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ABSTRACT

We study a general equilibrium model of trade with two goods and many countries

where each country sets its distortionary tariff noncooperatively to maximize the payoff of

the representative household. We prove the existence of pure strategy Nash equilibria by

showing that there are consistent bounds on tariff rates that are common across countries

and that payoff functions in the induced game are quasiconcave. Separately, we show

that best responses are strictly increasing functions, and provide robust examples that

show that the game need not be supermodular. The fact that a country’s payoff does not

respond monotonically to increases in a competitor’s tariff rate, shows that the standard

condition in the literature for payoff comparisons across Nash equilibria fails in our model.

We then show that the participation of at most two countries in negotiated tariff changes

suffices to induce a Pareto improving allocation relative to a Nash equilibrium. Further

results provided concern the location of the best response in relation to the free trade

point, the monotonicity of payoffs, and the bounds on equilibrium strategies. The final

result is that there is no trade if and only if the equilibrium allocation is Pareto optimal.
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1. INTRODUCTION

The ability to impose a tariff is arguably the tool most commonly used by a government

to influence foreign trade. This is done to benefit the country as it moves the equilibrium

allocation in an appropriate direction away from free trade. Since retaliation is only to be

expected, the resulting strategic equilibrium becomes the object of analysis; importantly,

the allocation induced is, quite generally, inefficient.2 This sets the stage for a role for

institutions that regulate and promote international trade to attempt to mitigate the

inefficiency by facilitating the negotiation of multilateral agreements.3 The heterogeneity

across countries, particularly in terms of their relative size and tastes, is likely to play a key

role in the determination of the rules of multilateral engagement used by these institutions

to achieve the desired mitigation. An essential element of any analysis that provides the

foundation for such rules would be to clarify the manner in which heterogeneity interacts

with the number of countries in consideration, and our aim is to contribute to that analysis.

We study a model with many countries in which the prices that domestic agents

face are the world prices distorted by a tariff, and where the revenue from the tariff is

distributed by the government to the agents as a lump-sum transfer. Trade in competitive

markets results in the determination of world prices for goods in general equilibrium, and

each government acts noncooperatively to set tariff rates to maximize the utility of the

agents. The equilibrium concept used is pure strategy Nash equilibrium.

The literature on optimal tariffs in the presence of retaliation has drawn attention

to the importance of solving for the Nash equilibrium of a non-cooperative tariff game.4

However, the quote from Costinot, Rodriguez-Clare, and Werning (2016), who present

a parametric “new trade model” and study the problem faced by a single country, that

“future research should strive to characterize the Nash equilibrium in which all countries

attempt to manipulate their terms of trade,” confirms the paucity of results on existence

and characterization of pure strategy Nash equilibrium.

Our paper contributes to the literature by studying a tractable multi-country frame-

work; it addresses the issue of the existence of a Nash equilibrium and also provides

qualitative results, and it does so analytically rather than numerically/computationally.5

Our model is sufficiently general in that we do not impose any restrictions on trade

2See Johnson (1953) for the two country and two good exchange model. He presents a geometric
analysis and provides an analytical treatment of the special case of constant elasticity offer curves wherein
reaction functions are horizontal or vertical straight lines. He concludes that a tariff may be welfare
improving even with retaliation. Gorman (1958) provides a more detailed consideration of the constant
elasticity case for the same model.

3The recent survey by Bagwell, Bown, and Staiger (2016) provides a comprehensive appraisal of that
argument and the rapidly developing empirical analysis that provides support or reason for scepticism.
Costinot, Rodriguez-Clare, and Werning (2016) confirm the role of the terms of trade externalities in

motivating international trade agreements.
4This is noted in the survey by Costinot and Rodriquez-Clare (2014).
5Hamilton and Whalley (1983) is an early contribution that recognized the computational difficulties

that arise as soon as one steps beyond the two country and two good framework. That the issue remains
unresolved is recognized in Abrego et al (2005, 2006).
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patterns and we are able to characterize the equilibrium in terms of conditions on coun-

tries’ endowments. This is in contrast to the literature where results can often be traced

to simplifying assumptions, like symmetry, on the structure of the model.6

Evidently, the introduction of tariffs enriches the model whilst creating additional

technical difficulties. Sontheimer (1971) draws on Foster and Sonnenschein (1970) to note

that if some good is not normal then, in the presence of a tariff, the demand set could

fail to be convex. Hence, existence of a general equilibrium requires that in each country

every good is normal. It is also clear that continuity of behaviour and payoffs requires

that, given tariff rates, the Walrasian equilibrium is unique. These two requirements

immediately restrict the set of economies that one can work with. In addition one must

face the main difficulty in proving existence of Nash equilibrium in such a framework: one

has to establish that each payoff function is quasiconcave in the player’s own choice.

In view of the technical problems that the richness of the model forces us to confront,

there is a trade-off in how general a model one can work with. We would also like to

adopt a framework that allows the theory to be taken to the data. The linear expenditure

system, which has been fruitfully applied in many areas, and preferences that generate it,

provides a compromise that is an attractive specification for a model of tariffs. The fact

that these generalized Cobb-Douglas preferences induce a demand function that is the

same as the aggregate demand function induced by heterogeneous agents with sufficiently

heterogeneously distributed characteristics (see Grandmont (1992)) is a bonus.

We consider an exchange economy with an arbitrary number of countries and with

two goods. Preferences are restricted to be in the Cobb-Douglas class but are otherwise

arbitrary—no assumptions of symmetry are made and countries are allowed to be different.

Endowments are also arbitrary other than being nonnegative.

We study noncooperative tariff equilibria in the induced strategic form game.

We first show that if for each good at least two countries have a positive endowment

of the good, a mild assumption, then there are common upper and lower bounds on tariff

rates such that no country’s best response is on the boundary of the strategy sets that are

induced. These bounds are consistent in that all potential equilibrium points are interior.

We then show that if at least two countries have a positive endowment of the good

on which the tariff is imposed then each country’s payoff function has the property that

its second derivative is negative at any point at which the first derivative of the function

is zero. When combined with the behaviour of the payoff function at the boundaries

of the strategy sets, the local second order property ensures that the payoff function is

quasiconcave. That suffices to prove the existence of pure strategy Nash equilibria.

Next we show that the tariff game is a game of strategic complementarity as the

best response functions are strictly increasing. We also provide robust examples to show

6For example, Ossa (2011) considers a two and a three country model with identical preferences,
identical technology, tariffs that do not generate revenue, and a positive transportation cost. It is then
shown that there is a unique Nash equilibrium with identical tariffs set at the highest possible value which
is exogenously chosen. Also see footnotes 9 and 10.
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that the game can fail to be supermodular; it follows that the existence proof cannot

be simplified by appealing directly to lattice theory, a simplification that would make

redundant the difficult step in which we verify quasiconcavity.7

We then use the properties developed to provide results on payoff comparisons that

culminate in a policy implication. We show that, in our model, a country’s payoff increases

when a competitor raises its tariff if and only if the country has set a positive net tariff rate.

Therefore, the standard condition in the literature under which payoff comparisons across

Nash equilibria become possible must be violated in our model since that condition (which

is not implied by supermodularity) requires that the country’s payoff always responds in

the same direction whenever a competitor raises its tariff. We then show that a country’s

payoff increases as we move away from the free trade point in either direction along the

best response. We are also able to show that the following surprising result holds very

generally: the participation of at most two countries in negotiated tariff changes suffices

to induce a Pareto improving allocation relative to a Nash equilibrium with the direction

of tariff rate change easily determined; this is despite the fact that changing any tariff rate

affects the payoff of every country. In view of the fact that our model is parametric and can

therefore be easily taken to the data, this result on welfare improvements has the potential

to play an important role in policy deliberations in the current global environment where

large economies are adopting protectionist measures.

We also provide results that relate the position of a country’s best response function to

the trade pattern in the absence of tariffs, and that specify lower bounds on the arithmetic

and harmonic means of equilibrium tariff rates; this last result implies that there is at

most one symmetric equilibrium and it must be free trade. Our final result is that there is

no trade if and only if the equilibrium allocation is Pareto optimal. We then comment on

the extent to which comparative statics exercises can be carried out, and on the possibility

of obtaining a result on uniqueness.

We reiterate that our analysis is free of any restrictions on trade patterns and our

minimal assumptions are transparent since they are on the fundamentals of the economy

and not on elasticities. We observe that, although a key goal of this literature is to

determine the welfare effects of the introduction of noncooperative tariffs, we do not

pursue that goal analytically. This is because we know from Kennan and Riezman (1988)

that, even in the two country world with identical symmetric Cobb-Douglas preferences,

the pattern of endowments determines one of the three outcomes—there is a cigar shaped

region around the line of slope −1 that delineates a region in which, in Nash equilibrium,

both lose relative to free trade, and outside the region the bigger country wins.8

One imagines that in our model with many countries welfare effects of tariffs will

7On the other hand, in a Ricardian production model without consumers or tariff considerations,
Costinot (2009) provides strong predictions on comparative advantage by assuming logsupermodularity
of functions specifying the linear technology and endowments.

8In a two country Ricardian model with identical Cobb-Douglas preferences, Opp (2010) shows that
the relative size of the country determines the outcome of a tariff war.
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depend intricately on the combination of preference parameters and endowments. This

suggests the use of numerical methods which are placed on firmer ground since in our

tariff games solutions to the first order conditions characterize all possible interior pure

strategy Nash equilibria.

One must ask whether our framework is too restrictive. In the literature one sometimes

finds expression of the belief that the issue of the existence of pure strategy Nash equilibria

in the general model described has been settled; yet, as we now argue, very little is known

about it.9 Wong (2004) considers the 2 × 2 (two good and two country) pure exchange

model and provides an example to show that existence can fail if for some country, and a

tariff rate set by the other country, the country’s offer curve fails to enclose a convex set;

this confirms that the result in Otani (1980) on the existence of compensated equilibrium

in a general model with production is driven by his Assumption 11 (b), one that he refers

to as “most uneasy”, which convexifies the problem. Wong (2004) then proves existence

with the normal goods assumption and the assumption that the area enclosed by each

offer curve is a convex set for each level of the tariff chosen by the opponent, and makes the

argument that his proof cannot be extended to the case with more than two countries.10

The first order conditions of the 2 × 2 pure exchange economy with Cobb-Douglas

preferences have been studied by Otani (1980) as an example, and by Kennan and Riezman

(1988) who revisit Johnson’s original question and provide the solution described earlier.11

To summarize, the existence results that are known require strong restrictions and are

not known to extend to the case with more than two countries.12

We make one final comment. A trivial modification, which amounts to no more than

relabelling the variables, allows one to view the model as one of multiple tax jurisdictions.

Once local tax rates are set and treated as parameters, a standard Walrasian equilibrium

is played. Our model provides an “off-the-shelf” well-received parametric framework in

which existence of a pure strategy Nash equilibrium is guaranteed and in which qualitative

as well as quantitative analysis can be easily carried out.

We present the model in Section 2, and discuss, in order, existence in Section 3, strate-

gic complementarity in Section 4, and properties of the solution in Section 5. Concluding

comments are in Section 6, and all proofs are collected in Section 7.

9Kuga (1973) studies equilibrium in mixed strategies with finite sets of choices in a production economy.
10Thursby and Jensen (1983), Syropoulos (2002), and Wong (2004), all provide sufficient conditions, in

terms of elasticities, for the existence of pure strategy Nash equilibria in two country models, typically with
strong assumptions on preferences. Zissimos (2009) argues that quasiconcavity of the payoff function can
be established in the case of symmetric Cobb-Douglas preferences in a model with two groups of countries
where groups are internally homogeneous.

11Kennan and Riezman (1988) consider the case with identical and symmetric preferences and aggregate
endowment normalized to one while Kennan and Riezman (1984) consider nonidentical and asymmetric
preferences. It is not clear that the analytics for reaction functions can be meaningfully extended to
more than 2 countries. Kennan and Riezman (1990) provide numerical solutions for the 3× 3 case with
identical symmetric preferences and different endowment specifications.

12The model in Bagwell and Staiger (1999) has reduced form payoff functions that depend on domestic
and world relative prices. They directly assume that the required second order conditions hold (see their
footnote 9). The same model is used for expository purposes in Bagwell, Bown, and Staiger (2016).
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2.1 THE ECONOMY

Consider a world with two goods and a set I = {1, 2, · · · , I} of countries. The goods

are traded in international markets at prices p1 > 0 and p2 > 0 (later we set p1 = 1). The

government in each country sets a nondiscriminatory tariff on each good; the gross tariff

rates are denoted τi1 and τi2 for each i ∈ I. We impose the restriction that the gross

tariff rates are always positive, τi1 > 0 and τi2 > 0 for each i ∈ I. The tariffs τi1 and

τi2 induce a vector of domestic prices (τi1p1, τi2p2) in country i and the revenue generated

by the tariffs depends linearly on the net trade vector; the proceeds from the tariffs are

redistributed to consumers in country i in the form of a lump-sum.

The representative consumer in each country has an endowment, denoted ωi ∈ R
2
+/{0}

for i ∈ I, and behaves competitively when faced with the vector of domestic prices

(τi1p1, τi2p2) in country i. The quantities of each good demanded by the consumer in

country i are denoted xi1 and xi2. Let wi denote the income available to the consumer in

country i. It follows that the budget constraint faced by consumer i is

τi1p1xi1 + τi2p2xi2 ≤ wi.

Also, the revenue generated by the tariffs is given by

(τi1 − 1)p1(xi1 − ωi1) + (τi2 − 1)p2(xi2 − ωi2),

and since tariff revenues are redistributed in the form of a lump-sum, we have

wi = τi1p1ωi1 + τi2p2ωi2 + (τi1 − 1)p1(xi1 − ωi1) + (τi2 − 1)p2(xi2 − ωi2)

= (τi1 − 1)p1xi1 + (τi2 − 1)p2xi2 + p1ωi1 + p2ωi2.

We shall assume that the consumer in country i has a utility function ui of the Cobb-

Douglas form, so ui(xi1, xi2) = xi1
αixi2

1−αi , with parameter αi ∈ (0, 1).

We also make the nondegeneracy assumptions:
∑

i ωi1 > 0 and
∑

i ωi2 > 0.

For ease of reference we collect the assumptions made so far; these will be treated as

maintained assumptions.

ASSUMPTION 1: (i) For all i ∈ I, ωi ∈ R
2
+/{0} and ui(xi1, xi2) = xi1

αixi2
1−αi , with

parameter αi ∈ (0, 1);

(ii)
∑

i ωi1 > 0 and
∑

i ωi2 > 0.

The optimization problem faced by i taking p1, p2, τi1, and τi2 as given is

max xi1
αixi2

1−αi subject to τi1p1xi1 + τi2p2xi2 ≤ wi.

Evidently, the first order necessary and sufficient conditions for xi to solve the problem

are

xi2 =
(1− αi)τi1p1

αiτi2p2
xi1 τi1p1xi1 + τi2p2xi2 = wi.

Demand xi1(p1, p2, τi1, τi2) can now be calculated by observing that the budget constraint

simplifies to

p1xi1 + p2xi2 = p1ωi1 + p2ωi2.

We have demand xi1(p1, p2, τi1, τi2) is the value that satisfies

p1xi1+p2
(1− αi) p1

αi (τi2/τi1) p2
xi1 = p1ωi1+p2ωi2 ⇐⇒ p1

{
αi (τi2/τi1) + (1− αi)

αi(τi2/τi1)

}
xi1 = p1ωi1+p2ωi2
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⇐⇒ xi1 =

{
αi(τi2/τi1)

αi (τi2/τi1) + (1− αi)

}
[p1ωi1 + p2ωi2]

p1
.

World markets will clear at prices (p∗1, p
∗
2) if and only if

∑
i xi1(p

∗
1, p

∗
2) =

∑
i ωi1

⇐⇒
∑

i

[{
αi(τi2/τi1)

αi (τi2/τi1) + (1− αi)

}
[p∗1ωi1 + p∗2ωi2]

p∗1

]
=

∑

i

ωi1.

Clearly, we can normalize prices and set p1 = 1. Also, the tariff rates set by each

country affect prices only through the ratios of the tariffs on the two goods. Therefore,

we may work with the variables τi = τi2/τi1. From here onwards we set the gross tariff

rate on the first good in each country at one, and work with a single tariff rate, that on

the second good, chosen by each country; this is without loss of generality. The notation

τi is used from here on to denote the strategic variable chosen by country i.

Let ~τ = (τ1, τ2, · · · , τI). For αi ∈ (0, 1) and τi > 0, set A(αi, τi) := αiτi
αiτi+(1−αi)

.

Evidently, A(αi, τi) ∈ (0, 1). We have

p∗2(~τ) ·
∑

i

A(αi, τi)ωi2 =
∑

i

[1− A(αi, τi)]ωi1 ⇐⇒ p∗2(~τ) =

∑
i[1− A(αi, τi)]ωi1∑

i A(αi, τi)ωi2

.

We have an explicit analytical expression for the market clearing international relative

price as a function of the tariff rates set by each of the countries and the parameters

specifying economic fundamentals ((αi, ωi)i∈I). Assumption 1 guarantees that both the

numerator and the denominator are positive and finite, i.e. p∗2 (~τ) ∈ (0,+∞). Also,

consumption of good 1 in country i at equilibrium prices is xi1 (p
∗
2 (~τ)) = A(αi, τi)[ωi1 +

p∗2 (~τ)ωi2].

Before proceeding further, we collect a few remarks on the model. Notice that the

budget constraint takes the form

p1xi1 + τip2xi2 ≤ p1ωi1 + τip2ωi2 + (τi − 1)p2(xi2 − ωi2).

Trade is free if τi = 1 in every country. Also, the tariff generates revenue if τi > 1 and

country i is an importer of good 2 or if τi < 1 and country i is an exporter of good 2.13

Since we provide analytical results, our restriction to Cobb-Douglas utility functions is

driven by considerations of tractability. It should be noted that the analysis in Grandmont

(1992) can be applied directly to our model to provide conditions on the distribution

of characteristics that would generate Cobb-Douglas like demands in a pure exchange

endowment economy.

2.2 THE INDUCED UTILITY FUNCTION

Utility at the Walrasian equilibium obtained above can now be calculated and labelled

the “induced utility function” for country i. More precisely, given a vector of tariff

13We do not impose the condition “τi > 1 if and only if country i is a net importer of good 2”. In
doing so, we follow much of the literature, e.g. Otani (1980) and Kennan and Riezman (1988); Wong
(2004) does impose the restriction.
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rates, vi : R
I
++ → R denotes the utility achieved by each country at the market clearing

international relative price where vi(~τ) = (xi1 (p
∗
2 (~τ)))

αi(xi2(p
∗
2(~τ))

1−αi .

We begin our analysis by studying the function vi. Lemma 1 provides an explicit

form for vi and its first derivative with respect to τi. Evidently, vi is well defined and

continuously differentiable.

LEMMA 1: (i) vi(~τ) = (A(αi, τi))
αi(1− A(αi, τi))

1−αi
[
ωi1(p

∗
2 (~τ))

αi−1 + (p∗2 (~τ))
αiωi2

]
;

(ii)
∂vi
∂τi

(~τ) = vi(~τ)·
∂A

∂τi
(αi, τi)·

{
αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
j [1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

}
.

The term within brackets in Lemma 1 (ii) will play an important role since it is easy

to show that its sign is the same as the sign of the partial derivative.

2.3 CONSISTENT BOUNDS

We specify mild conditions that ensure that at low enough values of the tariff rate set

by country i (and no lower tariff rates set by any other country), the function vi(~τ) is

increasing in τi, and that it is decreasing in τi at high enough values of the tariff rate set

by country i (and no higher tariff rates set by any other country). A pair of such tariff

rates, denoted τ and τ , where ∞ > τ > τ > 0, is used as boundary points to induce

strategy sets by restricting the tariff rate set by country i to satisfy τ ≥ τi ≥ τ .

Not only are the induced strategy sets compact, they are also consistent because

Lemma 2 implies that if τ̃i /∈ (τ , τ) for a profile of actions τ−i := ((τj)j 6=i), then, for some

j ∈ I, ∂vj
∂τj

(τ̃j, τ−j) 6= 0. In addition, Lemma 2 and continuity of ∂vi
∂τi

(~τ) ensure that when

τj ∈ [τ , τ ] for all j 6= i, there is at least one value τ̃i ∈ (τ , τ) such that ∂vi
∂τi

(τ̃i, τ−i) = 0. The

alternative of a strategy set where a maximizer exists but is on the boundary, and the

derivative of the objective function at the maximizer is not zero, is not palatable in that

changing the bound would change the solution and hence the putative Nash equilibrium.

LEMMA 2: (i) If ωi2∑
j ωj2

< 1 for all i ∈ I then there exists τ ∈ (0, 1) such that, for all

τ ∈ (0, τ ], for all i ∈ I, ∂vi
∂τi

(τ , τ−i) > 0 for τ−i ∈ [τ ,∞)I−1; (ii) if ωi1∑
j ωj1

< 1 for all i ∈ I

then there exists τ > 1 such that, for all τ ∈ [τ ,∞), for all i ∈ I, ∂vi
∂τi

(τ , τ−i) < 0 for

τ−i ∈ (0, τ ]I−1.

We observe that the conditions imposed in Lemma 2 are very mild: we require that

for each good it is the case that at least two countries have a positive endowment of the

good. As the example in Section 2.5 shows, the condition imposed in (i) is tight.

Under the hypotheses of Lemma 2, we have 0 < mini∈I

∑
j 6=i ωjl

∑
j ωjl

, for l = 1, 2; now it

easily follows that there are values τ and τ that, respectively, satisfy the inequalities

τ
[τ + (1− α)/α]

[τ + (1− α)/α]
< mini∈I

∑
j 6=i ωj2∑
j ωj2

1

τ

[1/τ + α/(1− α)]

[1/τ + α/(1− α)]
< mini∈I

∑
j 6=i ωj1∑
j ωj1

,

8



where α := mini∈I αi and α := maxi∈I αi, where 0 < α ≤ α < 1. (The corresponding

inequalities are satisfied by any pair τ and τ such that τ ∈ (0, τ ] and τ ∈ [τ ,∞), re-

spectively.) The proof of Lemma 2 consists in showing that when τ and τ satisfy the

inequalities, the properties asserted in the statement of Lemma 2 follow; since the values

are independent of the characteristics of the economy, they serve as uniform bounds.

Evidently, when all countries have identical preferences then the infimum of the set of

values τ that satisfy the inequality is 1 + ωī1∑
j 6=ī ωj1

where ī is the country with the largest

endowment of the first good. This provides a simple upper bound for equilibrium tariff

rates independent of the country; there is a corresponding lower bound. So our model

has the following interesting implication: when countries have similar tastes, unless some

country is quite literally very large, equilibrium tariff rates will be close to one.

Tighter, and so more informative bounds, are also available. The proof of Lemma 2

makes clear that values that satisfy the inequalities below can serve as bounds:

τ < mini∈I

∑
j 6=i A(αj, τ)ωj2∑
j A(αj, τ)ωj2

1

τ
< mini∈I

∑
j 6=i [1− A(αj, τ)]ωj1∑
j [1− A(αj, τ)]ωj1

.

Clearly, the bounds, including the uniform ones, are available even when tastes vary; it

follows that they provide an easy test of whether Nash equilibrium behaviour is observed.14

2.4 THE TARIFF GAME

The tariff game is a game in strategic form specified by the player set I, the strategy

set [τ , τ ] for each i, and the payoff functions (v1(~τ), · · · , vI(~τ)) which restrict the induced

utility functions vi to [τ , τ ]I .

A pure strategy Nash equilibrium of the tariff game is an action profile (τ ∗1 , · · · , τ
∗
I ) ∈

[τ , τ ]I , such that

for each i ∈ I τi ∈ [τ , τ ] ⇒ vi(τ
∗
i , τ

∗
−i) ≥ vi(τi, τ

∗
−i).

A strategy profile is interior if (τ1, · · · , τI) ∈ (τ , τ)I .

The discussion preceeding Lemma 2 confirms that a profile of actions in which τi /∈

(τ , τ) for some i cannot be a Nash equilibrium.

2.5 AN EXAMPLE

We present an example to show that the bounds specified in Lemma 2 are tight.

Consider a two country world. Let country 2’s endowment of the second good be 0,

ω22 = 0, in particular ω2 /∈ R
2
++. For given tariff rates the Walrasian equilibrium is always

well-defined. Yet, the tariff game does not have an interior Nash equilibrium. To see this,

use Lemma 1 (ii) to obtain the sign of ∂v1
∂τ1

(~τ) by evaluating the expression within braces:

α1(1− τ1)

A(α1, τ1)
+

(1− α1)ω11∑
j [1− A(αj, τj)]ωj1

−
α1 · ω12∑

j A(αj, τj)ωj2

14Of course, high tariffs observed in data from actual economies might correspond to punitive measures
with payoffs not captured by the functions vi(~τ).
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=
α1(1− τ1)

A(α1, τ1)
+

(1− α1)ω11∑
j [1− A(αj, τj)]ωj1

−
α1

A(α1, τ1)
= −

α1τ1
A(α1, τ1)

+
(1− α1)ω11∑

j [1− A(αj, τj)]ωj1

= −
1− α1

1− A(α1, τ1)
+

(1− α1)ω11∑
j [1− A(αj, τj)]ωj1

,

since αiτi
A(αi,τi)

= αiτi + (1− αi) = (1− αi)/
(1−αi)

αiτi+(1−αi)
= 1−αi

1−A(αi,τi)
,

= (1− α1)

{
ω11∑

j [1− A(αj, τj)]ωj1

−
1

1− A(α1, τ1)

}
< 0

since ω21 > 0 necessarily as ω22 = 0 and ωi ∈ R
2
+/ {0}. This shows that regardless of

the vector of tariffs chosen, country’s 1’s first order condition can never have an interior

solution.

The example does not restrict ω1 or preferences.

3. EXISTENCE

Our objective in this section is to investigate the conditions for the existence of a pure

strategy Nash equilibrium in the tariff game. Lemma 1 in Section 2.2 established that

the function vi is well defined and continuously differentiable; however, vi typically fails

to be concave. By requiring the second derivative of the payoff function to be negative at

every point at which the first derivative is zero, and also requiring the payoff function to

be increasing at the left boundary and decreasing at the right boundary, we are able to

ensure the existence of an interior Nash equilibrium.

Clearly, we must study the local behaviour of the payoff function at a point at which

the first derivative is zero. Lemma 3 in Section 3.1 provides a very simple explicit algebraic

form to determine the sign of the second partial derivative of the payoff function at such

a point. This result is used in Lemma 4 to establish that, in our tariff games, either of

αi ≤ 1/2 or ωi2∑
j ωj2

< 1, the mild condition already encountered in Lemma 2 (i), suffice to

ensure that the sign of the second partial derivative of the payoff function is negative at

every point at which the first derivative is zero.

The properties of the function vi established in Lemma 1, 2, and 4 lead to Theorem 1

in Section 3.2 which identifies mild conditions on the primitives of the model that ensure

the existence of an interior pure strategy Nash equilibrium in the tariff game.

3.1 THE BEST RESPONSE

In this sub-section we study the local behaviour of the payoff function at points at

which its first derivative is zero. Using the fact that at a strategy profile at which the first

derivative is zero we must have
∑

j 6=i A(αj, τj)ωj2 > 0, we are able to provide a simple

algebraic expression to exactly evaluate the sign of the second derivative of the payoff

function at a point at which the first derivative is zero.
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Define the function sign : R → {−1, 0, 1} by sign(x) = −1 if x < 0, sign(x) = 0 if

x = 0, and sign(x) = 1 if x > 0.

LEMMA 3:

sign

{
∂2vi

∂τi ∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
= sign

{
−2αiτiωi2 − [1− 2αi(1− τi)]

[∑
j 6=i A(αj, τj)ωj2

]}
.

Evidently, αi ≤ 1/2 implies that 1−2αi(1−τi) > 0 and so we have a simple but strong

sufficient condition under which the second derivative of the payoff function is negative.

But we are able to do better: the expression in Lemma 3 has a monotonicity property

because of which the sign of the expression is negative if and only if the tariff rate chosen

is to the right of a threshold value.15 So if the first derivative were to be zero at a point

to the left of the threshold value then the second derivative at that point would have

to be positive; but then, by using the boundary condition result in Lemma 2 (i), the

continuity of the first derivative, and the Intermediate Value Theorem, there would have

to exist another point further to the left at which the first derivative would again be zero

but where, by continuity, the second derivative would necessarily be negative. Since this

happens at a point to the left of the threshold value it produces a contradiction.

Lemma 4 shows two properties that summarize the discussion: that, at a point at which

the first derivative of the payoff function is zero, the second derivative of the function

cannot be zero, ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
6= 0, so any solution to the first order condition is

robust (which is a much stronger result than claiming that robust intersection is a generic

property in some appropriate space of parameters); and if either αi ≤ 1/2 or the result

in Lemma 2 (i) holds, then at such a point the second derivative of the payoff function

must be negative, ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
< 0.

This suffices to show that there is a unique best response and that it is continuous

since the payoff function is quasiconcave.

LEMMA 4: ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
6= 0. If αi ≤ 1/2 or if ωi2∑

j ωj2
< 1 then ∂2vi

∂τi ∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
< 0.

3.2 PURE STRATEGY EQUILIBRIA IN THE TARIFF GAME

We are now in a position to show that interior pure strategy Nash equilibria exist

in the tariff game played by countries whose fundamentals satisfy the mild conditions

specified in Theorem 1. The conditions restrict the distribution of endowments by ruling

out extreme cases in which a single country’s endowment of a good is equal to the world’s

endowment of that good. The example in Section 2.5 illustrates that the conditions cannot

be relaxed.

THEOREM 1: Assume that, for all i ∈ I, ωi1∑
j ωj1

< 1 and ωi2∑
j ωj2

< 1. The tariff game of

15The threshold value, defined in the proof of Lemma 4, is τ̂i =
[
∑

j 6=i
A(αj ,τj)ωj2][2αi−1]

2αi[ωi2+
∑

j 6=i
A(αj ,τj)ωj2]

.
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such an economy has an interior pure strategy Nash equilibrium.

The proof of Theorem 1 follows from an intuitive result which says that when the

strategy space is an interval, and player i’s payoff function is (i) increasing in i’s choice

at the left boundary and decreasing in i’s choice at the right boundary and (ii) has a

negative second derivative at every point at which the first derivative is zero, the game

has an interior pure strategy Nash equilibrium, and the fact that by Lemma 1, 2, and

4, the tariff game satisfies conditions (i) and (ii). The intuitive existence result holds in

a more general setting with one dimensional strategy sets and is stated and proved as

Lemma S.8 in Section 7.

4. STRICTLY INCREASING BEST RESPONSE FUNCTIONS

In this section we show that the tariff game is a game of strategic complementarity

in that best response functions are strictly increasing. We also provide three robust

examples of tariff games that fail to be supermodular. Since the tariff game is defined on

the product of intervals, and the payoff functions are twice continuously differentiable, to

ask whether it is a supermodular game is a natural line of enquiry.16 Were this to be true

then existence would follow immediately as would a number of other useful properties

including the implication that best responses are increasing functions (Results 1 and 4 in

Vives (2007)), i.e. a direct appeal to lattice theory would make redundant the detailed

development to verify quasiconcavity that culminates in the proof of Lemma 4.17

One needs to check whether ∂2vi
∂τi ∂τj

(~τ) ≥ 0 everywhere. In Lemma 5 (i) we show that,

at points at which the first derivative is zero, the sign of the cross partial derivative is

indeed positive. In Lemma 5 (ii), we provide an explicit algebraic expression for the sign

of the cross partial derivative; so a computation allows us to confirm that a specific tariff

game is not supermodular.

LEMMA 5: For i 6= j,
(i) sign

{
∂2vi

∂τi ∂τj
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
> 0;

(ii) sign

{
∂2vi

∂τi ∂τj
(~τ)

}
= sign

{
[(1− αi)ωi1 + (−αi)(p

∗
2(~τ))ωi2]

2 ·
[
(p∗2(~τ))

−1ωj1 + ωj2

]

+
[
ωi1(p

∗
2(~τ))

−1 + ωi2

]
· (p∗2(~τ))

2 ·
[
(1− αi) (p

∗
2(~τ))

−2 · ωj1ωi1 + αi · ωi2 · ωj2

]

+ [(1− αi)ωi1 + (−αi)(p
∗
2(~τ))ωi2]·

[
(p∗2(~τ))

−1ωj1 + ωj2

]
·
αi(1− τi)

A(αi, τi)
·

[
∑

k

[1− A(αk, τk)]ωk1

]}
.

16Vives (2007) ia a brief survey of supermodularity that suffices for the purpose at hand.
17Since the best response functions are strictly increasing, by Theorem 4 in Milgrom and Shannon

(1994), the tariff game’s payoffs must satisfy the single crossing property. However, it is not obvious that
the payoff functions specified in Lemma 1 (a) do satisfy the required condition so such an ex post result
does not really help us.
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By Lemma 5 (i), the positive cross partial condition holds on the restricted set of

strategy profiles that are in the graph of the best response function for that player.

By Lemma 5 (ii), the sign of the cross partial derivative is positive at τi = 1, and around

that value by continuity, since the term in the third line drops out and the other two

terms are positive. This suggests that it might be possible to identify sets of endowments

that together with the bounds specified in Lemma 2 induce strategy sets that are in the

neighbourhood of one so that the cross partial derivative is positive.

THEOREM 2: Assume that ωi1∑
j ωj1

< 1 and ωi2∑
j ωj2

< 1. The best response function of

player i is well-defined, differentiable, and strictly increasing in τj for all j 6= i.

Theorem 2 may be proved as follows. By continuity of the payoff function and com-

pactness of the strategy set, the best response is well defined. Under the conditions

provided, one can combine Lemma 4 and Lemma 5 (i) and the implicit function theorem

to conclude that each best response function is differentiable and strictly increasing in

every other player’s choice. We omit a full formal proof.

We turn to a brief presentation of three examples in each of which the tariff game fails

to be supermodular and this failure is robust; the details can be found in the Appendix

where, for each example, we also check whether the proposed tariff rates satisfy bounds

discussed in Section 2.3.

In the first example there are two countries with identical symmetric preferences. Even

in this rudimentary environment supermodularity fails at (τ1, τ2) = (3, 1/2).

EXAMPLE 1: Let there be two countries with the following parameter specification

α1 = 1/2 ω11 = 2 ω12 = 8/67

α2 = 1/2 ω21 = 4 ω22 = 2.

In the next example we allow one out of many countries to have a different preference

parameter and show that the violation can occur with τ1 = 11/10 and τi = 1, i 6= 1, when

we have a few more than six hundred countries.

EXAMPLE 2: Let there be I countries with the following parameter specification

α1 = 1/3 ω11 = 2 ω12 = 80/22

αi = 1/2 ωi1 = 2 ωi2 = 2 for i = 2, · · · , I.

The last example combines the features of the first two examples: it considers many

countries with identical symmetric preferences and generates a violation of supermodular-

ity close to free trade by introducing appropriate heterogeneity of endowments, specifically

τ1 = 11/10 and τi = 1, i 6= 1, and we have a few more than two hundred countries.

EXAMPLE 3: Let there be I countries with the following parameter specification

α1 = 1/2 ω11 = 2 ω12 = 10/11
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αi = 1/2 ωi1 = 4 ωi2 = 2 for i = 2, · · · , I.

The specifications in the three examples vary quite a bit and suggest that, when

there are many countries, for supermodularity to fail to obtain at tariff rates that satisfy

reasonable bounds, we need some country to be quite different.

5. ON NASH EQUILIBRIA OF THE TARIFF GAME

In this section we highlight properties of Nash equilibria in our tariff game when

Assumption 1 holds and endowments satisfy the condition: for all i ∈ I (i) ωi2∑
j ωj2

< 1

and (ii) ωi1∑
j ωj1

< 1. By Theorem 2, the tariff game is one of strategic complementarity.

Lemma 6 allows us to conclude that the sufficient condition identified in the literature

that allows payoff comparisons across Nash equilibria must be violated in our model. Even

so, in Proposition 2 we are able to show that country i’s payoff is monotone increasing

as we move away from the value one along i’s best response function. More surprisingly,

Proposition 3 allows us to determine the direction of negotiated tariff changes that induce

a Pareto improvement relative to a Nash equilibrium and shows that it suffices that at

most two countries participate in the negotiations. We also provide results on the location

of the best response function, on lower bounds of the arithmetic and harmonic means of

equilibrium tariff rates, with the further implication that there is at most one symmetric

equilibrium, and, finally, that a Nash equilibrium allocation is Pareto optimal if and only

if there is no trade. We then comment on the extent to which comparative statics exercises

can be carried out, and we briefly touch upon the issue of uniqueness.

Our first result provides information on the location of the best response function.

PROPOSITION 1: Let ~τ be such that τj = 1 for all j 6= i and ∂vi
∂τi

(~τ) = 0. Then τi > 1

if and only if i is an exporter of good 1 when trade is free.

The result adds to what we know about each best response function—that, by Theorem

2, they are strictly increasing and that, by Lemma 2, they take interior values at boundary

points. The upper and lower bounds on strategy sets identified in Section 2.3 provide

further restrictions, where we recall that the bounds are likely to be fairly tight in cases

where the number of countries is large, and that the bounds become even tighter when

the distribution of endowments is more symmetric.

The next lemma provides the tool that we need for the two propositions on payoff

comparisons that follow. It shows that, at a point on the graph of the best response,

the direction in which country i’s payoff moves in response to changes in tariffs set by

other countries is determined only by the value of its own tariff relative to free trade.

It is immediate that in our model, ∂vi
∂τj

(~τ) cannot be of uniform sign; it follows that the

standard route in the literature to making Pareto comparisons across Nash equilibria,

which requires that ∂vi
∂τj

(~τ) is of uniform sign, a strong condition which is not implied by

supermodularity, is not available to us.
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LEMMA 6: Let ~τ such that ∂vi
∂τi

(~τ) = 0. Then, for i 6= j, sign
{

∂vi(~τ)
∂τj

}
= sign {τi − 1} .

Lemma 6 suffices to show that as we move along country i’s best response, points that

are further from τi = 1 in either direction result in higher payoffs to country i.

PROPOSITION 2: Let ~τ and ~τ ′ be two strategy profiles such that ∂vi
∂τi

(~τ) = ∂vi
∂τi

(~τ ′) = 0.

If either τi > τ ′i ≥ 1 or τi < τ ′i ≤ 1 then vi(~τ) > vi(~τ
′).

As we have already noted, we cannot invoke the standard route to making payoff

comparisons. Yet, by Proposition 2 monotonicity results hold on either side of the value

τi = 1 allowing us to compare payoffs across some pairs of equilibrium strategy profiles

for some players, and this despite the fact that our tariff game is induced by an economy

in general equilibrium. This is possible because all Nash equilibrium strategy profiles of

the tariff game can be ordered as best response functions are strictly increasing.

We turn to the determination of the nature and direction of negotiated tariff changes

that induce Pareto improving allocations relative to a Nash equilibrium. As we shall

shortly confirm in Proposition 5, in the generic case the allocation induced at a Nash

equilibrium fails to be Pareto optimal and it follows that there will be strategy profiles at

which payoffs are higher; however, since the payoff functions are quasiconcave only in the

country’s own choice, it is not obvious that more specific recommendations can be made.

Somewhat surprisingly, Lemma 6 allows us to provide a much more succint answer.

PROPOSITION 3: Assume that the endowment is not a Pareto optimal allocation and

consider an interior Nash equilibrium. (i) If there are countries i, j ∈ I such that

τ ∗i > 1 > τ ∗j then a Pareto improvement can be induced by forming two groups such that

if i and j are in the same group then either (a) τ ∗i > 1 and τ ∗j > 1 or (b) τ ∗i < 1 and

τ ∗j < 1, and with the same number of countries in each group, and moving the tariffs of

both sets towards the free trade value by appropriate amounts. (ii) If all countries are

on the same side of free trade then a Pareto improvement can be induced by moving the

tariff rate of any one country further away from free trade.

So, when not all countries choose equilibrium tariff rates on the same side of free trade,

the participation of just two countries suffices since the negative effects of local changes

in tariff rates can be controlled by considering a “balanced” set of countries whose rates

are adjusted, where balance simply requires that for each country with an equilibrium

tariff rate that exceeds one that has its rate adjusted there is one and only one country

with an equilibrium rate that is less than one whose rate is also adjusted. We do not

know whether the alternative case, in which all countries choose equilibrium tariff rates

on the same side of free trade, can arise, but if it does then changing the rate of a single

country, i.e. a unilateral move, suffices to induce a Pareto improvement. Also, the result

in Proposition 3 refers to local changes that induce higher payoffs.

Our next result sharply delimits the region in the strategy space where one might
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expect to find pure strategy Nash equilibria of the tariff game.

PROPOSITION 4: (i) At every interior Nash equilibrium of the tariff game,
∑

j τ
∗
j > I−1

and
∑

j
1
τ∗j

> I − 1. (ii) If at an interior Nash equilibrium of the tariff game τ ∗i = τ ∗ for

all i ∈ I, then, necessarily, τ ∗i = 1 for all i ∈ I.

By Proposition 4 (i), at any interior Nash equilibrium, for some i and i′, τ ∗i > (I−1)/I

and τ ∗i′ < I/(I − 1). By Proposition 4 (ii), only free trade can be a symmetric Nash

equilibrium, a result that we use in the proof of Proposition 5.

For our last formally stated result, it is useful to recall that, for a “generic” economy,

the endowment vector is not a Pareto optimal allocation.

PROPOSITION 5: A Nash equilibrium allocation is Pareto optimal if and only if there

is no trade.

Proposition 5 shows that, for a “generic” economy, the equilibrium allocations of the

tariff game fail to be Pareto optimal and there is trade in every equilibrium.18

We turn to the possibility of obtaining comparative statics results. Since the solutions

to the I first order conditions completely characterize pure strategy Nash equilibria, such

exercises can be undertaken. One easily checks that, for j 6= i,

∂2vi
∂ωi1 ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
> 0,

∂2vi
∂ωi2 ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
< 0,

∂2vi
∂ωj1 ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
< 0,

∂2vi
∂ωj2 ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
> 0,

∂2vi
∂αj ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
> 0.

Lemma 4 and the implicit function theorem allow us to conclude that i raises τi in response

to an increase in ωi1 or in ωj2, and reduces τi in response to an increase in ωi2 or in ωj1. So

we can determine the shifts in the best response functions of all the countries in response to

endowment changes. For example, as ωi1 increases, τi increases and τj decreases for every

j 6= i;19 it is that very feature of the shifts being in the “same direction” that prevents

us from drawing general conclusions about changes in equilibrium behaviour in response

to the parametric change. Since the sign of ∂2vi
∂αi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
is difficult to determine, we

cannot make any progress on changes in choices made in response to changes to preference

parameters.

We make a brief remark on uniqueness of Nash equilibrium. The problem has quite a

lot of geometric structure and we are able to show that the matrix of second derivatives

of the payoff functions evaluated at a Nash equilibrium can be written in the form: V ·

18It is easy to check that if free trade is a Nash equilibrium then the endowment must be a Pareto
optimal allocation. It is also easy to show that only a subset of the set of Pareto optimal allocations can
be induced by appropriate choice of tariff rates.

19To fix ideas, consider the case of just two countries. Each country’s best response moves to the right,
where we assign τ1 to the horizontal axis.

16



∆M + V · ∆N where the matrix V is a diagonal matrix with generic element vi(~τ) ·
∂A(αi,τi)

∂τi
> 0, ∆M is another diagonal matrix with generic element −αi −

1−αi

(τi)2
< 0, and

∆N is a positive matrix with a very specific form.20 The structure of the matrix, and

the fact that the boundary behaviour of the system is nice, strongly suggest the use of

degree theoretic methods to identify conditions that are sufficient to ensure uniqueness of

equilibrium. Although we have not been able to find a useful way to work out the sign of

the determinant, numerical methods appear to be a promising route to follow.

6. CONCLUDING COMMENTS

We have presented and analysed a model of tariff retaliation with many countries. The

principal restriction that we imposed was to assume that all preferences are in the Cobb-

Douglas class. This was for analytical tractability and yet, as we showed, the induced

tariff game fails to be supermodular. It is, however, a game in which all best response

functions are increasing and that allowed us to develop a number of interesting results.

We hope that the model or its extensions will be taken to the data. Independent of

that, one could ask whether the specification adopted helps in shedding light on models

with some aspects of cooperative behaviour like customs unions or the Most Favoured

Nation clause in trade agreements.

On the technical side there are two obvious candidates for further research. The

first involves extending the model to three or more goods, and one imagines that many

of the results in Section 5 will go through provided that the best response functions are

increasing. To show the latter one will have to grapple with quasiconcavity and the sign of

some cross partial derivatives. The model with two goods treated by us has the advantage

that the relative price in the Walrasian equilibrium has a simple analytical form which

allowed us to obtain explicit expressions for the payoff functions and, with some algebraic

manipulations, we were able to identify the signs of various first and second order, own

and cross, partial derivatives. With more than one relative price, such explicit forms are

the solution of a large linear system of equations; as a result, the expressions for the payoff

functions are not amenable to manipulations making the identification of the signs of the

various derivatives an arduous task. The second candidate for further research asks the

more fundamental question about how special a sub-class Cobb-Douglas preferences form

when requiring normality of both goods and uniqueness of Walrasian equilibrium with

tariff distortions in a two good world with an arbitrary number of countries and arbitrary

nonnegative endowments.

7. PROOFS

The proofs of Lemma 1-6 use a number of supplementary results which are stated here;

the proofs of the statements are either in this section or in the Supplementary Material

(appended to the manuscript for the referee’s benefit).

20Lemma S.4 and S.5 in Section 7 provide the details of the elements of ∆N .
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In what follows, we will find it easier to work with the reciprocal of the price p∗2(~τ).

So define the function f by

f(~τ) =

∑
i A(αi, τi)ωi2∑

i[1− A(αi, τi)]ωi1

.

Lemma S.1 is our first supplementary result; it provides the evaluation of three partial

derivatives that will be used later.

LEMMA S.1: The functions A and f are differentiable on their domains and

∂A

∂τi
(αi, τi) =

αi(1− αi)

[αiτi + (1− αi)]2
> 0,

∂A

∂αi

(αi, τi) =
τi

[αiτi + (1− αi)]2
> 0,

and
∂f

∂τi
(~τ) =

∂A
∂τi

(αi, τi)∑
j[1− A(αj, τj)]ωj1

{f(~τ)ωi1 + ωi2} .

We can now proceed to prove Lemma 1.

LEMMA 1: (i) vi(~τ) = (A(αi, τi))
αi(1− A(αi, τi))

1−αi
[
ωi1(p

∗
2 (~τ))

αi−1 + (p∗2 (~τ))
αiωi2

]
;

(ii)
∂vi
∂τi

(~τ) = vi(~τ)·
∂A

∂τi
(αi, τi)·

{
αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
j [1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

}
.

PROOF: (i) Recall that vi(~τ) = (xi1(p
∗
2(~τ)))

αi(xi2(p
∗
2(~τ)))

1−αi

which, upon using xi2 =
(1−αi)τi1p1

αiτi2p2
xi1, the first order condition for the consumer’s choice,

becomes

vi(~τ) = (xi1(p
∗
2(~τ)))

αi

(
(1− αi)

αiτip∗2(~τ)
xi1(p

∗
2(~τ))

)1−αi

= (xi1(p
∗
2(~τ)))

(
(1− αi)

αiτip∗2(~τ)

)1−αi

= A(αi, τi) [ωi1 + p∗2(~τ)ωi2]

(
(1− αi)

αiτi

)1−αi
(

1

p∗2(~τ)

)1−αi

,

where we incorporate the explicit form of the demand function xi1(p
∗
2(~τ)). Now, observe

that (1−αi)
αiτi

= 1
A(αi,τi)

− 1 and obtain

vi(~τ) = A(αi, τi)

[
ωi1

(
1

p∗2(~τ)

)1−αi

+

(
1

p∗2(~τ)

)−αi

ωi2

](
1

A(αi, τi)
− 1

)1−αi

= (A(αi, τi))
αi(1− A(αi, τi))

1−αi
[
ωi1(p

∗
2 (~τ))

αi−1 + (p∗2 (~τ))
αiωi2

]
.

(ii) Recall that f(~τ) = 1
p∗
2
(~τ)

so that (i) may be rewritten as

vi(~τ) = (A(αi, τi))
αi(1− A(αi, τi))

1−αi
[
ωi1(f(~τ))

1−αi + (f(~τ))−αiωi2

]
.
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We proceed to differentiate the function.

∂vi(~τ)

∂τi
=

{
αi(A(αi, τi))

αi−1∂A

∂τi
(αi, τi)(1− A(αi, τi))

1−αi

+(A(αi, τi))
αi(1− αi)(1− A(αi, τi))

−αi(−1)
∂A

∂τi
(αi, τi)

}
·
{
(f(~τ))1−αiωi1 + (f(~τ))−αiωi2

}

+(A(αi, τi))
αi(1− A(αi, τi))

1−αi

{
(1− αi)(f(~τ))

−αi
∂f

∂τi
(~τ)ωi1 + (−αi)(f(~τ))

−αi−1 ∂f

∂τi
(~τ)ωi2

}
.

We group some terms from the first two lines in the expression above to obtain the first

two lines below; we also substitute for ∂f
∂τi

(~τ) from Lemma S.1 and collect some common

terms in the last line above to obtain the third and fourth lines below. We have

∂vi(~τ)

∂τi
=

{
(A(αi, τi))

αi(1− A(αi, τi))
1−αi(f(~τ))−αi

}

·
[αi (1− A(αi, τi))− (1− αi)A(αi, τi)]

A(αi, τi)[1− A(αi, τi)]

∂A

∂τi
(αi, τi) · {(f(~τ))ωi1 + ωi2}

+
{
(A(αi, τi))

αi(1− A(αi, τi))
1−αi(f(~τ))−αi

}

·
∂A
∂τi

(αi, τi)∑
j[1− A(αj, τj)]ωj1

{f(~τ)ωi1 + ωi2} ·
{
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

}
.

We collect terms and use the expression for vi(~τ) obtained in (i) to simplify the expression

to

∂vi(~τ)

∂τi
= vi(~τ) ·

∂A

∂τi
(αi, τi) ·

{
αi − A(αi, τi)

A(αi, τi)[1− A(αi, τi)]
+

(1− αi)ωi1 + (−αi)(f(~τ))
−1ωi2∑

j[1− A(αj, τj)]ωj1

}

= vi(~τ) ·
∂A

∂τi
(αi, τi) ·

{
αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
j[1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

}
,

where we use the fact that

αi − A(αi, τi)

1− A(αi, τi)
=

αi −
αiτi

αiτi+(1−αi)

1− αiτi
αiτi+(1−αi)

=
(αi − 1)αiτi + αi(1− αi)

(1− αi)
= αi(1− τi)

and we incorporate the explicit form of the function f(~τ).

The next supplementary result distills the key implication obtained so far.

LEMMA S.2: sign
{

∂vi
∂τi

(~τ)
}
= sign

{
αi(1−τi)
A(αi,τi)

+ (1−αi)ωi1∑
j [1−A(αj ,τj)]ωj1

− αi·ωi2∑
j A(αj ,τj)ωj2

}
.

PROOF: Since A(αi, τi) ∈ (0, 1) and ωi ∈ R
2
+/{0}, from Lemma 1 (i) we have vi(~τ) > 0.

Also, by Lemma S.1, ∂A
∂τi

(αi, τi) > 0. The result follows directly from Lemma 1 (ii).
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For notational ease, we define

M(αi, τi) :=
αi(1− τi)

A(αi, τi)
; Ni(~τ) :=

(1− αi)ωi1∑
j[1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

.

Our next supplementary result provides an evaluation of ∂M
∂τi

(αi, τi).

LEMMA S.3: ∂M

∂τi
(αi, τi) = −αi −

1− αi

(τi)2
.

We turn to the proof of Lemma 2 which establishes conditions under which there is

an interior solution to the first order condition ∂vi
∂τi

(~τ) = 0.

LEMMA 2: (i) If ωi2∑
j ωj2

< 1 for all i ∈ I then there exists τ ∈ (0, 1) such that, for all

τ ∈ (0, τ ], for all i ∈ I, ∂vi
∂τi

(τ , τ−i) > 0 for τ−i ∈ [τ ,∞)I−1; (ii) if ωi1∑
j ωj1

< 1 for all i ∈ I

then there exists τ > 1 such that, for all τ ∈ [τ ,∞), for all i ∈ I, ∂vi
∂τi

(τ , τ−i) < 0 for

τ−i ∈ (0, τ ]I−1.

PROOF: By Lemma S.2, the sign of ∂vi
∂τi

(~τ) is determined by the sign of the expression

αi(1− τi)

A(αi, τi)
+

(1− αi) · ωi1∑
j[1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

.

In (i) below, we ignore the positive second term and show that even so the sum of the

remaining terms is positive for some τ sufficiently small. In (ii) we ignore the last term,

which is negative, and show that for some τ sufficiently large the sum of the remaining

terms is, nonetheless, negative.

Let α := mini∈I αi and α := maxi∈I αi; evidently, 0 < α ≤ α < 1.

(i) By hypothesis ωi2∑
j ωj2

< 1 for all i ∈ I; so there must exist τ ∈ (0, 1) such that

∀ i ∈ I τ
[τ + (1− α)/α]

[τ + (1− α)/α]
= τ

A(α, τ)

A(α, τ)
< 1−

ωi2∑
j ωj2

,

⇔ ∀ i ∈ I τ · A(α, τ) ·
∑

j

ωj2 < A(α, τ) ·
∑

j 6=i

ωj2.

By Lemma S.1, A(αj, τj) is increasing in αj, and so

⇒ ∀ i ∈ I τ ·

[
A(αi, τ)ωi2 +

∑

j 6=i

A(αj, τ)ωj2

]
<

∑

j 6=i

A(αj, τ)ωj2,

⇔ ∀ i ∈ I τ · A(αi, τ)ωi2 < (1− τ) ·
∑

j 6=i

A(αj, τ)ωj2.
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By Lemma S.1 A(αj, τj) is increasing in τj, and so, for τj ≥ τ , we must have

∀ i ∈ I τ · A(αi, τ)ωi2 < (1− τ) ·
∑

j 6=i

A(αj, τj)ωj2

⇔ ∀ i ∈ I A(αi, τ)ωi2 < (1− τ)

[
∑

j 6=i

A(αj, τj)ωj2 + A(αi, τ)ωi2

]

⇔ ∀ i ∈ I
ωi2∑

j 6=i A(αj, τj)ωj2 + A(αi, τ)ωi2

<
(1− τ)

A(αi, τ)

⇔ ∀ i ∈ I 0 <
αi(1− τ)

A(αi, τ)
−

αi · ωi2∑
j 6=i A(αj, τj)ωj2 + A(αi, τ)ωi2

.

That verifies the sign of the expression.

The proof is completed by observing that the same argument holds for all τ ∈ (0, τ ].

(ii) By hypothesis ωi1∑
j ωj1

< 1 for all i ∈ I; so there must exist τ , with 1/τ ∈ (0, 1),

such that

∀ i ∈ I
1

τ

[1/τ + α/(1− α)]

[1/τ + α/(1− α)]
=

1

τ

[1− A(α, τ)]

[1− A(α, τ)]
< 1−

ωi1∑
j ωj1

,

⇔ ∀ i ∈ I [1− A(α, τ)] ·
∑

j

ωj1 < τ · [1− A(α, τ)] ·
∑

j 6=i

ωj1.

By Lemma S.1 A(αj, τj) is increasing in α, and so

⇒ ∀ i ∈ I [1− A(αi, τ)]ωi1 +
∑

j 6=i

[1− A(αj, τ)ωj1] < τ ·
∑

j 6=i

[1− A(αj, τ)]ωj1

⇔ ∀ i ∈ I [1− A(αi, τ)]ωi1 < (τ − 1) ·
∑

j 6=i

[1− A(αj, τ)]ωj1

⇔ ∀ i ∈ I τ · [1− A(αi, τ)]ωi1 < (τ − 1) ·

[
∑

j

[1− A(αj, τ)]ωj1

]
.

Since [1− A(αi, τi)] =
1−αi

αiτi
A(αi, τi), we have

⇔ ∀ i ∈ I
1− αi

αi

· A(αi, τ)ωi1 < (τ − 1) ·

[
∑

j 6=i

[1− A(αj, τ)]ωj1

]
.

By Lemma S.1 A(αj, τj) is increasing in τj, and so, for τj ≤ τ , we must have

⇔ ∀ i ∈ I
(1− αi)

αi

·A(αi, τ)·ωi1 < (τ−1)

[
∑

j 6=i

[1− A(αj, τj)]ωj1 + [1− A(αi, τ)]ωi1

]

⇔ ∀ i ∈ I
(1− αi) · ωi1∑

j 6=i[1− A(αj, τj)]ωj1 + [1− A(αi, τ)]ωi1

<
αi(τ − 1)

A(αi, τ)
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⇔ ∀ i ∈ I
αi(1− τ)

A(αi, τ)
+

(1− αi) · ωi1∑
j 6=i[1− A(αj, τj)]ωj1 + [1− A(αi, τ)]ωi1

< 0.

That verifies the sign of the expression.

The proof is completed by observing that the same argument holds for all τ ∈ [τ ,∞).

The next supplementary result, Lemma S.4, provides an evaluation of ∂Ni

∂τj
(~τ). It is

used in proving both Lemma 3 and Lemma 5.

LEMMA S.4: ∂Ni

∂τj
(~τ) =

αj(1−αj)

[αjτj+(1−αj)]2

[
∑

k A(αk, τk)ωk2]
2

{
(1− αi) (f(~τ))

2 · ωj1ωi1 + αi · ωi2 · ωj2

}
.

We now state a supplementary result that prepares the groundwork for the proof of

Lemma 3 where we pin down the sign of ∂2vi
∂τi ∂τi

(~τ) at ~τ at which ∂vi
∂τi

(~τ) = 0.

LEMMA S.5: If ∂vi
∂τi

(~τ) = 0 and
∂vj
∂τj

(~τ) = 0 then

∂Ni

∂τj
(~τ) = αi

[
A(αj, τj)

τj

]2 {
ωi2 · ωj2

αj [
∑

k A(αk, τk)ωk2]
2 +

[
(1− τi)(1− τj)

A(αi, τi) · A(αj, τj)

]

−
1

[
∑

k A(αk, τk)ωk2]

{
ωj2(1− τi)

A(αi, τi)
+

ωi2(1− τj)

A(αj, τj)

}}
.

When j = i the expression simplifies to

∂Ni

∂τi
(~τ) =

[
A(αi,τi)

τi

]2
[∑

j A(αj, τj)ωj2

]





(ωi2)
2

[∑
j A(αj, τj)ωj2

] − 2ωi2
αi(1− τi)

A(αi, τi)



+ αi

{
(1− τi)

τi

}2

.

Our penultimate supplementary result is used in Lemma 3 and 4.

LEMMA S.6: If ~τ is such that ∂vi
∂τi

(~τ) = 0 then
∑

j 6=i A(αj, τj)ωj2 > 0.

PROOF: Since A(αj, τj) > 0, ωj2 ≥ 0 and
∑

i∈I ωi2 > 0, we have (i)
∑

j 6=i A(αj, τj)ωj2 ≥ 0

and (ii)
∑

j 6=i A(αj, τj)ωj2 = 0 if and only if ωj2 = 0 for all j 6= i and ωi2 > 0.

If ωj2 = 0 for all j 6= i and ωi2 > 0 then, using Lemma S.2,

sign

{
∂vi
∂τi

(~τ)

}
= sign

{
αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
j[1− A(αj, τj)]ωj1

−
αi

A(αi, τi)

}

= sign

{
−αiτi

A(αi, τi)
+

(1− αi)ωi1∑
j[1− A(αj, τj)]ωj1

}
.
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Since αiτi
A(αi,τi)

= αiτi + (1− αi) = (1− αi)/
(1−αi)

αiτi+(1−αi)
= 1−αi

1−A(αi,τi)
, we have

sign

{
∂vi
∂τi

(~τ)

}
= sign

{
(1− αi)

{
−

1

1− A(αi, τi)
+

ωi1∑
j[1− A(αj, τj)]ωj1

}}
< 0

unless ωj1 = 0 for all j 6= i and ωi1 > 0 in which case the expression takes the value zero.

So if ωj2 = 0 for all j 6= i and ωi2 > 0 and ~τ is such that ∂vi
∂τi

(~τ) = 0 then, necessarily,

ωj1 = 0 for all j 6= i and ωi1 > 0. But that contradicts our assumption that for every i ∈ I,

ωi ∈ R
2
+/{0}. We conclude that if ~τ is such that ∂vi

∂τi
(~τ) = 0 then

∑
j 6=i A(αj, τj)ωj2 > 0.

We use Lemma S.3, S.5 and S.6 to prove Lemma 3.

LEMMA 3:

sign

{
∂2vi

∂τi ∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
= sign

{
−2αiτiωi2 − [1− 2αi(1− τi)]

[∑
j 6=i A(αj, τj)ωj2

]}
.

PROOF: Using Lemma 1 (ii) and the definitions of the functions M(αi, τi) and Ni(~τ) we

have

∂2vi
∂τi ∂τj

(~τ) =
∂

∂τj

{
∂vi
∂τi

(~τ)

}
=

∂

∂τj

{
vi(~τ) ·

∂A

∂τi
(αi, τi) · [M(αi, τi) +Ni(~τ)]

}

=
∂vi(~τ)

∂τj
·

{
∂A

∂τi
(αi, τi) · [M(αi, τi) +Ni(~τ)]

}
+vi(~τ)·

{
∂

∂τj

[
∂A

∂τi
(αi, τi)

]}
·[M(αi, τi) +Ni(~τ)]

+vi(~τ) ·
∂A

∂τi
(αi, τi) ·

{
∂M

∂τj
(αi, τi) +

∂Ni

∂τj
(~τ)

}
.

From Lemma S.2, ∂vi
∂τi

(~τ) = 0 if and only if M(αi, τi) + Ni(~τ) = 0. In addition, as noted

in the proof of Lemma S.2, vi(~τ) > 0 and ∂A
∂τi

(αi, τi) > 0. Taking these facts into account,

we have

sign

{
∂2vi

∂τi ∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
= sign

{
∂M

∂τi
(αi, τi)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
+

∂Ni

∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
.

From Lemma S.3 and S.5, we have

∂M

∂τi
(αi, τi)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
+

∂Ni

∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
= −αi −

1− αi

(τi)2

+

(αi)
2

[αiτi+(1−αi)]2[∑
j A(αj, τj)ωj2

]





(ωi2)
2

[∑
j A(αj, τj)ωj2

] − 2ωi2
αi(1− τi)

A(αi, τi)



+ αi

{
(1− τi)

τi

}2

.

Since

−αi −
1− αi

(τi)2
+ αi

{
(1− τi)

τi

}2

= −
1− 2αi + 2αiτi

(τi)2
= −

1− 2αi(1− τi)

(τi)2
,
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it follows that

sign

{
∂2vi

∂τi ∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
= sign {Kii}

where

Kii =

(αi)
2

[αiτi+(1−αi)]2[∑
j A(αj, τj)ωj2

]





(ωi2)
2

[∑
j A(αj, τj)ωj2

] − 2ωi2
αi(1− τi)

A(αi, τi)



−

1− 2αi(1− τi)

(τi)2
.

We have

Kii·(τi)
2

[
∑

j

A(αj, τj)ωj2

]2

= (ωi2)
2 (αiτi)

2

[αiτi + (1− αi)]2
−

[
∑

j

A(αj, τj)ωj2

]2

[1− 2αi(1− τi)]

−2ωi2
αi(1− τi)

A(αi, τi)

(αiτi)
2

[αiτi + (1− αi)]2

[
∑

j

A(αj, τj)ωj2

]
,

which, upon introducing the notation A−i :=
∑

j 6=i A(αj, τj)ωj2, recalling that A(αi, τi) =
αiτi

αiτi+(1−αi)
, and simplifying, can be expressed as

= (ωi2)
2 [A(αi, τi)]

2 − 2ωi2αi(1− τi)A(αi, τi) [A−i + A(αi, τi)ωi2]

− [A−i + A(αi, τi)ωi2]
2 [1− 2αi(1− τi)] ,

which, by expanding the terms within brackets and collecting terms, may be expressed as

= − [1− 2αi(1− τi)] [A(αi, τi)ωi2]
2+(ωi2)

2 [A(αi, τi)]
2−2ωi2αi(1−τi)A(αi, τi) [A(αi, τi)ωi2]

− [1− 2αi(1− τi)] [2A−i · A(αi, τi)ωi2]− 2ωi2αi(1− τi)A(αi, τi) [A−i]

− [1− 2αi(1− τi)] (A−i)
2 ,

= [A(αi, τi)]
2 {− [1− 2αi(1− τi)] + 1− 2αi(1− τi)} (ωi2)

2

−2A(αi, τi) {[1− 2αi(1− τi)] + (1− τi)αi} [A−iωi2]

− [1− 2αi(1− τi)] (A−i)
2 .

Evidently, the coefficients in the first term on the right add up to zero and the second

term can be simplified to obtain

Kii·(τi)
2

[
∑

j

A(αj, τj)ωj2

]2

= −2A(αi, τi) [1− αi(1− τi)] [A−iωi2]−[1− 2αi(1− τi)] (A−i)
2 ,

which, upon recalling that A(αi, τi) =
αiτi

αiτi+(1−αi)
, may be simplified to

= −A−i {2αiτiωi2 + [1− 2αi(1− τi)]A−i} .
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By Lemma S.6, at ~τ such that ∂vi
∂τi

(~τ) = 0,
∑

j 6=i A(αj, τj)ωj2 > 0, i.e. A−i > 0, and so, at

such a ~τ ,

sign

{
∂2vi

∂τi ∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
= sign

{
−2αiτiωi2 − [1− 2αi(1− τi)]

[
∑

j 6=i

A(αj, τj)ωj2

]}

where we replace A−i by
∑

j 6=i A(αj, τj)ωj2.

Our last supplementary result is used in Lemma 4 to claim that ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
6= 0.

LEMMA S.7: The two equations that follow cannot hold simultaneously:

2αiτiωi2 + [1− 2αi(1− τi)]

[
∑

j 6=i

A(αj, τj)ωj2

]
= 0

αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
j [1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

= 0.

PROOF: Set A−i :=
∑

j 6=i A(αj, τj)ωj2, and rewrite the first equation as

2αiτiωi2+[1− 2αi(1− τi)]A−i = 0 ⇐⇒ αi(1−τi)A−i = αiτiωi2+
A−i

2
. (∗)

Now observe that

αi(1− τi)

A(αi, τi)

[
∑

j

A(αj, τj)ωj2

]
− αiωi2 =

αi(1− τi)

A(αi, τi)
[A−i + A(αi, τi)ωi2]− αiωi2

=
αiτiωi2

A(αi, τi)
+

A−i

2A(αi, τi)
+ αi(1− τi)ωi2 − αiωi2,

where we use (∗),

=
αiτiωi2

A(αi, τi)
+

A−i

2A(αi, τi)
− αiτiωi2 = αiτiωi2

[
1

A(αi, τi)
− 1

]
+

A−i

2A(αi, τi)
.

Since 1 > A(αi, τi) and A−i ≥ 0, we can conclude that

αi(1− τi)

A(αi, τi)

[
∑

j

A(αj, τj)ωj2

]
− αiωi2 ≥ 0 with a strict inequality if ωi2 > 0.

But then, since under Assumption 1, ωi 6= (0, 0) and
[∑

j A(αj, τj)ωj2

]
> 0, we must have

αi(1− τi)

A(αi, τi)

[
∑

j

A(αj, τj)ωj2

]
−αiωi2+(1−αi)ωi1

[∑
j A(αj, τj)ωj2

]

∑
j [1− A(αj, τj)]ωj1

> 0.
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LEMMA 4: ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
6= 0. If αi ≤ 1/2 or if ωi2∑

j ωj2
< 1 then ∂2vi

∂τi ∂τi
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
< 0.

PROOF: Lemma 3, Lemma S.2 and Lemma S.7 directly imply that ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
6= 0.

If αi ≤ 1/2 then 0 < 1 − 2αi(1 − τi) for all τi > 0, and the required result follows

directly from Lemma 3.

We turn to the case where αi > 1/2. Let τ̂i > 0 be the unique value such that

τ̂i =

[∑
j 6=i A(αj, τj)ωj2

]
[2αi − 1]

2αi

[
ωi2 +

∑
j 6=i A(αj, τj)ωj2

] ,

which is well defined since
∑

j ωj2 > 0 under Assumption 1.

Observe that

sign

{
−2αiτiωi2 − [1− 2αi (1− τi)]

[
∑

j 6=i

A(αj, τj)ωj2

]}
=

sign





[∑
j 6=i A(αj, τj)ωj2

]
[2αi − 1]

2αi

[
ωi2 +

∑
j 6=i A(αj, τj)ωj2

] − τi



 = sign {τ̂i − τi} ,

whereby we have

sign

{
−2αiτiωi2 − [1− 2αi (1− τi)]

[
∑

j 6=i

A(αj, τj)ωj2

]}
=





1 if τi ∈ (0, τ̂i)
0 if τi = τ̂i
−1 if τi ∈ (τ̂i,+∞) .

We specialize the notation for the remainder of the proof of Lemma 4: ~τ refers to a

profile at which ∂vi
∂τi

(~τ) = 0, and ~τ i denotes the i-th component of the vector ~τ .

If ~τ i > τ̂i then the sign of the expression in curly brackets evaluated at ~τ i is negative,

and the result ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
< 0 follows from Lemma 3.

Since ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
6= 0, ~τ i = τ̂i is ruled out.

The case that remains is where ~τ i < τ̂i. We shall show that this case leads to a

contradiction and so cannot arise. For ~τ i < τ̂i the sign of the expression in curly

brackets evaluated at ~τ i is positive and, by Lemma 3, ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
> 0. Define

τ = min {τ ,minj∈I ~τ
j}, where τ is as specified in Lemma 2 (i). Evidently, τ ∈ (0, ~τ i].

Since ωi2∑
j ωj2

< 1, By Lemma 2 (i), ∂vi
∂τi

(τ , ~τ−i) > 0. Since τ ∈ (0, ~τ i], ∂vi
∂τi

(τ , ~τ−i) >

0, ∂2vi
∂τi ∂τi

(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0
> 0, and the function ∂vi

∂τi
(~τ) is continuous, by the Intermediate

Value Theorem, it must have another “zero”, so there must exist τ̃ ∈ (τ , ~τ i) such that
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∂2vi
∂τi ∂τi

(τ̃ , ~τ−i)

∣∣∣∣ ∂vi
∂τi

(τ̃ ,~τ−i)=0
< 0. But then, by Lemma 3, the sign of the expression in curly

brackets evaluated at τ̃ is negative even though τ̃ < τ̂i, which delivers the desired contra-

diction.

THEOREM 1: Assume that, for all i ∈ I, ωi1∑
j ωj1

< 1 and ωi2∑
j ωj2

< 1. The tariff game of

such an economy has an interior pure strategy Nash equlibrium.

PROOF: The proof of Theorem 1 follows from Lemma 1-4 and Lemma S.8 below: The

latter shows that when the strategy space is an interval, and player i’s payoff function

is (i) increasing in i’s choice at the left boundary and decreasing in i’s choice at the

right boundary and (ii) has a negative second derivative at every point at which the first

derivative is zero, the game has an interior pure strategy Nash equilibrium;21 Lemma 1-4

ensure that the tariff game satisfies the conditions specified in Lemma S.8.

Consider the following game. The set of players is I = {1, 2, · · · , I} with generic

element i. S is the strategy set of each player. The choice made by player i is denoted

si. Payoffs are given by the functions πi : S
I → R. Let s−i := ((sj)j 6=i) denote a profile of

actions for all but agent i, and write payoffs as πi(si, s−i). We have

LEMMA S.8: Assume that S := [s, s] ⊂ R, and that, for every i ∈ I, the function πi

is twice continuously differentiable on (t, t)I where [s, s] ⊂ (t, t). Suppose that for each

i ∈ I and every profile s−i the following conditions hold:

(i) ∂πi

∂si
(s, s−i) > 0 and ∂πi

∂si
(s, s−i) < 0,

(ii) if s̃i is such that ∂πi

∂si
(s̃i, s−i) = 0 then ∂

∂si

(
∂πi

∂si
(s̃i, s−i)

)
< 0.

Then there exists (s∗1, · · · , s
∗
I) ∈ SI , with s∗i ∈ (s, s) for each i ∈ I, such that

for each i ∈ I si ∈ S ⇒ πi(s
∗
i , s

∗
−i) ≥ πi(si, s

∗
−i).

22

PROOF: Fix a profile s−i and consider the problem of identifying ŝi := argmaxsi∈S πi(si, s−i).

Since S is a compact set and πi is a continuous function of si, such a value ŝi must exist.

Note that ∂πi

∂si
(si, s−i) is a continuously differentiable function of si. Since S = [s, s],

by condition (i), continuity, and the Intermediate Value Theorem, there is a value s̃i ∈

(s, s) at which ∂πi

∂si
(s̃i, s−i) = 0, i.e. the function has a zero in the interior of the set

S. By condition (ii), and continuity of the second derivative, it can have only one zero;

furthermore, since ∂
∂si

(
∂πi

∂si
(s̃i, s−i)

)
< 0, the sufficient condition for s̃i to be a local

maximum is met.

By condition (i), ŝi /∈ {s, s}, i.e. the solution to the maximization problem cannot be

at either boundary point. But then ŝi = s̃i since the necessary condition for an interior

point to be a maximizer is satisfied only at s̃i.

We have shown that given a profile s−i, i’s best response always exists, is an interior

point, and is a single value. But then, as we now show, the function πi must be quasi-

21We state and prove the result since we were unable to find a suitable reference.
22Furthermore, since S is compact and πi is continuous, all Nash equilibria are interior, s∗i ∈ (s, s).
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concave in si. If not then for some profile s−i and some p, the upper set is not convex,

i.e. there are values s1i , s
2
i , and s3i in the set S such that s1i < s2i < s3i and πi(s

1
i , s−i) ≥ p,

πi(s
3
i , s−i) ≥ p but πi(s

2
i , s−i) < p. Since πi is continuously differentiable, there would

exist s4i ∈ (s1i , s
3
i ) such that ∂πi

∂si
(s4i , s−i) = 0 and ∂

∂si

(
∂πi

∂si
(s4i , s−i)

)
> 0, where the latter

follows from the fact that πi(s
1
i , s−i) ≥ p, πi(s

3
i , s−i) ≥ p but πi(s

2
i , s−i) < p. But that

contradicts condition (ii) in the statement of the proposition.

Since the set S is compact and convex, and for each i the payoff function is quasicon-

cave in si for a given profile s−i, the existence of a pure strategy Nash equilibrium follows

(see, e.g., Theorem 3 in Debreu (1982)). Interiority has already been established and is

maintained since S is compact and πi is continuous and when taken together they ensure

that πi is uniformly continuous.

LEMMA 5: For i 6= j,
(i) sign

{
∂2vi

∂τi ∂τj
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
> 0;

(ii) sign

{
∂2vi

∂τi ∂τj
(~τ)

}
= sign

{
[(1− αi)ωi1 + (−αi)(p

∗
2(~τ))ωi2]

2 ·
[
(p∗2(~τ))

−1ωj1 + ωj2

]

+
[
ωi1(p

∗
2(~τ))

−1 + ωi2

]
· (p∗2(~τ))

2 ·
[
(1− αi) (p

∗
2(~τ))

−2 · ωj1ωi1 + αi · ωi2 · ωj2

]

+ [(1− αi)ωi1 + (−αi)(p
∗
2(~τ))ωi2]·

[
(p∗2(~τ))

−1ωj1 + ωj2

]
·
αi(1− τi)

A(αi, τi)
·

[
∑

k

[1− A(αk, τk)]ωk1

]}
.

PROOF: Using Lemma 1 (ii) and the definitions of the functions M(αi, τi) and Ni(~τ) we

have

∂2vi
∂τi ∂τj

(~τ) =
∂

∂τj

{
∂vi
∂τi

(~τ)

}
=

∂

∂τj

{
vi(~τ) ·

∂A

∂τi
(αi, τi) · [M(αi, τi) +Ni(~τ)]

}

=
∂vi(~τ)

∂τj
·

{
∂A

∂τi
(αi, τi) · [M(αi, τi) +Ni(~τ)]

}
+vi(~τ)·

{
∂

∂τj

[
∂A

∂τi
(αi, τi)

]}
·[M(αi, τi) +Ni(~τ)]

+vi(~τ) ·
∂A

∂τi
(αi, τi) ·

{
∂M

∂τj
(αi, τi) +

∂Ni

∂τj
(~τ)

}
.

Since, for i 6= j, ∂
∂τj

{
∂A
∂τi

(αi, τi)
}
= 0 and ∂M

∂τj
(αi, τi) = 0 follow easily from Lemma S.1 (i)

and the definition of M(αi, τi) respectively, we have

∂2vi
∂τi ∂τj

(~τ) =
∂A

∂τi
(αi, τi) ·

{
∂vi(~τ)

∂τj
· [M(αi, τi) +Ni(~τ)] + vi(~τ) ·

∂Ni

∂τj
(~τ)

}
for i 6= j.

We know from Lemma S.1 that ∂A
∂τi

(αi, τi) > 0; it follows that

sign

{
∂2vi

∂τi ∂τj
(~τ)

}
= sign

{
∂vi(~τ)

∂τj
· [M(αi, τi) +Ni(~τ)] + vi(~τ) ·

∂Ni

∂τj
(~τ)

}
. (∗)
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(i) From Lemma S.2, ∂vi
∂τi

(~τ) = 0 if and only if M(αi, τi) +Ni(~τ) = 0. In addition, as

noted in the proof of Lemma S.2, vi(~τ) > 0. It follows that

sign

{
∂2vi

∂τi ∂τj
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
= sign

{
∂Ni

∂τj
(~τ)

∣∣∣∣ ∂vi
∂τi

(~τ)=0

}
> 0 for i 6= j,

since the sign of that last expression can be determined by using Lemma S.4.

(ii) Recall that f(~τ) = 1
p∗
2
(~τ)

and rewrite Lemma 1 (i) as

vi(~τ) = (A(αi, τi))
αi(1− A(αi, τi))

1−αi
[
ωi1(f(~τ))

1−αi + (f(~τ))−αiωi2

]
.

We proceed to differentiate the function.

∂vi(~τ)

∂τj
= (A(αi, τi))

αi(1− A(αi, τi))
1−αi

{
(1− αi)(f(~τ))

−αi
∂f

∂τj
(~τ)ωi1 + (−αi)(f(~τ))

−αi−1 ∂f

∂τj
(~τ)ωi2

}

= (A(αi, τi))
αi(1− A(αi, τi))

1−αi(f(~τ))−αi
{
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

} ∂f

∂τj
(~τ)

= (A(αi, τi))
αi(1− A(αi, τi))

1−αi(f(~τ))−αi
{
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

}

·

∂A
∂τj

(αj, τj)∑
k[1− A(αk, τk)]ωk1

{f(~τ)ωj1 + ωj2}

where we substitute for ∂f
∂τj

(~τ) from Lemma S.1.

We can now evaluate

∂vi(~τ)

∂τj
· [M(αi, τi) +Ni(~τ)] + vi(~τ) ·

∂Ni

∂τj
(~τ) = (A(αi, τi))

αi(1− A(αi, τi))
1−αi(f(~τ))−αi

·

∂A
∂τj

(αj, τj)∑
k[1− A(αk, τk)]ωk1

·
{
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

}
·{f(~τ)ωj1 + ωj2}·[M(αi, τi) +Ni(~τ)]

+(A(αi, τi))
αi(1− A(αi, τi))

1−αi
[
ωi1(f(~τ))

1−αi + (f(~τ))−αiωi2

]

·

∂A
∂τj

(αj, τj)

[
∑

k A(αk, τk)ωk2]
2

{
(1− αi) (f(~τ))

2 · ωj1ωi1 + αi · ωi2 · ωj2

}
,

where we use Lemma S.4 to evaluate ∂Ni

∂τj
(~τ) and use Lemma S.1 to replace the term

αj(1−αj)

[αjτj+(1−αj)]2
with ∂A

∂τj
(αj, τj), and collect terms and simplify to obtain

= (A(αi, τi))
αi(1− A(αi, τi))

1−αi(f(~τ))−αi ·

∂A
∂τj

(αj, τj)

[
∑

k[1− A(αk, τk)]ωk1]2

·

{
[
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

]
· [f(~τ)ωj1 + ωj2] · [M(αi, τi) +Ni(~τ)] ·

[
∑

k

[1− A(αk, τk)]ωk1

]
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+ [ωi1f(~τ) + ωi2] ·
[
∑

k[1− A(αk, τk)]ωk1]
2

[
∑

k A(αk, τk)ωk2]
2

[
(1− αi) (f(~τ))

2 · ωj1ωi1 + αi · ωi2 · ωj2

]
}
.

Label the term in braces in the last expression Lij. (∗) above together with Lemma S.1

imply that

sign

{
∂2vi

∂τi ∂τj
(~τ)

}
= sign {Lij} . (∗∗)

From the definitions of the terms M(αi, τi) and Ni(~τ) we see that

[M(αi, τi) +Ni(~τ)] ·

[
∑

k

[1− A(αk, τk)]ωk1

]
=

αi(1− τi)

A(αi, τi)
·

[
∑

k

[1− A(αk, τk)]ωk1

]

+(1− αi)ωi1 − αi · ωi2 · (f(~τ))
−1.

Using the last expression, we may rewrite

Lij =
[
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

]
· [f(~τ)ωj1 + ωj2]

·

{
αi(1− τi)

A(αi, τi)
·

[
∑

k

[1− A(αk, τk)]ωk1

]
+ (1− αi)ωi1 − αi · ωi2 · (f(~τ))

−1

}

+ [ωi1f(~τ) + ωi2] ·
[
∑

k[1− A(αk, τk)]ωk1]
2

[
∑

k A(αk, τk)ωk2]
2

[
(1− αi) (f(~τ))

2 · ωj1ωi1 + αi · ωi2 · ωj2

]
.

Upon recognizing the expression for (f(~τ))−2 in explicit form, we obtain

Lij =
[
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

]2
· [f(~τ)ωj1 + ωj2]

+ [ωi1f(~τ) + ωi2] · (f(~τ))
−2 ·

[
(1− αi) (f(~τ))

2 · ωj1ωi1 + αi · ωi2 · ωj2

]

+
[
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

]
· [f(~τ)ωj1 + ωj2] ·

αi(1− τi)

A(αi, τi)
·

[
∑

k

[1− A(αk, τk)]ωk1

]
.

Recalling (∗∗) and that f(~τ) = 1
p∗
2
(~τ)

, we obtain the desired result.

PROPOSITION 1: Let ~τ be such that τj = 1 for all j 6= i and ∂vi
∂τi

(~τ) = 0. Then τi > 1

if and only if i is an exporter of good 1 when trade is free.

PROOF: Since consumption of good 1 in country i at equilibrium prices is

xi1 (p
∗
2 (~τ)) = A(αi, τi)[ωi1 + p∗2 (~τ)ωi2],

we have that, in the absence of tariffs, i.e. at the strategy profile ~τ = (1, · · · , 1),

xi1 (p
∗
2 (1, · · · , 1)) = αi · [ωi1 + p∗2 (1, · · · , 1)ωi2].

Also, from Lemma S.2,

sign

{
∂vi
∂τi

(1, · · · , 1)

}
= sign

{
1∑

j[1− A(αj, 1)]ωj1

{
(1− αi)ωi1 −

αi · ωi2

∑
j[1− A(αj, 1)]ωj1∑

j A(αj, 1)ωj2

}}
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= sign

{
1∑

j[1− A(αj, 1)]ωj1

{(1− αi)ωi1 − αi · ωi2 · p
∗
2 (1, · · · , 1)}

}

= sign

{
1∑

j[1− A(αj, 1)]ωj1

{ωi1 − xi1 (p
∗
2 (1, · · · , 1))}

}
,

where, under Assumption 1,
∑

j[1−A(αj, τj)]ωj1 > 0. We have shown that i is an exporter

of good 1 when trade is free if and only if ∂vi
∂τi

(1, · · · , 1) > 0. Since the maximizer is unique,

we must have τi > 1 as claimed.

LEMMA 6: Let ~τ such that ∂vi
∂τi

(~τ) = 0. Then, for i 6= j, sign
{

∂vi(~τ)
∂τj

}
= sign {τi − 1} .

PROOF: Since ∂vi
∂τi

(~τ) = 0, by Lemma S.2,

αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
j[1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

= 0.

We have

τi > 1 ⇔
(1− αi)ωi1∑

j[1− A(αj, τj)]ωj1

>
αi · ωi2∑

j A(αj, τj)ωj2

⇔ ωi1 > αi·

[
ωi1 +

{∑
j[1− A(αj, τj)]ωj1∑

j A(αj, τj)ωj2

}
ωi2

]
⇔ ωi1 > αi·[ωi1+p∗2 (~τ)ωi2].

From the proof of Lemma 5—please refer to the beginning of the proof of (ii)—we know

that, for i 6= j,

∂vi(~τ)

∂τj
= (A(αi, τi))

αi(1− A(αi, τi))
1−αi(f(~τ))−αi

{
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

}

·

∂A
∂τj

(αj, τj)∑
k[1− A(αk, τk)]ωk1

{f(~τ)ωj1 + ωj2}

where f(~τ) = 1
p∗
2
(~τ)

. It follows that

∂vi(~τ)

∂τj
> 0 ⇔ ωi1 > αi · [ωi1 + p∗2 (~τ)ωi2] ⇔ τi > 1.

PROPOSITION 2: Let ~τ and ~τ ′ be two strategy profiles such that ∂vi
∂τi

(~τ) = ∂vi
∂τi

(~τ ′) = 0.

If either τi > τ ′i ≥ 1 or τi < τ ′i ≤ 1 then vi(~τ) > vi(~τ
′).

PROOF: From Lemma 6 we have

∂vi(~τ)

∂τj
> 0 ⇔ τi > 1.

Since the best response function is strictly increasing we can conclude that, under the

conditions stated, vi increases as we move further away from τi = 1.

PROPOSITION 3: Assume that the endowment is not a Pareto optimal allocation and

consider an interior Nash equilibrium. (i) If there are countries i, j ∈ I such that
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τ ∗i > 1 > τ ∗j then a Pareto improvement can be induced by forming two groups such that

if i and j are in the same group then either (a) τ ∗i > 1 and τ ∗j > 1 or (b) τ ∗i < 1 and

τ ∗j < 1, and with the same number of countries in each group, and moving the tariffs of

both sets towards the free trade value by appropriate amounts. (ii) If all countries are

on the same side of free trade then a Pareto improvement can be induced by moving the

tariff rate of any one country further away from free trade.

PROOF: Let ~τ be an interior Nash equilibrium profile of tariff rates so that ∂vi
∂τi

(~τ) = 0

for each i ∈ I. We write τi instead of τ ∗i .

Define

αi(~τ) :=
(A(αi, τi))

αi(1− A(αi, τi))
1−αi

∑
k[1− A(αk, τk)]ωk1

(f(~τ))−αi
{
(1− αi)ωi1 + (−αi)(f(~τ))

−1ωi2

}

βj(~τ) :=
∂A

∂τj
(αj, τj) {f(~τ)ωj1 + ωj2} ,

where f(~τ) = 1
p∗
2
(~τ)

. From the proof of Lemma 6 we know that, for i 6= j, ∂vi(~τ)
∂τj

=

αi(~τ) · βj(~τ), that αi(~τ) > 0 if and only if τi > 1, and that βj(~τ) > 0.

Define I+ := {i ∈ I : αi(~τ) > 0} and I− := {i ∈ I : αi(~τ) < 0}.

If I+ 6= ∅ and I− 6= ∅ then let Î+ ⊂ I+ and Î− ⊂ I− be such that #Î+ = #Î− > 0,

and define

∆τi(~τ) :=





(−1) 1
βi(~τ)

if i ∈ Î+

1
βi(~τ)

if i ∈ Î−

0 if i /∈ Î+ ∪ Î−.

Quite generally, the change in payoff that is induced by a change in tariff rates can be

calculated to be

∆vi =
∑

j

∂vi(~τ)

∂τj
·∆τj(~τ) =

∑

j 6=i

∂vi(~τ)

∂τj
·∆τj(~τ) = αi(~τ) ·

[
∑

j 6=i

βj(~τ) ·∆τj(~τ)

]
,

where we use the fact that ∂vi
∂τi

(~τ) = 0 and that ∂vi(~τ)
∂τj

= αi(~τ) · βj(~τ). Substituting the

values proposed for ∆τi(~τ) we have

∆vi =





αi(~τ) ·
[
(−1)

((
#Î+

)
− 1

)
+
(
#Î−

)]
if i ∈ Î+

αi(~τ) ·
[
(−1)

(
#Î+

)
+
((

#Î−

)
− 1

)]
if i ∈ Î−

αi(~τ) ·
[
(−1)

(
#Î+

)
+
(
#Î−

)]
if i /∈ Î+ ∪ Î−.

Since #Î+ = #Î− > 0, we have

∆vi =





αi(~τ) · [1] if i ∈ Î+

αi(~τ) · [−1] if i ∈ Î−

0 if i /∈ Î+ ∪ Î−,
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and it follows that ∆vi > 0 if i ∈ Î+ ∪ Î− and that ∆vi = 0 otherwise.

If I+ = ∅ then a Pareto improvement can be induced by setting ∆τi < 0 for a single

country (and zero otherwise); similarly, if I− = ∅ then set ∆τi > 0 for some country and

zero for the rest. This works because the incentives of all the countries are aligned.

The case in which I+ = I− = ∅ can be ruled out since then the Nash equilbrium

induces the free trade allocation which, by Proposition 5, requires that the endowment

vector be a Pareto optimal allocation.

PROPOSITION 4: (i) At every interior Nash equilibrium of the tariff game
∑

j τ
∗
j > I−1

and
∑

j
1
τ∗j

> I − 1. (ii) If at an interior Nash equilibrium of the tariff game τ ∗i = τ ∗ for

all i ∈ I, then, necessarily, τ ∗i = 1 for all i ∈ I.

PROOF: Let ~τ be an interior Nash equilibrium profile of tariff rates. It follows ∂vi
∂τi

(~τ) = 0

for each i ∈ I. We write τi instead of τ ∗i . By Lemma S.2, for each i ∈ I,

αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
j[1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

= 0.

(i) Since A(αi, τi) =
αiτi

αiτi+(1−αi)
we have

⇐⇒
1− τi
τi

+

(1−αi)ωi1

αiτi+(1−αi)∑
j[1− A(αj, τj)]ωj1

−

αiωi2

αiτi+(1−αi)∑
j A(αj, τj)ωj2

= 0

⇐⇒
1− τi
τi

+
[1− A(αi, τi)]ωi1∑
j[1− A(αj, τj)]ωj1

−
1
τi
A(αi, τi)ωi2∑
j A(αj, τj)ωj2

= 0.

Summing over j and rearranging we have the following two implications

⇒
∑

j

1

τj
−I+1 =

∑
j

1
τj
A(αj, τj)ωj2∑

j A(αj, τj)ωj2

> 0 I−
∑

j

τj−1 = −

∑
j τj[1− A(αj, τj)]ωj1∑
j[1− A(αj, τj)]ωj1

< 0.

It follows that in any interior Nash equilibrium,
∑

j τj > I − 1 and
∑

j
1
τj

> I − 1.

(ii) Consider an interior Nash equilibrium with τi = τ for all i, i.e. one that is

symmetric. We have

∑

j

1

τj
− I + 1 =

∑
j

1
τj
A(αj, τj)ωj2∑

j A(αj, τj)ωj2

⇒
I

τ
− I + 1 =

1

τ
.

Since I > 1, it is evident that τ = 1, i.e τi = 1 for all i ∈ I.

PROPOSITION 5: A Nash equilibrium allocation is Pareto optimal if and only if there

is no trade.

PROOF: Let ~τ be a Nash equilibrium profile of tariff rates. Since all Nash equilibrium

profiles are interior, it follows ∂vi
∂τi

(~τ) = 0 for each i ∈ I. We write τi instead of τ ∗i . By

Lemma S.2, for each i ∈ I,

αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
j[1− A(αj, τj)]ωj1

−
αi · ωi2∑

j A(αj, τj)ωj2

= 0
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⇐⇒
αi(1− τi)

A(αi, τi)

∑

j

[1−A(αj, τj)]ωj1+(1−αi)ωi1−
αi · ωi2

∑
j[1− A(αj, τj)]ωj1∑

j A(αj, τj)ωj2

= 0 (∗)

since, under Assumption 1,
∑

j[1− A(αj, τj)]ωj1 > 0.

Also, i’s first order condition in the domestic market for the two goods, xi2 =
(1−αi)

αi·τi·p∗2(~τ)
xi1,

must hold at (xi1, xi2) = (xi1 (p
∗
2 (~τ)) , xi2 (p

∗
2 (~τ))); the condition may also be written in

the form τi · p
∗
2(~τ) =

(1−αi)/xi2

αi/xi1
where (xi1, xi2) = (xi1 (p

∗
2 (~τ)) , xi2 (p

∗
2 (~τ))).

(i) In order for the allocation at the Nash equilibrium to be Pareto optimal, marginal

rates of substitution have to be equalized and so, for each pair of agents i and j, we must

have

(1− αi)/xi2 (p
∗
2 (~τ))

αi/xi1 (p∗2 (~τ))
=

(1− αj)/xj2 (p
∗
2 (~τ))

αj/xj1 (p∗2 (~τ))
⇐⇒ τi · p

∗
2(~τ) = τj · p

∗
2(~τ)

and we must have τi = τ for all i ∈ I. But then, from Proposition 4 (ii), τi = τ = 1 so

that, at the Nash equilibrium, trade is free.

When we use τi = 1 for all i ∈ I in (∗), and recall the explicit form for p∗2 (~τ), we see

that, for each i ∈ I, we must have

(1− αi)ωi1 − αi · ωi2 · p
∗
2(1, · · · , 1) = 0.

But that is identical to i’s first order condition in the domestic market for the two goods,

1 · p∗2(1 · · · , 1) =
(1−αi)/xi2

αi/xi1
, when (xi1, xi2) = ωi.

We have shown that, at a Nash equilibrium at which the allocation is Pareto optimal,

there is no trade. That completes the proof of (i).

(ii) Suppose that the Nash equilibrium has the additional property that there is no

trade. It follows that at p∗2(~τ), (xi1 (p
∗
2 (~τ)) , xi2 (p

∗
2 (~τ))) = ωi for all i ∈ I. So i’s first

order condition in the domestic market for the two goods, xi2 = (1−αi)
αiτip∗2(~τ)

xi1, must hold

at (xi1, xi2) = ωi. Since p∗2(~τ) ∈ (0,+∞), we can be certain that a no-trade outcome can

occur only if ωi ∈ R
2
++. To summarize, for each i ∈ I, in addition to (∗), the following

must be true:

p∗2(~τ) =
1

τi

(1− αi)/ωi2

αi/ωi1

p∗2(~τ) =

∑
i[1− A(αi, τi)]ωi1∑

i A(αi, τi)ωi2

.

It follows that, for all i ∈ I,

αi(1− τi)

A(αi, τi)

∑

j

[1− A(αj, τj)]ωj1 + (1− αi)ωi1 − αi · ωi2
1

τi

(1− αi)/ωi2

αi/ωi1

= 0

⇐⇒
αi(1− τi)

A(αi, τi)

∑

j

[1− A(αj, τj)]ωj1 +

(
1−

1

τi

)
(1− αi)ωi1 = 0,

which, upon recalling that A(αi, τi) =
αiτi

αiτi+(1−αi)
, may be rewritten as

⇐⇒

(
1−

1

τi

){
−[αiτi + (1− αi)]

∑

j

[1− A(αj, τj)]ωj1 + (1− αi)ωi1

}
= 0,
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so that at least one of the two expressions within brackets must be zero.

It follows that if τi 6= 1 for some i ∈ I, then for all such i
∑

j

[1− A(αj, τj)]ωj1 = [1− A(αi, τi)]ωi1,

where we use the fact that αiτi + (1 − αi) > 0 and the definition of A(αi, τi). We have

at least one equation. Also, 1 − A(αi, τi) > 0 and ωi ∈ R
2
++ since we have a no-trade

outcome (in fact, it suffices that ωi1 > 0 for at least two countries). It is evident that the

equation(s) cannot hold.

It follows that
(
1− 1

τi

)
= 0 for each i ∈ I, that is ~τ = (1, · · · , 1) and, from i’s first

order condition in the domestic market for the two goods, at the interior Nash equilibrium

under consideration, marginal rates of substitution are equalized across countries. This

can happen only if the endowment distribution (which is the equilibrium allocation since

we are considering a no trade equilibrium) is also a Pareto optimal allocation.

We have shown that, at a Nash equilibrium at which there is no trade, the allocation

is Pareto optimal. That completes the proof of (ii).

APPENDIX

ROBUST EXAMPLES OF TARIFF GAMES THAT ARE NOT SUPERMODULAR

We turn to the details of the three examples presented in Section 4 in each of which

the tariff game fails to be supermodular and this failure is robust; further details of the

computations can be found in the Supplementary Material (appended to the manuscript

for the referee’s benefit). In each case we also check whether the proposed tariff rates

satisfy bounds discussed in Section 2.3.

EXAMPLE 1: Let there be two countries with the following parameter specification

α1 = 1/2 ω11 = 2 ω12 = 8/67

α2 = 1/2 ω21 = 4 ω22 = 2.

At τ1 = 3 we have A(α1, τ1) = 3/4, while if τ2 = 1/2 we have A(α2, τ2) = 1/3. It

follows that p∗2(3, 1/2) = 67
16
. It is easy to evaluate the expression in Lemma 5 (ii) and

check that it is negative (the verifications can be found in the Supplementary Material).

Since min{ 8/67
2+8/67

, 2
2+8/67

} = 8/67
2+8/67

= 8
142

and min{ 2
2+4

, 4
2+4

} = 1/3, and also α1 = α2,

for the bounds we may use any pair (τ , τ) such that τ < 8
142

and 1/τ < 1/3. Since
8

142
< 1

2
, and τ1 = 3 and τ2 = 1/2, we clearly have τ < τ2 and τ1 < τ so that the tariff

rates considered in the example are in the strategy sets induced by uniform bounds.

EXAMPLE 2: Let there be I countries with the following parameter specification

α1 = 1/3 ω11 = 2 ω12 = 80/22

αi = 1/2 ωi1 = 2 ωi2 = 2 for i = 2, · · · , I.

At τ1 = 11/10 we have A(α1, τ1) = 11/31, while if τi = 1, i 6= 1, we have A(αi, τi) =

1/2. It follows that p∗2(11/10, 1, · · · , 1) = 1. Again, it is easy to evaluate the expression
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in Lemma 5 (ii) and check that it is negative if 21 · 60 < (I − 1) · 2 (please refer to the

Supplementary Material)—so we would require a few more than six hundred countries.

Turning to the bounds, since τi ≥ 1 for all i ∈ I, we need only concern ourselves with

the upper bound. We consider two different candidates, each in turn. (Where relevant,

the details of the computations can be found in the Supplementary Material.)

Observe that α = 1/3 and α = 1/2. So at τ = 11/10,

1

τ

[1/τ + α/(1− α)]

[1/τ + α/(1− α)]
= (10/11) · (42/31) > 1.

Also, since ωi1 = 2 for all i we have mini∈I

∑
j 6=i ωj1

∑
j ωj1

= I−1
I
. It follows that in order for τ to

be such that the inequality

1

τ

[1/τ + α/(1− α)]

[1/τ + α/(1− α)]
< mini∈I

∑
j 6=i ωj1∑
j ωj1

holds, it is necessary that τ > 11/10; in that case, from Section 2.3, such a value τ can

serve as a uniform upper bound. Therefore, τ1 = 11/10 will be within the strategy set

specified by any uniform upper bound.

We turn to bounds that are tighter than the uniform bounds. One easily checks that

with ωi1 = 2 and τi = 11/10 for all i ∈ I, if I > 600 then

10

11
< mini∈I

∑
j 6=i [1− A(αj, 11/10)]ωj1∑
j [1− A(αj, 11/10)]ωj1

.

It follows that there is a τ smaller than 11/10 that satisfies

1

τ
< mini∈I

∑
j 6=i [1− A(αj, τ)]ωj1∑
j [1− A(αj, τ)]ωj1

.

Therefore, τ1 = 11/10 is not in the strategy set induced by such an upper bound.

The wide discrepancy in the two bounds is easily explained by the fact that only one

out of a large number of countries has 1/3 as its preference parameter. The violation of

the second, more informative or tighter, upper bound is an artifact of the symmetry in

endowments which we imposed to ease the computational pain. It may be rectified by

specifying the endowment of the first good in a different way. Here is a specific example:

let

I = 650

ωi1 = 2 ωi2 = 80/22 for i = 1,

ωi1 = 2 ωi2 = 2 for i = 2,

ωi1 = ω̄1 ωi2 = 2 for i = 3, 4, · · · , 649,

ωi1 = 150 ωi2 = 2 for i = 650,

where ω̄1 (approximately 1.8) satisfies the equation

1 + (1/2) · 647 · ω̄1 + (1/2) · 150 = (1/2) · 649 · 2.
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Such a specification maintains p∗2(11/10, 1, · · · , 1) = 1 and does not interfere with any

other element of the computation, i.e. it delivers a robust example of a tariff game that

fails to be supermodular. In addition, one easily checks that

mini∈I

∑
j 6=i [1− A(αj, 11/10)]ωj1∑
j [1− A(αj, 11/10)]ωj1

<
10

11
.

From the earlier discussion we may conclude that, with the modified specification of the

example, any tighter upper bound τ must be larger than 11/10 so that now τ1 = 11/10

is in the strategy set induced by any such upper bound. That completes the desired

verification and the discussion of the example.

EXAMPLE 3: Let there be I countries with the following parameter specification

α1 = 1/2 ω11 = 2 ω12 = 10/11

αi = 1/2 ωi1 = 4 ωi2 = 2 for i = 2, · · · , I.

At τ1 = 11/10 we have A(α1, τ1) = 11/21, while if τi = 1, i 6= 1, we have A(αi, τi) =

1/2. In this case p∗2(11/10, 1, · · · , 1) = 2. Again, it is easy to evaluate the expression in

Lemma 5 (ii) and check that it is negative if I exceeds two hundred and eleven. Since

countries have identical preferences, the two approaches to the upper bound give the same

result and the bound is violated. As in Example 2, the endowments can be altered to

generate bounds that are satisfied.
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Journal of Economic Literature, 54, 1125-1231.

COSTINOT, A. (2009): “An elementary theory of comparative advantage,” Economet-

rica, 77(4), 1165-1192.

COSTINOT, A. AND A. RODRÍGUEZ-CLARE (2014): “Trade theory with numbers:

Quantifying the consequences of globalization,” Handbook of international economics, vol.

4, 197-261.
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SUPPLEMENTARY MATERIAL

LEMMA S.1: The functions A and f are differentiable on their domains and

∂A

∂τi
(αi, τi) =

αi(1− αi)

[αiτi + (1− αi)]2
> 0,

∂A

∂αi

(αi, τi) =
τi

[αiτi + (1− αi)]2
> 0,

and
∂f

∂τi
(~τ) =

∂A
∂τi

(αi, τi)∑
j[1− A(αj, τj)]ωj1

{f(~τ)ωi1 + ωi2} .

PROOF: We compute each of the expressions.

∂A

∂τi
(αi, τi) =

∂

∂τi

[
αiτi

αiτi + (1− αi)

]
=

αi[αiτi + (1− αi)]− αiτiαi

[αiτi + (1− αi)]2
=

αi(1− αi)

[αiτi + (1− αi)]2
> 0.

∂A

∂αi

(αi, τi) =
∂

∂αi

[
αiτi

αiτi + (1− αi)

]
=

τi[αiτi + (1− αi)]− αiτi(τi − 1)

[αiτi + (1− αi)]2
=

τi
[αiτi + (1− αi)]2

> 0.

∂f

∂τi
(~τ) =

∂

∂τi

[ ∑
j A(αj, τj)ωj2∑

j[1− A(αj, τj)]ωj1

]

=

∂A
∂τi

(αi, τi)ωi2

{∑
j[1− A(αj, τj)]ωj1

}
−

{∑
j A(αj, τj)ωj2

}
∂A
∂τi

(αi, τi)(−1)ωi1

[∑
j[1− A(αj, τj)]ωj1

]2

=

∂A
∂τi

(αi, τi)
[
ωi2

{∑
j[1− A(αj, τj)]ωj1

}
+
{∑

j A(αj, τj)ωj2

}
ωi1

]

[∑
j[1− A(αj, τj)]ωj1

]2

=
∂A
∂τi

(αi, τi)∑
j[1− A(αj, τj)]ωj1

{f(~τ)ωi1 + ωi2} .

LEMMA S.3: ∂M

∂τi
(αi, τi) = −αi −

1− αi

(τi)2
.

PROOF: M(αi, τi) =
αi(1− τi)

A(αi, τi)
=

αi(1− τi)[αiτi + (1− αi)]

αiτi
=

(1− τi)[αiτi + (1− αi)]

τi
.

It follows that

∂M

∂τi
(αi, τi) =

∂

∂τi

{
(1− τi)[αiτi + (1− αi)]

τi

}

=
τi {−[αiτi + (1− αi)] + (1− τi)αi} − (1− τi)[αiτi + (1− αi)]

(τi)2

=
−αi(τi)

2 − (1− αi)τi + τi(1− τi)αi − (1− τi)αiτi − (1− τi)(1− αi)

(τi)2
= −αi −

1− αi

(τi)2
.

1



LEMMA S.4: ∂Ni

∂τj
(~τ) =

αj(1−αj)

[αjτj+(1−αj)]2

[
∑

k A(αk, τk)ωk2]
2

{
(1− αi) (f(~τ))

2 · ωj1ωi1 + αi · ωi2 · ωj2

}
.

PROOF: ∂Ni

∂τj
(~τ) =

∂

∂τj

{
(1− αi)ωi1∑

k[1− A(αk, τk)]ωk1

−
αi · ωi2∑

k A(αk, τk)ωk2

}

=
(−1)(1− αi)ωi1[−

∂A
∂τj

(αj, τj)ωj1]

[
∑

k[1− A(αk, τk)]ωk1]
2 −

(−1)αi · ωi2[
∂A
∂τj

(αj, τj)ωj2]

[
∑

k A(αk, τk)ωk2]
2

=
∂A

∂τj
(αj, τj)

{
(1− αi)ωi1ωj1

[
∑

k [1− A(αk, τk)]ωk1]
2 +

αi · ωi2ωj2

[
∑

k A(αk, τk)ωk2]
2

}
,

=

αj(1−αj)

[αjτj+(1−αj)]2

[
∑

k A(αk, τk)ωk2]
2

{
(1− αi) (f(~τ))

2 · ωj1ωi1 + αi · ωi2 · ωj2

}
,

where we use the expression for ∂A
∂τi

(αi, τi) obtained in Lemma S.1 and the explicit form

of the function f(~τ).

LEMMA S.5: If ∂vi
∂τi

(~τ) = 0 and
∂vj
∂τj

(~τ) = 0 then

∂Ni

∂τj
(~τ) = αi

[
A(αj, τj)

τj

]2 {
ωi2 · ωj2

αj [
∑

k A(αk, τk)ωk2]
2 +

[
(1− τi)(1− τj)

A(αi, τi) · A(αj, τj)

]

−
1

[
∑

k A(αk, τk)ωk2]

{
ωj2(1− τi)

A(αi, τi)
+

ωi2(1− τj)

A(αj, τj)

}}
.

PROOF: From Lemma S.2 we know that

∂vi
∂τi

(~τ) = 0 ⇐⇒
αi(1− τi)

A(αi, τi)
+

(1− αi)ωi1∑
k [1− A(αk, τk)]ωk1

−
αi · ωi2∑

k A(αk, τk)ωk2

= 0.

Move the first term in the latter expression to the right, multiply each term by [
∑

k A(αk, τk)ωk2],

then use the definition of the function f(~τ) and rearrange the expression to obtain

(1− αi) · f(~τ) · ωi1 − αi · ωi2 = −
αi(1− τi)

A(αi, τi)

[
∑

k

A(αk, τk)ωk2

]
. (∗)

Consider the expression in (∗) above for i and j and multiply the terms on the left

hand side of (∗), and the terms on the right, respectively, to obtain

(1−αi)·(1−αj)·(f(~τ))
2·ωi1·ωj1+αi·αj·ωi2·ωj2−f(~τ) [(1− αi)αj · ωi1 · ωj2 + (1− αj)αi · ωj1 · ωi2]

=

[
αi · αj · (1− τi)(1− τj)

A(αi, τi) · A(αj, τj)

] [∑

k

A(αk, τk)ωk2

]2

. (∗∗)

For i, multiply each term in (∗) by αj · ωj2, and for j by αi · ωi2, and add to obtain

f(~τ) [(1− αi) · αj · ωi1 · ωj2 + (1− αj) · αi · ωj1 · ωi2]− [αi · ωi2αj · ωj2 + αj · ωj2αi · ωi2]

2



= −

{
αi · αj · ωj2(1− τi)

A(αi, τi)
+

αj · αi · ωi2(1− τj)

A(αj, τj)

}[
∑

k

A(αk, τk)ωk2

]
. (∗∗∗)

By adding (∗∗) and (∗ ∗ ∗) and rearranging we obtain

(1−αi)·(1−αj)·(f(~τ))
2·ωi1·ωj1 = αi·αj·ωi2·ωj2+

[
αi · αj · (1− τi)(1− τj)

A(αi, τi) · A(αj, τj)

] [∑

k

A(αk, τk)ωk2

]2

−

{
αi · αj · ωj2(1− τi)

A(αi, τi)
+

αj · αi · ωi2(1− τj)

A(αj, τj)

}[
∑

k

A(αk, τk)ωk2

]
. (∗ ∗ ∗∗)

Now, consider the expression obtained in Lemma S.4. We have

∂Ni

∂τj
(~τ) =

αj(1−αj)

[αjτj+(1−αj)]2

[
∑

k A(αk, τk)ωk2]
2

{
(1− αi) (f(~τ))

2 · ωj1ωi1 + αi · ωi2 · ωj2

}
.

Use (∗ ∗ ∗∗) above to substitute for the first term within braces to obtain

∂Ni

∂τj
(~τ) =

αj(1−αj)

[αjτj+(1−αj)]2

[
∑

k A(αk, τk)ωk2]
2

{
αi · αj · ωi2 · ωj2

1− αj

+ αi · ωi2 · ωj2

+
1

1− αj

[
αi · αj · (1− τi)(1− τj)

A(αi, τi) · A(αj, τj)

] [∑

k

A(αk, τk)ωk2

]2

−
1

1− αj

{
αi · αj · ωj2(1− τi)

A(αi, τi)
+

αj · αi · ωi2(1− τj)

A(αj, τj)

}[
∑

k

A(αk, τk)ωk2

]}

=
αi

[
A(αj ,τj)

τj

]2

[
∑

k A(αk, τk)ωk2]
2





1

αj

· ωi2 · ωj2 +

[
(1− τi)(1− τj)

A(αi, τi) · A(αj, τj)

] [∑

k

A(αk, τk)ωk2

]2

−

{
ωj2(1− τi)

A(αi, τi)
+

ωi2(1− τj)

A(αj, τj)

}[
∑

k

A(αk, τk)ωk2

]}
,

since A(αi, τi) =
αiτi

αiτi+(1−αi)
,

= αi

[
A(αj, τj)

τj

]2 {
ωi2 · ωj2

αj [
∑

k A(αk, τk)ωk2]
2 +

[
(1− τi)(1− τj)

A(αi, τi) · A(αj, τj)

]

−
1

[
∑

k A(αk, τk)ωk2]

{
ωj2(1− τi)

A(αi, τi)
+

ωi2(1− τj)

A(αj, τj)

}}

as required.

When j = i the expression simplifies to

∂Ni

∂τi
(~τ) =

[
A(αi,τi)

τi

]2
[∑

j A(αj, τj)ωj2

]





(ωi2)
2

[∑
j A(αj, τj)ωj2

] − 2ωi2
αi(1− τi)

A(αi, τi)



+ αi

{
(1− τi)

τi

}2

.
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DETAILS OF CALCULATIONS FOR EXAMPLES 1, 2, AND 3

EXAMPLE 1: Consider the following parameter specification

α1 = 1/2 ω11 = 2 ω12 = 8/67

α2 = 1/2 ω21 = 4 ω22 = 2.

At τ1 = 3 we have A(α1, τ1) = 3/4, while if τ2 = 1/2 we have A(α2, τ2) = 1/3.

Recall that

p∗2(~τ) =

∑
i[1− A(αi, τi)]ωi1∑

i A(αi, τi)ωi2

.

We can calculate

p∗2(3, 1/2) =
(1/4) · 2 + (2/3) · 4

(3/4) · (8/67) + (1/3) · 2
=

(1/2) + (8/3)

(6/67) + (2/3)
=

19/6

152/(67 · 3)
=

67

16
.

We are now in a position to evaluate the expression in Lemma 5 (ii) for the specific

parameter values and at (τ1, τ2) = (3, 1/2). We find

[(1/2) · 2− (1/2) · (67/16) · (8/67)]2 · [(16/67) · 4 + 2]

+ [2 · (16/67) + (8/67)] · (16/67)−2 ·
[
(1/2) · (16/67)2 · 4 · 2 + (1/2) · (8/67) · 2

]

+ [(1/2) · 2− (1/2) · (67/16) · (8/67)] · [(16/67) · 4 + 2] ·
(1/2)(1− 3)

3/4
· [(1/4) · 2 + (2/3) · 4]

= [3/4]2 · [198/67] + [40/67] · [4 + (67/32)] + [3/4] · [198/67] ·
−4

3
· [19/6]

= (1/67) · [(9/16) · 198 + (5/4) · 195− 33 · 19] < (1/67) · [198 + 250− 33 · 15] < 0.

EXAMPLE 2: Consider the following parameter specification (we write ω̃ instead of the

value 2)

α1 = 1/3 ω11 = 2 ω12 = 80/22

αi = 1/2 ωi1 = ωi2 = ω̃ for i = 2, · · · , I.

At τ1 = 11/10 we have A(α1, τ1) = 11/31, while if τi = 1, i 6= 1, we have A(αi, τi) =

1/2.

Recall that

p∗2(~τ) =

∑
i[1− A(αi, τi)]ωi1∑

i A(αi, τi)ωi2

.

We can calculate

p∗2(11/10, 1, · · · , 1) =
(20/31) · 2 + (1/2) · (I − 1) · ω̃

(11/31) · (80/22) + (1/2) · (I − 1) · ω̃
=

80/31 + (I − 1) · ω̃

80/31 + (I − 1) · ω̃
= 1.

We are now in a position to evaluate the expression in Lemma 3 (ii) for the specific

parameter values and at (~τ) = (11/10, 1, · · · , 1). We find

[(2/3) · 2− (1/3) · 1 · (80/22)]2 · [1 · ω̃ + ω̃]

4



+ [2 · 1 + (80/22)] · (1)2 ·
[
(2/3) · (1)−2 · ω̃ · 2 + (1/3) · (80/22) · ω̃

]

+ [(2/3) · 2− (1/3) · (1) · (80/22)]·[(1) · ω̃ + ω̃]·
(1/3)(1− 11/10)

11/31
·[(20/31) · 2 + (1/2) · (I − 1) · ω̃]

= [8/66]2 ·2 · ω̃+(124/22) · ω̃ · [168/66]+(8/66) ·2 · ω̃ ·
−31

330
· [(20/31) · 2 + (1/2) · (I − 1) · ω̃]

=
16 · ω̃

66

{
(8/66) + 62 · (21/22)−

31

330
· [(20/31) · 2 + (1/2) · (I − 1) · ω̃]

}

which is negative if 21 · 60 < (I − 1) · ω̃ so with ω̃ = 2 we would require a few more than

six hundred countries.

For the computation of the first bound, one easily checks that with ωi1 = 2 and

τi = 11/10 for all i ∈ I,

mini∈I

∑
j 6=i [1− A(αj, 11/10)]ωj1∑
j [1− A(αj, 11/10)]ωj1

= min

{
(I − 1)10

21
20
31

+ (I − 1)10
21

,
20
31

+ (I − 2)10
21

20
31

+ (I − 1)10
21

}

=
(I − 1)10

21
20
31

+ (I − 1)10
21

≤
10

11
if I ≤ 14.

So for I > 600 as in our example,

10

11
< mini∈I

∑
j 6=i [1− A(αj, 11/10)]ωj1∑
j [1− A(αj, 11/10)]ωj1

.

For the computation of the second bound, we check that

1

11/10

[1/(11/10) + α/(1− α)]

[1/(11/10) + α/(1− α)]
=

10

11

[10/11 + (1/2)/(1/2)]

[10/11 + (1/3)/(2/3)]
=

10

11

[10/11 + 1]

[10/11 + 1/2]
=

10

11

42

31
> 1.

We calculate p∗2(11/10, 1, · · · , 1) for the revised specification of endowments with I =

650, where we recall that 1 + (1/2) · 647 · ω̄1 + (1/2) · 150 = (1/2) · 649 · 2:

p∗2(11/10, 1, · · · , 1) =
(20/31) · 2 + (1/2) · 2 + (1/2) · (I − 3) · ω̄1 + (1/2) · 150

(11/31) · (80/22) + (1/2) · (I − 1) · 2

=
(20/31) · 2 + (1/2) · 649 · 2

(11/31) · (80/22) + (1/2) · 649 · 2
=

80/31 + 649 · 2

80/31 + 649 · 2
= 1.

For the computation of the bound we check that

mini∈I

∑
j 6=i [1− A(αj, 11/10)]ωj1∑
j [1− A(αj, 11/10)]ωj1

=
20
31
2 + 10

21
[2 + 647ω̄1]

20
31
2 + 10

21
[2 + 647ω̄1 + 150]

=
20
31
2 + 10

21
[647 · 2− 150]

20
31
2 + 10

21
[647 · 2]

<
10

11
,

where we use the equation that specifies ω̄1.
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EXAMPLE 3: Consider the following parameter specification

α1 = 1/2 ω11 = 2 ω12 = 10/11

αi = 1/2 ωi1 = 4 ωi2 = 2 for i = 2, · · · , I.

At τ1 = 11/10 we have A(α1, τ1) = 11/21, while if τi = 1, i 6= 1, we have A(αi, τi) =

1/2.

Recall that

p∗2(~τ) =

∑
i[1− A(αi, τi)]ωi1∑

i A(αi, τi)ωi2

.

We can calculate

p∗2(11/10, 1, · · · , 1) =
(10/21) · 2 + (1/2) · (I − 1) · 4

(11/21) · (10/11) + (1/2) · (I − 1) · 2
= 2.

We are now in a position to evaluate the expression in Lemma 3 (ii) for the specific

parameter values and at (~τ) = (11/10, 1, · · · , 1). We find

[(1/2) · 2− (1/2) · 2 · (10/11)]2 · [(1/2) · (4) + 2]

+ [2 · (1/2) + 10/11] · (2)2 ·
[
(1/2) · (1/2)2 · (4) · 2 + (1/2) · (10/11) · 2

]

+ [(1/2) · 2− (1/2) · 2 · (10/11)]·[(1/2) · (4) + 2]·
(1/2)(1− 11/10)

11/21
·[(10/21) · (2) + (1/2) · (I − 1) · 4]

= [1/11]2 · 4 + [21/11] · 4 · [1 + 10/11] + [1/11] · 4 ·
−21

220
· [20/21 + (I − 1) · 2]

=
4

11
·

{
1

11
+

(21)2

11
−

1

11
−

21 · (I − 1)

110

}

=
4

11
·

{
21

11

[
21−

I − 1

10

]}

which is negative if I exceeds two hundred and eleven.
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