
This is a repository copy of Simplification Orders for Term Graph Rewriting.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/148075/

Version: Accepted Version

Proceedings Paper:
Plump, Detlef orcid.org/0000-0002-1148-822X (1997) Simplification Orders for Term Graph
Rewriting. In: Proceedings Mathematical Foundations of Computer Science (MFCS 1997).
Lecture Notes in Computer Science . Springer , pp. 458-467.

https://doi.org/10.1007/BFb0029989

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Simpli�cation Orders for Term Graph Rewriting

Detlef Plump

?

CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

E-mail: det@cwi.nl

Proc. Mathematical Foundations of Computer Science '97, vol. 1295 of

Lecture Notes in Computer Science, 458{467 (1997)

Abstract. Term graph rewriting di�ers from term rewriting in that

common subexpressions can be shared, improving the e�ciency of rewrit-

ing in space and time. Moreover, computations by term graph rewriting

terminate more often than computations by term rewriting. In this paper,

simpli�cation orders on term graphs are introduced as a means for prov-

ing termination of term graph rewriting. Simpli�cation orders are based

on an extension of the homeomorphic embedding relation from trees to

term graphs. By generalizing Kruskal's Tree Theorem to term graphs,

it is shown that simpli�cation orders are well-founded. Then a recursive

path order on term graphs is de�ned by analogy with the well-known

order on terms, and is shown to be a simpli�cation order. Examples of

termination proofs with the recursive path order are given for rewrite

systems that are non-terminating under term rewriting.

1 Introduction

When computations with term rewrite rules are implemented in, for example, in-

terpreters of functional programming languages, symbolic computation systems,

or theorem provers, terms are often represented by graph-like data structures.

Graphs, in contrast to trees, allow to share common subterms. This improves

the e�ciency of rewriting not only in space but also in time since repeated

computations can be avoided.

Term graph rewriting is a computational model in which term rewrite rules

operate on graphs that represent terms. The technical setting of the present pa-

per conforms to [8,15,16]. (See [1,2,9] and the collection [17] for some alternative

approaches.) In this approach, term graphs can be transformed by both applica-

tions of term rewrite rules and so-called collapse steps which enhance the degree

of sharing.

Compared with term rewriting, term graph rewriting is not only more e�cient

but also enjoys termination for a larger class of rewrite systems. For instance,

the following non-terminating term rewriting system is given in [4]:

f(a; b; x)! f(x; x; x)

a! b

?

On leave from Universit�at Bremen, Germany. Author's research is partially sup-

ported by the HCM Network EXPRESS, the ESPRIT Working Group APPLI-

GRAPH, and the TMR Network GETGRATS.

Non-termination is witnessed by the in�nite rewrite sequence f(a; b; a) !

f(a; a; a) ! f(a; b; a)! : : : In contrast, the same system does terminate under

term graph rewriting. This is because graph rewrite steps with the �rst rule do

not copy the argument x but create a shared subgraph. A terminating compu-

tation starting from the tree representing f(a,b,a) looks as follows:

f

a

b

a

)

f

a

)

f

b

The question arises how to prove termination for systems like the present

one. Obviously, the techniques available for term rewriting (see [4] for a survey)

are not directly applicable. In this paper, the well-known concept of a simpli�ca-

tion order [3,12,18] is generalized from terms to term graphs. The main idea is

to base simpli�cation orders on precedences of so-called tops, which are graphs

containing a single function symbol or variable. By ordering tops instead of func-

tion symbols, the homeomorphic embedding relation on trees can be extended

to term graphs such that sharing as in the above derivation is re
ected.

Consider, for instance, the following precedence (where the three tops in the

middle of the �rst row are all smaller than the left top and greater than the right

top):

f

A

f

;

f

;

f

A

f

a

A

b

Under this precedence the right term graph of the above derivation is em-

bedded in the left term graph, but the left graph is not embedded in the middle

graph. In contrast, the left graph (which is a tree) is homeomorphically embed-

ded in the tree corresponding to the middle graph if a is greater than b.

Below it is shown that the embedding relation is a well-quasi-order on term

graphs whenever the given precedence is a well-quasi-order on tops. This result

extends Kruskal's Tree Theorem [11] to term graphs. Simpli�cation orders are

then de�ned as certain strict orders on term graphs such that \strictly embed-

ded" is a special case of \simpler". These orders are shown to be well-founded

whenever the underlying precedence is a well-quasi-order. Subsequently, a recur-

sive path order on term graphs is introduced by analogy with the corresponding

order on terms and is shown to be a simpli�cation order. In the present example,

the recursive path order over the given precedence allows to prove termination

of term graph rewriting.

2 Term Graphs

A signature � is a set of function symbols such that each f 2 � comes with a

natural number arity(f) � 0. Function symbols of arity 0 are called constants.

For simplicity, it is assumed that � contains at least one constant. A set X of

variables for � must satisfy X \� = ;. For each variable x, let arity(x) = 0.

A hypergraph over � [X is a system G = hV

G

; E

G

; lab

G

; att

G

i consist-

ing of two �nite sets V

G

and E

G

of nodes and hyperedges, a labelling function

lab

G

: E

G

! � [X , and an attachment function att

G

: E

G

! V

�

G

which as-

signs a string of nodes to a hyperedge e such that the length of att

G

(e) is

1 + arity(lab

G

(e)). In the following, hypergraphs and hyperedges are simply

called graphs and edges.

Given a graph G and an edge e with att

G

(e) = v v

1

: : : v

n

, node v is the result

node of e while v

1

; : : : ; v

n

are the argument nodes. The result node is denoted

by res(e). For each node v, G[v] is the subgraph consisting of all nodes that are

reachable from v and all edges having these nodes as result nodes.

In pictures of graphs, edges are depicted as boxes with inscribed labels, and

bullets represent nodes. A line connects each edge with its result node while

arrows point to the argument nodes. The order among the argument nodes is

given by the left-to-right order of the arrows leaving the box.

De�nition 1 (Term graph). A graph G is a term graph if

(1) there is a node root

G

from which each node is reachable,

(2) G is acyclic, and

(3) each node is the result node of a unique edge.

The set of all term graphs over �[X is denoted by T G

�;X

, and T G

�

stands

for the subset of all term graphs without variables; the latter are called ground

term graphs.

A graph morphism f :G ! H between two graphs G and H consists of two

functions f

V

: V

G

! V

H

and f

E

: E

G

! E

H

that preserve labels and attachment

to nodes, that is, lab

H

�f

E

= lab

G

and att

H

�f

E

= f

�

V

�att

G

(where f

�

V

: V

�

G

! V

�

H

maps a string v

1

: : : v

n

to f

V

(v

1

) : : : f

V

(v

n

)). The morphism f is an isomorphism

if f

V

and f

E

are bijective. In this case G and H are isomorphic, which is denoted

by G

�

=

H .

3 A Well-quasi-order on Term Graphs

In this section, precedences are introduced as orders on certain small graphs.

Every precedence induces an embedding relation on term graphs. Recall that

a preorder (or quasi-order) is a re
exive and transitive relation, while a strict

order is irre
exive and transitive. A strict order � on a set A is well-founded (or

terminating) if no in�nite sequence a

1

� a

2

� : : : over A exists. A preorder �

on A is a well-quasi-order (wqo for short) if for every in�nite sequence a

1

; a

2

; : : :

over A there are i and j such that i < j and a

i

� a

j

. Note that if A is �nite,

then every preorder on A is a well-quasi-order.

De�nition 2 (Top). Let G be a term graph. The top of G, denoted by top

G

, is

the subgraph consisting of the unique edge e with res(e) = root

G

and all nodes

in att

G

(e). The unique edge label of a top t is denoted by lab(t), and Tops

�

is

the set of all tops with function symbols from �.

De�nition 3 (Precedence). Given a signature �, a precedence is a transitive

relation w on Tops

�

such that for all s; t 2 Tops

�

, s

�

=

t implies s w t.

Thus, precedences are preorders satisfying a stronger property than re
ex-

ivity. The containment of isomorphism guarantees that precedences are well-

quasi-orders whenever � is �nite. (Re
exivity is not su�cient for this as there

are in�nitely many isomorphic copies of every top.)

De�nition 4 (String embedding). Letw be a preorder on a set A. The string

embedding relation w

str

on A

�

is de�ned as follows: a

1

: : : a

m

w

str

b

1

: : : b

n

if

b

1

: : : b

n

is empty or if there are j

1

; : : : ; j

n

such that 1 � j

1

< j

2

: : : < j

n

� m

and a

j

1

w b

1

; : : : ; a

j

n

w b

n

.

Hence, a w

str

b means that b is embedded in a. By Higman's Lemma [7], w

str

is a well-quasi-order on A

�

if w is a well-quasi-order on A.

De�nition 5 (Immediate subgraphs). Let G be a term graph and e be the

unique edge such that att

G

(e) = root

G

v

1

: : : v

n

for some nodes v

1

; : : : ; v

n

(n � 0).

Then G[v

1

]; : : : ; G[v

n

] are the immediate subgraphs of G and sub

G

is the string

G[v

1

] : : :G[v

n

].

The next de�nition extends homeomorphic embedding from trees to term

graphs (see [4] for a de�nition of tree embedding).

De�nition 6 (Embedding). Let w be a precedence. The embedding relation

D on T G

�

is de�ned inductively as follows: G D H if

(1) S D H for some immediate subgraph S of G, or

(2) top

G

w top

H

and sub

G

D

str

sub

H

.

It is easy to show that D is a preorder containing isomorphism of ground

term graphs. In order to state Kruskal's Tree Theorem in terms of D, call a term

graph G a tree if indegree(v) = 1 for each non-root node v.

1

Theorem 7 (Tree Theorem [11]). Let � be a well-quasi-order on � and w

be the precedence fhs; ti 2 Tops

2

�

j lab(s) � lab(t)g. Then D is a well-quasi-order

on the set of all trees over �.

Note that the above precedence in general contains pairs with tops that are

not in tree form. But the restriction of D to trees is clearly independent of this

part of the precedence.

1

Given a node v in a term graph G, indegree(v) is the total number of occurrences of

v in the attachment strings of all edges e with res(e) 6= v.

De�nition 8. The relations , and B on T G

�

are de�ned as follows:

(1) G , H if G D H and H D G.

(2) G B H if G D H and H 4 G.

Observe that G , H need not imply that G and H are isomorphic, even with

isomorphism as precedence. For example, the following equivalence holds over

every precedence:

f

a

g

a

,

f

g

a

Now the Tree Theorem is extended to term graphs.

Theorem 9. Let w be a precedence that is a well-quasi-order on Tops

�

. Then

D is a well-quasi-order on T G

�

.

The Tree Theorem is a corollary of this result. For if � is a well-quasi-order

on �, the precedence fhs; ti 2 Tops

2

�

j lab(s) � lab(t)g is clearly a well-quasi-

order on Tops

�

. With Theorem 9 follows that D is a well-quasi-order on T G

�

,

and hence, in particular, on the set of all trees over �.

Theorem 9 can be proved|without di�culties|by the \minimal bad se-

quence" method used by Nash-Williams for proving the Tree Theorem [13]. Al-

ternatively, Theorem 9 can be proved by the Tree Theorem via an encoding of

term graphs as trees. This proof is given below.

Proof of Theorem 9. First, � is enlarged to a signature �

�

such that there is

a bijection between function symbols in �

�

and isomorphism classes of tops

over �. To this end, introduce for every f 2 � and every equivalence relation

� on f1; : : : ; arity(f)g a function symbol f

�

with arity(f

�

) = arity(f). Let

�

�

= ff

�

j f 2 �g. Now consider any t 2 Tops

�

with lab(t) = f and string of

argument nodes v

1

: : : v

n

(n � 0). De�ne �(t) = f

�

, where � is the equivalence

relation fhi; ji j v

i

= v

j

g on f1; : : : ; ng.

Claim: The relation �

�

= fh�(s); �(t)i j hs; ti 2 wg is a wqo on �

�

.

Observe �rst that re
exivity of �

�

follows from re
exivity of w and surjec-

tivity of the mapping �. To see that � is transitive, suppose that �(t

1

) �

�

�(t

2

) =

�(t

0

2

) �

�

�(t

3

). Then t

1

w t

2

�

=

t

0

2

w t

3

because � identi�es only isomorphic tops.

Hence t

1

w t

3

and �(t

1

) �

�

�(t

3

). Finally, since w is a wqo, surjectivity of �

implies that �

�

is a wqo, too.

Next, � is extended to a mapping � from T G

�

to the set of trees over �

�

as follows: If G is a term graph with sub

G

= S

1

: : : S

n

(n � 0), then �(G)

is a tree with lab(top

�(G)

) = �(top

G

) and sub

�(G)

= �(S

1

) : : : �(S

n

). (This

de�nes �(G) uniquely up to isomorphism.) Now consider the precedence w

�

=

fhs; ti 2 Tops

2

�

�

j lab(s) �

�

lab(t)g and its induced embedding relation D

�

. By

the above claim and the Tree Theorem, D

�

is a wqo on the set of all trees over

�

�

. Moreover, an easy induction on the size of (combined) term graphs shows

that for all G;H 2 T G

�

, G D H if and only if �(G) D

�

�(H). It follows that

D is a wqo, too. ut

The next two lemmas characterize the equivalence , and the strict part B

of D. Given a string a = a

1

: : : a

n

, jaj denotes its length n while, for i = 1; : : : ; n,

a[i] refers to the element a

i

. The relations �, A and B

str

are de�ned as follows:

� = (w \ v), A = (w � v) and B

str

= (D

str

� E

str

).

Lemma 10. Let w be a precedence. Then for all term graphs G and H, G , H

if and only if (1) top

G

� top

H

, (2) jsub

G

j = jsub

H

j, and (3) sub

G

[i] , sub

H

[i]

for i = 1; : : : ; jsub

G

j.

Lemma 11. Let w be a precedence. Then for all term graphs G and H, G B H if

and only if (1) S D H for some immediate subgraph S of G, or (2) top

G

A top

H

and sub

G

D

str

sub

H

, or (3) top

G

� top

H

and sub

G

B

str

sub

H

.

4 Simpli�cation Orders

Simpli�cation orders are certain strict orders that contain the strict embedding

relation. Theorem 9 guarantees that such orders are well-founded whenever the

given precedence is a well-quasi-order.

De�nition 12 (Simpli�cation order). Let D be the embedding relation in-

duced by a precedence that is a well-quasi-order. A transitive relation � on

T G

�

is a simpli�cation order if it contains B and if for all G;H 2 T G

�

, G , H

implies G � H .

Note that simpli�cation orders are irre
exive, in particular.

Theorem 13. Every simpli�cation order is well-founded.

Proof. Let � be a simpli�cation order. Then, by Theorem 9, the underlying

embedding relation D is a well-quasi-order. Now suppose that there is an in�nite

sequence G

1

� G

2

� : : : Then there are i and j such that G

i

E G

j

. On the other

hand, G

i

� G

i+1

� : : : � G

j

implies G

i

� G

j

by transitivity of �. Hence, by

the de�nition of simpli�cation orders, G

i

, G

j

is impossible. But then G

i

C G

j

and therefore G

i

� G

j

. It follows G

i

� G

i

, contradicting the irre
exivity of

simpli�cation orders. Thus, � is well-founded. ut

In order to introduce a recursive path order on term graphs, the lifting of an

order to a multiset order is recalled.

De�nition 14 (Multiset extension). Let � be a strict order on a set A. The

multiset extension �

mul

on the set of �nite multisets over A is de�ned as follows:

M �

mul

N if there are multisets X and Y such that

(1) ; 6= X �M ,

(2) N = (M �X) [Y , and

(3) for all y 2 Y there is some x 2 X with x � y.

Lemma 15 (Dershowitz and Manna [6]). If � is a strict order on a set A,

then �

mul

is a strict order on the set of �nite multisets over A. If � is moreover

well-founded, then �

mul

is well-founded, too.

The equivalence relation �

rpo

de�ned next will be used in the de�nition of

the recursive path order.

De�nition 16. Let w be a precedence. The relation �

rpo

on T G

�

is de�ned

inductively as follows: G �

rpo

H if (1) top

G

� top

H

, (2) jsub

G

j = jsub

H

j, and

(3) there is a bijection � on f1; : : : ; jsub

G

jg such that sub

G

[i] �

rpo

sub

H

[�(i)]

for i = 1; : : : ; jsub

G

j.

The equivalence class of a ground term graph G with respect to �

rpo

is

written [G]. Given a strict order � on T G

�

such that G

0

�

rpo

G � H �

rpo

H

0

implies G

0

� H

0

, � is lifted to an order on equivalence classes as follows:

[G] � [H] if G � H . (See [12] for a similar lifting of preorders.) For G 2 T G

�

with sub

G

= S

1

: : : S

n

, the multiset f[S

1

]; : : : ; [S

n

]g of equivalence classes of

immediate subgraphs is denoted by SUB

G

.

De�nition 17 (Recursive path order). Let w be a precedence. The recur-

sive path order �

rpo

on T G

�

is de�ned inductively as follows: G �

rpo

H if

(1) S �

rpo

H or S �

rpo

H for some immediate subgraph S of G, or

(2) top

G

A top

H

and G �

rpo

T for all immediate subgraphs T of H , or

(3) top

G

� top

H

and SUB

G

�

mul

rpo

SUB

H

.

Lemma 18. For all G

0

; G;H;H

0

2 T G

�

, G

0

�

rpo

G �

rpo

H �

rpo

H

0

implies

G

0

�

rpo

H

0

.

Theorem 19. The recursive path order is a simpli�cation order whenever the

underlying precedence is a well-quasi-order.

The proof of this result requires to show the three conditions of De�nition 12:

(1) transitivity of �

rpo

, (2) B��

rpo

, and (3) for all G;H 2 T G

�

, G , H implies

G �

rpo

H . These properties are shown by induction on the size of term graphs,

where the induction steps use case distinctions according to the three cases of

De�nition 17.

As a corollary of Theorem 19, �

rpo

is well-founded if the given precedence

is a well-quasi-order. This can also be shown by using the corresponding result

for the recursive path order on terms [4], exploiting the encoding � of term

graphs as trees given in the proof of Theorem 9. One has to show that for all

G;H 2 T G

�

, G �

rpo

H if and only if �(G) �

�

rpo

�(H), where �

�

rpo

is the

recursive path order over the enlarged signature �

�

.

5 Termination of Term Graph Rewriting

This section starts with a brief review of the term graph rewriting model inves-

tigated in [8,15,16]. In this approach, rewriting includes not only applications of

term rewrite rules but also steps for compressing term graphs.

De�nition 20 (Collapsing). Given two term graphs G and H , G collapses

to H if there is a graph morphism f :G ! H mapping root

G

to root

H

. This

is denoted by G �

C

H . The collapsing is proper, denoted by G �

C

H , if f is

non-injective.

A term rewrite rule l ! r consists of two terms l and r such that l is not a

variable and all variables in r occur also in l. A set R of term rewrite rules is a

term rewriting system. (See [5,10,14] for surveys of term rewriting.)

For every term t, let �t be a term graph representing t such that only variables

are shared.

2

The graph resulting from a term graph G after removing all edges

labelled with variables is denoted by G.

De�nition 21 (Instance). A term graph H is an instance of a term graph G

if there is graph morphism G! H sending root

G

to root

H

. An instance that is

a ground term graph is a ground instance.

De�nition 22 (Term graph rewriting). Let G and H be term graphs, l! r

be a rewrite rule and v be a node in G such that G[v] is an instance of �l. Then

there is a proper rewrite step G)

v; l!r

H if H is isomorphic to the term graph

G

3

constructed as follows:

(1) G

1

= G� feg is the graph obtained from G by removing the unique edge e

satisfying res(e) = v.

(2) G

2

is the graph obtained from the disjoint union G

1

+ �r by

{ identifying v with root

�r

,

{ identifying the image of res(e

1

) with res(e

2

), for each pair he

1

; e

2

i 2

E

�l

� E

�r

with lab

�l

(e

1

) = lab

�r

(e

2

) 2 X .

(3) G

3

= G

2

[root

G

] is the term graph obtained from G

2

by removing all nodes

and edges not reachable from root

G

(\garbage collection").

Now the term graph rewrite relation)

R

on T G

�;X

is de�ned by adding proper

collapse steps: G)

R

H if G �

C

H or G)

l!r

H for some rule l! r in R. The

relation)

R

is terminating if no in�nite sequence G

1

)

R

G

2

)

R

: : : exists.

De�nition 23. A precedence w is collapse compatible if whenever there is a

graph morphism t ! u between two tops t; u 2 Tops

�

, then t w u. A collapse

compatible precedence that is a well-quasi-order is a well-precedence.

Lemma 24. Let w be a precedence. The embedding relation D contains the col-

lapse relation �

C

if and only if w is collapse compatible.

2

That is, indegree(res(e)) � 1 for each edge e with lab

�t

(e) 62 X, and e

1

= e

2

for all

edges e

1

,e

2

with lab

�t

(e

1

) = lab

�t

(e

2

) 2 X.

Theorem 25. Let �

rpo

be induced by a well-precedence. Then)

R

is terminat-

ing if G)

l!r

H implies G �

rpo

H, for every rule l ! r in R and all ground

term graphs G and H.

Proof. It su�ces to show the absence of in�nite derivations over T G

�

, since all

occuring variables can be replaced by a constant. Suppose that there is an in�-

nite sequence G

1

)

R

G

2

)

R

: : : over T G

�

. As proper collapsing is terminating,

there are i

1

; i

2

; : : : such that 1 = i

1

� i

2

< i

3

� i

4

< : : : and G

i

1

�

C

G

i

2

)

R

G

i

3

�

C

G

i

4

)

R

: : :, where all)

R

-steps are proper rewrite steps. By the assump-

tion and Lemma 24, this implies G

i

1

D G

i

2

�

rpo

G

i

3

D G

i

4

�

rpo

: : : As �

rpo

is a

simpli�cation order, D is contained in �

rpo

[�

rpo

. With Lemma 18 follows that

there is an in�nite subsequence G

j

1

�

rpo

G

j

2

�

rpo

: : : of G

1

)

R

G

2

)

R

: : :

But �

rpo

is well-founded by Theorems 19 and 13, a contradiction. Thus)

R

is

terminating. ut

Due to a monotonicity property of �

rpo

, the premise of Theorem 25 can be

weakened.

Theorem 26. Let �

rpo

be induced by a well-precedence. Then)

R

is terminat-

ing if L)

root

L

; l!r

R implies L �

rpo

R, for every rule l ! r in R and every

ground instance L of �l.

Example 27. Consider the following rewrite system R:

f(x)! g(x; x)

a! b

g(a; b)! f(a)

This system is non-terminating under term rewriting because there is an

in�nite rewrite sequence f(a) ! g(a; a) ! g(a; b) ! f(a) ! : : : Termination of

term graph rewriting can easily be checked by means of Theorem 26, using the

following well-precedence:

g

A

f

A

g

a

A

b

Acknowledgement. The author is grateful to Annegret Habel and Andreas

Weiermann, who gave valuable comments on a previous version of this paper.

References

1. Zena M. Ariola and Jan Willem Klop. Equational term graph rewriting. Funda-

menta Informaticae, 26:207{240, 1996.

2. Andrea Corradini and Francesca Rossi. Hyperedge replacement jungle rewriting

for term rewriting systems and logic programming. Theoretical Computer Science,

109:7{48, 1993.

3. Nachum Dershowitz. Orderings for term rewriting systems. Theoretical Computer

Science, 17:279{301, 1982.

4. Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Computation,

3:69{116, 1987.

5. Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems. In Jan van

Leeuwen, editor, Handbook of Theoretical Computer Science, volume B, chapter 6.

Elsevier, 1990.

6. Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-

ings. Communications of the ACM, 22(8):465{476, 1979.

7. Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the

London Mathematical Society, 3(2):326{336, 1952.

8. Berthold Ho�mann and Detlef Plump. Implementing term rewriting by jungle

evaluation. RAIRO Theoretical Informatics and Applications, 25(5):445{472, 1991.

9. Richard Kennaway, Jan Willem Klop, Ronan Sleep, and Fer-Jan de Vries. On the

adequacy of term graph rewriting for simulating term rewriting. ACM Transactions

on Programming Languages and Systems, 16(3):493{523, 1994.

10. Jan Willem Klop. Term rewriting systems. In S. Abramsky, Dov M. Gabbay, and

T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages

1{116. Oxford University Press, 1992.

11. Joseph B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi's conjec-

ture. Transactions of the American Mathematical Society, 95:210{225, 1960.

12. Aart Middeldorp and Hans Zantema. Simple termination revisited. In

Proc. 12th International Conference on Automated Deduction, volume 814 of Lec-

ture Notes in Arti�cial Intelligence, pages 451{465. Springer-Verlag, 1994.

13. C. St. J. A. Nash-Williams. On well-quasi-ordering �nite trees. Proceedings of the

Cambridge Philosophical Society, 59:833{835, 1963.

14. David A. Plaisted. Equational reasoning and term rewriting systems. In Dov M.

Gabbay, C.J. Hogger, and J.A. Robinson, editors, Handbook of Logic in Arti�cial

Intelligence and Logic Programming, volume 1, pages 273{364. Clarendon Press,

1993.

15. Detlef Plump. Collapsed tree rewriting: Completeness, con
uence, and modularity.

In Proc. Conditional Term Rewriting Systems, volume 656 of Lecture Notes in

Computer Science, pages 97{112. Springer-Verlag, 1993.

16. Detlef Plump. Evaluation of functional expressions by hypergraph rewriting. Dis-

sertation, Universit�at Bremen, Fachbereich Mathematik und Informatik, 1993.

17. Ronan Sleep, Rinus Plasmeijer, and Marko van Eekelen, editors. Term Graph

Rewriting: Theory and Practice. John Wiley, 1993.

18. Joachim Steinbach. Simpli�cation orderings | history of results. Fundamenta

Informaticae, 24:47{87, 1995.

