UNIVERSITYW

This is a repository copy of Hybrid Relations in Isabelle/UTP.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/148557/

Version: Accepted Version

Book Section:

Foster, Simon David orcid.org/0000-0002-9889-9514 (2019) Hybrid Relations in
Isabelle/UTP. In: 7th International Symposium on Unifying Theories of Programming
(UTP). Lecture Notes in Computer Science . Springer , pp. 130-153.

https://doi.org/10.1007/978-3-030-31038-7_7

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose -
university consortium eprinis@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

Hybrid Relations in Isabelle/UTP

Simon Foster®R¢iP
University of York
simon.foster@york.ac.uk

Abstract. We describe our UTP theory of hybrid relations, which ex-
tends the relational calculus with continuous variables and differential
equations. This enables the use of UTP in modelling and verification of
hybrid systems, supported by our mechanisation in Isabelle/UTP. The
hybrid relational calculus is built upon the same foundation as the UTP’s
theory of reactive processes, which is accomplished through a generalised
trace algebra and a model of piecewise-continuous functions. From this
foundation, we give semantics to hybrid programs, including ordinary
differential equations and preemption, and show how the theory can be
used to reason about sequential hybrid systems.

1 Introduction

Cyber-Physical Systems (CPSs) use computation to monitor and control real-
world phenomena, employing sensors and actuators. Autonomous mobile robots,
for example, implement their goals by sensing the environment, updating an
internal model of the real-world, using the model to plan and make decisions,
and finally actuating. A common way of modelling, simulating, and verifying
CPSs is with the use of a hybrid dynamical systems modelling language, such
as Simulink', Modelica?, hybrid programs® [1], and Hybrid CSP [2,3] (HCSP).
Here, a system model is decomposed into two parts: (1) a digital controller, which
is described used traditional programming constructs; and (2) a continuously
evolving environment, which is described using differential equations.
Languages like Simulink and Modelica are used commercially for developing
CPSs, since they are largely diagrammatic in nature and can be used to pro-
duce executable code. Typically, however, such tools support only simulation
and testing, which limit their effectiveness for verification. On the other hand,
tools like KeYmaera X [4] and HHL Prover [5] support rigorous formal verifi-
cation, for differential dynamic logic [1] (d£) and HCSP [2,3], respectively, that
can prove properties of the entire state space symbolically. However, the latter
tools are hard to apply for non-academics, and there is need for greater inte-
gration with the commercial tools [6]. A precondition of this is that there are

! Simulink: https://uk.mathworks.com/products/simulink.html
2 Modelica Language: https://www.modelica.org/modelicalanguage
3 The modelling notation of differential dynamic logic (d£).

2 Simon Foster

unified semantic foundations for hybrid systems that acknowledge both similari-
ties and differences between the languages, and integrated mechanised reasoning
to support comprehensive automated formal verification.

The goal of this paper is to make first steps towards this foundation with a
mechanised UTP theory for hybrid systems. UTP [7] is concerned with estab-
lishing formal links between languages based on heterogeneous computational
paradigms, and therefore it is wholly appropriate to apply it to study of hybrid
computational models. Our contributions are: (1) a UTP theory that incorpo-
rates a piecewise continuous timed trace model, building on our previous theory
of generalised reactive relations [8]; (2) denotational semantics for a simple im-
perative language for hybrid programs, inspired by d£ and HCSP; and (3) mech-
anised reasoning support in our UTP theorem prover, Isabelle/UTP [9,10,11,12].
Our hybrid theory represents a substantial overhaul of our previous results [13,14]
by unifying it with our generalised UTP theory of reactive processes [8].

Most theorems and definitions in the paper are accompanied by a small
Isabelle icon (#). In the electronic version, each icon is hyperlinked to the cor-
responding mechanised artefact in our Isabelle/UTP GitHub repository?. This,
we hope, will convince the reader of the level of rigour employed in this work.

Our paper is structured as follows. §2 gives an overview of our hybrid pro-
gram notation. §3 gives an overview of Isabelle/UTP, and how it is used to model
programs. §4 presents our foundational UTP theory of generalised reactive pro-
cesses. §5 describes a model for piecewise continuous timed traces, which is the
basis for modelling continuous state spaces and variables. §6 gives a compre-
hensive exposition of the UTP theory of hybrid relations. §7 illustrates a small
verification example in Isabelle/UTP. §8 concludes and discusses our results.

2 Hybrid Systems and Programs

In this section, we briefly introduce the key concepts of hybrid systems and
programs, to the set the technical work that follows in context.

Hybrid systems exhibit both continuous flows and discrete jumps in the val-
ues of their variables [3,15]. Typically, a hybrid system evolves according to
a differential equation, until some condition is satisfied, at which point a dis-
crete jump occurs. For example, in the classic bouncing ball example, the ball is
dropped and falls until it impacts the floor. During flight, the height above the
ground, h, and velocity, v, change continuously. However, once the ball impacts
the floor, the velocity is instantaneously inverted and it begins to travel upwards.

In this paper, we model such systems with a form of hybrid program:

Definition 2.1 (Hybrid Programs).
Hu=720]z:=v| (&(t) e f(t,z)) | H;H|HOH|H | HA (blc)|---
where x is a name, ¢ is a time variable, b and ¢ are predicates, v is an expression.

4 Tsabelle/UTP repository: https://github.com/isabelle-utp/utp-main

Hybrid Relations in Isabelle/UTP 3

As is common in UTP, the syntax can be further extended, which is the reason
for the ellipsis. The simple language contains a mixture of constructs adapted
from d£ hybrid programs and HCSP. As usual, programs can be composed se-
quentially (P ;) and nondeterministically (P Q). As in d£, we can also define
tests, 7b, which execute when assumption b is satisfied, and assignment z := v.
Hybrid programs can be iterative, which is expressed by the Kleene star P

We characterise ordinary differential equations (ODEs), (&(t) e f(t,z)), which
express that the derivative of the variable vector z is given by f. Its behaviour is
to evolve the variables, without terminating, according to a solution z(t), such
that #(t) = f(¢,z(t)). For example, we can model a real-time clock by creating
a distinguished continuous variable called time, such that time(t) = 1.

Finally, P A (b] ¢) allows preemption of a continuous evolution. Evolution
of P may continue whilst b, a condition on the continuous variables, is invariant,
and can terminate once ¢ becomes true. The reason for having both b and ¢ is to
allow nondeterminism around when an evolution is preempted. Such nondeter-
minism exists in languages like Modelica, where discrete jumps are implemented
using “zero-crossing detection”, such that a function goes from positive to neg-
ative or vice-versa. This is subject to numerical imprecision, and thus the point
at which the event occurs is effectively nondeterministic.

To illustrate hybrid programs, we formalise the bouncing ball example below:

Ezample 2.2 (Bouncing Ball as a Hybrid Program).
BBall £ h:=20;v:=0;

(((t), 5(1)) » (v, -9.81))
A{h>0lv<0ARh<e);
v:=—-0.8 v

Initially, the height of the ball is 2 meters, and the velocity is 0. Then, the main
body of the system begins, by first evolving h and v according to a system of
ODEs. The ODEs state that the derivative of h is v, and the derivative of v is
—9.81, the standard gravity constant. Evolution continues whilst A > 0: the ball
is above the ground, which gives a bound on the evolution. Once h falls below
a constant € > 0, a small number which characterises numerical imprecision,
and assuming v < 0 (flight is downwards), then the evolution can terminate. At
this point, v is discontinuously inverted and a damping factor of .8 is applied.
Through the Kleene star, the system is permitted to iterate zero or more times.

In the remainder of this paper, we show how such hybrid programs can be
mechanically supported with our UTP theory of hybrid relations.

3 Isabelle/UTP

Isabelle/UTP [10,11] is a mechanisation of UTP in Isabelle/HOL, along with the
main results from the UTP book [7] and related publications [16,17]. It provides
an implementation of the alphabetised relational calculus, a model of imper-
ative programs, a large library of algebraic laws, and several automated proof

4 Simon Foster

tactics. It mechanically supports the following activities: (1) development of UTP
theories for languages of various computational paradigms; (2) construction of
denotational semantics for said languages; and (3) creation of proof strategies to
support automated verification tools using UTP theories. Aside from UTP, our
mechanisation also draws heavily on the work of Back and von Wright [18].
For the imperative program model, Isabelle/UTP supports several calculi,
including Hoare logic, weakest (liberal) precondition, and structural operational
semantics. These axiomatic semantics are defined denotationally, and the associ-
ated laws proved as theorems. Linking theorems can also show correspondences
between different semantic presentations. For example, it is well known that
{o}P{c}=(b= Pwipc) &
is a theorem of Hoare calculus and weakest liberal preconditions [7,19]. Such a
result can be harnessed to recast a verification theorem into a different form,
which is potentially easier to prove. For each verification calculus, Isabelle/UTP
also provides proof tactics, including deductive reasoning for Hoare logic, and
equational reduction for wip. The output of these tactics is a set of verification
conditions (VCs), to which Isabelle’s automated proof strategies can be applied.
A main objective in implementing Isabelle/UTP has been to harness the
power of Isabelle’s automated reasoning. Consequently, Isabelle/UTP follows
in the tradition of shallow embeddings [20,21,22] in reusing as much as possi-
ble of the Isabelle technical infrastructure, such as its type system, parser, term
language, and meta-logic, in defining the relational calculus. However, this objec-
tive must be reconciled with the need to provide a sufficiently expressive relation
model to allow expression of UTP theories and the associated laws. The crucial
artifact to get right here is the mechanisation of UTP variables and alphabets.
In Isabelle/UTP, state spaces are modelled as Isabelle types, and programs
are parametric in their state space. Assuming a suitable state space X, a rela-
tional program is effectively modelled as a subset of P(X' x X'), and an expression
of type 7 can be modelled as functions X' — 7. This is consistent with most
other works on verification using Isabelle/HOL [20,23], and allows us to obtain
the UTP relational operators easily, such as disjunction (P V @), relational com-
position (P ; @), tests (?b), and refinement (P C Q). However, this does not in
itself provide us with a variable model. Rather than modelling these syntactically
using names, we treat them as algebraic objects called lenses [24,18,11]:

Definition 3.1. A lens is a quadruple (V|S|get:S — V|put:S -V — S),
where YV and S are non-empty sets called the view and source, respectively, and
get and put are total functions, such that the following equations hold:

get(putsv) = v put (putsv') v = putswv puts(gets) =s

We write V = S to denote the type of lenses with source type S and view type
V, and subscript get and put with the name of a particular lens.

Each variable z : 7 in UTP is modelled using a lens 7 = X, for some suitable
state space type, and each get,/put, pair is used to query and update its value.

Hybrid Relations in Isabelle/UTP 5

The main advantage of this algebraic encoding is that we obtain an abstract rep-
resentation that unifies several state space representations. We also note that a
very similar concept to lenses exists in Back’s refinement calculus [18, Chapter 5],
which substantially predates the work on lenses [24].

With lenses, expressions can modelled as functions on the X; for example:

[z > (y+2)/2] = (As: X e get, s > (get, s+ get, 5)/2)

In this way, each operator at the expression level corresponds to a point-wise
lifting of the corresponding operator through the state s at the function level.
With lenses, we can also generically characterise several variable properties:

1. independence, z X1 y — = and y refer to disjoint views of X,
2. inclusion partial order, z < y — the view of y contains the view of z;
3. equivalence, z ~ y — the lenses z and y refer to identical views.

All of these properties reduce to properties of the corresponding get and put
functions; for example independence is essentially commutativity of put, and
put,. They allow us to effectively characterise meta-logic properties of variables,
which are normally characteristic of a deep embedding.

Variable updates are described using substitutions ¢ : X' — X which are
total functions on the state space, and allow us to describe assignments, variables
contexts, and substitutions. The most basic substitution is the identity function,
id, which effectively maps every variable to its present value. A substitution can
be updated using the operator o(z — e), which associates z with an expression
e over X. Then, we use the notation [z; — e, -, z, — e,] as a shorthand for
id(z; — e+ -z, — e,), which is a simultaneous substitution for n variables.
Substitution update obeys several algebraic laws:

Theorem 3.2. If x and y are lenses, then the following identities hold:

olz—z)=0 (3.2.1)
olz—ey—f)=oa(ly— f,z—e) ifz>ay (3.2.2)
ocle—=ey—=fl=ocly—f) ifz=y (3.2.3)

(3.2.1) shows that a trivial update is ineffectual. (3.2.2) shows that two maplets
may be commuted if the lenses are independent. (3.2.3) shows that a maplet for
x is overridden by one assigning y when x < y, and thus also when z = y.

Substitutions can be applied to expressions using ¢ T e, which replaces all the
variables in e with those assigned in ¢. This is similar to syntactic substitution,
with e[v/z] = [z — 0] T e, and obeys similar laws, but it is a semantic operator
that composes o with e (both are functions).

We also use substitutions to construct assignments, using Back’s generalised
operator [18]: (o). This operator recasts the function o as a relation. A singleton
assignment, = := v, can be denoted using (z — v), and a simultaneous assign-
ment by (21 — vy, 2 — v, - -). We can prove several familiar assignment laws:

6 Simon Foster

Theorem 3.3 (Assignment Laws).

()5 () = (poo) (3:3.1)
z:=1z = (id) (3.3.2)
z:=e;y:=f =y:=f;x:=c¢ zxy,xhf,yte (3.3.3)
zi=e;x:=f = z:= fle/] (3.34)

The first law is a homomorphism law for assignments. The other laws are corol-
laries of it and the laws of Theorem 3.2. The third law, showing that assignments
commute, requires an extra side condition that f does not mention z, and e does
not mention y. These are both formulated using a semantic operator called un-
restriction, z § f, which means that f does not depend on the state space region
characterised by z for its valuation, and is denoted using the lens operators [10].

Thus we have demonstrated the ubiquity of lenses in capturing the UTP re-
lational calculus. In the next section we describe of theory of generalised reactive
processes that is the foundation of the hybrid relational calculus. Later, we show
how lenses are used to characterise continuous variables.

4 Trace Algebra and Generalised Reactive Relations

In this section, we describe our theory of generalised reactive relations. This
UTP theory provides the foundation for our theory of hybrid relations using
an abstract trace model. This, in particular, can be instantiated with piecewise
continuous functions, which are often used to semantically capture the behaviour
of hybrid systems [3,15].

The UTP theory of reactive processes [7,16] provides a generic foundation for
trace-based reactive languages. Originally the trace model was fixed to discrete
sequences, to support the semantic models of CSP and ACP [7]. In previous
work [8], we generalised this theory to characterise traces abstractly with a trace
algebra. We characterise traces with a set 7 and two operators: concatenation
T :T = T — T, and the empty trace € : T, which obey the following axioms [8].

Definition 4.1. A trace algebra (T, ,€) satisfies the following axioms: &

y=z2"2 = y==z (TA3)
2=y z = =y (TA4)
T y=¢e => x=¢ (TA5)

TA5 ensures that every trace is positive (z > 0); its lefthand dual is a theorem
of these axioms. An example model is formed by finite sequences, (a, b, - -, z),
that is (seq A, ™, ()) forms a trace algebra, where ™ is concatenation. Using the
trace algebra operators, we can define trace prefix (z < y), which partially orders
traces, and trace difference (z — y), which removes a prefix y from z [8].

From these algebraic foundations, we reconstruct the complete UTP theory of
reactive processes [7,16], including its healthiness conditions and associated laws,

Hybrid Relations in Isabelle/UTP 7

in particular those for sequential and parallel composition [8]. For our version of
the theory, the alphabet includes the following observational variables:

ok, ok’ : B — to indicate whether there is divergence;

wait, wait’ : B — to indicate whether a process is intermediate;

tr,tr' . T — to represent the trace, using a suitable trace algebra;
st,st’ : X — to represent the state, for some non-empty state space X.

= N =

We then define the following reactive healthiness conditions [7,16]:

Definition 4.2 (Reactive Relations Healthiness Conditions).

The main healthiness conditions are RR, which describes reactive relations, and
RC, which describes a subset of RR called reactive conditions. For our purposes,
a reactive relation is, intuitively, a relation that refers to the initial and final
values of state variables (z and z’, where z < st), and a special variable tt, that
denotes a trace contribution. Technically, tt is an expression that denotes the
difference tr’ — ¢r, whose well-formedness is ensured by the commuting reactive
healthiness conditions R1 and R2. This is reflected by the following theorem:

Theorem 4.3. If P is RR healthy then P = (3t e Ple, t/tr tr'| A tr' = tr ™ t)

Any observation of a reactive relation P characterises a trace extension ¢ which
can be observed using tt. Reactive relations are closed under most relational
operators; the exceptions are the universal relation (true), complement (—), and
implication (=). These all require imposition of RI, and so we recast them
as truer, -y, and =y, respectively. Reactive relations form several algebras,
including (1) a Boolean algebra [25], (2) a complete lattice [25], and (3) a Kleene
algebra [26], which allows us to reason about iterative reactive programs (P").
The generalised assignment operator, (o), is not in general healthy as it
permits assignment of any variable, including ok, wait, and tr, which can violate
RR. Consequently, we recast the operator (o)r, where o : X' — X operates on
the program state in st only. It obeys analogous laws to those in Theorem 3.3.
The second main healthiness condition in Definition 4.2, RC, characterises
reactive conditions. A reactive condition is a reactive relation which (1) does not
refer the final value of the state variables (st’), and (2) characterises a set of traces
that is prefix closed. Reactive conditions are analogous to relational conditions,
which refer to the initial state only, but can refer to both ¢r and ¢r’, provided that
tt is prefix closed. For example, if we apply RC to the non prefix-closed relation
tr' = tr ™ (a), then we obtain RI1 (¢’ < tr ™ (a)) = R1(tt € {(),(a)}), which is

8 Simon Foster

» <

)

» time

1
1
t

0 1

Fig. 1. Piecewise continuous timed traces

prefix closed. The intuition is that when a reactive condition is satisfied, it should
also be satisfied by any prefix of the trace. Reactive conditions are particularly
useful to characterise assumptions in our theory of reactive contracts [25], which
extends reactive relations with assume/guarantee reasoning (see §6.5).

We have outlined our theory of reactive relations. In the next section we
construct a trace algebra model that allows us to specialise to hybrid relations.

5 Continuous State and Timed Traces

In this section we describe how continuous state is modelled using a timed trace
model, which characterises piecewise continuous trajectories [15]. Our model re-
fines our previous work [8] by requiring that each continuous segment also con-
verges, ensuring that its final value can be obtained. This requirement is always
satisfied by, for example, linear ODEs. The state space (X) of a hybrid sys-
tem consists of discrete variables, which exhibit only jumps at certain instants,
and continuous variables, which change constantly with respect to time. Conse-
quently, we subdivide the state space X' into a discrete state space (X;) and a
continuous state space (X), both of which are non-empty, and then ¥ £ $;x 5.

We require that Y., minimally, forms a topological (Hausdorff) space, so that
we can describe limits of a function over X'.. A special case is when X, = R", for
some n : N, that is a Euclidean state space. We impose no additional constraints
on Y ; which characterises variables that only exhibit discontinuous changes.

We now define our model of timed traces, which refines our previous model [8]
by adding a convergence requirement:

Definition 5.1 (Timed Traces). &
dt¢: RZO L dom(f) = [0, If) N

ran(l) C [0,¢] A
{0,t} Cran(l) A

t>0=31:Resqe| Vne[0,#I —2]
(f cont-on [In,ln+1)>
[]

>

’HTEC f:Rzo—HZC

A f has-limit In+1

Hybrid Relations in Isabelle/UTP 9

where Rosq = {7 :seqR | Vn < #z—1 ez, < Tp11}
fcont-on ALVtcAe h?tlf(m) = f(¥)

f has-limitk = (31:R e ligklf(.r) =1)

A timed trace is a partial function from positive real numbers (R>¢) to the
continuous state space, Y., that satisfies certain constraints. Firstly, we require
that the domain is a right open interval from 0 to some positive real t. Secondly, if
t is non-zero, we require that the function is composed of a sequence of continuous
segments, each of which converges to a limit. The intuition is sketched in Figure 1
for a state space with a single variable z. There are three continuous segments,
with domains [0, #), [to, t1), and [t1, £), where £ is the end of timed trace. At each
segment end point, such as ¢, and t;, the trajectory may make a discontinuous
jump, following the standard piecewise continuous trajectory model [15].

We specify this in Definition 5.1 by requiring that there is a strictly ordered
sequence of real numbers I, that give the start and end point of each segment.
Rosq is the subset of finite real sequences such that for every index n in the
sequence less than its length minus one (#z — 1), 2, < Zp41. I must contain at
least 0 and ¢, such that at least one segment is present, and only values between
these two extremes. The timed trace f is required to be continuous on each
interval [I,,, I,,41), and convergent to a limit at I,,1. The operator f cont-on A
specifies that f is continuous on the range given by A, by requiring that, each
point ¢t € A, the limit of f(z) as z approaches t from above equals f(t). We use the
upper limit as the lower limit may be different, for example at the discontinuous
jumps ty and ¢; in Figure 1. The operator f has-limitk requires that there is a
limit point [such that f converges toward [as it approaches k from below. Due,
to discontinuity, the value at k& may be different.

From this model, we can now introduce the core operators on timed traces,
which we previously defined in [8], inspired by [27]. We reproduce them here for
completeness and because our timed trace model has further constraints.

Definition 5.2 (Timed-trace Operators). &
f>n2Xzef(z—n) e2(
end(f) £ min(Rxo \ dom(f)) [T 9= fU(g> end(f))

Function f >> n shifts the indices of a partial function f : R>9 + A to the right
by n : R>¢. The operator end(f) gives the end time of a trace f : Ty, by taking
the infimum of the real numbers excluding the domain of f. The empty trace
is the empty function. Finally, f ™ ¢ shifts the domain of g to start at the end of
f, and takes the union. From these definitions, we prove the following theorem.

Theorem 5.3. For any X, (TTx,, ", ¢) forms a trace algebra. &

This model is the foundation for hybrid relations, which we now describe.

10 Simon Foster
6 Hybrid Relations

In this section we describe our hybrid relational calculus, which specialises our
theory of reactive relations with our timed trace model. We use this to give a
denotational semantics to the hybrid programming language described in §2, in-
cluding continuous variables, continuous specifications, and systems of ordinary
differential equations (ODEs). A preliminary presentation of the materials in
this section can be found in a previous technical report [28].

6.1 Continuous Variables

A hybrid relation is a specialised reactive relation where the underlying trace
model is (TT's; , ™, &), with tr, tr' : TT's;, and st, st’ : X g x 2. Intuitively, a hybrid
relation describes a set of trajectories that characterise the possible behaviours
of the continuous variables. The trace contribution (tt) refers to a particular
evolution of the continuous state space, X.. We introduce the syntax £ £ end(tt),
which refers to the length of the present evolution in a hybrid relation [29].

As outlined in §4, our theory provides us with the operators of an imperative
programming language. Consequently, we do not redefine them here, but reuse
their existing definitions and laws. This is a key contribution of our approach —
we need now only consider the specialised continuous evolution operators.

The hybrid state in st consists of the discrete and continuous state. We in-
troduce independent lenses d : Xy = Y and ¢ : X, = X for these subregions,
respectively, which are the first and second projections. We introduce the syntax
s:x to project the part of state space s described by lens z, and then refer to
discrete-state variables using d:z and continuous-state variables using c:y.

Continuous variables are modelled as projections from the state space, X,
over time. We likewise use lenses to model these projections, so that each variable
x identifies a region of X', such as z : R = X.. The source type of each lens,
that is the type of data it refers to, is not limited to R but can be any topological
space. A trajectory variable expression, Z(t), can then be defined as follows:

Definition 6.1 (Trajectory Variables). 7(t) 2 tt(t):x &

A trajectory variable, T, is a function that obtains the continuous state space
from the timed trace, recorded in tt, at time ¢ : R>¢, and then projects the cor-
responding region using lens z. Here, ¢ denotes time relative to the start of an
evolution, and not absolute time, a property imposed by healthiness condition
R2. Absolute time should instead be modelled as a distinguished continuous vari-
able (cf. §2). It is also important to distinguish these trajectory variables, which
are functions on the timed trace, from state variables, that is the valuation of
the continuous variables at the start or end of a computation, characterised by
st. These quantities are related, but are not identical. The value of Z(t) is not
a priori the same as the corresponding variable c:z’, for example, because the
former is part of tt, but the the latter is part of st, and st > tt. Later in this
section, we will introduce coupling invariants to link these quantities.

Hybrid Relations in Isabelle/UTP 11

Next, we describe instant relations, which lift relational predicates on the
continuous state to hybrid relations:

Definition 6.2 (Instant Relations). PQt¢ £ [¢/ > tt(t)]t P &

An instant predicate expression, P @ ¢, lifts primed continuous state variables,
referred to in P, to continuous trajectory variables. P is a relation over the
discrete and continuous state variables, that is a subset of P(X x X).

To exemplify, the expression (z' > 7.5) @ ¢ is equivalent to Z(t) > 7.5, that
is, the predicate that asserts that continuous state variable z is greater than
7.5 at time t. Instant relations can also refer to the initial values of continuous
variables: primed variables (z’) are used to denote the valuation of at ¢, whereas
its unprimed variant (z) simply refers to the initial value. Thus, the relation
(x > 2’)Qt is equivalent to Z(t) > = — the value of z in the trajectory at
time t is greater than it was initially. Effectively P is a relation between initial
values of continuous variables, alternatively written as zy, and the valuation of
the variables at t. The definition of P @ ¢ simply substitutes the valuation of the
continuous state variable ¢’ for tt(¢): the trajectory state at t.

We next define an interval operator, inspired by Duration Calculus [30,29]:

Definition 6.3 (Interval). dur[P(t)] £ R1(V7 €[0,() e P(1)@QT) &

An interval specification dur[P(t)] states that such a relation P holds over the
entire evolution of the trajectory. Here, P is also parametrised by the current time
t, which allows continuous variables to also depend on time. Technically, ¢ : R>g
is distinguished variable that is often used in continuous time predicates. We
can obtain a Duration Calculus style specification operator with [p] £ dur[p'],
where p is a predicate on undashed variables only that does not mention ¢. This
simplified operator states that the invariant p holds over the evolution.

The definition of dur[P(t)] states that P holds at every instant 7 between
0 and ¢, and additionally enforces R1 to ensure only healthy timed traces are
permitted. The construction is automatically R2 since it only refers to tt and
not tr or tr' explicitly. Thus, since neither ok nor wait are mentioned, dur[P(7)]
is an RR healthy reactive relation. Moreover, it is also RC healthy, since the set
of timed traces specified is prefix-closed. The derived duration operator has the
following laws, adapted from Duration Calculus, as theorems:

Theorem 6.4 (Interval Laws). &
[p A gl =([p] A Tql)

[pVq] E([p]V[ql)
[p]; [p] = Ip]

6.2 Continuous Function Evolution

[false| = (tr' = tr)
[true] = true,

The operators defined so far only permit specification of trajectory variables. In
order to link these to continuous state variables so that, for instance, we can
assign continuous variables, we define two coupling invariant operators.

12 Simon Foster
Definition 6.5 (Continuous Coupling Invariants). &
Il, & R1(c:z = 7(0)) rl, = R1 (c:x’ = Ig?'f(t)>

The first coupling invariant, I, links together the initial value of continuous
state variable z with the corresponding trajectory variable at time 0. The second,
rl;, links the final value of continuous state variable z (that is, 2) with the limit
of the corresponding trajectory variable as it approaches the duration of the
evolution (¢) from the left. By Definition 5.1, we know that the latter limit must
exist, since our timed traces are piecewise convergent.

The asymmetry of the two invariants is important. Whilst the trajectory ex-
plicitly defines a value at time 0, as invoked by /I, it does not define one at ¢
since the domain is the right-open interval [0,¢). The final value exists, how-
ever, because the timed trace converges to a limit. However, when sequentially
composing hybrid relations, and thus composing the two trajectories, a discrete
jump is permitted so that the value at ¢ and the left limit at ¢ need not be the
same. Both /I, and rl, are healthy reactive relations.

We can now define operators for continuous function evolution:

Definition 6.6 (Function Evolution). &
Z(t) « f(t) £ (dur[z’ = f(t)] A L>0)

#1) & £(0)

[I>

(@(t) < f(H) A< d)
I(t) < f(t) £ (T(t) + f() AL [s,d] Ad =dArly)

where z : R" = X, f : R>o = R", and d : R>y.

Here, v is a special variable that denotes the entirety of the state space. The first
operator, T(t) < f(t), states that the trajectory variable z evolves according to
continuous function f in n variables. We require that such an evolution have
non-zero duration, as otherwise the function’s behaviour cannot be observed.
Lens x can consist of several continuous variables, and thus a function evolution
can be used to encode a system of simultaneous algebraic equations, as present,
for example, in Modelica. It is also worth noting that other continuous variables
not mentioned in such a statement are unconstrained and thus behave nonde-
terministically. This is an important feature of the model as it allows the use of
nondeterminism to model concurrency of parallel hybrid processes.

We exemplify the semantics of function evolution with the calculation below:

Ezample 6.7 (Evolution Calculation).
W(t) < v—9.81-¢
(dur[v =v—9.81-t] AL >0)
= (R1(Vte[0,£) eu(t)=v—9.81-t) AL>0)
(tr <tr' AN(Vte€[0,0)ett(t)v=v—981-t) AlL>0)

Hybrid Relations in Isabelle/UTP 13

The evolution is first mapped to a duration with the equation v/ = v — 9.81 - ¢,
meaning that v is assigned the initial value of v minus 9.81 - ¢, at each instant. In
the second and third steps, the interval operator is expanded to a predicate that
assigns a value to v over the whole duration. Ultimately, this continuous variable
is simply a reference to tt, which shows how the semantics builds on generalised
reactive relations. Function evolution also admits the following valuable theorem:

Theorem 6.8. c:y:=v; z(t) < f(t) = Z(t) + (f(¥))[v/y] &

This law shows the effect of pushing a leading assignment to y into a function
evolution. Any instance of y in the continuous function expression f(t) is replaced
by v. This allows evaluation of any expressions that depend upon the initial state.

The second operator in Definition 6.6, Z(t) <—<q f(1), is the same as the
above, but adds the requirement that the duration be at most d. The third
and final operator, z(t) <[54 f(t), states that the evolution terminates non-
deterministically in the interval s < ¢ < d. This operator explicitly terminates
the function’s evolution and thus additionally states that all discrete variables
should remain the same as they were at the start, and applies coupling invariant
rly to set the final state of all continuous variables. All the function evolution
operators in Definition 6.6 form healthy reactive relations.

6.3 Preemption of Evolution

We next define the preemption operator:
Definition 6.9. P A (b|c) = (PAdur[b) AL>0Ary A Ad =d) &

The preemption operator (P A (b]c)) states that P evolves for some non-zero
duration, while condition b holds. At some undetermined point, ¢ should become
true finally, and at this point the operator can terminate. This yields final values
for all variables, obtained using the right limit, and requires that all discrete
variables remain unchanged over the evolution.

Intuitively, the first condition, b, is similar to the invariants present in hy-
brid automata [31]. Evolution of P can continue while b remains true, which
is ensured by conjunction with the interval specification dur[b]. On the other
hand, evolution of P can terminate whenever the final continuous state satisfies
c¢. Since b and ¢ can overlap there is potential nondeterminism as to when P ter-
minates, which is necessary when handling numerical imprecision. In the special
case that b = (—¢), there is at most one instant at which P terminates, leading
to a precise and purely deterministic preemption. If ¢ never becomes true then
this operator evaluates to false, that is, a non-terminating reactive relation.

We give an important theorem regarding termination of a function evolution:

Theorem 6.10. We assume that f is a continuous function on the domain [0, [],
where I > k and k > 0, and the following conditions hold: &b

1. b is satisfied for all instants t € [0,1): Yt € [0,1) @ b[f(¢t)/2];
2. b becomes false at 1: —b[f(1)/z'];

14 Simon Foster

3. ¢ is not satisfied for all instants t € [0,k): Vit € [0,k) @ =c[f(t)/2];
4. ¢ becomes true at k and stays true until 1: Vit € [k, 1) o c[f(t)/2'].

Then the following equality holds:

(1) (1) & (b]) = (’f(t) . f(t)>

(k.1

This theorem shows the conditions under which a function evolution, with a
given invariant and preemption condition, will terminate. The first two assump-
tions ensure that the invariant b is true initially, and remains true until I. The
remaining two assumptions state that ¢ was not true for some period, until %
at which point it becomes true and stays true until /. This being the case, the
preemption will occur nondeterministically at some point between k£ and [. A
special case is when k = [, in which case there is precisely one instant when this
occurs. This theorem is useful in languages like Modelica where the evolution of
a differential equation can be halted when a specific condition is reached.

6.4 Derivatives and Ordinary Differential Equations

The ability to express derivatives of continuous variables is central to hybrid
system modelling. In the hybrid relational calculus we introduce the notation
z has-der f(t) which states that the derivative of continuous variable z is deter-
mined by expression f, which is parametrised over time ¢. This is equivalent to
the usual calculus notation #(t) = f(t, z). For example, we can write constraints
like z has-der 2 - x, which states that z is changing at the rate of 2 - x.

A system of ODEs, &(t) = f(t, z(t)), specifies a family of continuous solution
functions, z : R>9g — R", that specify the value for the n variables at each
instant. The system is defined by function f : R>o x R™ — R" that gives the
derivative of each variable at time ¢, and depends on the initial value, that is
z(t). A solution is any function z that changes at the rate specified by f.

Naturally, when animating or verifying a system, a single solution is normally
desired. For this, it is necessary to construct an initial value problem (IVP) that
supplements the system of ODEs with initial values for all continuous variables.
Then the Picard-Lindel6f theorem [32] can be applied to show that, provided f
is Lipschitz continuous, a unique solution exists to the initial value problem [33].
Lipschitz continuity essentially limits the rate at which a continuous function
can change. We now describe our operator for systems of ODEs:

Definition 6.11. (i(t) @ f(t,z)) £ (ll, A z has-der (f(t)(z))) &

The operator takes two parameters: z : R = Y., which is a lens projecting a
vector of reals from the continuous state; and f, the ODE specification function
described above. The definition applies the initial value coupling invariant, and
asserts that lens x has the derivative given by the characteristic ODE function f.
It does not apply the final state coupling invariant, #/, as a system of ODEs only
produces a final value when it is preempted. Usually, though not necessarily,

Hybrid Relations in Isabelle/UTP 15

ODEs are guarded by the A (b| ¢) operator. Every operator of which the ODE
operator is composed is R1 and R2, and thus it is a healthy reactive relation.

In order to solve differential equations, it is necessary to set up an IVP. The
following theorem shows how a solution may be used to transform an ODE to
symbolic solution function evolution.

Theorem 6.12. If, for any v : R™ and | > 0, g(v) is the unique solution to f
on the interval [0, 1], and g(v)(0) = v then &

(2(t) o f(t,2)) = 2(t) = g(=)(t)

This theorem allows us to transform a differential equation into a solution func-
tion evolution. It has some subtleties that require further explanation. Function
g:R™ - R — R"™ is the solution function, but it depends on the initial value for
variables which is why it has two inputs. This allows us to abstract from IVPs
when symbolically solving an ODE. Thus, we require that for any given initial
valuation of the continuous state v, g(v) is the unique solution to f. Moreover,
we require that the function’s value at time 0 be the initial value we have sup-
plied; a kind of sanity check for the function. If all these conditions are satisfied
then the ODE can be rewritten to Z(t) <— g(z, t). The z on the right hand side
of the arrow is the initial value of z, as usual for the relational calculus. Thus,
the solution function is fully described when an initial value is supplied by a
preceding assignment, for example by use of Theorem 6.8.

In terms of showing that a function is a unique solution, it suffices to show
that the function is a solution and then to exhibit an appropriate Lipschitz
constant. In Isabelle/HOL the former of these two can be accomplished through
a tactic we have written called ode-cert that certifies a solution to an ODE by
applying derivative introduction rules.

To exemplify, we give the following calculation of the first step of Example 2.2:

Ezample 6.13 (ODE Calculation,).
hyv:=20; <(h(t), o(t)) e (v, —g)>
h’U::270;<Z(t§><_<v-tg~t2/2+h> (6.12)

(t v—g-t

_ (ZE;&;) - (o.t?)g.j/twrz) (6.8)

We first obtain the unique solution to the ODEs, which can be done using
a typical computer algebra tool like Mathematica, and then rewrite this to a
function evolution. We also push forward the assignment using Theorem 6.8 to
set initial values for continuous variables.

6.5 Hybrid Reactive Contracts

Whilst hybrid relations can be used to model programs, they do not allow us
to distinguish terminating, non-terminating, and divergent behaviours®. Specif-

5 A concept capturing erroneous behaviours such as unproductive non-termination.

16 Simon Foster

ically, a dynamically evolving ODE, (i(t) e f(¢)) can continue indefinitely. In
spite of this, it does not satisfy the following theorem [2]:

(£(t,z) o f(1)); P = (&(t, z) o f(1))

For example, if P is an assignment, x := v, then the results of it are observable in
such a composition. This is the reason that we often place ODEs in the context
of a preemption operator®, which correctly handles termination. This issue is
analogous to the well-known problem with basic relational model of programs,
which motivated the UTP theory of designs [7,34].

Our solution, similarly, is to introduce a UTP theory of reactive contractual
specifications, and use the ok and wait observational variables to distinguish di-
vergent and intermediate observations. This approach captures non-termination
in reactive systems in a way that avoids complex reasoning associated with infi-
nite traces. In previous work [25,26,35] we developed a UTP theory of generalised
reactive designs, building on our theory of reactive relations [8] (§4) and prior
work with Circus [17,16]. We use this to develop a contract notation, and a
method for automatically calculating the semantics of reactive programs for the
purpose of verification [26]. As for designs, our reactive contracts also support
refinement with assume/guarantee style reasoning [36,37]. It allows a unified
set of laws for a diverse set of languages, including CSP [7], Circus [17], timed
extensions [38], and of course our hybrid relations.

A reactive contract, [Py | P2 | P3], consists of three reactive relations that
specify the (1) assumption, P, and (2) guarantee for intermediate observations,
P, and terminating observations, P3. Assumption P; is a reactive condition
(Definition 4.2): it can refer only the initial state (st) and trace (tt), and the
characterised set of traces must be prefix closed. If the assumption of a contract
is violated, then the result is the most nondeterministic reactive designs, called
Chaos = [false | false | false], which corresponds to divergent behaviour. Py
characterises the intermediate or waiting observations of the reactive program;
consequently it is a reactive relation that, like P;, refers only to st and tt. P
characterises terminating observations, and so can refer to st, tt, and also st’.

We can now lift our ODE operator so that it is correctly non-terminating:

Definition 6.14. (@(t) @ f(t,z))) = [true, | (i(t) o f(t,7)) | false]

The assumption of the lifted ODE is true, since there is no divergent behaviour.
The terminating guarantee is false, since this is a non-terminating operator. The
intermediate guarantee is simply our hybrid relational ODE operator, so that
evolutions of the ODE are flagged as intermediate obervations. Then, we can
use the following contract theorems for reasoning about compositions [25,26]:

Theorem 6.15 (Reactive Design Laws). &
[P} Py | Ps];[truert Qo | @3] = [PrF P2V P3;@o| Ps;Qs] (6.15.1)
Chaos N [Pl |— P2 | Pg] = Chaos (6.15.2)

5 This is also true of d£ hybrid programs, which are modelled similarly.

Hybrid Relations in Isabelle/UTP 17

[Pl }—PQ | false] ; [Ql |— Qg ‘ Qg] = [Pl |— P2 | false] (6153)
Chaos ; [P, | P» | Ps] = Chaos (6.15.4)
[false| Py | Ps] = Chaos (6.15.5)

(6.15.1) is the basic law for sequential composition”. When composing contracts
in the sequence, an intermediate observation is either an intermediate observa-
tion of the first contract (Ps), or a terminating observation of the first, followed
by an intermediate observation of the second (Ps ; @2). A terminating obser-
vation requires that both contracts can terminate Ps ; Q3. (6.15.2) show that
Chaos is indeed the most nondeterministic reactive contract. The remaining laws
are essentially corollaries of (6.15.1). Of particular interest for ODEs is (6.15.3),
which has the following law as a consequence:

Theorem 6.16. ((z(t) o f(1)); P = ((&(t) o f(t))) &

Similar results can be achieved for the function evolution operators.

A further advantage of hybrid reactive contracts is to encode assumptions
about continuous variables outside of the system’s control (e.g. monitored vari-
ables). Assumptions can, for example, be specified using the interval operator
of Definition 6.3, since this constructs reactive conditions. For example, we can
specify a division block for the control law languages of Modelica or Simulink:

Ezample 6.17. Div(z,y,2) 2 [[y #0] | [z = z/y] | false]

We encode a division block with two inputs, z and y, and a single output z.
These are all modelled as lenses into the continuous state (R = X), that
correspond to connections in a block diagram, and are given as parameters.
The intuition here is that every wire in a control law diagram is modelled as
a lens. The divison block is a non-terminating hybrid process that in every
intermediate state requires that the continuous variable z take the value of z/y.
The assumption requires that y # 0, to ensure that division by zero cannot occur.
Using a pattern like this, we can give semantics to a large number of blocks in
the Simulink and Modelica block libraries®. This allows us to use hybrid reactive
designs to reason about control law diagrams.

7 Mechanisation and Example

The hybrid relational calculus, and the theorems described in §6 are mechanised
in Isabelle/UTP. For this, we employ Isabelle’s implementation of multivariate
analysis [39], including its symbolic real numbers, Euclidean spaces, limits, and
derivatives. We also utilise Immler’s library for ODEs and IVPs [33,40], which
allows us to certify that a function is the solution to a system of ODEs.

In order to exemplify the use of the mechanisation, we describe part of a tram
model, which is part of a previous industrial case study [14]. We reproduce it here

" For brevity, we present a simplified law where the second assumption is truer.
8 See https://build.openmodelica.org/Documentation/Modelica.Blocks.html

18 Simon Foster

for the purposes of illustration, with adaptation for our new hybrid relational
model. We focus on the situation when the tram is slowing due to an approaching
red signal, and formalise this using variables for acceleration acc, velocity wvel,
and track position pos. We note that normal-deceleration below is negative and
determines the rate at which the tram reduces its speed as the brakes are applied.

Definition 7.1 (Braking Tram in Hybrid Relational Calculus).

acc, vel, pos := normal-deceleration, maz-speed, 0 ;

acc 0
Braking Train = < vel | o ace > A (vel > 0| vel <0) ;
poOS vel
acc =0

We assign initial values to the continuous variables, and then evolve them until
the velocity reaches 0. In this instance, we do not allow non-determinism here,
but record the precise instant that the velocity is 0. Thus, the evolution invari-
ant is vel > 0, and the preemption condition is vel < 0. After this, we set the
acceleration to 0, so that the tram halts and does not start moving backwards.
Though this model is highly idealised, a more realistic model, which, for ex-
ample, introduces pertubations into the acceleration due to external influences
like weather, can be described by adding periodic preemption conditions and
non-deterministic assignments to corresponding variables.

This example is encoded in Isabelle/UTP, as shown in Figure 2, where the
preemption operator has the syntax P inv b until; c. We also mechanise a proof
that the train stops before the end of the track, that is,

Theorem 7.2. (accl’ =0 A dur[pos < 44]) T BrakingTrain &

holds, where 44m is the track length. The specification to the left states that, for
all possible evolutions, the final value of the acceleration is 0 and pos is always
less than 44. This should then be refined by our hybrid relation, BrakingTrain.
For the sake of brevity, we elide details of the proof in Isabelle, other than the
first four steps. The proof proceeds as follows:

1. Solve the ODE to obtain a function evolution statement (Theorem 6.12);
2. Use the assigned values to obtain the initial conditions (Theorem 6.8);

3. Calculate the time at which the velocity reaches zero (Theorem 6.10);

4. Finally, prove that the position at every earlier instant is less than 44 metres.

The final step requires that we solve a polynomial inequality:
(104/25) - t — (7/10) - £* < 44

which includes the position derivative solution. In Isabelle, this can be done
using the approximate tactic [41], which applies floating-point computation.

Hybrid Relations in Isabelle/UTP 19

definition "BrakingTrain =
(c:accel, c:vel, c:pos) := («normal_deceleration», «max_speed», «0») ;;
({&accel,8vel,8pos} e train_ode(ti)), inv —$vel <,0 until, ($vel’'<,0) ;; c:raccel :=. 0"

theorem braking_train_pos_le:
"($st:c:accel” =, 0 A [$pos” <, 44],) C BrakingTrain" (is "?1lhs C ?rhs")
proof -
— < Solve ODE, replacing it with an explicit solution: @{term train_sol}. »
have "?rhs =
(c:accel, c:vel, c:pos) :=: («-1.4», «4.16», «0») ;;
{8accel, &vel,&pos} <« «train_sol»($accel,$vel,$pos).(«ti»), untily, ($vel” <, 0) ;;
c:accel := 0"
by (simp only: BrakingTrain_def train_sol)
— ¢« Set up initial values for the ODE solution using assigned variables. >
also have "... =
{8accel, &vel,&pos}« «train_sol(-1.4,4.16,0) (ti)» until, ($vel <,0) ;; c:accel :=. 0"
by (rel_auto)
— < Find the point at which the train stops >
also have "... =
(({&accel, &vel,&os} «(«416/140») «train_sol(-1.4,4.16,0)(ti)»)) ;; c:accel :=, 8"

Fig. 2. The braking tram in Isabelle/UTP

8 Conclusions and Discussion

We have described our UTP theory of hybrid relations that specialises reactive
relations with a continuous timed trace model. A key result is the unification
of hybrid models [2,1,13] and reactive programs [26], through our generalised
theories of reactive relations and reactive designs. In a parallel development, we
have used the generalised theory to mechanise a semantics and verification tool
for Circus [26,17] (and thus CSP [42]), and our hybrid theory shares many of the
laws, such as those in Theorem 6.15. This, we believe, shows the immense and
practical value of unification. Our theory can also be used as a foundation for
automated verification tools for hybrid programs in Isabelle/UTP [10], and we
plan to apply it to verification of Modelica dynamical models, by extending our
previous semantics [13] that used an early version of our UTP hybrid theory.

The two most related works are differential dynamic logic [1,4] (d), and
HCSP [2,3,5], both of which have substantially influenced our direction.

Our model is more expressive than standard d£ hybrid programs, since we
encode an explicit trajectory, whilst d£ encodes the initial/intermediate value
pairs for each variable in a binary relation. This allows us to separate ODEs
from preemption, which in d£ are combined in a single operator, {z’ = 6 & b},
where b is the boundary condition. This can be useful when constructing systems
by composition of continuous and discrete components, where b is not known a
priori. An explicit trace model is also a prerequisite for modelling networks of
communicating hybrid systems [2]. There is also a d extension called dTL? [43]
that also employs an explicit trajectory and is similar to our model.

Proof support in d£’s tool, KeYmaera X [4], is cleary far more advanced than
our implementation in Isabelle/UTP. Nevertheless, we are currently working on
implementing d£ in Isabelle/UTPY based on a recent implementation of d£ in

9 Differential dynamic logic in Isabelle/UTP &

20 Simon Foster

Isabelle/HOL [44], and hope to report on this soon. This will allow to formally
link the two theories, and also extensions like [43], via Galois connections, and
harness the differential induction reasoning technique.

HCSP [2,3] models communicating hybrid systems using CSP-style process
algebraic operators. There are two main denotational semantic models, the origi-
nal one by He [2], which employs a UTP-style relational calculus, and a later one
by Zhou [3], that employs Duration Calculus [30,29]. Our model is comparable
to, though less expressive than [2] — since [2] models a more sophisticated form
of trajectory based on super-dense time [45,15] — and is likely of equivalent
expressivity with [3]. The semantics and algebraic laws in [2] are a strong inspi-
ration for our work, and we believe that [2] is very similar to our reactive designs.
For super-dense time [45,15], the trajectory has type R>¢ x N -+ X, — the time
domain is extended with a natural number that allows state changes that are
“simultaneous-but-ordered”. This is, arguably, needed to allow CSP-style events
that are often interpreted to take a zero time duration. We hope in the future to
explore whether such a trajectory model forms a trace algebra [8], so that our re-
active designs hierarchy can be reused. Moreover, we will also explore weakening
the trace algebra to support infinite traces which are at present forbidden.

In conclusion, the UTP approach has been an invaluable tool in this de-
velopment. Whilst several hybrid computational theories exist, there are links
between them, which UTP theories allow us to explore. Moreover, UTP allows
us to link to theories that at first sight seem unrelated, such as Circus [17], as our
reactive design theory shows. Our overarching message is this: the UTP works
— it can capture languages of differing and heterogeneous paradigms and use
the associated theories to develop and integrate verification tools. As Hoare and
He reflected in the first chapter of the UTP book, when considering all the tools
and artefacts that software engineering research is producing:

“..to ensure that [analysis] tools may be safely used in combination, it is
essential that these [underlying] theories be unified...” [7, page 21]

We believe that our hierarchy of theories and verification tools in Isabelle/UTP
is evidence that UTP supports a practical approach for integration of formal
analysis tools [46]. As systems become more complex in nature, as is the case
with cyber-physical systems and autonomous robots, there is an even greater
need to consider integration of heterogeneous computational paradigms [6]. The
UTP allows us to approach one of the grand challenges for software engineering:
integration of formal methods [6,46,47] for assurance of large-scale systems.

Acknowledgments

This work is funded by the CyPhyAssure project'’, EPSRC grant EP/S001190/1.
We would like to thank the anonymous reviewers for their thorough and helpful
input, which has improved the presentation of our work.

10 CyPhyAssure Project: https://www.cs.york.ac.uk/circus/CyPhyAssure/

Hybrid Relations in Isabelle/UTP 21

References

1.

2.

~

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom Reasoning
41 (June 2008) 143189

He, J.: From CSP to hybrid systems. In Roscoe, A.W.; ed.: A classical mind:
essays in honour of C. A. R. Hoare. Prentice Hall (1994) 171-189

Zhou, C., Ji, W., Ravn, A.P.: A formal description of hybrid systems. In Alur, R.,
Henzinger, T.A., Sontag, E.D., eds.: Hybrid Systems III. Volume 1066 of LNCS.
Springer (1996) 511-530

Fulton, N., Mitsch, S., Quesel, J.D., Vélp, M., Platzer, A.: KeYmaera X: An
axiomatic tactical theorem prover for hybrid systems. In: CADE-25. Volume 9195
of LNCS., Springer (2015) 527-538

Wang, S., Zhan, N., Zou, L.: An improved HHL prover: An interactive theorem
prover for hybrid systems. In: ICFEM. Volume 9407 of LNCS., Springer (2015)
382-399

Gleirscher, M., Foster, S., Woodcock, J.: New opportunities for integrated formal
methods. ACM Computing Surveys (2019) Accepted subject to minor revision.
Preprint: https://arxiv.org/abs/1812.10103.

Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying theories of time with
generalised reactive processes. Information Processing Letters 135 (2018) 47-52
Foster, S., Zeyda, F., Nemouchi, Y., Ribeiro, P., Wolff, B.: Isabelle/UTP: Mech-
anised Theory Engineering for Unifying Theories of Programming. Archive of
Formal Proofs (2019) https://www.isa-afp.org/entries/UTP.html.

Foster, S., Baxter, J., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying semantic
foundations for automated verification tools in Isabelle/UTP. Submitted to Sci-
ence of Computer Programming (March 2019) Preprint: https://arxiv.org/abs/
1905.05500.

Foster, S., Zeyda, F., Woodcock, J.: Unifying heterogeneous state-spaces with
lenses. In: ICTAC. LNCS 9965, Springer (2016)

Foster, S., Zeyda, F., Woodcock, J.: Isabelle/UTP: A mechanised theory engineer-
ing framework. In: UTP. Volume 8963 of LNCS., Springer (2014) 2141

Foster, S., Thiele, B., Cavalcanti, A., Woodcock, J.: Towards a UTP semantics for
Modelica. In: UTP. LNCS 10134, Springer (2016)

Zeyda, F., Ouy, J., Foster, S., Cavalcanti, A.: Formalising Cosimulation Models.
In: Proc. CoSim-CPS 2017. Volume 10729 of LNCS., Springer (2017) 453-468
Lee, E.A.: Constructive models of discrete and continuous physical phenomena.
IEEE Access 2 (August 2014) 797-821

Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in unifying theories
of programming. In: PSSE. Volume 3167 of LNCS. Springer (2006) 220-268
Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects of Computing 21 (2009) 3-32

Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer
(1998)

Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18(8) (1975) 453-457

Feliachi, A., Gaudel, M.C., Wolff, B.: Unifying theories in Isabelle/HOL. In: UTP
2010. Volume 6445 of LNCS., Springer (2010) 188-206

Feliachi, A., Gaudel, M.C., Wolff, B.: Isabelle/Circus: a process specification and
verification environment. In: VSTTE 2012. Volume 7152 of LNCS., Springer (2012)
243-260

22

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

Simon Foster

Boulton, R., Gordon, A., Gordon, M., Harrison, J., Herbert, J., van Tassel, J.:
Experience with embedding hardware description languages in HOL. In: Proc.
IFIP Intl. Conf. on Theorem Provers in Circuit Design. (1993) 129-156

Gomes, V.B.F., Struth, G.: Modal Kleene algebra applied to program correctness.
In: Formal Methods. Volume 9995 of LNCS., Springer (2016) 310-325

Foster, J.: Bidirectional programming languages. PhD thesis, University of Penn-
sylvania (2009)

Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. Under revision for Theoretical Computer Science (Dec
2017) Preprint: https://arxiv.org/abs/1712.10233.

Foster, S., Ye, K., Cavalcanti, A., Woodcock, J.: Calculational verification of re-
active programs with reactive relations and Kleene algebra. In: Proc. 17th Intl.
Conf. on Relational and Algebraic Methods in Computer Science (RAMICS). Vol-
ume 11194 of LNCS., Springer (October 2018)

Hofner, P., Méller, B.: An algebra of hybrid systems. Journal of Logic and Algebraic
Programming 78(2) (2009) 74-97

Cavalcanti, A., Foster, S., Thiele, B., Woodcock, J., Zeyda, F.: Final Semantics of
Modelica. Technical report, INTO-CPS Deliverable, D2.3b (December 2017)
Zhou, C., Ravn, A.P., Hansen, M.R.: An extended Duration Calculus for hybrid
real-time systems. In Grossman, R.L., Nerode, A., Ravn, A.P.; Rischel, H., eds.:
Hybrid Systems. Volume 736 of LNCS. Springer (1993) 36-59

Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Information Pro-
cessing Letters 40(5) (1991) 269-276

Henzinger, T.A. In: The theory of hybrid automata. IEEE (1996) 278-292
Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations.
McGraw-Hill (1955)

Immler, F., Holzl, J.: Numerical analysis of Ordinary Differential Equations in
Isabelle/HOL. In: 3rd Intl. Conf. on Interactive Theorem Proving (ITP). Volume
7406 of LNCS., Springer (2012) 377 — 392

Cavalcanti, A., Woodcock, J.: A tutorial introduction to designs in unifying theories
of programming. In: Proc. 4th Intl. Conf. on Integrated Formal Methods (IFM).
Volume 2999 of LNCS., Springer (2004) 40-66

Foster, S., Baxter, J., Cavalcanti, A., Miyazawa, A., Woodcock, J.: Automating
verification of state machines with reactive designs and Isabelle/UTP. In: Proc.
15th. Intl. Conf. on Formal Aspects of Component Software. Volume 11222 of
LNCS., Springer (October 2018)

Meyer, B.: Applying “design by contract”. IEEE Computer 25(10) (1992) 40-51
Benveniste, A., Caillaud, B., Ferrari, A., Mangeruca, L., Passerone, R., Sofronis,
C.: Multiple viewpoint contract-based specification and design. In: 6th Intl. Symp.
on Formal Methods for Components and Objects (FMCO). Volume 5382 of LNCS.,
Springer (2007) 200—225

Sherif, A., Cavalcanti, A., He, J., Sampaio, A.: A process algebraic framework for
specification and validation of real-time systems. Formal Aspects of Computing
22(2) (2010) 153-191

Harrison, J.: A HOL theory of Euclidean space. In Hurd, J., Melham, T., eds.:
Theorem Proving in Higher Order Logics, 18th International Conference, TPHOLSs
2005. Volume 3603 of LNCS., Oxford, UK, Springer (2005)

Immler, F.: Formally verified computation of enclosures of solutions of Ordinary
Differential Equations. In: Proc. 6th NASA Formal Methods Symposium (NFM).
Volume 8430 of LNCS., Springer (2014)

41.

42.

43.

44.

45.

46.

47.

Hybrid Relations in Isabelle/UTP 23

Holzl, J.: Proving inequalities over reals with computation in isabelle/hol. In: Proc.
2009 Intl. Workshop on Programming Languages for Mechanized Mathematics
Systems (PLMMS), ACM (August 2009) 38-45

Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM 31(3) (1984) 560-599

Jeannin, J.B., Platzer, A.: dTL?: Differential Temporal Dynamic Logic with Nested
Temporalities for Hybrid Systems. In: IJCAR. Volume 8562 of LNAI., Springer
(2014)

Huerta y Munive, J.J., Struth, G.: Verifying hybrid systems with modal Kleene al-
gebra. In: Proc. 17th Intl. Conf. on Relational and Algebraic Methods in Computer
Science (RAMICS). Volume 11194 of LNCS., Springer (October 2018)

Manna, Z., Pneuli, A.: Verifying hybrid systems. In: Hybrid Systems. Volume 736
of LNCS., Springer (1993)

Paige, R.F.: A meta-method for formal method integration. In: Proc. 4th. Intl.
Symp. on Formal Methods Europe (FME). Volume 1313 of LNCS., Springer (1997)
473-494

Galloway, A.J., Stoddart, B.: Integrated formal methods. In: Proc. INFORSID,
INFORSID (1997)

	Hybrid Relations in Isabelle/UTP

