
This is a repository copy of A multiobjective metaheuristic approach for morphological
filters on many-core architectures.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/149212/

Version: Accepted Version

Article:

Pedrino, Emerson Carlos, Pereira de Lima, Denis and Tempesti, Gianluca orcid.org/0000-
0001-8110-8950 (2019) A multiobjective metaheuristic approach for morphological filters
on many-core architectures. Integrated Computer-Aided Engineering. pp. 383-397. ISSN
1069-2509

https://doi.org/10.3233/ICA-190607

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://doi.org/10.3233/ICA-190607
https://eprints.whiterose.ac.uk/id/eprint/149212/
https://eprints.whiterose.ac.uk/

Journal Title 1 (2019) 1 1
IOS Press

A Multiobjective Metaheuristic Approach for
Morphological Filters on Many-Core
Architectures
Emerson Carlos Pedrino a,b,*, Denis Pereira de Lima b and Gianluca Tempesti a

a Department of Electronic Engineering, University of York, Heslington, York, YO10 5DD, UK

E-mail: emerson.pedrino@york.ac.uk, gianluca.tempesti@york.ac.uk
b Department of Computer Science, Federal University of Sao Carlos, Rodovia Washington Luis, Km

235,13565-905, Brazil

E-mails: emerson@dc.ufscar.br, denis@ufscar.br

Abstract. Mathematical Morphology (MM) is a set-theoretic technique for the analysis of geometrical structures. It provides
a powerful tool for image processing, but is hampered by significant computational requirements. These requirements can be
substantially reduced by decomposing complex operators into sequences of simpler operators, at the cost of degradation of the
quality of the results. This decomposition also directly translates to streaming task graphs, a programming model that maps well
to the kind of systolic architectures typically associated with many-core systems. There is however a trade-off between mappings
that implement high-quality filters and mappings that offer high performance in many-core systems. The approach presented in
this paper exploits a multi-objective evolutionary algorithm as a design-time tool to investigate trade-offs between the quality
of the MM decomposition and computational performance. The evolutionary process performs an analysis of filter quality vs
computational performance and generates a set of task graphs and mappings that represent different trade-offs between the two
objectives. It then outputs a Pareto front of mapping solutions, allowing the designer to select an implementation that matches
application-specific requirements. The performance of the tool is benchmarked on a morphological filter for the detection of
features in a high-resolution PCB image.

Keywords: Multiobjective Optimisation, Many-core systems, Mathematical Morphology, Image Processing

1. Introduction

Mathematical Morphology (MM) is a non-linear
branch of image processing and computer vision,
based on geometry and on the mathematical Theory of
Order [9, 35, 37, 38]. It was originally developed by
Matheron and Serra in the 1960s, and its initial appli-
cations were in biomedical and geological image anal-
ysis problems [23]. Later, it proved to be a powerful
tool for computer vision tasks involving binary and
grey-level images for noise suppression, skeletoniza-
tion, segmentation, pattern recognition, and for the de-
sign of morphological filters, just to name a few ex-

*Corresponding author. E-mail: emerson@dc.ufscar.br.

amples [13, 26]. Finally, in the 1980s, its theory was
generalized for Complete Lattices, allowing it to be
applied to colour images [4, 29].

The basic operators of Mathematical Morphology
are dilation and erosion, which can be combined algo-
rithmically to form more complex operators. The de-
composition of complex operators into simpler instruc-
tions provides significant advantages in terms of com-
putational performance (usually at the cost of some
loss in quality), but the process is not trivial, even for
a specialist, as the selection of operators and operands
to be used in this scenario is known to be NP-complete
[48]. This complexity has led to the development of ap-
proaches that exploit metaheuristic algorithms for this
task [28, 30, 45, 48, 51].

0000-0000/19/$00.00 c© 2019 – IOS Press and the authors. All rights reserved

mailto:emerson.pedrino@york.ac.uk, gianluca.tempesti@york.ac.uk
mailto:emerson@dc.ufscar.br
mailto:denis@ufscar.br
mailto:emerson@dc.ufscar.br

2 E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures

To handle the computational complexity, several
dedicated hardware architectures have been proposed
in the literature to accelerate morphological operations
through instruction decomposition, generally imple-
mented by pipelined hardware accelerators on FPGAs
[5, 16, 27]. However, while many of these architec-
tures are high-performance and energy efficient [11],
they exploit fine-grained parallelism at the pixel or tile
level, often with limitations to MM operators [12, 19,
25] and image resolution. In addition, most do not
exploit the inherent parallelism of windowed opera-
tions [6], and introduce high latencies [17]. GPUs have
also proved to be highly effective tools for accelerat-
ing MM applications [21, 41], but architectural con-
straints again limit the exploitation of parallelism to
a relatively fine grain. As a result, many of these ar-
chitectures are unable to take advantage of the image-
level parallelism typical of more complex algorithms
involving real-world image/video processing.

To exploit coarse-grained parallelism in software,
some research has addressed MM implementations on
multi-core systems [44, 49], placing the emphasis on
the optimisation of accesses to shared memory.

The many-core paradigm is centred on large (gen-
erally 2D) arrays of computational nodes, each con-
taining a complete processing unit (for a general dis-
cussion of many-core systems and their programming,
see for example [43], and for examples of application
parallelisation, see [1–3, 20]). These architectures thus
represent an attractive choice for developing complex
MM applications, as they allow the implementation of
pipelined (streaming) applications [14, 18] at the im-
age level without the restrictions of hardware pipelines
or GPUs and in a distributed memory scenario that mit-
igates shared memory contentions.

This approach, however, introduces a different set of
optimisation challenges, related to the clustering and
mapping of MM operators to the processing nodes,
where the optimality of the solutions in terms of MM
conflicts with the performance parameters of the sys-
tem [14, 18]. This article is meant to investigate this
trade-off and describe how multi-objective optimisa-
tion can be exploited in this scenario.

The remainder of the article is organised as follows.
Section 2 presents the theoretical foundations of Math-
ematical Morphology and a brief overview of many-
core architectures, focusing on the basic assumptions
that underlie the proposed approach and outlining the
multi-objective search algorithm. In Section 3, the sys-
tem is detailed, while tests and results are described in
Section 4. Finally, Section 5 concludes the article.

2. Fundamentals

2.1. Mathematical Morphology

As mentioned, the primitive operators of Mathemat-
ical Morphology are erosion and dilation. In the con-
text of image processing, the (binary or grayscale) im-
ages are represented as a set of coordinates of active
pixels (plus, in the case of grayscale, their intensi-
ties). Sub-images (called structuring elements) act as
probes, iteratively compared to the original image to
provide a quantitative measure of how the sub-image
fits (or does not fit) within the original image.

According to [10, 13], the characterization of fitting

depends on translation (basic Euclidean-space opera-
tion). So, the translation of a set S by a point x, Sx (S
translated along the vector x), is defined by:

Sx = {s + x : s ∈ S} (1)

Using this notation, the erosion of a set A by a set B

is then defined by:

A⊖ B = {x : Bx ⊂ A} (2)

where ⊂ denotes the subset relation, A is the input im-
age and B the structuring element. A⊖ B corresponds
then to all points x in which the translation of B by x fits
inside A. In the context of image filtering, erosion re-
moves small-scale details from the input image, reduc-
ing the size of the objects within that image, according
to the shape and size of the structuring element.

The dilation operation is the opposite of erosion and
can thus be defined from erosion through set comple-
mentation. The dilation of A by B is defined by:

A⊕ B =
(

A
c ⊖ B̆

)c

(3)

where A
c is the set-theoretic complement of A and B̆

is the rotation of B. Thus, the dilation of A by B is
defined as the complement of the erosion of A

c by B̆.
In the context of image filtering, dilation expands the
objects within the input image, according to the shape
and size of the structuring element used.

More complex operators, like opening and closing,
among others, can be obtained by combining dilations
and erosions algorithmically [10, 13]. These ideas can
be extended to grey-level and colour image processing
as well, using the maximum and minimum operators.

From these definitions, it can be evinced that the
complexity (defined in terms of computational effort)

E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures 3

Fig. 1. Example of cost calculation for a hypothetical filter, according to Eqs. 4 and 5. The original filter is decomposed into a graph of 8 tasks
(Fn), each implementing one of the basic instructions, which are then mapped onto 3 processing nodes. The new filter is applied to img_in, and
the resulting img_out is compared to the target image img_tg to determine cost1. The computation time Ttot for the filter is determined by P2

(the solid arrows contribute to Tnet and the tasks F3 and F5 to the internal Tcomp). Ttot is then multiplied by the standard deviation SD of the
processor loads, representing load balancing (LB) to compute cost2. The two costs are then used in the multi-objective evolutionary process.

of a MM filter has a strong dependence on the size of
the structuring element B. A significant reduction in
complexity can be achieved by decomposing the struc-
turing elements into simpler components, at the cost
however of loss of filter quality [29].

The first objective of the multi-objective algorithm
presented in this paper (Fig 1) will then be to decom-
pose complex filters into simpler tasks (basic instruc-

tions) in such a way that the error introduced by the
decomposition is minimised.

2.2. Many-core architectures

While numerous architectural variants have been
proposed in the context of many-core systems re-
search, the work presented in this article tries to pre-
serve generality by limiting the assumptions made on
the architecture:

– The many-core system will consist of an arbitrary
large number of processing nodes (experiments
were run for 8, 16, and 32-node systems).

– Each node has access to a "significant" amount
of local memory (this, however, only impacts the
size of the images that can be processed).

– The nodes are connected by a deadlock-free
Network-on-Chip (NoC) with a bandwidth suffi-
cient to avoid congestion (again, largely a limit
on image size).

Within this scenario, MM graphs (Fig 1), can be
considered as streaming applications [14, 18], where
each node will receive images from upstream nodes,
apply one or more MM operators, and then propagate
the processed image to one or more downstream nodes,
repeating this sequence operation for all images in the
required set. It should be highlighted that this coarse-
grained decomposition represents a departure from the
vast majority of the literature that addresses MM im-
plementations and is in fact complementary to, for ex-
ample, FPGA- or GPU-based accelerators (in the sense
that it does not preclude the presence of such acceler-
ators within the many-core processing nodes).

In order for a graph of T MM tasks to be imple-
mented on a many-core system consisting of P pro-
cessing nodes (where generally but not necessarily
T > P), tasks need to be grouped and allocated to in-
dividual nodes (Fig 1). The quality of this mapping is
fundamental for performance, in terms of computation
time and resource utilization [31, 34, 36].

4 E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures

Fig. 2. Block diagram for the iMMf-Ma Architecture, and its 3 basic modules: Training, Testing, and Mapping. The Training Module is used to
evolve individuals (filters) according to two conflicting objectives. The Testing module is used to verify the performance of the solutions. The
filter(s) selected by the user are mapped onto the many-core architecture in the Mapping module.

One component of the overall time required by each
node to process each image is obviously the time
(Tcomp) necessary for the computation of the MM
tasks allocated to it. By removing backward dependen-
cies, the use of streaming graphs reduces this to a lin-
ear sum of the time required for each task (which can
be pre-computed, given the platform specifications).

In a realistic scenario, however, the time required
for each node to receive and send data (particularly for
large image sizes) cannot be ignored. Given a specific
platform and a constant image size, a node’s Tnet is
then a function of how many input and output images
are sent or received by all the tasks mapped to it (as
derived from the task graph).

In this streaming approach, the time Ttot required to
process each image on P processors is then obviously
bounded by the slowest processor in the pipeline:

Ttot = Max(Tcompi + Tneti : i ∈ P) (4)

The performance of a mapping in terms of pro-
cessing time is not the only measure of the quality
of a mapping, since it provides no information as to
how optimally the resources of the system are used. In
terms of energy or in a multi-application scenario, for
example, it becomes important to minimise the number
of processors used to implement a filter and to equalise
the computation across all nodes. In practice, this can
be achieved by load balancing (LB) the computation

across the processors or, in other words, by minimising
the standard deviation of Ttot across all nodes.

The second objective of the multi-objective optimi-
sation algorithm proposed in this article is to group and
allocate (i.e. map) the filter tasks to processing nodes
in such a way that the performance (in terms of compu-
tation time) and the use of resources (in terms of load
balancing) are minimised.

2.3. Multi-Objective optimisation

The quality of a filter implementation will thus de-
pend on two metrics (Fig 1), which correspond to
the two objectives to be optimised. The cost1 metric
(Quality of Filter or QoF) measures the ability of the
filter to identify the desired features within an input
image. To evaluate the cost2 metric (Quality of Map-

ping or QoM), the algorithm distributes the graph in-
structions among the processors, optimising Ttot and
load balancing to reduce the total execution time.

In general, filters with high complexity (larger struc-
turing elements and/or more instructions) will have the
best visual quality, but will require more time for com-
putation, implying a conflict between the two metrics.

Resolving this conflict implies defining the relative
importance of the two objectives. This, however, de-
pends on the requirements of the designer: an appli-
cation that needs, for example, to meet real-time con-
straints would prioritise the QoM metric, whereas QoF

might dominate in high-precision filters.

E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures 5

The algorithm described in this article targets the
design-time optimisation of a given mathematical mor-
phology application (using pattern detection as an ex-
ample) on a many-core architecture with known archi-
tectural parameters (computation and communication
speed, number of processing nodes, etc.). As in simi-
lar research (e.g. as in [32, 33]), a multi-objective evo-
lutionary algorithm was used to find a Pareto front of
mapping solutions, each representing a non-dominated
trade-off between the two optimisation metrics, al-
lowing the designer to select an implementation that
matches application-specific requirements.

3. Mapping of morphological filters on many-core

architectures (iMMf-Ma)

Fig. 2 illustrates the general block diagram of the
proposed iMMf-Ma system, which consists of three
basic modules: training, testing and mapping.

3.1. Training Module

The objective of the training module is to auto-
matically generate, using a multi-objective algorithm
[15, 39, 40, 46, 47] and training images, acyclic graphs
(filters) constructed from a set of basic instructions.

The training module (Algorithm 1, Fig. 2) was im-
plemented using the PlatEMO tool [42]. After initial
tests with several MOEA algorithms (including NS-
GAII [7], NSGAIII [8], MOEAD [50], and SPEA2
[52]) revealed no statistically significant differences,
NSGAII was selected. The standard algorithm was
then modified to use a CGP-derived [22, 24] encoding
that matched the problem with no crossover and with a
point mutation that more accurately fits the encoding.

For this module, the following parameters and in-
puts (Table 1) must be specified:

– a set (train_set) containing pairs of training im-
ages (original + target), where the original is a bi-
nary or grey-scale image of any resolution and the
target contains binary objects of interest present
in its corresponding input;

– a set (MM_INSTR) of morphological (dilation,
erosion, etc.), arithmetic (addition, subtraction,
etc.), and logic (and, or, not, etc.) basic instruc-
tions;

– parameters of operation of the modified NSGAII
algorithm: N: population size; M: number of ob-
jectives of the multi-objective problem; L: chro-

Table 1

Parameters and variables used in the algorithms

EA Parameters Description

N Number of individuals (population size)
M Dimension (number of objectives)
L Number of genes in the chromosome
D Number of alleles
MT_RT Mutation rate
EVALUATION Number of evaluations

App Parameters Description

N_PROC Number of processors
MM_INSTR Basic instructions
K_TRAIN Number of images in the training set
K_TEST Number of images in the test set

Variables Description

chrm Chromosome of one individual
pop Population (set of chromosomes)
costs cost1, cost2
graphs Graphs
k Number of images in the current set
train_set Set of training image pairs
test_set Set of test image pairs
test Test or training set selection
img_in Set of input images
img_tg Set of target image
img_out Set of output images
cluster Set of processors

mosome length (number of genes); D: number of
alleles in the chromosome; EVALUATION: num-
ber of generations; N_PROC: number of proces-
sors of the many-core architecture; MT_RT: mu-
tation rate for the evolutionary strategy.

Given these, the algorithm outputs:

– Pareto curves for the final population evolved,
which can be used to select a filter satisfying user-
specified requirements;

– application task graphs representing each individ-
ual, together with the associated filter parameters
and processor allocations;

– for visual verification purposes, the output images
for the selected solution.

3.1.1. The Evolutionary Cycle

The training module relies on four main functions:
Initial_Pop: The initial population (pop) is gener-

ated randomly, based on the parameters N, MM_INSTR,
D and N_PROC. Each chromosome (Fig. 3) contains
a set of genes that represent the nodes of the graph.
Each gene consists of four alleles (although it is pos-
sible to use higher arity for its arguments if required):
one instruction from an application specific set (Table
2), two input connections from previous nodes in the
graph, and the id of the processor that will execute the
instruction on the many-core architecture.

6 E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures

Fig. 3. Chromosome format: each gene identifies the MM instruction used, the graph nodes (up to two) that provide inputs for the instruction,
and the processor to which the instruction is allocated within the many-core array. The genotype is coded as integers, which by means of the
Decode_Chrm function are transformed into a program listing, containing instructions from Table 2, representing the current chromosome. The
fourth argument of each gene (processor id) is used by the Mapping Module.

Algorithm 1: iMMf-Ma Training

pop← Initial_Pop(N,MM_INS TR,D,N_PROC)
aux← 0
do

[costs]← Cost_Eval(pop,MM_INS TR,D, train_set,N_PROC)
[pop,pareto_front]← NSGAII(pop, costs,N,M,D,N_PROC,MT_RT)
aux ++

while aux<=EVALUATION;
[graphs]← GraphGen(pareto_ f ront)
return graphs,costs,pareto_front

Cost_Eval: This function (Algorithm 2) computes
the metrics (see Section 2) for the current population
pop. The metric formulae are detailed below in section
3.1.2).

NSGAII: This function implements the NSGAII al-
gorithms. Its inputs are the EA parameters, the cur-
rent population pop and the metrics for each individ-
ual in the current population (costs). As output, the
function returns the set of non-dominated individuals
(pareto_front) among the filters in the current popula-
tion (Fig. 4), together with the next generation to be
evaluated (pop).

GraphGen: This function receives as input param-
eter the pareto_front generated by NSGAII, as men-
tioned above, and returns as output the corresponding
graphs, which can be used to select the desired cost1
vs cost2 trade-off (Fig. 4).

3.1.2. Metrics

The metric evaluation is carried out as in Algorithm
2 through the application of a sequence of 5 functions:
Decode_Chrm, Eval, Std, Alloc, and Timing.

Decode_Chrm, as its name suggests, decodes the
chromosomes of the individuals in pop j (genotype),
of size D, by means of a concatenation of instructions
present in MM_INSTR, relative to their genes.

As an example, consider gene (graph_id: 3) of Fig.
3, with alleles "3-2-1-4". From Table 2, the first allele 3
selects instruction AND, with the first input connected
to the output of gene 2, and the second to img_in (gene
1). The instruction will be allocated to processor 4.

To evaluate the quality of the filters chrom j gen-
erated by Decode_Chrm, the Eval function applies
them to a set of training images and generates a set of
corresponding output images (img_outi, j) (Fig. 3).

E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures 7

Table 2

MM basic instructions currently implemented in the iMMf-Ma system

ID Instruction Description Complexity
1 Nop No Operation. It allows a better flexibility for the chromosome, and of Arity 1. 1
2 Sub Arithmetic Subtraction of Arity 2. 2
3 And Logic And of Arity 2. 2
4 Ero_s_3 Erosion (Arity 2) by a square structuring element of size 3x3. 9
5 Ero_c_3 Erosion (Arity 2) by a disk shaped structuring element of size 3x3. 9
6 Ero_s_5 Erosion (Arity 2) by a square structuring element of size 5x5. 25
7 Ero_c_5 Erosion (Arity 2) by a disk shaped structuring element of size 5x5. 25
8 Ero_s_7 Erosion (Arity 2) by a square structuring element of size 7x7. 49
9 Ero_c_7 Erosion (Arity 2) by a disk shaped structuring element of size 7x7. 49
10 Dil_s_3 Dilation (Arity 2) by a square structuring element of size 3x3. 9
11 Dil_c_3 Dilation (Arity 2) by a disk shaped structuring element of size 3x3. 9
12 Dil_s_5 Dilation (Arity 2) by a square structuring element of size 5x5. 25
13 Dil_c_5 Dilation (Arity 2) by a disk shaped structuring element of size 5x5. 25
14 Dil_s_7 Dilation (Arity 2) by a square structuring element of size 7x7. 49
15 Dil_c_7 Dilation (Arity 2) by a disk shaped structuring element of size 7x7. 49
16 Ero_/_3 Erosion (Arity 2) by a right diagonal structuring element of size 3x3. 9
17 Ero__3 Erosion (Arity 2) by a left diagonal structuring element of size 3x3. 9
18 Ero_/_5 Erosion (Arity 2) by a right diagonal structuring element of size 5x5. 25
19 Ero__5 Erosion (Arity 2) by a left diagonal structuring element of size 5x5. 25
20 Ero_/_7 Erosion (Arity 2) by a right diagonal structuring element of size 7x7. 49
21 Ero__7 Erosion (Arity 2) by a left diagonal structuring element of size 7x7. 49
22 Dil_/_3 Dilation (Arity 2) by a right diagonal structuring element of size 3x3. 9
23 Dil__3 Dilation (Arity 2) by a left diagonal structuring element of size 3x3. 9
24 Dil_/_5 Dilation (Arity 2) by a right diagonal structuring element of size 5x5. 25
25 Dil__5 Dilation (Arity 2) by a left diagonal structuring element of size 5x5. 25
26 Dil_/_7 Dilation (Arity 2) by a right diagonal structuring element of size 7x7. 49
27 Dil__7 Dilation (Arity 2) by a left diagonal structuring element of size 7x7. 49
28 Or Logic OR of Arity 2. 2
29 Nor Logic NOR of Arity 2. 2
30 Add Arithmetic Addition of Arity 2. 2

Algorithm 2: Cost_Eval - Computation of the metrics

if test then k← Size(test_set)
else k← Size(train_set)

for i← 1 to k do

if test then img_in← test_seti,1; img_tg← test_seti,2
else img_in← train_seti,1; img_tg← train_seti,2

for j← 1 to Size(pop) do

chrm j ← Decode_Chrm (MM_INS TRpop j
, img_in,D)

img_outi, j ← Eval(chrm j)
costsi, j,1 ← Sum(Abs(img_outi, j − img_tgi, j))/Size(img_in)
Ttot← Timing(chrm j,MM_INS TR,D,N_PROC)
LB← Std(Alloc(chrm j,N_PROC))
costsi, j,2 ← Ttot ∗ LB

end for

end for

return costs

8 E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures

Fig. 4. Details of a point (Filter) of the Pareto curve generated by the NSGAII function. Costs has two columns, the first one referring to the filter
error (Qof), and the second one to its complexity (total time through the pipeline (Tcomp + Tnet) x SD of instructions distribution). Also, the
clustering and allocation of instructions to processors to optimize the LB (Mapping Module) is shown. The graphs are generated by GraphGen.

The images in the img_outi, j set are then compared
to the reference ones (img_tg), to produce the QoF

metric costsi, j,1. More specifically, this metric repre-
sents the Mean Absolute Error (MAE) between the im-
ages generated by applying each filter (graph) evolved
by the tool and the target image for each image pair
(original+target) in the training images set:

MAE =
1

XY

X
∑

i

Y
∑

j

| Iout(i, j)− Itg(i, j) | (5)

where Iout is the filtered image for one evolved filter,
Itg is the target image corresponding to its img_in, and
(i, j) is the pixel coordinate. X and Y are the dimensions
of the image, used to average the error across all pixels.

By contrast, the evaluation of the QoM metric is
much simpler, as it does not require the application
to the filter to the image. As described in section 2.2,
given a specific target platform the processing time
Tcomp for each node can be estimated by the linear
sum of the complexities of each basic instruction (Ta-
ble 2). The communication time Tnet can be derived
from the task graph, as it corresponds to the number
of input and output arcs of the tasks mapped to a spe-
cific processor (Fig. 1). This allows the algorithm, in
the Timing function, to compute the first component
(Ttot) of the QoM metric using eq. 4 (it also evaluates
the sequential execution time of the graph, for compar-
ison purposes, as detailed in the Results section).

To evaluate the second component (LB) of the met-
ric, which corresponds to load balancing, the algo-
rithm computes the standard deviation of the process-
ing time across all processors (Section 2.2). The two
components are then multiplied together to direct the
search towards more balanced individuals.

3.2. Testing Module

The objective of the test module is to validate the
graphs generated by the training module by applying a
set of testing images.

For this, test_set, a new set of images, is used, con-
taining different image pairs compared to the train_set

training set. However, this new set contains the same
image objects used in the training set, as it aims at val-
idating the results generated from the training process.
Thus, for the testing process, Algorithm 2 is also used
to evaluate the metrics, and is applied to test_set rather
than train_set. The graphs satisfying the requirements
of the user are then passed to the mapping module to
be allocated on the many-core architecture.

3.3. Mapping Module

The objective of the mapping module is to cluster

instructions (graph tasks) from the solution chosen by
the user for implementation on the many-core archi-
tecture. This process would allow a platform-specific
back-end to automatically generate the executables.

E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures 9

Fig. 5. Printed circuit board (PCB) image used for the experiments. The highlighted area shows the three types of patterns (square island, circle
island, and track) to be extracted by the filter.

According to Fig. 3 (Section 3.1), the fourth allele of
each gene (Proc_k), represents the processor to which
the task will be allocated. Thus, the final objective of
this module is to cluster the nodes of a given graph,
generating an application mapping (Fig. 4). This pro-
cess (Algorithm 3) receives the input parameters pop

and L and returns the clusteraux, j−1 object, which cor-
responds to a set of processors of the many-core archi-
tecture containing allocated instructions from the ap-
plication graph.

Algorithm 3: Mapping Module - Clustering

for i← 1 to N_PROC do

for j← 2 to L− 1 do
aux← chrm j,4

clusteraux, j−1 ← j

end for

end for

return cluster

4. Experimental results

The lack of literature addressing the issue of map-
ping MM applications on many-core systems prevents
a comparative evaluation of the tools. Performance

comparisons with FPGA-based hardware accelerators
(e.g. [11, 12, 19, 25]), besides being unrealistic as
the images used for benchmarking in the literature are
generally much smaller than the one used for the ex-
periments in this paper, would also be largely irrele-
vant, since the two approaches are entirely compatible.
In fact, should the many-core system nodes allow the
implementation of hardware accelerators, this feature
could be integrated in the proposed tool to improve
Tcomp and thus shift the Pareto curve.

The results proposed in this article thus rely on im-
plicit benchmarking: in order to evaluate the perfor-
mance (cost1) of the iMMf-Ma approach, the algorithm
was applied to a real world application aimed at recog-
nising patterns in printed circuit boards (PCB) images,
which could be used to detect imperfections.

The train_set and test_set sets (Section 3.1) use bi-
nary sub-images from the original monochrome image
of Fig. 5, with a spatial resolution of 3277 x 2048 pix-
els. The objective was to detect 3 types of patterns: cir-

cle islands, square islands, and tracks, of sizes defined
by the highlighted region (rectangle) in the figure.

The EA parameters used in the experiments are de-
scribed in Table 3 (the parameter values were derived
through a set of calibration experiments). To evaluate
the scalability of the algorithms, three different sizes
of many-core architectures were used in the training
and testing processes: 8, 16, and 32 processors. For the

10 E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures

Table 3

Experiment parameters

Parameters Value
N 100
M 2
D 94
MT_RT 0.05
EVALUATION 10000
N_PROC (8,16,32)
MM_INSTR {1..15} from (Table 2)

current application, only instructions 1 to 15 in Table
2 were necessary, due to the geometry of the objects
to be detected. Because of the nature of the problem, a
limit of two inputs per node was imposed on the graph,
a restriction that can be relaxed by a tool parameter.

All time metrics were computed as a function of
complexity, which is proportional to the number of ac-
tive pixels in the structuring elements used by the mor-
phological operations. Thus, for the morphological op-
erations, the convention adopted was to consider the
dimensions of the structuring elements to determine
Tcomp for each base operation (Table 2). The com-
plexities of the other operations were derived through
comparison to the morphological operations.

Given the assumptions on the NoC capabilities (Sec-
tion 2.2) and the features of the application, Tnet was
set to a constant value of 1 for each arc in the graph.
It is important to note that, for the purposes of the
EA, the units used in the estimation of the computa-
tional complexity are irrelevant, as long as the ratio
between the component values matches their execu-
tion time in the target platform. Non-exhaustive em-
pirical tests performed on a single-processor machine
confirmed that the timing relationship between the in-
structions closely matches the complexity-based esti-
mations.

4.1. Experiments

For the training process, 30 pairs of sample images
(130 x 122 pixels) were used, cut out at random po-
sitions from Fig. 5, each containing the three types of
patterns mentioned above and for the three many-core
system sizes (for a total of 270 training examples). All
the images were binarized prior to this process.

The output of the training process is a set of Pareto
curves that present the non-dominated solutions ob-
tained for each image pair. Fig. 6 shows an example of
a curve generated by the tool, for an architecture con-
taining 8 processors with square island detection.

The results obtained in the training phase are sum-
marized in Table 4. For each configuration (number of

Fig. 6. Example of an iMMf-Ma system result for square island de-
tection in an 8-processor pipeline. Each point represents a chromo-
some (generated filter) in the final population. The green line con-
nects non-dominated solutions on the Pareto curve.

processors and pattern combination), three individuals
(filters) were selected from the Pareto fronts of each
image pair: best QoF, best QoM, and an intermediate
solution. The table then displays the average and stan-
dard deviation of the MAE and Ttot across all individu-
als (note that the total execution time Ttot was selected
over cost2 as being clearer and more relevant in a de-
sign context).

To provide a comparison metric, the table also in-
cludes averages and SDs for Tseq, the execution time
of each individual on a single processor (computed by
setting Tnet to 0 and adding together the execution
times of each instruction in the chromosome). This
parameter then allows the calculation of the speedup

(SeqT / Ttot) obtained through the parallelisation of the
filter. The analysis of the values in Table 4 reveals that,
as expected, the speedup in all cases is increasing with
the number of processors.

Selected individuals among those found by the train-
ing process are then input to the testing process, where
their performance is evaluated on the set of test images.

In a user scenario, the selection of individuals to be
tested would be guided by the design priorities. For ex-
ample, if the application requires a high-quality filter
(low MAE) and performance (Ttot) is not a constraint,
the "best QoF" column of Table 4 would be used to
select individuals to be tested. In a real-time system
that needs to minimise processing time, even if this
implies lower visual quality for the filter (high MAE),
tests would focus on individuals from the "best QoM"
column. In cases where the two constraints have the
same weight, the intermediate individuals provide a vi-

E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures 11

Table 4

Mean and standard deviations of the filters evolved by the Training Module for each combination of pattern (Circle Island, Square Island and
Track), and numbers of processors (8, 16, and 32) over the 30 training samples. Three filters from each Pareto curve (the two extremes and one
intermediate) were used in each case. Speedups are in bold in the table. As an example, the "Best Pareto" row represents, for each combination,
the three points in the Pareto curve that contains the best QoF for an image pair.

Best QoF Intermediate Best QoM
Processors/Pattern MAE Ttot Tseq Speedup MAE Ttot Tseq Speedup MAE Ttot Tseq Speedup
8/Circle Island

Avg 0.24 110.78 499,44 4.62 0.69 91.07 459,67 5.08 6.22 67.41 344.48 5.09

SD 0.24 27.55 99.24 0.79 0.60 16.26 85.13 0.71 3.79 16.90 96.94 0.60
Best Pareto 0.02 127 547.00 4.31 1.36 103.00 452.00 4.39 9.40 41 238.00 5.80
16/Circle Island

Avg 0.24 72,30 485.63 6.85 1.24 58.63 454.93 7.78 5.79 46.10 360.23 7.86

SD 0.18 15.73 92.49 1.14 1.84 12.20 103.07 1.11 2.75 10.82 93.71 1.08
Best Pareto 0.40 56.00 528.00 9.43 0.70 61.00 498.00 8.16 5.98 53.00 448.00 8.45
32/Circle Island

Avg 0.41 63.37 522.10 8.59 1.71 49.66 485.07 9.74 5.33 39.10 392.80 10.07

SD 0.34 16.82 85.98 1.93 1.98 7.12 110.03 1,63 3.14 12.12 143.11 1.92
Best Pareto 0.40 61.00 561.00 9.20 1.00 51.00 529.00 10.37 3.94 51.00 554.00 10.86
8/Square Island

Avg 7.36 121.33 528.87 4.49 7.74 96.37 482.73 5.03 9.37 89.00 468.07 5.35

SD 10.37 29.32 91.13 0.83 9.58 16.00 84.70 0.51 7.20 17.72 66.71 0.70
Best Pareto 0.02 101.00 408.00 4.04 0.09 72.00 370.00 5.14 1.51 65.00 425.00 6.54
16/Square Island

Avg 7.33 91.57 559.03 6.39 7.62 64.90 505.07 7.89 9.92 58.90 467.00 7.96

SD 10.39 22.55 64.98 1.41 9.85 9.34 56.82 1.12 7.40 8.43 83.40 1.13
Best Pareto 0.03 101.00 567.00 5.61 1.87 61.00 495.00 8.11 6.89 61.00 545.00 8.93
32/Square Island

Avg 7.33 68.87 543.90 8.18 7.85 52.77 511.57 9.69 8.84 48.43 480.60 9.81

SD 10.37 15.51 64.29 1.65 10.17 2.73 102.06 1.87 6.53 7.91 121.45 1.50
Best Pareto 0.27 52.00 519.00 9.98 0.57 51.00 551.00 10.80 5.49 52.00 595.00 11.44
8/Track

Avg 4.31 80.85 387.54 4.85 5.72 75.23 393.38 5.21 8.62 65.46 314.62 4.88

SD 4.53 17.14 91.88 0.83 4.92 15.78 97.97 0.60 11.37 21.21 91.50 0.65
Best Pareto 0,08 57.00 307,00 5.39 0,45 63.00 293,00 4.65 1,29 47.00 253,00 5.38
16/Track

Avg 2.91 67.47 412.63 6.27 2.93 56.20 378.80 6.83 4.87 46.50 337.63 7.30

SD 3.94 67.47 112.58 1,20 3.18 18.45 117.77 1.06 7.99 15.98 126.66 1.27
Best Pareto 0.08 55.00 316.00 5.75 0.86 51.00 292.00 5.73 1.29 37.00 266.00 7.19
32/Track

Avg 2.68 58.36 441.64 8.00 2.75 47.07 397.54 8.72 3.56 42.75 411.29 9.76

SD 3.72 19.67 100.31 1.84 3.16 13.42 102.97 1.73 3.60 11.12 116.23 1.91
Best Pareto 0.45 27.00 338.00 12.52 0.48 27.00 307.00 11.37 2.12 27.00 424.00 15.70

able solution. Of course, the designer would be able to
pick any of the Pareto points in the graph depending on
requirements and not be limited to the three that were
arbitrarily selected for Table 4.

For this article, in order to carry out a more thor-
ough evaluation of the performance of the approach,
three individuals (best QoF, best QoM, and an inter-
mediate result) from each image pair (for a total of 270
chromosomes) were selected for testing.

Each filter was applied to three different test image
pairs of 248x183, 344x216, and 356x211 pixels, re-
spectively, cut out at random positions in Fig. 5, for a
total of 810 tests.

Table 5 shows an example of the results obtained for
the set of best QoF individuals. For each combination

of processors and patterns, the first two lines of the
table refer to the MAE of all filters on each test image.

The third and fourth lines represent an individual se-
lected from all the tested candidates as providing the
best visual results. As other works in the literature have
highlighted [30, 48], considering only the MAE in an
image processing context is not the best option. The
choice thus corresponds to solutions with the smallest
SD, a more useful metric for visual quality.

The results were additionally verified through visual
inspection (see examples in Figs. 7, 8 and 9). In ev-
ery case, two individuals were selected for the tests:
the first with low standard deviation (lower MAE) and
the second with better speedup (lower Ttot and bet-
ter load balancing (LB)). For example, in Fig. 9 (track
detection), the tracks found by the second filter are

12 E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures

marginally thicker than the first (higher MAE) but the
mapping displays significantly better Ttot and load bal-
ancing (LB - visualised in the histograms).

5. Conclusions

Many-core architectures, while still at an embryonic
stage of development, seem to represent ideal plat-
forms for the implementation of mathematical mor-
phology applications: as systolic, distributed-memory
arrays of processing cores, they are well suited to
handle the high computational demands of MM, par-
ticularly when the latter is decomposed into simpler
operations, allowing the system to exploit instruction
streaming.

In this paper, a typical MM application (a filter for
pattern detection) was used to explore the use of multi-
objective optimisation of many-core implementations.
The MO algorithm is able to find a range of different
non-dominated mappings that represent optimal trade-
offs between the visual quality of the filter and com-
putational performance on a many-core system. In this
work, the assumptions made with respect to the many-
core architecture are kept to a minimum to preserve the
generality of the solutions. Within this scenario, the al-
gorithm attempts to model realistic constraints by tak-
ing into account not only computation time, but also
the time required for data transfers and the efficient use
of resources by balancing the load across processors.

The approach was evaluated using a pattern recog-
nition filter applied to a high-quality (3277 x 2048 pix-
els) PCB image. The tools proved capable of provid-
ing a set of solutions for 8, 16, and 32 core systems,
taking into account both computation and communica-
tion time in the array, where each solution represents a
mapping of MM instructions to cores. Rather than ar-
bitrarily selecting a quality/performance trade-off, the
approach presented in this paper outputs a Pareto curve
of solutions representing a range of trade-off points.
Aimed to a design tool for MM applications, it leaves
the choice of the most appropriate compromise to the
designer: by a simple selection of the desired perfor-
mance and/or quality targets, the designer is able to
select a mapping that meets specifications and can be
implemented in the target many-core system.

Acknowledgements

The first author is grateful to FAPESP (Grant
2017/26421-3) and CAPES. This work was partially

supported through the EPSRC Graceful project (Grant
EP/L000563/1).

References

[1] Adeli, H. (1992). Parallel Processing in Computational Me-

chanics. Marcel Dekker., New York, NY, USA.
[2] Adeli, H. and Hung, S.-L. (1993). A concurrent adaptive conju-

gate gradient learning algorithm on MIMD shared-memory ma-
chines. The International Journal of Supercomputing Applica-

tions, 7(2):155–166.
[3] Adeli, H. and Kumar, S. (1995). Concurrent structural optimiza-

tion on massively parallel supercomputer. Journal of Structural

Engineering, 121(11):1588–1597.
[4] Angulo, J. and Serra, J. (2003). Morphological coding of color

images by vector connected filters. In Proc. 7th Int. Symp. on

Signal Processing and its Applications, volume 1, pages 69–72.
IEEE.

[5] Bartovsky, J., Dokladalova, E., Dokládal, P., and Georgiev, V.
(2010). Pipeline architecture for compound morphological oper-
ators. In 2010 IEEE International Conference on Image Process-

ing, pages 3765–3768. IEEE.
[6] Chien, S.-Y., Ma, S.-Y., and Chen, L.-G. (2005). Partial-result-

reuse architecture and its design technique for morphological op-
erations with flat structuring elements. IEEE Transactions on Cir-

cuits and Systems for Video Technology, 15(9):1156–1169.
[7] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T. (2000).

A fast elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II. In International conference on

parallel problem solving from nature, pages 849–858. Springer.
[8] Deb, K. and Jain, H. (2013). An evolutionary many-objective

optimization algorithm using reference-point-based nondomi-
nated sorting approach, part i: solving problems with box
constraints. IEEE transactions on evolutionary computation,
18(4):577–601.

[9] Dougherty, E. R. and Astola, J. (1994). An introduction to non-

linear image processing, volume 16. SPIE press.
[10] Dougherty, E. R. and Lotufo, R. A. (2003). Hands-on morpho-

logical image processing, volume 59. SPIE press.
[11] Elloumi, H., Krid, M., and Sellami, D. (2018). 2d paral-

lel architecture for morphological operators supporting multi-
ple shaped structuring elements. Procedia Computer Science,
126:695–702.

[12] Gibson, R. M., Ahmadinia, A., McMeekin, S. G., Strang, N. C.,
and Morison, G. (2013). A reconfigurable real-time morphologi-
cal system for augmented vision. EURASIP Journal on Advances

in Signal Processing, 2013(1):134.
[13] Gonzalez, R. C. and Wintz, P. (1977). Digital image process-

ing. Addison-Wesley Publishing Co. (Applied Mathematics and
Computation).

[14] Gordon, M. I., Thies, W., and Amarasinghe, S. (2006). Exploit-
ing coarse-grained task, data, and pipeline parallelism in stream
programs. SIGPLAN Not., 41(11):151–162.

[15] Gutierrez Soto, M. and Adeli, H. (2017). Many-objective con-
trol optimization of high-rise building structures using replicator
dynamics and neural dynamics model. Structural and Multidisci-

plinary Optimization, 56(6):1521–1537.

E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures 13

Table 5

Mean, standard deviations and selected individual (Bold) obtained from the testing process for the Best QoF filters.

Processors/Pattern Test_Image_1 (MAE) Test_Image_2 (MAE) Test_Image_2 (MAE)
8/Circle Island Avg 2.96 5.15 3.20

SD 1.23 2.51 1.26
Best MAE 0.12 0.15 0.68
Best MAE SD 0.04 0.06 0.25

16/Circle Island Avg 3.91 4.93 6.33
SD 1.61 1.48 2.00
Best MAE 0.08 0.37 0.94
Best MAE SD 0.02 0.12 0.32

32/Circle Island Avg 4.28 5.32 5.02
SD 1.76 2.00 1.57
Best MAE 0.07 10.46 2.72
Best MAE SD 0.02 3.03 0.96

8/Square Island Avg 0.59 0.93 3.42
SD 0.87 0.76 1.31
Best MAE 0.02 0.06 0.96
Best MAE SD 0.01 0.02 0.29

16/Square Island Avg 2.97 1.68 4.38
SD 2.58 1.00 1.97
Best MAE 0.02 0.06 1.24
Best MAE SD 0.01 0.02 0.86

32/Square Island Avg 3.06 1.69 4.35
SD 2.19 0.77 2.03
Best MAE 0.06 0.40 1.39
Best MAE SD 0.02 0.16 0.60

8/Track Avg 5.64 5.58 9.03
SD 2.95 2.63 3.69
Best MAE 4.70 0.51 1.43
Best MAE SD 1.81 0.16 0.16

16/Track Avg 6.31 6.76 10.81
SD 3.90 3.05 4.79
Best MAE 0.63 0.24 5.43
Best MAE SD 0.54 0.20 1.58

32/Track Avg 7.37 5.44 7.13
SD 3.87 2.37 2.86
Best MAE 0.49 5.61 11.27
Best MAE SD 0.38 1.43 4.82

Fig. 7. Visual results obtained for the Circle Island Testing Process for 8 processors and 2 different points of the Pareto curve

14 E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures

Fig. 8. Visual results obtained for the Square Island Testing Process for 8 processors and 2 different points of the Pareto curve

Fig. 9. Visual results obtained for the Track Testing Process for 8 processors and 2 different points of the Pareto curve

[16] Haralick, R. M., Sternberg, S. R., and Zhuang, X. (1987). Im-
age analysis using mathematical morphology. IEEE Transactions

on Pattern Analysis and Machine Intelligence, PAMI-9(4):532–
550.

[17] Hedberg, H., Kristensen, F., and Owall, V. (2008). Low-
complexity binary morphology architectures with flat rectangular
structuring elements. IEEE Transactions on Circuits and Systems

I: Regular Papers, 55(8):2216–2225.
[18] Holzenspies, P. K. F., Hurink, J. L., Kuper, J., and Smit, G.

J. M. (2008). Run-time spatial mapping of streaming applications
to a heterogeneous multi-processor system-on-chip (MPSOC). In
2008 Design, Automation and Test in Europe, pages 212–217.

[19] Holzer, M., Schumacher, F., Greiner, T., and Rosenstiel, W.
(2012). Optimized hardware architecture of a smart camera
with novel cyclic image line storage structures for morphological
raster scan image processing. In 2012 IEEE International Confer-

ence on Emerging Signal Processing Applications, pages 83–86.
IEEE.

[20] Hung, S.-L. and Adeli, H. (1993). Parallel backpropagation
learning algorithms on Cray Y-MP8/864 supercomputer. Neuro-

computing, 5(6):287–302.
[21] Karas, P., Morard, V., Bartovsky, J., Grandpierre, T., Dok-

ladalova, E., Matula, P., and Dokladal, P. (2012). GPU imple-
mentation of linear morphological openings with arbitrary angle.
Journal of Real-Time Image Processing, 10.

[22] Koza, J. R. (1992). Genetic Programming: On the Program-

ming of Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA.

[23] Maragos, P. (2005). Lattice image processing: a unification of
morphological and fuzzy algebraic systems. Journal of Mathe-

matical Imaging and Vision, 22(2-3):333–353.
[24] Miller, J. F., Thomson, P., and Fogarty, T. (1997). Designing

electronic circuits using evolutionary algorithms. arithmetic cir-
cuits: A case study.

[25] Mukherjee, D., Mukhopadhyay, S., and Biswas, G. (2016).
Fpga based parallel implementation of morphological filters. In

E.C. Pedrino et al. / A Multiobjective Metaheuristic Approach for Morphological Filters on Many-Core Architectures 15

2016 International Conference on Microelectronics, Computing

and Communications (MicroCom), pages 1–6. IEEE.
[26] Ortiz, F., Torres, F., De Juan, E., and Cuenca, N. (2002). Colour

mathematical morphology for neural image analysis. Real-Time

Imaging, 8(6):455–465.
[27] Pedrino, E. C. and Roda, V. O. (2007). Real-time morphologi-

cal pipeline architecture using high-capacity programmable logi-
cal devices. Journal of Electronic Imaging, 16(2):023002.

[28] Pedrino, E. C., Roda, V. O., Kato, E. R. R., Saito, J. H., Tronco,
M. L., Tsunaki, R. H., Morandin Jr, O., and Nicoletti, M. C.
(2013). A genetic programming based system for the automatic
construction of image filters. Integrated Computer-Aided Engi-

neering, 20(3):275–287.
[29] Pedrino, E. C., Saito, J. H., and Roda, V. O. (2011). A ge-

netic programming approach to reconfigure a morphological im-
age processing architecture. International Journal of Reconfig-

urable Computing, 2011:5.
[30] Quintana, M. I., Poli, R., and Claridge, E. (2006). Morpholog-

ical algorithm design for binary images using genetic program-
ming. Genetic Programming and Evolvable Machines, 7(1):81–
102.

[31] Radu, C., Mahbub, M. S., and VinÅčan, L. (2013). Develop-
ing domain-knowledge evolutionary algorithms for network-on-
chip application mapping. Microprocessors and Microsystems,
37(1):65 – 78.

[32] Rostami, S. and Neri, F. (2016). Covariance matrix adapta-
tion pareto archived evolution strategy with hypervolume-sorted
adaptive grid algorithm. Integrated Computer-Aided Engineer-

ing, 23(4):313–329.
[33] Rostami, S., Neri, F., and Epitropakis, M. (2017). Progressive

preference articulation for decision making in multi-objective op-
timisation problems. Integrated Computer-Aided Engineering,
24(4):315–335.

[34] Sahu, P. K. and Chattopadhyay, S. (2013). A survey on appli-
cation mapping strategies for network-on-chip design. Journal of

Systems Architecture, 59(1):60 – 76.
[35] Serra, J. (1983). Image analysis and mathematical morphol-

ogy. Academic Press, Inc.
[36] Singh, A. K., Shafique, M., Kumar, A., and Henkel, J. (2013).

Mapping on multi/many-core systems: Survey of current and
emerging trends. In 2013 50th ACM/EDAC/IEEE Design Au-

tomation Conference (DAC), pages 1–10.
[37] Soille, P. (2013). Morphological image analysis: principles

and applications. Springer Science & Business Media.
[38] Sonka, M., Hlavac, V., and Boyle, R. (2014). Image processing,

analysis, and machine vision. Cengage Learning.
[39] Su, Y., Wu, Y., Ji, W., and Shen, S. (2018). Shape generation

of grid structures by inverse hanging method coupled with multi-
objective optimization. Computer-Aided Civil and Infrastructure

Engineering, 33(6):498–509.

[40] Taillandier, F., Fernandez, C., and Ndiaye, A. (2017). Real
estate property maintenance optimization based on multiobjective
multidimensional knapsack problem. Computer-Aided Civil and

Infrastructure Engineering, 32(3):227–251.
[41] Thurley, M. J. and Danell, V. (2012). Fast morphological im-

age processing open-source extensions for GPU processing with
CUDA. IEEE Journal of Selected Topics in Signal Processing,
6(7):849–855.

[42] Tian, Y., Cheng, R., Zhang, X., and Jin, Y. (2017). PlatEMO:
A MATLAB platform for evolutionary multi-objective optimiza-
tion. IEEE Computational Intelligence Magazine, 12(4):73–87.

[43] Vajda, A. (2011). Programming Many-Core Chips. Springer
Verlag.

[44] Valencia, D. and Plaza, A. (2009). Efficient implementation of
morphological opening and closing by reconstruction on multi-
core parallel systems. In 2009 First Workshop on Hyperspec-

tral Image and Signal Processing: Evolution in Remote Sensing,
pages 1–4. IEEE.

[45] Valenzuela, O., Jiang, X., Carrillo, A., and Rojas, I. (2018).
Multi-objective genetic algorithms to find most relevant vol-
umes of the brain related to alzheimer’s disease and mild cog-
nitive impairment. International journal of neural systems,
28(09):1850022.

[46] Wang, Y. and Szeto, W. Y. (2017). Multiobjective environ-
mentally sustainable road network design using pareto optimiza-
tion. Computer-Aided Civil and Infrastructure Engineering,
32(11):964–987.

[47] Wang, Z., Wang, Q., Zukerman, M., Guo, J., Wang, Y., Wang,
G., Yang, J., and Moran, B. (2017). Multiobjective path optimiza-
tion for critical infrastructure links with consideration to seismic
resilience. Computer-Aided Civil and Infrastructure Engineering,
32(10):836–855.

[48] Yoda, I., Yamamoto, K., and Yamada, H. (1999). Automatic
acquisition of hierarchical mathematical morphology procedures
by genetic algorithms. Image and Vision Computing, 17(10):749–
760.

[49] Youkana, I., Cousty, J., Saouli, R., and Akil, M. (2017). Par-
allelization strategy for elementary morphological operators on
graphs: distance-based algorithms and implementation on multi-
core shared-memory architecture. Journal of Mathematical Imag-

ing and Vision, 59(1):136–160.
[50] Zhang, Q. and Li, H. (2007). Moea/d: A multiobjective evo-

lutionary algorithm based on decomposition. IEEE Transactions

on evolutionary computation, 11(6):712–731.
[51] Zhao, W., Guo, S., Zhou, Y., and Zhang, J. (2018). A quantum-

inspired genetic algorithm-based optimization method for mobile
impact test data integration. Computer-Aided Civil and Infras-

tructure Engineering, 33(5):411–422.
[52] Zitzler, E., Laumanns, M., and Thiele, L. (2001). Spea2: Im-

proving the strength pareto evolutionary algorithm. TIK-report,
103.

	Introduction
	Fundamentals
	Mathematical Morphology
	Many-core architectures
	Multi-Objective optimisation

	Mapping of morphological filters on many-core architectures (iMMf-Ma)
	Training Module
	The Evolutionary Cycle
	Metrics

	Testing Module
	Mapping Module

	Experimental results
	Experiments

	Conclusions
	Acknowledgements
	References

