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DEBATE Open Access

Baseline testing in cluster randomised
controlled trials: should this be done?
Jaime E. Bolzern1, Alex Mitchell2 and David J. Torgerson2*

Abstract

Background: Comparisons of baseline covariates in randomised controlled trials whilst often undertaken is

regarded by many as an exercise in futility. Because of randomisation the null hypothesis is true for baseline

comparisons and therefore any differences will occur by chance. However, this is only the case if allocations are not

known in advance of recruitment. If this occurs then selection bias at randomisation may be present and it is

possible that the statistical testing of covariates may unveil selection bias. In this paper we show that this is

particularly the case for cluster randomised trials when post-randomised recruitment often occurs and can lead to

selection bias.

Main text: We take a recently published cluster randomised trial that has suffered from selection bias due to

differential recruitment and calculate baseline p values. We show that statistically significant imbalances of p < 0.

0001 occurred in 5 of the 10 covariates. In comparison for an individually randomised trial that had no evidence of

selection bias only 1 p value of p < 0.05 out of 20 tests was observed. Had baseline p values for the cluster trial

been presented to journal editors, reviewers and readers then the results of the trial might have been treated with

more caution.

Conclusion: We argue that the blanket ban of baseline testing as advocated by some may reduce the chance of

identifying deficient cluster randomised trials and this opposition should be reconsidered for cluster trials.

Background

Randomisation ensures that the groups formed are

equivalent in all known and unknown variables except

through chance [1]. In reports of randomised controlled

trials (RCTs) we often see, alongside the description of

the characteristics of trial participants, statistical testing

of any imbalance in each characteristic between the

randomised groups to ‘check’ that the randomisation has

not ‘failed’. There is some debate about the validity of

doing this.

Baseline testing of covariates

One view, which is supported by some leading medical

journals (e.g., the BMJ and the Lancet) and many statisti-

cians [2, 3] and specifically advised against in the

CONSORT statement for individually randomised trials

[4], is that baseline testing is illogical, irrelevant and,

possibly, misleading [5]. The argument for not doing

baseline testing is along the following lines: first, assum-

ing robust randomisation we know the null is true: there

is no difference between the randomised groups in any

of the measured variables except by chance. Second,

with multiple statistical tests of 20 or more baseline

variables it is almost inevitable that one or two will

prove to be ‘statistically significant’. Using significant or

non-significant findings of these tests to inform the trial

analysis can produce an inefficient analysis. Consider a

variable that is highly predictive of outcome (e.g., base-

line pain scores). If this variable has a slight (not statisti-

cally significant) or zero imbalance we may decide not

to include it as a covariate in the final statistical model.

Failure to include a powerful predictor, even if it is in

balance, will reduce the power of the analysis and if

there is an imbalance this will mean the post treatment

differences are also biased.

In contrast, one argument for doing baseline testing or

at least allowing it to be presented in journal papers

(e.g., some papers published in the Journal of the Ameri-

can Medical Association or the New England Journal of
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Medicine) is to check that the randomisation has not

been subverted [6]. Proponents of this view, whilst

accepting in a properly randomised trial that on average

one out of every 20 baseline tests will be statistically sig-

nificant, argue that if there are several variables favour-

ing one group or another or there is a highly statistically

significant difference in a key variable then this could be

evidence of research misconduct. For example, an RCT

of surgery showed statistically significant differences in

ages between treated groups and on further investigation

it was found that three out of five centres were subvert-

ing treatment allocation [7]. In this paper we revisit this

debate with respect to cluster randomised controlled

trials.

Main

Cluster randomised trials

Cluster randomised trials are when participants are

randomised as intact groups rather than as individ-

uals. The method is commonly used in educational

interventions, where a school or class is the unit of

allocation [1], and evaluation of activities, such as

health promotion, when doctor might be the unit of

allocation, or where there is a risk of the control

group being contaminated by the intervention (that is

the control participants unintentionally receiving the

intervention). Within a cluster trial there are at least

two different data levels: cluster and patient. For clus-

ter level variables (e.g., patient list size) then random-

isation will on average produce equivalent groups and

therefore ‘baseline’ statistical comparisons are subject

to the same criticisms or support as for individually

randomised trials. However, at the patient level, data

can be at increased risk of selection bias compared

with individually randomised trials [8]. Often, recruit-

ment to cluster trials occurs after randomisation of

the clusters. This reveals the future group allocation

to recruiting researchers, clinicians and, sometimes,

potential participants. This is akin to publicising the

future allocations for an individually randomised trial,

something which is now rare but in the past led to

biased recruitment [9]. Consequently, there is a sig-

nificant risk of selective recruitment into cluster trials

that introduces selection bias [8]. Currently, journals

that do not present baseline testing in individually

randomised studies do not present these either for

cluster trials. We think that it may be acceptable to

present baseline statistical tests for cluster trials that

recruit participants after randomisation to assess

whether there is evidence of selection bias. If such

testing were undertaken and this showed a greater

than expected number of variables that were statisti-

cally significant this may then warrant a more

cautious interpretation of the trial’s results.

Baseline p values

The role of p values to assess the equivalence of a trial’s

treatment groups is quite different in cluster trials com-

pared with individually randomised studies. In the latter

p values are linked to the randomisation of the groups

and this drives the argument as to whether or not it is

valid and helpful to calculate and report them. In con-

trast for cluster trials, where recruitment has taken place

after randomisation, p values are no longer entirely

linked to the randomisation process, rather they are

linked to the recruitment method, which may result in

non-random samples being compared. In the following

we will examine two case studies: one a cluster rando-

mised trial and the other an individually randomised

trial. Both of these were identified from a recent review

by Bolzern [10] and colleagues. The aim of these case

studies is to demonstrate the distribution of baseline p

values in a study where there is no evidence of selection

bias in an individually randomised trial as recruitment

has occurred before randomisation compared with a trial

where recruitment has taken place after randomisation,

which is often the case in a cluster RCT.

Case study: cluster randomised trial

The cluster trial by Brinkman et al. [11] evaluated the

role of infant simulators to prevent teenage pregnancies.

In the trial 57 schools from Western Australia were

allocated using simple randomisation, via a table of ran-

dom numbers, into two groups. After randomisation

girls aged 13–15 years were recruited into the trial. Post

randomisation recruitment to the study groups was

uneven with 50% of eligible girls being recruited in the

control schools compared with 58% in the intervention

group. Girls in the intervention group as well as receiv-

ing the standard health curriculum also received the

‘Virtual Infant Parenting’ programme which consisted of

small group teaching with the participants taking a

virtual infant home for the weekend. The aim of the

intervention was to try and reduce unwanted teenage

pregnancies. The results showed that 17% of girls in the

intervention group had a pregnancy event compared

with 11% of the control group (p = 0.00044). The authors

noted that the control group had a higher proportion of

girls from higher socioeconomic groups, were living with

both parents and less likely to have been responsible for

caring for a baby. In the original paper no baseline p

values were presented and we have calculated these and

present them in the table. As the Fig. 1 shows of the 10

p values calculated six are statistically significant with

five of these being highly significant. The trial design

could have easily avoided this problem by simply identi-

fying all of the eligible girls and gaining their consent

before randomisation – this, then, would have avoided

recruitment bias.
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Case study: individually randomised trial

The second case study is an individually randomised

trial by Liu and colleagues [12]. This study was a RCT to

evaluate the role of acupuncture for reducing urine

leakage among women with stress urinary incontinence.

Women were recruited from this trial from 12 hospitals

in China. Block randomisation (size 6) was used to strat-

ify by hospital and 504 women were randomised to

Fig. 1 baseline comparison of an individually randomised trial and a cluster randomised trial
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either ‘true’ or ‘sham’ acupuncture. The trial found a signifi-

cant benefit of true acupuncture on symptoms (p < 0.001).

In the Fig. 1 we have calculated baseline p values and with

over 20 calculations only one (age) was marginally statisti-

cally significant (p = 0.023); thus suggesting selection bias in

this trial was unlikely.

Estimation of baseline p values

In our analysis of p values for the two case studies we

used the aggregate data. The p-values for the study by

Liu et al. were calculated by using the two-sample t-test

for continuous variables and the chi-squared test for

categorical variables. The p-values for the study by

Brinkman et al. were calculated using a similar method

to that used for Liu et al., with an adjustment made for

clustering. For continuous variables clustering was taken

into account by dividing the test statistic by the design

effect, while for categorical variables clustering was

taken into account by dividing the cell numbers by the

design effect, which for the study by Brinkman et al. was

equal to 1.97. The design effect was calculated using the

ICC assumed in the sample size calculation, the number

of clusters randomised and the total number of partici-

pants who consented and participated. As the authors

only had access to the information provided in the

original baseline table, this was considered the best

method available. However, the authors recommend that

statisticians with access to individual participant data

calculate baseline p-values adjusted for clustering by

fitting a mixed effects model for each baseline covariate

in the table, adjusting for the treatment group as a fixed

effect and cluster as a random effect.

Conclusion

Recruitment bias, which is simply a type of post

randomisation selection bias, is a major problem for

significant numbers of cluster randomised trials. It is

important that the reader of a cluster trial can identify

whether such a problem exists. In this paper we are

recommending that, for cluster trials, formally testing

for baseline imbalances of patient level data should be

considered to help identify weak cluster trials. We have

shown in two case studies the distribution of p values

that might occur when there is clear evidence of recruit-

ment bias (Brinkman et al.11) compared with a study

when recruitment bias is unlikely. If baseline p values

had been presented in the Brinkman trial it may have

led to a more nuanced interpretation of the results and

perhaps the findings would not be deemed as credible

by such as the United Kingdom’s Health service: NHS

choices, which concluded that: “This trial had a good

study design” [13].

We are aware of that ‘baseline statistical tests’ are seen

as an anathema, to some, in individually randomised

trials. However, the arguments over baseline testing

using p values for individually randomised trials are

not relevant here. We are not testing whether the

randomisation process ‘worked’. We are trying,

instead, to identify any evidence that suggests that re-

cruitment bias has occurred and the pre-intervention

group averages are not equivalent. One of this paper’s

referees pointed out that covariate imbalances can be

identified by study statisticians using the ‘eyeball’ test

negating the need for the use of p values. For experi-

enced trialists baseline imbalances can be identified

without the use of p values; however, most readers of

trial research are not experienced statisticians or trial

methodologists. We believe placing p values alongside

these differences makes them difficult to ignore and

furthermore, non-technical experts, such as staff at

NHS choices, might not have rated that the trial had

a ‘good study design’.

We believe the use of p values is one tool that can

help identify recruitment bias. Note that in so doing

we are not checking that the randomisation procedure

has ‘worked’: we assume this to be the case. Using p

values in this way is in addition to the quality assess-

ment of the likelihood of this occurring through the

implementation of the cluster design. Indeed, the use

of baseline p values could be easily combined with

other quality assurance measures such as the Time-

line cluster approach, which graphically describes the

recruitment process and draws the reader’s attention

to whether or not recruitment had occurred before or

after randomisation [14].

The problem of selection bias, due to recruitment

bias, in cluster trials has been identified as a major

problem for a number of years [8, 15]. The recom-

mendation to identify and recruit participants before

randomisation, if possible, has not been implemented

in many trials. Indeed, a recent review of 23 cluster

RCTs published between 2015 and 2017 found only

four (17%) recruited participants before randomisation

[10]. Whilst the recommendation of recruitment

before randomisation, if possible, should remain,

perhaps CONSORT guidance for cluster trials should

include the suggestion of baseline testing of patient

level data, as it is currently silent on this issue.

Including baseline p values for cluster trials may

result in better cluster trial designs in the future.

Using statistical significance testing on baseline

patient level variables in cluster randomised trials,

that recruit participants after randomisation, should

be encouraged as this is a relatively easy method to

detect potential selection bias. This should lead to a

more cautious interpretation of cluster trials where

there is a high prevalence of statistically significant p

values among patient level co-variates.
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