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Abstract 

Neuroimaging studies show that ventral face-selective regions, including the fusiform 

face area (FFA) and occipital face area (OFA), preferentially respond to faces presented 

in the contralateral visual field (VF). In the current study we measured the VF response 

of the face-selective posterior superior temporal sulcus (pSTS). Across three functional 

magnetic resonance imaging (fMRI) experiments, participants viewed face videos 

presented in different parts of the visual field. Consistent with prior results, we 

observed a contralateral VF bias in bilateral FFA, right OFA (rOFA) and bilateral human 

motion-selective area MT+. Intriguingly, this contralateral VF bias was absent in the 

bilateral pSTS. We then delivered transcranial magnetic stimulation (TMS) over right 

pSTS (rpSTS) and rOFA, while participants matched facial expression in both hemifields. 

TMS delivered over the rpSTS disrupted performance in both hemifields, but TMS 

delivered over the rOFA disrupted performance in the contralateral hemifield only. 

These converging results demonstrate that the contralateral bias for faces observed in 

ventral face-selective areas is absent in the pSTS. This difference in VF response is 

consistent with face processing models proposing two functionally distinct pathways. It 

further suggests that these models should account for differences in interhemispheric 

connections between the face-selective areas across these two pathways. 
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Introduction 

Neuroimaging studies have identified multiple face-selective areas across the 

human brain. These include the fusiform face area (Kanwisher et al., 1997; McCarthy et 

al., 1997), occipital face area (Gautier et al., 2000) and posterior superior temporal 

sulcus (Puce et al., 1997; Phillips et al., 1997). Models of face perception (Haxby et al., 

2000; Calder & Young, 2005) propose that these areas are components in two separate 

and functionally distinct neural pathways: a ventral pathway specialized for recognising 

facial identity (that includes the FFA), and a lateral pathway specialized for recognising 

facial expression (that includes the pSTS). While these pathways perform different 

cognitive functions, both are thought to begin in the OFA, the most posterior face-

selective area in the human brain. Alternative models have proposed different cortico-

cortical connections for the face-selective pSTS. One theory proposes that the pSTS has 

anatomical and functional connections with the motion-selective area human MT+ 

(hMT+), which are independent of the OFA (O’Toole et al., 2002; Gschwind et al., 2012; 

Pitcher et al., 2014, Yovel & Duchaine, 2015). In the current study, we sought to further 

investigate the functional connections of the pSTS using functional magnetic resonance 

imaging (fMRI) and transcranial magnetic stimulation (TMS). 

Our recent neuropsychological and combined TMS / fMRI studies suggest that the 

rpSTS is functionally connected to brain areas other than the rOFA and rFFA (Reslezcu et 

al., 2012; Pitcher et al., 2014). These studies demonstrated that disruption of the rFFA 

and rOFA did not reduce the neural response to moving faces in the rpSTS, suggesting it 

is functionally connected to other brain areas. However, these studies did not 
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investigate which brain areas may be functionally connected with the rpSTS. As 

suggested previously, hMT+ may have functional connections with the rpSTS (O’Toole, 

2002) but alternate potential candidate areas are also plausible, notably face-selective 

areas in the contralateral hemisphere. For example, a recent study demonstrated that 

TMS delivered over the rpSTS and lpSTS impaired a facial expression recognition task 

(Sliwinska & Pitcher, 2018). This suggests that face-selective areas in both hemispheres 

are necessary for optimal task performance. 

In the present study, we investigated the visual field responses to faces in face- and 

motion-selective areas to better understand the functional connections of the rpSTS. 

Prior evidence has shown that the FFA and OFA exhibit a greater response to faces 

presented in the contralateral compared to the ipsilateral visual field (Hemond et al., 

2007; Chan et al., 2010; Kay et al., 2015). However, the visual field responses to faces in 

the posterior superior temporal sulcus (pSTS) has not been established. If, like the FFA 

and OFA, the pSTS shows a greater response to faces presented in the contralateral 

visual field this would suggest that the dominant functional inputs to the pSTS come 

from brain areas in the ipsilateral hemisphere. If, however, the pSTS responds to faces in 

the ipsilateral visual field to a greater extent than the FFA and OFA, then the pSTS is 

likely to have greater functional connectivity with the contralateral hemisphere. 

We used fMRI to measure the neural response evoked by short videos of faces 

presented in the four quadrants of the visual field in face-selective areas (Experiment 1) 

and in hMT+ (Experiment 2). In Experiment 3, we increased the size of the stimulus 

videos and presented them in the two visual hemifields. This was done to increase the 
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size of the neural responses across face-selective regions. Finally, in Experiment 4, we 

used transcranial magnetic stimulation (TMS) to investigate if visual field responses 

were reflected in behaviour. TMS was delivered over the rOFA, rpSTS or the vertex 

control site while participants performed a behavioural facial expression recognition 

task in the two visual hemifields. Our results were consistent across all experiments; 

namely, the bilateral FFA (FFA), rOFA, and bilateral hMT+ all exhibited a greater 

response to faces presented in the contralateral than ipsilateral visual field (we were 

unable to functionally identify the left OFA in a sufficient number of participants). By 

contrast, the bilateral pSTS showed no preference for faces presented in any part of the 

visual field. This same pattern was observed in Experiment 4: TMS delivered over the 

rpSTS disrupted task performance in both hemifields, but TMS delivered over the rOFA 

disrupted performance in the contralateral hemifield only. Our results demonstrate a 

functional difference in the interhemispheric connectivity between face-selective areas 

on the ventral and lateral brain surfaces. 

 

Materials and Methods 

Participants 

In Experiments 1-3, a total of 23 right-handed participants (13 females, 10 males) 

with normal, or corrected-to-normal, vision gave informed consent as directed by the 

National Institutes of Mental Health (NIMH) Institutional Review Board (IRB). Eighteen 

participants were tested in Experiment 1, thirteen in Experiment 2, and eighteen in 

Experiment 3. Thirteen of the participants took part in all the fMRI experiments (1-3). In 
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Experiment 4, fourteen right-handed participants (8 females, 6 males) with normal, or 

corrected-to-normal, vision gave informed consent as directed by the Ethics committee 

at the University of York. 

 

Stimuli 

Regions-of-interest (ROIs) Localizer Stimuli  

In Experiments 1, 3 and 4, face-selective regions-of-interest (ROIs) were identified 

using 3-sec video clips of faces and objects. These videos were used in previous fMRI 

studies of face perception (Pitcher et al., 2011; 2014; 2017). Videos of faces were filmed 

on a black background and framed close-up to reveal only the faces of 7 children as they 

danced or played with toys or with adults (who were out of frame). Fifteen different 

moving objects were selected that minimized any suggestion of animacy of the object 

itself or of a hidden actor moving the object. Stimuli were presented in categorical 

blocks and, within each block, were randomly selected from the entire set for that 

stimulus category. This meant that the same actor or object could appear within the 

same block. The order of repeats was randomized and happened on average once per 

block. Participants were instructed to watch the movies and to detect when the subject 

of the video was repeated (one-back task). Repeats occurred randomly at least two 

times per run. 

In Experiment 2, hMT+ was identified using a motion localizer. This localizer used an 

on/off block design to identify parts of the brain that respond more strongly to coherent 

dot motion than random dot motion. Stimuli were presented in 12 alternating blocks of 
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coherent and random motion (11.43 sec each). In both conditions, 150 white dots (dot 

diameter: 0.04 degrees, speed: 5.0 degrees/sec) appeared in a circular aperture 

(diameter: 9 degrees). During blocks of coherent motion, dots changed their coherent 

direction every sec to avoid adaptation to any maintained direction of motion. The dots 

in the incoherent condition changed every second but the changes were not co-

ordinated with each other to generate the appearance of random motion. Participants 

were instructed to focus on a red fixation dot presented at the center of the screen. 

HMT+ was identified using a contrast of activation evoked by coherent dot motion 

greater than that evoked by random dot motion (noise). 

 

fMRI Face Visual Field Mapping Stimuli (Experiments 1-3) 

Visual field responses in face-selective regions were mapped using 2-sec video clips 

of dynamic faces making one of four different facial expressions: happy, fear, disgust 

and neutral air-puff. These faces were used in a previous fMRI study of face perception 

(van der Gaag et al., 2007). Happy expressions were recorded when actors laughed 

spontaneously at jokes, whereas the fearful and disgusted expressions were posed by 

the actors. The neutral, air-puff condition consisted of the actors blowing out their 

cheeks to produce movement but expressing no emotion. Both male and female actors 

were used. Videos were filmed against a gray background and the actors limited their 

head movements. In Experiments 1 and 2, videos were presented at 3 by 3 degrees of 

visual angle and were shown centered in the four quadrants of the visual field at a 

distance of 5 degrees from fixation to the edge of the stimulus (Kravitz et al., 2010). 
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Experiment 3 followed the same procedure as Experiments 1 and 2, except that faces 

were presented in the contralateral and ipsilateral visual hemifields (see Figure 1). 

Videos were presented at 5 by 5 degrees of visual angle and shown at a distance of 5 

degrees from fixation to the edge of the stimulus. The size of the videos was increased 

in order to increase the neural response recorded in face-selective areas. 

 

Figure 1 Here. 

 

 

Figure 1. Static image taken from the hemifield visual field mapping stimulus used in 

Experiment 3. Actors displaying different emotions (happy, fear, disgust, neutral air-

puff) were shown in the two hemifields of the visual field.  Participants maintained 

fixation by detecting the presence of either a T or an L (shown upright or inverted) at 

fixation and were informed of their performance at the end of each block. Runs in which 

the participant failed to perform the task at an accuracy of seventy-five percent correct 

were excluded from further analysis. 
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TMS Face Visual Field Mapping Stimuli (Experiment 4) 

Face stimuli were six female models (C, MF, MO, NR, PF and SW) from Ekman and 

Friesen’s (1976) facial affect series expressing one of six emotions: happy, sad, surprise, 

fear, disgust and anger. Each grayscale picture was cropped with the same contour 

using Adobe Photoshop to cover the hair, ears and neck.  

 

Procedure  

Brain Imaging Acquisition and Analysis 

Participants were scanned using research dedicated GE 3-Tesla scanners at the 

National Institutes of Health (NIH) (Experiments 1-3) and the University of York 

(Experiment 4). In Experiments 1 and 2, whole brain images were acquired using an 8-

channel head coil (36 slices, 3 × 3 × 3 mm, 0.6 mm interslice gap, TR = 2 sec, TE = 30 

msec). In Experiment 3, whole brain images were acquired using a 32-channel head coil 

(36 slices, 3 × 3 × 3 mm, 0.6 mm interslice gap, TR = 2 sec, TE = 30 msec). In Experiment 

4, whole brain images were acquired using a 12-channel head coil (32 slices, 3 × 3 × 3 

mm, 0.6 mm interslice gap, TR = 3 sec, TE = 30 msec). Slices were aligned with the 

anterior/posterior commissures. In addition, a high-resolution T-1 weighted MPRAGE 

anatomical scan (T1-weighted FLASH, 1 x 1 x 1 mm resolution) was acquired to 

anatomically localize functional activations.  

Functional MRI data were analyzed using AFNI (http://afni.nimh.nih.gov/afni). Data 

from the first four TRs from each run were discarded. The remaining images were slice-
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time corrected and realigned to the third volume of the first functional run and to the 

corresponding anatomical scan. The volume-registered data were spatially smoothed 

with a 5-mm full-width-half-maximum Gaussian kernel. Signal intensity was normalized 

to the mean signal value within each run and multiplied by 100 so that the data 

represented percent signal change from the mean signal value before analysis. 

A general linear model (GLM) was established by convolving the standard 

hemodynamic response function with the regressors of interest (four visual quadrants in 

Experiments 1 and 2; two visual hemifields in Experiment 3). Regressors of no interest 

(e.g., 6 head movement parameters obtained during volume registration and AFNI’s 

baseline estimates) were also included in the GLM.  

Face-selective ROIs (Experiments 1, 3 and 4) were identified for each participant 

using a contrast of greater activation evoked by dynamic faces than that evoked by 

dynamic objects, calculating significance maps of the brain using an uncorrected 

statistical threshold of p = 0.001. hMT+ (Experiment 2) was identified for each 

participant using a contrast of greater activation evoked by coherent motion than by 

random motion using an uncorrected statistical threshold of p = 0.0001. Within each 

functionally defined ROI, we then calculated the magnitude of response (percent signal 

change from a fixation baseline) for the visual field mapping data in each quadrant 

(Experiments 1 and 2) or each hemifield (Experiment 3). 

 

TMS stimulation and site localization 

TMS was delivered at 60% of maximal stimulator output, using a Magstim Super 
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Rapid Stimulator (Magstim, UK) and a 50 mm figure-eight coil, with the coil handle 

pointing upwards and parallel to the midline. A single intensity was used based on 

previous TMS studies of the same brain areas (Pitcher et al., 2008; Pitcher, 2014). 

Stimuli were presented while double-pulse TMS was delivered over the target site at 

latencies of 60 and 100 ms after onset of the probe stimulus. These latencies were 

chosen to cover the most likely times of rOFA and rpSTS involvement in facial expression 

recognition (Pitcher, 2014). 

TMS sites were individually identified in each participant using the Brainsight TMS–

MRI co-registration system, utilizing individual high-resolution MRI scans for each 

participant. The rOFA and rpSTS were localized by overlaying individual activation maps 

from the fMRI localizer task onto the structural scan and the proper coil locations were 

marked on each participant’s head. The voxel exhibiting the peak activation in each of 

the functionally defined regions was used as the target. 

 

Experiment 1 – Responses to faces in the four quadrants of the visual field in face-

selective areas 

In Experiment 1, participants fixated the center of the screen while 2-sec video clips 

of actors performing different facial expressions were shown in the four quadrants of 

the visual field. To ensure that participants maintained fixation, they were required to 

detect the presence of an upright or inverted letter (either a T or an L) at the center of 

the screen. Letters (0.6° in size) were presented at fixation for 250 ms in random order 

and in different orientations at 4 Hz (Kastner et al., 1999). Participants were instructed 
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to respond when the target letter (either T or L) was shown; this occurred 

approximately 25% of the time. The target letter (T or L) was alternated and balanced 

across participants. We informed the participants that the target detection task was the 

aim of the experiment and we discarded any runs in which the participant scored less 

than seventy-five percent correct. 

Visual field mapping images were acquired over 6 blocked-design functional runs 

lasting 408 sec each. Each functional run contained sixteen 16-sec blocks during which 

eight videos of eight different actors performing the same facial expression (happy, fear, 

disgust and neutral air-puff) were presented in one of the four quadrants of the visual 

field. The order was pseudo-randomized such that each quadrant appeared once every 

four blocks but, within each of these blocks of four, the quadrant order was randomized. 

After the visual field mapping blocks were completed, participants then viewed 4 

blocked-design functional localizer runs lasting 234 sec each, to identify the face-

selective ROIs. Finally, we collected a high-resolution anatomical scan for each 

participant. 

 

Experiment 2 – Responses to faces in the four quadrants of the visual field in hMT+ 

Experiment 2 followed the same design as Experiment 1, except for the following 

differences. Visual field mapping images were acquired over 4 blocked-design functional 

runs lasting 408 sec each. After the visual field mapping blocks were completed 

participants viewed 2 blocked-design functional runs lasting 288 sec each, to 

functionally localize the motion-selective region hMT+. During the motion localizer 
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blocks, participants were instructed to focus on a red dot at the center of the screen.  

 

Experiment 3 – Responses to faces in the two hemifields of the visual field in face-

selective areas 

Participants fixated the center of the screen while 2-sec video clips of actors 

performing different facial expressions were shown in the two hemifields of the visual 

field. Visual field mapping images were acquired over 6 blocked-design functional runs 

lasting 408 sec each. Each functional run contained sixteen 16-sec blocks during which 

eight videos of eight different actors performing the same facial expression (happy, fear, 

disgust and neutral air-puff) were presented in one of the two hemifields. Eight blocks 

were shown in each hemifield and the order in which they appeared was randomized. 

After the visual field mapping blocks were completed, participants completed 6 blocked-

design functional runs lasting 234 sec each to functionally localize the face-selective 

ROIs.  

 

Experiment 4 – Facial expression recognition task in the two hemifields while TMS is 

delivered over the rOFA and rpSTS 

Double-pulse TMS was delivered over the rOFA, rpSTS and vertex while participants 

performed a delayed match-to-sample facial expression recognition task. The vertex 

condition served as a control for non-specific effects of TMS. Figure 2 displays the trial 

procedure. Participants sat 57 cm from the monitor with their heads stabilized in a chin 

rest and indicated, by a right-hand key press, whether the sample face showed the same 
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facial expression as the match face. During each block, facial expression stimuli were 

presented randomly in one of the two visual hemifields. Stimuli were presented at a size 

of 5 x 8 degrees of visual angle and 5 degrees of visual angle from fixation to the inside 

edge of the stimuli.  

Participants were instructed to maintain fixation at the centre of the screen where 

a cross was presented during each trial. Half the trials showed picture pairs with the 

same expression and half showed pairs with different expressions. Identity always 

changed between match and sample. The six expressions were presented an equal 

number of times. This task has been used in previous TMS studies of facial expression 

recognition (Pitcher et al., 2008; Pitcher, 2014; Sliwinska & Pitcher, In Press) as well as in 

neuropsychological (Garrido et al., 2009; Banissy et al., 2011) and neuroimaging studies 

(Germine et al., 2011). Two blocks of 72 trials were presented for each TMS site (rOFA; 

rpSTS; vertex). Each block consisted of 36 match trials and 36 non-match trials. Site 

order was balanced across participants. Within each block, the trial order was 

randomized. Participants were instructed to respond as quickly and as accurately as 

possible and were not given feedback on their performance. 

 

Figure 2 Here. 
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Figure 2. The timeline of the TMS experimental procedure used in Experiment 4. 

Participants had to judge whether the sample face and target face had the same facial 

expression.  

 

 

Results 

Experiment 1 – fMRI mapping of faces in the four quadrants of the visual field in face-

selective areas 

Using a contrast of greater activation to faces than to objects, we identified the 

rFFA (mean MNI co-ordinates 43, -52, -13), lFFA (mean MNI co-ordinates -40, -54, -13), 

rpSTS (mean MNI co-ordinates 50, -47, 14), lpSTS (mean MNI co-ordinates -53, -51, 14) 

and the rOFA (mean MNI co-ordinates 41, -80, -4) in sixteen of the eighteen 

participants. Other face-selective ROIs were not present across all participants; the right 

amygdala was present in only thirteen participants, the left amygdala in eleven 

participants and the left OFA in seven participants. Because of this issue of reduced 

power, only the right FFA (rFFA), left FFA (lFFA), right pSTS (rpSTS), left pSTS (lpSTS) and 

rOFA were included in the subsequent ROI analysis.  

Results showed that both the rFFA, lFFA and rOFA exhibited a greater response to 
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faces presented in the contralateral visual field than in the ipsilateral visual field. In 

addition, the rFFA exhibited a greater response to faces presented in the upper field than 

in the lower field. By contrast, the rpSTS and lpSTS exhibited no bias in response to faces 

presented in any of the four quadrants (see Figure 3). 

 

 

Figure 3 Here 

 

 

 
 

Figure 3. Percent signal change data for dynamic faces presented in the four quadrants 

of the visual field in face-selective regions. Results showed that the rFFA, lFFA and rOFA 

exhibited a significantly greater response to faces in the contralateral visual field than in 

the ipsilateral visual field. There were no visual field biases in the rpSTS and lpSTS. Error 

bars show standard errors of the mean across participants.  

 

 

Percent signal change data (Figure 3) were entered into a five (ROI: rFFA, lFFA, 

rpSTS, lpSTS and rOFA) by two (contralateral vs. ipsilateral visual field) by two-way 
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(upper vs. lower visual field) repeated measures analysis of variance (ANOVA). We 

found main effects of ROI (F (4,60) = 8, p < 0.0001), contralateral / ipsilateral visual field 

(F (1,15) = 10, p = 0.006), and of upper / lower visual field (F (1,15) = 7.5, p = 0.015); 

there was also a significant three-way interaction between ROI, contralateral vs. 

ipsilateral visual field and upper vs. lower visual field (F (4,60) = 3, p = 0.033). 

Separate ANOVAs were performed on each of the face-selective ROIs. The rFFA 

showed a significantly greater response to faces shown in the contralateral than the 

ipsilateral visual field (F (1,15) = 42, p < 0.001) and to faces shown in the upper than the 

lower visual field (F (1,15) = 8, p = 0.012), but there was no significant interaction 

between the factors (F (1,15) = 2.5, p = 0.15). The lFFA showed the same pattern as the 

rFFA, with a significantly greater response to faces shown in the contralateral than the 

ipsilateral visual field (F (1,15) = 27, p < 0.001) and to faces shown in the upper than the 

lower visual field (F (1,15) = 5, p = 0.04), and again there was no significant interaction 

between the factors (F (1,15) = 0.8, p = 0.4). The rOFA showed a significantly greater 

response to faces shown in the contralateral than the ipsilateral visual field (F (1,15) = 

39, p < 0.001), but there was no significant difference between faces shown in the upper 

and lower visual fields (F (1,15) = 0.2, p = 0.7) nor was there a significant interaction 

between the factors (F (1,15) = 1.5, p = 0.25). 

By contrast, the rpSTS and lpSTS showed no significant effects of visual field. The 

rpSTS showed no main effect of contralateral / ipsilateral visual field (F (1,15) = 1, p = 

0.3) or of upper / lower visual field (F (1,15) = 2.6, p = 0.1) and there was no significant 

interaction (F (1,15) = 0.1, p = 0.9). The lpSTS showed no main effect of contralateral / 
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ipsilateral visual field (F (1,15) = 3, p = 0.15) or of upper / lower visual field (F (1,15) = 3, 

p = 0.2), and there was no significant interaction (F (1,15) = 0.5, p = 0.5).  

 

Experiment 2 – fMRI mapping of faces in the four quadrants of the visual field in hMT+ 

Using a contrast of activation to coherent dot motion greater than that to random 

dot motion, we identified the left hMT+ (mean MNI co-ordinates -43, -75, 2) and right 

hMT+ (mean MNI co-ordinates 42, -74, -2) in all thirteen participants. As reported by 

others (Watson et al., 1993; Huk et al., 2002), hMT+ was localized to the lateral occipital 

cortex. Results of the visual field mapping revealed that hMT+ in both hemispheres had 

a contralateral visual field bias but no upper or lower visual field bias (Figure 3B).  

The percent signal change data were entered into a two (ROI: left vs. right HMT+) 

by two (contralateral vs. ipsilateral visual field) by two (upper v. lower visual field) 

repeated measures ANOVA. There was a significant main effect of contralateral vs. 

ipsilateral visual field (F (1,12) = 27, p < 0.0001) revealing that bilateral HMT+ responded 

to faces in the contralateral visual field more than in the ipsilateral visual field. There 

was no main effect of ROI (F (1,12) = 0.8, p = 0.4) or of upper vs. lower visual field (F 

(1,12) = 0 .2, p = 0.7) and no interactions approached significance (p > 0.15). 

 

 

Figure 4 Here. 

 

 

 

 



 19  

 

Figure 4. Percent signal change data for dynamic faces presented in the four quadrants 

of the visual field in left and right hMT+.  Results showed that bilateral hMT+ exhibited a 

significantly greater response to faces in the contralateral visual field than in the 

ipsilateral visual field. Error bars show standard errors of the mean across participants.  

 

 

Experiment 3 – fMRI mapping of faces in the two hemifields in face-selective areas 

Face-selective ROIs were identified in each participant using a contrast of activation 

to faces greater than that to objects. To increase the likelihood of identifying face-

selective regions across both hemispheres, the number of face localizer runs was 

increased from four to six in Experiment 3. We identified the rFFA (mean MNI co-

ordinates 42, -48, -20), rOFA (mean MNI co-ordinates 42, -78, -11), rpSTS (mean MNI co-

ordinates 49, -44, 6), left FFA (lFFA) (mean MNI co-ordinates -40, -46, -22), left posterior 

STS (lpSTS) (mean MNI co-ordinates -53, -49, 4) and face-selective voxels in the right 

amygdala (mean MNI co-ordinates 23, -6, -16) in fifteen of the eighteen participants. 
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The left OFA was present in seven participants and the left amygdala in six participants 

so these areas were excluded them from further analysis.  

As in Experiment 1, the rOFA, rFFA and lFFA showed a greater response to dynamic 

faces in the contralateral visual field than in the ipsilateral visual field. By contrast, the 

rpSTS, lpSTS and the right amygdala showed no visual field bias (see Figure 5). 

 

Figure 5 Here 

 

 

Figure 5. Percent signal change for dynamic faces presented in the contralateral and 

ipsilateral hemifields. Results showed that the rFFA and rOFA exhibited a significantly 

greater response to faces in the contralateral visual field than in the ipsilateral visual 

field. There were no visual field biases in the rpSTS or the right amygdala. Error bars 

show standard errors of the mean across participants. * denotes a significant difference 

(p < 0.0001) in post-hoc tests. Right and left FFA show the expected response of right > 

left. Error bars denote standard errors of the mean across participants.   
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Percent signal change data (Figure 5) were entered into a six (ROI: rOFA, rFFA, lFFA, 

rpSTS, lpSTS and right amygdala) by two (contralateral vs. ipsilateral visual field) 

repeated measures analysis of variance (ANOVA). Results showed significant main 

effects of ROI (F (5,70) = 4, p = 0.003) and of contralateral / ipsilateral visual field (F 

(1,14) = 8, p = 0.013), as well as a significant interaction of ROI and visual field (F (5,70) = 

27, p < 0.0001). Bonferroni corrected post-hoc tests showed a significantly greater 

response to faces in the contralateral than ipsilateral visual field in the rOFA (p < 

0.0001), rFFA (p < 0.0001) and lFFA (p < 0.0001) but not in the rpSTS (p = 0.2), lpSTS (p = 

0.8) or right amygdala (p = 0.4).  

 

 

Experiment 4 – TMS mapping of faces in the two hemifields in the rOFA and rpSTS 

In Experiment 4, TMS was delivered over the rOFA, rpSTS and the vertex while 

participants performed a delayed match-to-sample facial expression recognition task in 

each of the two visual hemifields. This was done to investigate if the differences in the 

visual field responses in the rOFA and rpSTS (observed in Experiments 1 and 3) is 

behaviorally relevant. The vertex, a point on the top of the head, acted as a control site 

for the non-specific effects of TMS. 

Results showed that participants performed more accurately when faces were 

presented in the left visual field than the right visual field when TMS was delivered over 

the vertex (see Figure 6). This is consistent with prior results showing a left visual field 

advantage for behavioral face perception tasks (Sackheim et al., 1978; Young et al., 
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1985). TMS delivered over the rOFA selectively disrupted task accuracy when faces were 

presented in the contralateral visual field but had no effect on faces presented in the 

ipsilateral visual field. Presumably this is because ipsilateral visual field faces were 

preferentially processed by face-selective areas in the left hemisphere. By contrast, TMS 

delivered over the rpSTS disrupted task accuracy when faces were presented in both 

visual fields. 

Accuracy data (Figure 6) were entered into a three (ROI: rOFA, rpSTS, vertex) by two 

(contralateral vs. ipsilateral visual field) repeated measures ANOVA. Results showed a 

significant main effect of TMS site [F (2,26) = 8.3, p=0.002] but not of visual field [F 

(1,13) = 0.6, p=0.46].  Crucially, there was also a significant interaction between TMS site 

and visual field [F (2,26) = 3.9, p=0.032]. To further understand what factors were 

driving this significant interaction we then performed two further ANOVAs that 

separately compared the accuracy data from the rOFA and the rpSTS to the vertex 

control site.  

For OFA stimulation a two (TMS site: rOFA, vertex) by two (contralateral vs. 

ipsilateral visual field) repeated measures ANOVA showed a main effect of TMS site [F 

(1,13) = 8.1, p=0.014] but not of visual field [F (1,13) = 0.8, p=0.82].  Crucially, there was 

a significant interaction between TMS site and visual field [F (1,13) = 6.4, p=0.025]. 

Planned Bonferroni corrections showed that TMS delivered over the rOFA impaired 

performance accuracy in the left visual field compared to TMS delivered over the vertex 

(p=0.016). No other comparisons approached significance (p > 0.35).  

For rpSTS stimulation a two (TMS site: rpSTS, vertex) by two (contralateral vs. 
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ipsilateral visual field) repeated measures ANOVA showed main effects of TMS site [F 

(1,13) = 23.7, p < 0.0001] and of visual field [F (1,13) = 7, p=0.02]. However, there was 

no significant interaction between TMS site and visual field [F (1,13) = 0.8, p=0.8]. The 

main effect of TMS site demonstrates that TMS delivered over the rpSTS impaired 

accuracy equally in both visual fields relative to vertex stimulation. The main effect of 

visual field is consistent with the left visual field advantage for face discrimination we 

observed in the vertex condition and the behavioral left visual advantage for face 

recognition (Sackheim et al., 1978; Young et al., 1985). 

A three by two-way repeated measures ANOVA on the RT data showed no main 

effects of TMS site (p = 0.5) or visual field site (p = 0.28) and there was no significant 

interaction (p = 0.15). 

 

Figure 6 Here. 
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Figure. 6. Mean accuracy performance for the expression recognition task when TMS 

was delivered over the rOFA, rpSTS and vertex control site. Results revealed that TMS 

delivered over the rOFA selectively impaired task performance in the contralateral visual 

field only compared to vertex (* denotes a significant interaction between TMS site and 

visual field, p=0.025). By contrast TMS delivered over the rpSTS impaired task accuracy 

in both visual fields compared to vertex (❖ denotes a significant main effect between 

the rpSTS and vertex conditions, p < 0.0001). Error bars denote standard errors of the 

mean across participants. 

 

 

Discussion 

In the present study we investigated the neural responses to faces presented in 

different parts of the visual field in face-selective and motion-selective brain areas. fMRI 

results showed that the right fusiform face area (rFFA), left fusiform face area (lFFA) and 

right occipital face area (rOFA) exhibited a greater response to faces presented in the 

contralateral than the ipsilateral visual field, a finding consistent with prior evidence 

(Hemond et al., 2007, Kay et al., 2015; Silson et al., 2015). This same pattern, a greater 
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contralateral than ipsilateral response to face videos, was also observed in hMT+. By 

contrast, the face-selective region in the right and left posterior superior temporal 

sulcus (pSTS) did not preferentially respond to faces presented in any part of the visual 

field. The absence of a contralateral visual field bias for faces was also observed in face-

selective voxels in the right amygdala. In a separate TMS experiment, we demonstrated 

that the difference in visual field responses we observed between the rpSTS and rOFA 

was behaviourally relevant. TMS delivered over the rpSTS disrupted performance on a 

facial expression recognition task in both hemifields; while TMS delivered over the rOFA 

disrupted facial expression recognition in the contralateral visual field only. Our results 

demonstrate that the contralateral visual field bias observed in the bilateral FFA, rOFA 

and bilateral hMT+ is absent in the bilateral pSTS.  

Mapping visual field responses can reveal the functional connections between brain 

areas. For example, non-human primate evidence shows that the parts of visual areas 

V1, V2 and V4 with dense anatomical interconnections also represent the same part of 

the visual field (Gattass et al., 1997). A functional connection between the OFA and the 

FFA is consistent with both areas exhibiting a contralateral visual field bias. By contrast, 

if the OFA and FFA provided the sole functional input to pSTS, then the left and right 

pSTS would exhibit the same contralateral bias, which they did not. Our results show 

that there is no difference between the response to faces shown in the left and right 

visual field in the pSTS. 

This difference in visual field response between face-selective areas ventrally (FFA 

and OFA) and laterally (pSTS) in the brain is also consistent with models showing that 
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there are two functionally distinct face pathways (Bruce & Young, 1986; Haxby et al, 

2000; Calder & Young, 2005; Pitcher et al., 2011; Yovel & Duchaine, 2015). The ventral 

pathway, which includes the FFA, preferentially responds to invariant facial aspects, 

such as individual identity (Grill-Spector et al., 2004), whereas the lateral pathway, 

which includes the pSTS, preferentially responds to changeable facial aspects, such as 

emotional expression and eye-gaze direction (Hoffman & Haxby et al., 2000). The 

differences in visual field response we observed suggests that the interhemispheric 

connections between face-selective areas differs between the ventral and lateral brain 

surfaces. Namely, the interhemispheric connections between the bilateral pSTS are 

greater than those between the bilateral FFA. Future models of face perception should 

account for differences in the interhemispheric connections between face-selective 

areas.   

Neuroimaging studies have shown that the pSTS exhibits a greater response to 

moving than to static faces (Puce et al., 1998; LaBar et al., 2002; Fox et al., 2009; Schultz 

& Pilz, 2009; Schultz et al., 2012 Pitcher et al., 2011; 2019), while the FFA and OFA show 

little, or no, preference for dynamic over static faces. This preferential response to 

motion indicates that the pSTS may be cortically connected to the motion-selective area 

hMT+ (O’Toole, 2002). An anatomical connection between motion-selective areas and 

the STS has been shown in both humans (Gschwind et al, 2012) and macaques 

(Ungerleider & Desimone, 1986; Boussaoud et al, 1990). In addition, combined 

TMS/fMRI and neuropsychological evidence has shown that disruption of the OFA and 

FFA does not impair the neural response to moving faces in the pSTS (Rezlescu et al., 
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2012; Pitcher et al., 2014), suggesting that the pSTS has independent functional inputs 

for processing moving faces. The results of the current study indicate that a likely source 

of this functional input to the rpSTS are face-selective areas in the left hemisphere, 

perhaps most notably the lpSTS. This is consistent with a recent study showing that TMS 

delivered over the lpSTS impairs facial expression recognition, albeit to a lesser extent 

than TMS delivered over the rpSTS (Sliwinska & Pitcher, 2018).  

Visual field mapping in macaques shows that visual areas that respond to motion in 

the contralateral visual field (MT, MST and FST) progressively represent a greater 

proportion of the ipsilateral visual field when moving anteriorly within the STS 

(Desimone & Ungerleider, 1986). This is consistent with human neuroimaging studies 

showing that more anterior areas of hMT+ represent a greater proportion of the 

ipsilateral field than more posterior areas (Huk et al., 2002; Amano et al., 2009). In our 

study bilateral hMT+ showed a greater response to moving faces in the contralateral 

than the ipsilateral visual field. This demonstrates that hMT+ cannot be the sole source 

of functional input into the pSTS, as at least some of the ipsilateral response we 

observed in the pSTS must come from the other hemisphere. 

In humans, the anatomical and functional connections of the amygdala are also 

unclear, but non-human primate neuroanatomical studies have identified a pathway 

projecting down the STS into the amygdala (Aggleton et al., 1980; Stefanacci & Amaral, 

2000; 2002). If a functional connection between the pSTS and amygdala exists, then the 

visual field responses to faces in these regions would likely be similar. In fact, we found 

that the right amygdala, like the rpSTS, showed no visual field bias for dynamic faces. 
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This similarity of the visual field responses in the rpSTS and amygdala suggests that the 

rpSTS could be a source of dynamic face input for the right amygdala, which is 

consistent with our study demonstrating that thetaburst TMS (TBS) delivered over the 

rpSTS reduced the fMRI response to moving faces in the right amygdala (Pitcher et al., 

2017). 

In sum, we investigated the visual field responses to faces in face-selective and 

motion-selective brain areas. Consistent with prior evidence, we observed a 

contralateral bias in the rFFA, lFFA and rOFA (Hemond et al., 2007, Kay et al., 2015). By 

contrast, we observed no such visual field bias in the rpSTS, lpSTS and face-selective 

voxels in the right amygdala. Our results suggest that future face perception network 

models should consider interhemispheric asymmetries in the functional connections of 

different face-selective brain areas.  
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