
This is a repository copy of Critical Pairs in Term Graph Rewriting.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/148076/

Version: Accepted Version

Proceedings Paper:
Plump, Detlef orcid.org/0000-0002-1148-822X (1994) Critical Pairs in Term Graph
Rewriting. In: Proc. Mathematical Foundations of Computer Science (MFCS 1994).
Lecture Notes in Computer Science . Springer , pp. 556-566.

https://doi.org/10.1007/3-540-58338-6_102

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Critical Pairs in Term Graph Rewriting

Detlef Plump*

Universitgt Bremen

Abs t rac t

Term graphs represent functional expressions such that common subex-
pressions can be shared, making expression evaluation more efficient than
with strings or trees. Rewriting of term graphs proceeds by both applica-

tions of term rewrite rules and folding steps which enhance the degree of
sharing. The present paper introduces critical pairs in term graph rewrit-

ing and establishes a Critical Pair Lemma as an analogue to the well-known
result in term rewriting. This leads to a decision procedure for confluence

in the presence of termination. As a by-product, the procedure can be

used as a confluence test for term rewriting sad as such it extends the

classical test of Knuth and Bendix because it applies to all terminating

and to certain non-terminating term rewriting systems.

1 In troduc t i on

The rich theory of term rewriting systems is an essential tool for many devel-

opments in areas like algebraic specification, automated theorem proving, and

functional programming. Implementations in these fields, however, usually relin-

quish pure term rewriting in form of string or tree rewriting for efficiency reasons.

Instead, terms are represented by pointer structures--i.e, graphs--which allow

to share common subterms (see e.g. [5, 13, 18]). But this changes the compu-

tational model, having consequences that may be overlooked at a first glance.

For instance, the two models behave differently with respect to termination,

confluence, and the combination of b o t h properties.

The term "term graph rewriting" was introduced by Barendregt et al. [1] and

is now used generically for various approaches to expression evaluation by graph

rewriting such as [2, 4, 6, 7]. (See also [18] for a collection of recent papers on

term graph rewriting).

This paper is concerned with the confluence property of term graph rewriting.

The objective is to give a characterization and a decision procedure for conflu-

ence, in analogy to the well-known result of Knuth and Bendix for term rewriting

[11]. This is achieved by introducing critical pairs in term graph rewriting and

*Author's address: Fachbereich M~thematik und Informatik, Universit~t Bremen, Post-
fach 33 04 40, 28334 Bremen, Germany. E-mail: de t~ in for~a t ik .u n i -b remen .d e . Research

partially supported by ESPRIT Basic Research Working Group 6112, COMPASS.

557

by establishing a sufficient condition for local confluence in form of a Critical

Pair Lemma. Moreover, the confluence test can also be used for term rewriting

and as such extends the classical test of Knuth and Bendix since it applies not

only to terminating systems but also to those non-terminating systems that be-

come terminating under graph rewriting. Finally it is shown that term graph

rewriting allows to decide equivalence of terms for a larger class of systems than

in the case of term rewriting.

A distinctive feature of the present approach to term graph rewriting is the

incorporation of folding steps which identify common subexpressions. Folding

allows to handle non-left-linear rewrite systems and is necessary to make term

graph rewriting a complete method for equational deduction. Moreover, it causes

a vast speed-up of the evaluation process in certain examples.

In this paper, proofs are omitted for lack of space; they can be found in [16].

2 Term Graph Rewriting

Let ~ be a signature, i.e. a set of function symbols, and X be a set of variables

disjoint from E. Each function symbol f comes with an integer ar i ty (f) > 0;

for each variable x, let arity(x) = O.

A hypergraph G is a system (VG, EG, SG, ta, IG), where VG and EG are finite

sets of nodes (or vertices) and (hyper-)edges, SG: EG --+ VG and tG: EG --~ V~

are mappings that assign a source node and a string of target nodes to each edge,

and IG: EG -+ ~ U X is a mapping that labels each edge e such that arity(lG(e))

is the length of tG(e).
Given two nodes v and v', write v >1 v' if there is an edge e with source

node v and v' occuring in tG(e). The transitive (reflexive-transitive) closure of

>~ is denoted by >G (>_G). G is acyelic if >G is irreflexive.

A hypergraph G is a term graph if (1) there is a node rootG such that

root6 >_G v for each node v, (2) G is acyclic, and (3) each node has a unique

outgoing edge.

Figure 1 shows three term graphs with function symbols +, • s, and 0, where

arity(+) = ari ty(• = 2, arity(s) = 1, and arity(O) = O. Edges are depicted

as boxes with inscribed labels, and circles represent nodes. A line connects each

edge with its source node, while arrows point to target nodes. The order in a

target string is given by the left-to-right order of the arrows leaving a box.

Terms over Z and X are defined as usual (see e.g. [3]). A node v in a term

graph G represents the term termG(v) = lG(e) (t e rmG(v l) , . . . , t e rmG(vn)) ,

where e is the unique edge with source v, and tG(e) = v l . . . v , . In the fol-

lowing t erm(G) stands for termG(roota) . As an example, if G is the left term

graph in Figure 1, then t erm(G) = +(s(0), x (s(0), +(0, 0))).

A rewrite rule l ---* r consists of two terms I and r such that i is not a

variable and all variables in r occur also in l. A set ~ of such rules is a term

rewriting system. The reader is assumed to be familiar with basic concepts of

term rewriting (see e.g. [3, 10, 14]). The rewrite relation associated with ~ is

denoted by --*R.

558

For every term t, let 0f be a "tree with shared variables" representing t, i.e.,

0t is a term graph such that (1) term(Of) = t, (2) indegree(v) <_ 1 for each node

v with lo~(v) ~ X , 1 and (3) v = v' for all nodes v,v' with lot(v) = lot(v') E X .

For every term graph G, let _G be the hypergraph that is obtained from G

by removing all edges labelled with variables.

Given two hypergraphs G and H, a hypergraph morphism g: G --+ H is a pair

of mappings (gy: VG -* V~t,gE: EG --~ E t t) that preserve sources, targets, and

labels, i.e., s H o gE = gv o SG, tH o gE = g~ o tG, and IH o gE = IG .2

What follows are constructions of the hypergraph and term graph rewrite

steps used in this paper. Exact definitions based on hypergraph pushouts a r e

given in [16].

Let G and H be hypergraphs. Then there is an evaluation step from G to

H, denoted by G = ~ H, if there is a rewrite rule 1 ~ r in 7~ and a hypergraph

morphism g: 0/--* G (determining the redex g(Ol)) such that H is isomorphic 3

to the hypergraph constructed from G as follows:

(1) Remove g(e), where e is the edge with source rootoz, yielding a hypergraph
G I .

(2) Build the disjoint union G' + 0.__.rr and

(2.1) identify g(rootoz) with rootor ,

(2.2) for each pair (v ,v ') �9 Voz x Vor with lOl(v) = 10r(v') �9 X, identify g(v)

with v'.

To turn =:~x into a relation on term graphs, evaluation steps are completed

by a garbage collection phase. Given two term graphs G and J, write G ~ e J if

there is an evaluation step G =r H such that J is obtained from H as follows:

(3) Remove all edges e (and their source nodes) satisfying root6 ~I~ SH(e).

Figure 1 shows an evaluation step (with garbage collection) by the rewrite

rule x x (y + z) ~ (x • y) + (x x z). Note that the morphism locating 0x x (y + z)

identifies the nodes representing y and z, and that the +-edge with shared target

nodes is removed by garbage collection.

Besides evaluation steps, term graphs are manipulated by so-called folding

steps which enhance the degree of sharing. This is to make term graph rewriting

a complete proof method for first-order equations. Moreover, in certain cases

folding steps speed up the evaluation process considerably (see [7] for an example

in which an exponential number of steps is reduced to a linear number).

A folding step G ~ y G between two hypergraphs G and G is constructed

by identifying two distinct edges e and e' in G that satisfy Ia(e) = 1G(e') and

ta (e) = t v (e ') . Note that if G is a term graph, then so is G and t e rm(G) =

term(G). An example of a folding step is shown in Figure 1.

This paper deals with arbitrary sequences of evaluation and folding steps.

Given two hypergraphs G and H, write G :=~ H if G = ~ H or G =r H. For

term graphs G and H, write G ~rr H if G ~ e H or G ::~, H.

lindegree(v) is the number of occurrences of v in the target strings of all Or-edges.
2Given a mapping f: A ---* B, f*: A* --* B* sends a string al ... an to](al) . . .](an).
3A hypergraph morphism g: G --* H is an isomorphism if gv and gE are bijective. In this

case G and H are isomorphic.

0

E

g

559

:=k

%

Figure 1: An evaluation step followed by a folding step

For every step G =~n H there is function tracka~H: VG --* VH which sends

each node in G to its "descendant" in H (see [16] for the precise definition based

on pushouts). Track functions are extended to rewrite sequences by composing

the track functions of the constituting rewrite steps.

Given a binary relation --* on a set A, ---** and ~--** denote the transitive-

reflexive and symmetric-transitive-reflexive closures of ---~. The relation ~ is

(locally) confluent if for all a, b, e with b ,--* a ---** c (b ~-- a --~ c) there is some

d such that b ---** d ,---* c. The relation --* is terminating if there is no infinite

sequence al ~ a2 --* a3 --* An element a in A is a normal form if there is

no b such that a ~ b. Element a has a normal form if a ---** b for some normal

form b.

3 Cr i t i ca l Pa ir s an d C o n f l u e n c e

The goal of the following considerations is to give a sufficient condition for local

confluence of te rm graph rewriting in form of a Critical Pair Lemma, analogously

to the well-known result established by Knuth and Bendix [11] and Huet [8]. The

idea is to infer local confluence of ~ n from the confluence of so-called critical

pairs, being certain divergent steps U1 r S ~ n U2 in which S represents a

"critical overlap" of the involved redexes.

As a prerequisite for the Critical Pair Lemma, one has to show tha t ~ n is

already locally confluent if for each two steps of the form H1 ~ G ~ g H2

there is a term graph M with H1 ~ M ~ H2. Since folding is confluent,

this amounts to showing that for each divergent si tuation H1 ~ e G :=~, H~

there is also such an M. The crucial case is given when the edge removed in

560

G ~ z H1 is one of the two edges identified in G ::~y H2; constructing M in this

constellation makes up the main part of the proof of the following theorem.

T h e o r e m 3.1 The relation ~ is locally confluent if and only if for all steps
H1 ~-z G ~ z H2 there is a term graph M such that H1 ~ M ~'7r H2.

By this result, testing term graph rewriting for local confluence reduces to the

problem of checking that every pair of divergent evaluation steps is confluent

under ~ . The Critical Pair Lemma established below provides a sufficient

condition for the latter showing that it suffices to consider only those divergent

steps U1 r S :=~ U2 for which _S results from superposing the redexes. The

requirement is then that there are derivations U1 ==~ X1 and U2 ==~ X2 such

that X1 and X2 are isomorphic up to certain garbage by an isomorphism that

is compatible with the track functions of the derivations _S =re U1 = ~ X1 and

When evaluation steps are embedded into a (graph-)context, edges may be

attached to nodes that become garbage. Therefore critical pairs have to be de-

fined for evaluation steps without garbage collection. In the following definition,

the first condition puts a bound on the size of hypergraphs in critical pairs if the

given set 7~ of rewrite rules is finite, while the second condition expresses that

redexes overlap in a critical way.

Def in i t ion 3.2 (cri t ical pair) Let S be a term graph and S :=~z Ui be an

evaluation step by a rewrite rule li ---* r~ and a hypergraph morphism gi: 01_A ---* _S,

for i -- 1, 2. Then U1 ~:s S ==~s U2 is a critical pair (over 7~) if

(1) _S = gl(Oll) U g2(~12) and

(2) gl(el) �9 g2(01___22) or g2(e2) �9 gl(Ol_..!), where ei is the edge outgoing from

rootot ~ for i = 1, 2.

Moreover, gl r g2 is required for the case (il --, rl) = (12 ~ r2).

In what follows, critical pairs that differ only by renaming of nodes and edges

are not distinguished. As a consequence, only finitely many critical pairs need

to be considered whenever T~ is finite.

Ex ample 3.3 The rewrite rules

g(f(a,x)) ---, g(b)

f(x, y) ~ c

(with x,y being variables) give rise to the two critical pairs shown in Figure 2

(the nodes are numbered to indicate the track functions).

Given a hypergraph derivation G =:~ H, let Track(G ~ H) be the subhy-

pergraph of H with node set {w e VH I trackG:~*u(V) ~H W for some v e VG}

and edge set {e e EH I sti(e) �9 VTrack(G=~H) }.

.t=
s

10

3 ~ 0 4 3

561

s

3 0 0 4

|
2O

"t=
g

1()

2(
s

Figure 2: Two critical pairs

Def ini t ion 3.4 (joinabi l i ty) A critical pair U1 ~ c S :=r U2 is joinable if

there are derivations U1 :=~ X1 and U2 : : ~ X2 such that there is an isomor-

phism iso: Track (S =r U1 :=r X1) ---* Track (S_ ==~e U2 = ~ X~) satisfying

isov(tracks_=~u,=~.x, (v)) = tracks_=~u==~.x2(v) for each v E Vs.

Note that the joining derivations Ui :=r Xi are allowed to contain folding steps

and that garbage in XI and X2 is ignored as far as it consists of items not

reachable from the descendant of any node in S. Requiring that X1 and X2 are

isomorphic would be too restrictive, as can be seen in the following example.

Ex ample 3.5 After adding the rewrite rule g(b) ---* g(c) to the two rules of

Example 3.3, the second critical pair in Figure 2 is joinable by the derivation

shown in Figure 3. Observe that the resulting hypergraph contains garbage (the

constant b) which does not occur in the right-hand hypergraph of the critical

pair. The first critical pair in Figure 2 is joinable by a similar derivation.

L e m m a 3.6 (Cr i t ica l Pa i r Lemma) If all critical pairs over Tr are joinable,

then ~7~ is locally confluent.

The proof of the Critical Pair Lemma in [16] is based on two results from graph

grammar theory stating a commutation property for independent rewrite steps

(where independence corresponds to absence of critical pairs) and the possibility

of embedding derivations into context.

562

1 i 1 i

Figure 3: A joining derivation for Example 3.3

The Critical Pair Lemma allows to characterize confluence in the presence of

termination, analogously to the well-known result for term rewriting [11].

T h e o r e m 3.7 Suppose that ~ is terminating. Then ~ is confluent if and

only if all critical pairs over Tr are joinable.

One direction of this result follows directly from the Critical Pair Lemma by the

fact that local confluence together with termination implies confluence [8]. The

proof of the converse direction exploits that ~ R is terminating if and only if = ~

is, and that "fully collapsed" term graphs (i.e. normal forms of ~ y) are---up to

isomorphism--uniquely determined by the terms they represent.

Example 3.8 Let ~ be the following system:

f(x) --* g(x,x)

a ---* b

g(a,b) --* f(a)

To see that ~rr is terminating, observe that no evaluation or folding step in-

creases the number of g-labelled edges with distinct target nodes. Therefore

an infinite sequence G1 ~ n G2 ~ . . . had to contain a term graph Gk such

that the number of these edges remains constant in all Gn with n >__ k. So the

sequence Gk ~ n Gk+l ~ n . . . could not contain evaluation steps with the third

rewrite rule. But an infinite sequence without these steps is impossible (assign to

a term graph G the sum IIaX(f)l + IIGX(a)l + IEal which decreases in each step).

Thus, as there is only one critical pair which is easily shown to be joinable, ~Tz

is confluent by Theorem 3.7.

From the proof of Theorem 3.7 a test can be derived which--in the presence

of termination--decides whether ~ is confluent or not.

T h e o r e m 3.9 The procedure in Figure 4 solves the following problem:

Instance: A term rewriting system 7~ with finitely many rules such that ~

is terminating.

Question: ls ~ confluent?

563

inpu t : a term rewriting system 7~ with finitely many rules such that ~ u is

terminating

begin

for each critical pair (]1 r S ::~e (]2 do
extend S to S by appending variable;edges, and construct ex-

tended evaluation stems UI ~::~ S ::~z U~;

starting with UI and U~, perform evaluation and folding steps as

long as possible to obtain derivations UI ::~ XI and 0"2 ::~ X2

such that)~I and -~2 are normal forms;

V : = Vs;
repea t

choose some node v in V;

if t erms , (track s ~ ~. ~, ' (v)) = terms, 2 (track s=~=~. ~, 2 (v))

then V := V - {v} else r e t u r n (" ~ z is not confluent")

un t i l V = 0

endfor;

wrlte("~Tz is confluent")

end

Figure 4: Decision procedure for confluence

4 The Relation to Term Rewrit ing

This section clarifies the relation between term graph and term rewriting. In

particular, the class of systems 7~ for which ~ R is confluent and terminating

is shown to be a proper superclass of those systems that are confluent and

terminating under --~7r Moreover, it turns out that the decision procedure in

Figure 4 yields a confluence test for term rewriting that extends the classical

one of Knuth and Bendix.

By the following principal result, term graph rewriting is sound and complete

for equational deduction in the same sense as term rewriting is.

T h e o r e m 4.1 (Comple teness Theo rem [15]) For all term graphs G and H,

a ~*n H if and only if term(G) ~-*~ term(H).

With the well-known equivalence of confluence and the Church-Rosser prop-

erty [8] one obtains the following corollary.

Corol la ry 4.2 Suppose that ~T~ is confluent. Then for all term graphs G,H,

term(G) ~-+~ term(H) if and only if G 3 " i ~* H for some term graph M.

As a consequence, the relation ~-~ (which coincides with equality in the models

of ~) is decidable (for finite'7~) whenever ~ u is terminating: Given terms t

564

and u, choose term graph representations T and U and perform evaluation and

folding steps as long as possible, obtaining normal forms T' and U'; then t ~ u

if and only if T' and U' are isomorphic.

From Corollary 4.2 and soundness of term graph rewriting (G ~ n H implies

term(G) ~ term(H)) one obtains the following relationship.

Theor e m 4.3 ([15]) If ~ x is confluent, then so is ---~7~.

The converse of this result does not hold, a counterexample is given in [15, 16].

Despite this relationship, term graph rewriting has unique normal forms if and

only if term rewriting has. Recall that a binary relation ---, has unique normal

forms if for all normal forms a and b, a ~-~* b implies a = b.

T h e o r e m 4.4 The relation ~ n has unique normal forms if and only if --+~

has.

The proof rests on the Completeness Theorem 4.1, the fact that ~n-normal

forms represent term normal forms, and the uniqueness of fully collapsed term

graphs. As a consequence of this characterization, terminating term graph

rewriting is confluent whenever term rewriting is.

Coro l la ry 4.5 Suppose that ~ n is terminating. Then ~ n is confluent if and

only if ~ is.

Thus, the decision procedure in Figure 4 can be used as a confluence test for

term rewriting. Since termination of --*~ carries over to ~ n but not vice versa,

the procedure applies to all terminating and also to certain non-terminating

term rewriting systems. For instance, in Example 3.8 it is shown that ~ n

is confluent and terminating for the system 7~ given there. So the procedure

discovers that --*7~ is confluent. However, ---~ is non-terminating because of the

infinite sequence

f(a) g(a, a) g(a,b) f(a) - - . n . . .

and hence the confluence test of Knuth and Bendix [11] for terminating term

rewriting systems does not apply. Their test reduces the terms in critical pairs

(in the sense of term rewriting) to normal form and checks syntactical equality.

But, in general, the joinability of all critical pairs does not guarantee confluence

if --*~ is non-terminating. (Observe also that in this example normalization may

fail because the term f(a) occurs in the only critical pair.)

As term graph rewriting is terminating whenever term rewriting is, Corol-

lary 4.5 yields also the following relationship.

Coro l la ry 4.6 I f --*~ is confluent and terminating, then so is ~ n .

The converse does not hold, since --~n needs not be terminating when ~ n is

(see the above example). So confluent and terminating term rewriting systems

form a proper subclass of the systems that enjoy this property under term graph

rewriting. As a result, the term graph decision procedure for ~ described after

Corollary 4.2 terminates for more systems than the corresponding procedure by

term rewriting.

565

5 Concluding Remarks

As pointed out to the author by If. Comon, it seems evident that the above

results allow improved confluence criteria for equational term rewriting which

comprises applications of both rules and equations. Previous criteria developed

by Padawitz [12] and Jouannaud, Kirchner and Remy [9] are based on so-called

parallel critical pairs in order to avoid the restriction that rules have to be

right-linear. Using term graph rewriting instead of term rewriting should yield

simplied conditions for an equational theory to be decidable.

Another line of research related to the present approach deals with critical

pairs over general graph rewrite rules [17]. This setting is more general in that

rules operate on arbitrary (hyper-)graphs, and different in so far as rewrite steps

do not include garbage collection. Here the joinability condition needed for

critical pairs is not necessary for confluence, even in the presence of termination.

In contrast to the situation for term graph rewriting, confluence of terminating

graph rewrite systems turns out to be undecidable in general.

References

[1] If. Barendregt, M. van Eekelen, J. Glauert, R. Kennaway, R. Plasmeijer,

and R. Sleep. Term graph rewriting. In Proc. Parallel Architectures and

Languages Europe, pages 141-158. Springer Lecture Notes in Computer

Science 259, 1987.

[2] A. Corradini and F. Rossi. Hyperedge replacement jungle rewriting for term

rewriting systems and logic programming. Theoretical Computer Science,

109:7-48, 1993.

[3] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,

editor, Handbook of Theoretical Computer Science, volume B, chapter 6.

Elsevier, 1990.

[4] W. M. Farmer and R. J. Watro. Redex capturing in term graph rewriting.

International Journal on Foundations of Computer Science, 1(4), 1990.

[5] J. H. Fasel and R. M. Keller, editors. Graph Reduction. Springer Lecture

Notes in Computer Science 279, 1987.

[6] J. Goguen, C. Kirchner, and J. Meseguer. Concurrent term rewriting as

a model of computation. In Proc. Graph Reduction, pages 53-93. Springer

Lecture Notes in Computer Science 279, 1987.

[7] B. IIoffmann and D. Plump. Implementing term rewriting by jungle eval-

uation. RAIRO Theoretical Informatics and Applications, 25(5):445-472,

1991.

[8] G. ttuet. Confluent reductions: Abstract properties and applications to

term rewriting systems. Journal of the ACM, 27(4):797-821, 1980.

566

[9] J.-P. 3ouannaud, H. Kirchner, and J.-L. R6my. Church-tosser properties
of weakly terminating term rewriting systems. In Proc. International Joint

Conference on Artificial Intelligence '83, pages 909-915, 1983.

[10] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay, and

T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2,

pages 1-116. Oxford University Press, 1992.

[11] D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras.

In J. Leech, editor, Computational Problems in Abstract Algebras, pages

263-297. Pergamon Press, 1970.

[12] P. Padawitz. Equational data type specifications and recursive program
schemes~ In Proc. Formal Descriptions of Programming Concepts-II, pages

305-328. North-Holland, 1983.

[13] S. L. Peyton Jones. The Implementation of Functional Programming Lan-

guages. Prentice-Hall, 1987.

[14] D. A. Plaisted. Equational reasoning and term rewriting systems. In D. M.

Gabbay and J. Siekmann, editors, Handbook of Logic in Artificial Intelli-

gence and Logic Programming, volume 1. Oxford University Press, 1993.

[15] D. Plump. Collapsed tree rewriting: Completeness, confluence, and modu-

larity. In Proc. Conditional Term Rewriting Systems, pages 97-112. Springer
Lecture Notes in Computer Science 656, 1993.

[16] D. Plump. Evaluation of functional expressions by hypergraph rewriting.
Dissertation, UniversitKt Bremen, Fachbereich Mathematik und Informatik,

1993.

[17] D. Plump. Hypergraph rewriting: Critical pairs and undecidability of con-

fluence. In [18], chapter 15.

[18] R. Sleep, R. Plasmeijer, and M. van Eekelen, editors. Term Graph Rewrit-

ing: Theory and Practice. John Wiley, 1993.

