting was done by 101 

first laying down the EFB on the ground, followed by the addition of POME to the EFB pile at three 102 

day intervals to maintain a final moisture content of 65-75% as it is a solid state aerobic fermentation 103 

process. A total of 1kg of 12 weeks-old compost was randomly sampled at a depth of 0.5 m inside the 104 

compost pile. For POME, 2 litres was collected directly from the anaerobic digester (AD) effluent. The 105 

POME and compost samples were collected in sterile containers and stored at 4 °C for further studies. 106 

2.2 Total DNA extraction 107 

Extraction of total DNA from EFB-POME co-compost was done with a modified Griffiths 108 

protocol using NucleoSpin® Soil kit (Griffiths et al. 2000; Alessi et al. 2017), while the total DNA from 109 
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POME was extracted using NucleoSpin® Soil kit (Macherey-Nagel, Germany) based on the 110 

manufacturer’s protocol (Verma and Satyanarayana 2011). The detailed methods are outlined below. 111 

2.2.1 Method 1: Modified Griffiths protocol  112 

Half a gram of EFB-POME co-compost was transferred into a microcentrifuge tube containing 113 

1 g of garnet beads (OMNI International, USA), 500 µL SL2 lysis buffer (Macherey-Nagel, Germany), 114 

500 µL 10% CTAB, 100 µL 1mg/mL lysozyme and 214.3 µL enhancer SX (Macherey-Nagel, 115 

Germany). After mixing, the samples were disrupted using Bead Ruptor 4 (OMNI International, USA) 116 

for 3 minutes at level 3. The aqueous phase was mixed with inhibitor removal solution SL3 buffer 117 

(Macherey-Nagel, Germany) and incubated at 4 °C for 5 min before centrifuging using a NucleoSpin® 118 

Inhibitor Removal column (Macherey-Nagel, Germany) to remove any impurities like humic acid and 119 

other PCR inhibitors. Following this, equal volumes of phenol: chloroform (1:1) was added to the eluted 120 

aqueous phase and separated by centrifugation for 5 minutes at 13,300 × g. One-tenth volume of ice-121 

cold sodium acetate and 3 volumes of ice-cold absolute ethanol was added to the aqueous layer before 122 

incubating at -80°C for 2 hours to precipitate the DNA.  The resulting pellet was washed twice with 123 

ice-cold 75% ethanol (Alessi et al. 2017) and the pellet was resuspended in 50 µL TE buffer. The DNA 124 

was stored at -20 °C for further use. 125 

2.2.2 Method 2: NucleoSpin® Soil kit 126 

Two mL of POME was centrifuged at 4,500 × g for 10 minutes and the resulting pellets were 127 

transferred into a microcentrifuge containing 1 g of garnet beads (OMNI International). 300 µL SL2 128 

buffer (Macherey-Nagel, Germany), 150 µL enhancer SX (Macherey-Nagel, Germany) and 100 µL 1 129 

mg/mL lysozyme was added to the pellet. The pellet was homogenized for 3 minutes at level 3 using 130 

Bead Ruptor 4 (OMNI International). 100 µL 1 mg/mL lysozyme was added to the homogenate and 131 

incubated at 37 °C for 30 minutes. The inhibitor removal solution and column were used to remove any 132 

impurities like humic acids or other PCR inhibitors. The binding solution was added to the supernatant 133 

before loading onto the spin column. The column was centrifuged to bind the DNA to the column and 134 

the column was washed twice with wash buffer provided in the kit. The DNA was finally eluted with 135 

the elution buffer and stored at -20 °C.  136 

 137 
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2.3 DNA yield and purity determination  138 

DNA concentration and quality of the total DNA extracts were determined using NanoDrop™ 139 

Lite spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and 1% w/v agarose gel 140 

electrophoresis, respectively.  141 

2.4 16S metagenomics library preparation, sequencing and data analysis 142 

The 16S rRNA metagenome libraries were generated using purified total DNA as the template 143 

in the polymerase chain reactions (PCR). The V3–V4 region of the 16S rRNA genes were amplified 144 

using S-D-Bact-0341-b-S-17, 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGG 145 

GNGGCWGCAG-3’ and S-D-Bact-0785-a-A-21, 5’-GTCTCGTGGGCTCGGAGATGTGTATAAG 146 

AGACAGGACTACHVGGGTATCTAATCC-3’). The underlined oligonucleotide are the Illumina 147 

adapter overhang sequences, while the non-underlined sequences are locus-specific sequences which 148 

were designed according to a reported primer pair (Klindworth et al. 2013) targeting conserved regions 149 

within the V3 and V4 domains of prokaryotic 16S rRNA genes. The metagenome library was then pair-150 

end sequenced on the Illumina MiSeq platform (San Diego, CA, USA) using MiSeq Reagent Kit (v3) 151 

for the longest length set to 2 x 300 base pairs (bp).  152 

2.5 Bioinformatics analysis 153 

The resulting sequencing data were analysed using the Mothur software package version 1.41.1 154 

(Schloss et al. 2009). Firstly, the read pairs were merged to assemble them into contigs and contigs 155 

exhibiting any ambiguous positions were subsequently removed. The sequences were then aligned to 156 

the SILVA reference database (Release 132). Upon removal of unaligned sequences, the remaining 157 

sequences were further filtered, dereplicated and de-noised before removal of chimeras. Sequences were 158 

then classified based on the Greengenes database using naïve Bayesian classifier with bootstrap cut-off 159 

of 80% before removal of sequences classified as unrelated lineages. Finally, the sequences were split 160 

into bins based on taxonomy and clustered into OTUs using the cluster.split command. 161 

The functional composition of EFB-POME compost and POME digester sludge was analysed 162 

using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 163 

(PICRUSt) bioinformatics software package (Langille et al. 2013). Firstly, PICRUSt analysis was done 164 

by picking OTUs against the August 2013 Greengenes database  release of gg_13_8_99 that contained 165 
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202,421 bacterial and archaeal sequences (McDonald et al. 2012). The OTU counts were normalized 166 

and used for metagenome functional predictions with KEGG orthologs (KO). The output was further 167 

analysed using the Statistical Analysis of Metagenome Profiles (STAMP) software package (Parks et 168 

al. 2014). 169 

2.6 Data accessibility  170 

The raw sequencing data was deposited in the Sequence Read Archive (SRA) of the National 171 

Centre for Biotechnology Information (NCBI) database under accession numbers SRR8181848 and 172 

SRR8186815 for EFB-POME co-compost and POME, respectively.  173 

3.0 Results and Discussion 174 

3.1 Microbial diversity analysis of EFB-POME co-compost and POME 175 

EFB-POME co-compost and POME were analysed for their microbial diversity using Illumina 176 

MiSeq sequencing of V3-V4 region of the 16S rRNA genes. A total of 72,657 and 92,677 sequence 177 

reads were generated from total DNA extracts of EFB-POME co-compost and POME, respectively. 178 

After quality filtering and read merging, EFB-POME compost and POME generated 1,272 and 10,705 179 

contigs, respectively. POME showed a higher number of OTUs, which indicates that POME has a 180 

higher bacterial diversity compared to EFB-POME co-compost. Diversity coverage for each sample 181 

was analysed using rarefaction analysis. The rarefaction curve illustrated in Fig.1 was calculated at 3% 182 

dissimilarity. Rarefaction analysis shows the samples had reached saturation for genus level and higher 183 

taxonomic level. The coverage for mature EFB-POME co-compost was 100%, while for POME was 184 

99.4% with  Simpson indices of 113.77 and 69, respectively. 185 

The most abundant phylum present in both samples was Chloroflexi, which constituted 23% of 186 

the total gene fragment abundance in POME and 53% in EFB-POME co-compost (Fig.2A). The 187 

remaining phyla present in POME were Firmicutes (19%), Bacteroidetes (16%), Proteobacteria (16%) 188 

and Synergistetes (3%), while in EFB-POME co-compost the phyla were Bacteroidetes (15%), 189 

Firmicutes (12%), Proteobacteria (7%) and Actinobacteria (3%). According to Chandna et al. (2013), 190 

the number of microbial species in early stages of composting depends on the initial substrate used and 191 

the prevailing environmental conditions during the composting process, especially the temperature. 192 

Composting can be divided into several phases based on the temperature. These include mesophilic, 193 
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thermophilic and maturing phases, during which different bacterial populations thrive.  Chandna et al. 194 

(2013) found that Firmicutes are abundant during mesophilic phase and decrease in the maturation 195 

phase, while Actinobacteria are stable during mesophilic and thermophilic phases. Neher et al. (2013) 196 

found Bacteroidetes dominated at the end of the thermophilic phase, whereas Proteobacteria was  197 

dominant after the thermophilic phase. The predominance of anaerobes in the compost sample are 198 

strongly suggestive of a secondary fermentation of the pile after collapse of all air spaces and exhaustion 199 

of oxygen throughout the mass. The compost method was similar to that developed by Raabe at 200 

Berkeley, which takes 18 days in a Meditteranean climate (Raabe 1981). After 84 days in the tropics, 201 

the compost has further fermented. The 16S data for the EFB-POME compost is a glimpse of the 202 

microbial structure of this mature compost post aerobic composting. 203 

The major family that was observed in both samples was Anaerolinaceae, which represents 204 

18% abundance in POME and 30% abundance in EFB-POME co-compost as shown in Fig.2B.  These 205 

OTUs represent a diversity of species, rather than a single dominant species. The other five major 206 

families observed in POME were Syntrophaceae (9%), Syntrophomonadaceae (5%), 207 

Porphyromonadaceae (5%), Tissierellaceae (3%), and Synergistacaea (3%), while in EFB-POME co-208 

compost, the other major families were Porphyromonadaceae (7%), Lachnospiraceae (3%), 209 

Helicobacteraceae (2%), Ruminococcacea (2%), and Tissierellaceae (2%). 210 

The most abundant genus observed in POME was Syntrophus, which accounted for 9% of the 211 

total gene fragments (Fig.2C). The remaining genus observed in POME include Syntrophomonas (5%), 212 

Sedimentibacter (3%), Gracilibacter (3%), Solibacillus (3%). Most of the bacteria found in POME 213 

digester sludge were anaerobic as methanogensis is an anaerobic process. In a previous study by 214 

Krishnan et al. (2017), Parabacteroides, Levilinea, Smithella, Prolixibacter and Bellilinea were 215 

identified as the common genera found in POME. Bellilinea was also found in DNA extracts from 216 

POME in the present study. However, this genus represented a small majority, which only accounted 217 

for 1% of the community. In the EFB-POME co-compost, on the other hand, Coprococcus was 218 

identified as the most common genera accounting for 3% of the gene fragments, followed by 219 

Sulfuricuvum (2%), Sedimenterbacter (2%) and Proteiniphilium (2%). Coprococcus are anaerobic 220 

bacteria and a major bacterial taxa in the rumen microbiota of some ruminants (Jia et al. 2016). The 221 
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bacteria from the Coprococcus family are commonly involved in the degradation of cellulosic materials 222 

(Moore et al. 2011) and can be found enriched in xylan based cultures (Jia et al. 2016) which are often 223 

found in anaerobic cellulose digestion. Apart from these genera, Steroidobacter, Nitriliruptor, 224 

Anaeomyxobacter, Filomicrobium and Truepera were also found inside lignocellulose biomass 225 

compost by Krishnan et al. (2017). 226 

The overall population in compost is illustrated in Fig.3A. The most common phyla found in 227 

the EFB-POME co-compost was Chloroflexi (53% of the total gene fragments) and this phyla was 228 

represented 100% of the total Chloroflexi by Anaerolinaceae family. The second most abundant phyla 229 

was Bacteroidetes, which accounted for 15% of the total 16S rRNA gene fragments. The major family 230 

in Bacteroidetes was Porphyromonadaceae comprising 47.5% of the total Bacteroidetes. Petrimonas 231 

and Proteiniphilum were identified which represent 9.2% and 32.2% of the total Porphyromonadaceae 232 

gene fragments. The remaining family in the Bacteroidetes was unclassified with 52.5% of the total 233 

Bacteroidetes gene fragments. The third major phyla in compost was Firmicutes accounting for 12% of 234 

the total gene fragments. Fig.3B shows that the major order was Clostridiales, which amounts to 89% 235 

of the total Firmicutes gene fragments. The remaining were Bacillales and unclassified Firmicutes with 236 

2.7% and 8.3%, respectively. Clostridiales were represented commonly by the family of 237 

Lachnospiraceae (24.6% of the total Clostridiales gene fragments) followed by Tissierellaceae (23.8%), 238 

Ruminoccoccaceae (23%), Syntrophomonadaceae (7.7%), Gracilibacteraceae (3.8%), Christenellaceae 239 

(2.3%) and Clostridiaceae (1.5%) as shown in Fig.3B. 240 

The overall bacterial population of POME are shown in Fig.4A. Similar to EFB-POME co-241 

compost, Cloroflexi was also identified as the dominant phyla (23% of the total gene fragments) which 242 

was 100% represented (of the total Cloroflexi gene fragments) by the Anearolinaceae family. 243 

Anearolinaceae dominates the population of POME and EFB-POME co-compost. Anearolinaceae is 244 

anaerobic and involved in methanogenesis. This family of bacteria is indigenous in many environments 245 

rich in oil and hydrocarbon (Liang et al. 2015) and associated with the anaerobic degradation of oil-246 

related compounds (Sutton et al. 2013). Anaerolinaceae has been reported as the predominant species 247 

isolated from anaerobic digester systems and has a fermentative metabolism, utilizing carbohydrates 248 

and proteinaceous carbon sources under anaerobic conditions (McIlroy et al. 2017; Sun et al. 2016; 249 
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Yamada et al. 2006). The absence of the archaean methanogens in the data is due to the known poor 250 

ability of the standard 16S primers to amplify these organisms (Klindworth et al. 2013). As all known 251 

methanogens are archaea, methanogenic archaea ecosystems are only served by specific 16S primers 252 

such as S-D-Arch-0349-a-S-17 and S-D-Arch-0786-a-A-20 primer pair (Fischer et al. 2016). The 253 

second common phyla identified in the POME population was Firmicutes with 12% of the total gene 254 

fragments (Fig.4B). The major order observed from this phylum was Clostridiales with 77.3% of the 255 

total Firmicutes gene fragments. The family of Syntrophomonadaceae was the most dominant, 256 

accounting for 31.7% of the total Clostridiales gene fragments. The remaining families observed were 257 

Gracilibacteraceae (22.5%), Tissierellaceae (21.7%), Ruminococcaceae (5.7%), Clostridiaceae (5.7%) 258 

and Lachnospiraceae (3.1%) as shown in Fig.4B. The family of bacteria found in Clostridiales were 259 

similar to the community found in co-compost, with slight variations in abundances as many bacteria 260 

in this family are thermotolerant and are to survive the composting process.  261 

3.2 Comparative analysis of EFB-POME co-compost and POME bacterial communities 262 

Sequence data sets retrieved from EFB-POME co-compost and POME digester sludge were 263 

compared. Fig.5 compared the relative abundance of the 12 major genus represented in both EFB-264 

POME compost and POME. There were fewer bacterial genera in POME than during the composting 265 

process. The dominant bacteria in the compost were Syntrophobacter, Sulfuricuvum and Coprococcus. 266 

There is limited evidence that these bacteria are able to produce compost, and in fact are anaerobes. 267 

These organisms likely represent the secondary fermentation of the compost, once the pile had collapsed 268 

and oxygen and easily metabolisable carbon had been exhausted. Their fermentative abilities are 269 

directed to metabolites likely present after thermophilic composting of woody biomass. Bacteria that 270 

did not survive aerobic composting but were found in the POME sludge were Petrimonas, Syntrophus, 271 

Treponema, Bellilinea, Solibacillus, Clostridium, Gracilibacter, Syntrophomonas, and Acholeplasma. 272 

Most of these bacteria are anaerobes and facultative anaerobes as POME is an anaerobic digester 273 

effluent. 274 

In this study, Sulfuricurvum was identified as the predominant bacteria in the mature compost. 275 

Sulfuricurvum is chemolithoautotrophic and a sulphur-oxidizing bacterium, capable of thriving under 276 

microaerobic and anaerobic conditions (Kodama and Watanabe 2004). The condition inside the EFB-277 
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POME compost is facultative anaerobic which is therefore, favourable for the growth of Sulfuricurvum. 278 

Sulfuricurvum has previously been identified in contaminated soil (Liu et al. 2015), river sediments (Liu 279 

et al. 2018), underground crude-oil storage (Kodama and Watanabe 2004) and wastewater sludge 280 

(Hatamoto et al. 2011). The presence of a chemolithoautotroph demonstrates how limited the nutrients 281 

were and how mature the compost was. Liu et al. (2015) reported that the abundance of Sulfuricurvum 282 

increases with higher moisture, since high moisture content is associated with low redox potential and 283 

anaerobic environments (Brockett et al. 2012).  284 

Syntrophobacter was also found in a higher relative abundance in EFB-POME compost 285 

compared to POME. Syntrophobacter has the ability to degrade propionate, which is usually isolated 286 

from methanogenic ecosystems (Boone and Bryant 1980), characteristic of the POME sludge. In 287 

anaerobic digestion, the acetogenesis stage is predominantly acetogenic bacteria such as 288 

Syntrophobacter, which converts fermentation products with more than two carbon atoms, alcohols and 289 

aromatics fatty acids into acetate and hydrogen (Kangle et al. 2012). In this stage, the bacteria convert 290 

products from the first phase (hydrolysis) to butyric acid, propionic acid, ethanol, acetic acid, carbon 291 

dioxide and hydrogen (Nalo et al. 2014).  292 

3.3 Predicted functional metagenome profiles 293 

Metagenome functional prediction was carried out using Phylogenetic Investigation of 294 

Communities by Reconstruction of Unobserved States (PICRUSt) analysis based on the Greengenes 295 

16S rRNA database and KO. A bar graph was plotted to compare the abundance of the metabolic 296 

features between the two samples as shown in Fig.6. From the result of this study, energy metabolism 297 

was found to be highly represented in POME and compost community. The subfunctions in energy 298 

metabolism included carbon fixation pathways in prokaryote, oxidative phosphorylation, nitrogen 299 

metabolism, sulphur metabolism and methane metabolism. The proportion of sequences for the energy 300 

metabolism is higher in POME sample compared to compost, as the secondary fermentation of the 301 

compost in anaerobic conditions is relatively energy limited.  For the xenobiotics biodegradation and 302 

metabolism, the subfunctions benzoates degradation, bisphenol degradation, drug metabolism by 303 

cytochrome P450, naphthalene degradation and polycyclic aromatic hydrocarbon degradation were 304 

observed to have higher sequence proportion in the compost community compared to the POME 305 
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community. These functional classes are explained by secondary fermentation of the remaining 306 

recalcitrant substrates in the now anoxic pile.  307 

Carbohydrate metabolism such as nucleotide sugar, fructose and mannose, starch and sucrose 308 

and butanoate were observed to be slightly higher in proportion in the POME community compared to 309 

compost due to active anaerobic processing of the oil palm products in POME. The degradation of 310 

cellulose and hemicellulose during the composting process can produce carbohydrates (Toledo et al. 311 

2017). Those compounds are easily degradable substances, which are preferentially degraded by aerobic 312 

eubacteria. Carbohydrate metabolism plays an important role in degradation of hemicellulose and 313 

cellulose during the composting process (Wei et al. 2018). Furthermore, amino acids are sources of 314 

energy and carbon for bacterial metabolism produced throughout the composting process (López-315 

González et al. 2015). Wu et al. (2017) suggest that a higher abundancy of bacteria with active amino 316 

acid metabolism increases humic substance synthesis. 317 

In order to determine the potential roles of microbial communities in the decomposition of plant 318 

polymers, carbon degradation enzymes were identified and their presence is illustrated in Fig.7. The 319 

enzymes include genes encoding alpha-amylase, glucoamylase and neopullulanase for starch 320 

degradation; beta-glucanase, endoglucanase, and beta-glucosidase for cellulose degradation; 321 

arabinofuranosidase and xylanase for hemicelluloase degradation; and lastly, beta-hexosaminidase, 322 

chitinase, and peptidoglycan hydrolase involved in degradation of chitins derived from fungal 323 

decomposition of the plant mass. Apart from that, genes related to chemotaxis was also more abundant 324 

in the POME sample as this was a liquid culture.   325 

Due to the poor amplification of archaean 16S sequences however, methanogenesis is only 326 

observed in a limited way in both samples. Limitations of 16S primers targeting the V3-V4 domains 327 

are clear in this study, where the primary fermentation was not observed. To overcome this limitation 328 

and obtain an unbiased view of the archaean diversity, shotgun metagenomics sequencing could be 329 

employed. 330 
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