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Background: Model‐based meta‐analysis (MBMA) is increasingly used to

inform drug‐development decisions by synthesising results from multiple

studies to estimate treatment, dose‐response, and time‐course characteristics.

Network meta‐analysis (NMA) is used in Health Technology Appraisals for

simultaneously comparing effects of multiple treatments, to inform reimburse-

ment decisions. Recently, a framework for dose‐response model‐based network

meta‐analysis (MBNMA) has been proposed that combines, often nonlinear,

MBMA modelling with the statistically robust properties of NMA. Here, we

aim to extend this framework to time‐course models.

Methods: We propose a Bayesian time‐course MBNMA modelling framework

for continuous summary outcomes that allows for nonlinear modelling of mul-

tiparameter time‐course functions, accounts for residual correlation between

observations, preserves randomisation by modelling relative effects, and allows

for testing of inconsistency between direct and indirect evidence on the time‐

course parameters. We demonstrate our modelling framework using an illus-

trative dataset of 23 trials investigating treatments for pain in osteoarthritis.

Results: Of the time‐course functions that we explored, the Emax model gave

the best fit to the data and has biological plausibility. Some simplifying

assumptions were needed to identify the ET50, due to few observations at early

follow‐up times. Treatment estimates were robust to the inclusion of correla-

tions in the likelihood.

Conclusions: Time‐course MBNMA provides a statistically robust framework

for synthesising evidence on multiple treatments at multiple time points. The

use of placebo‐controlled studies in drug‐development means there is limited

potential for inconsistency. The methods can inform drug‐development deci-

sions and provide the rigour needed in the reimbursement decision‐making

process.
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1 | INTRODUCTION

In drug development, a key decision is whether to proceed

to a further clinical trial and if so, which follow‐up out-

comes to measure and which comparator agent(s)

to include. To inform this decision, it is important to under-

stand the onset and duration of action of not just the agent

under development, but also competitor agents. In addi-

tion, understanding the time‐course of pharmaceutical

agents is useful for licencing agencies when making deci-

sions on safety and efficacy of a new agent, and for reim-

bursement agencies making policy decisions based on

manufacturer submissions where different studies and

agents have reported results at different follow‐up times.

Model‐based meta‐analysis (MBMA) is a technique for

synthesising results of multiple studies, usually

randomised controlled trials (RCTs), to gain understand-

ing of the pharmacodynamic profile of different agents

during drug development.1 Key characteristics within this

profile are the dose‐response and time‐course relationships

of an agent, and how they compare with competitors.

MBMA has been used to understand these relationships

across studies.2-4 Some MBMAs have used indirect evi-

dence to compare several agents simultaneously.5-7 How-

ever, these types of analyses typically model each agent

separately, based on pooling individual study arms. Whilst

this approach allows the inclusion of nonrandomised

and/or single‐arm studies and has been proposed in the

meta‐analysis literature,8 it breaks the randomisation

within RCTs and ignores within‐study comparisons, effec-

tively losing the advantages of the RCT design and poten-

tially inducing bias in the resulting estimates.9

Network meta‐analysis (NMA) allows evidence on

multiple treatments to be combined provided they form

a connected network of treatment comparisons (where

treatment refers to a distinct formulation, such as agent

and dose combination).10-14 NMA pools evidence from

RCTs in a way that respects the randomisation in the

design of the included studies. It strengthens inference

by combining all evidence (both direct and indirect) on

the comparisons of interest, under the assumption of

consistency—agreement between direct and indirect

evidence on the same treatment comparison. When

conducting an NMA, it is essential to test for inconsis-

tency where possible and consider results accordingly,

as the validity of the resulting estimates rests upon the

consistency assumption. Methods have been developed

that formally test for inconsistency in NMA,15,16 some-

thing which has not previously been possible when

making indirect comparisons in MBMA.

However, recently, MBMA has been extended to incor-

porate a formal consistency framework by combining

ideas from NMA and MBMA in the context of dose‐

response models with multiple agents.17 This model‐based

network meta‐analysis (MBNMA) approach respects the

randomisation in the included RCTs and allows for formal

testing of inconsistency in the network of evidence.

Mawdsley et al17 described their method for dose‐

response models with an outcome at a single time‐point.

In phase II and III trials, there are often multiple

follow‐up times reported within a study, which represent

repeated measures on the same individuals and so will be

correlated. This correlation needs to be accounted for

either by modelling the time‐course,18-20 or with a multi-

variate likelihood,21-24 or both.2,25 Typically for meta‐

analysis, only aggregated data are available in published

RCTs. This can lead to additional complexities when

accounting for correlations between repeated measure-

ments, as the correlation structure may not be known.

Whilst repeated observations over time may be consid-

ered discrete observations, from the perspective of drug

development, where the focus is on predicting relative

efficacy at different time points, it is desirable to estimate

a continuous function that describes the relationship

between relative effects over time. In this paper, we

describe the MBNMA approach with time‐course models

for repeated observations within the included studies. We

also present methods to assess whether the included

evidence exhibits inconsistency. Note that in this paper

we focus on the time‐course relationship only, and so

the estimates are obtained for each distinct treatment

regimen (agent and dose combination).

The paper is organised as follows. We begin by describ-

ing the MBNMA framework to incorporate multiple

follow‐up times for continuous summary outcomes using

models for time‐course. We present a general framework,

indicating some of the common functional relationships

typically seen in practice and accounting for residual

correlation between time points. We also outline an

approach for model selection and critique and present

methods to assess consistency in the time‐course setting.

We illustrate the methods with an example dataset of

treatments for pain in osteoarthritis. Finally, we end with

a discussion of the methods in the context of earlier work

and indicate areas for further developments.

2 | METHODS

2.1 | Likelihood for continuous summary
outcomes

Although individual patient data (IPD) may be available

from a manufacturer's own study, it is likely that only

aggregate level data from publications are available from

other studies. We therefore develop our model at the level
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of study summaries (eg,mean differences).We assume that

for each study we have a continuous summary outcome,

such as mean outcome or log‐odds of response, yi,k,m,

together with standard errors, sei,k,m, reported for each

study i, arm k = 1, … ,Ki, and at time point m = 1, … ,Mi,

where study i has Ki arms and reports at Mi time points

and si,m gives the actual time corresponding to themth time

point in study i. This formulation allows for different stud-

ies to report at different times. Typically,m=1 represents a

baseline observation at time si,1= 0. The treatment given in

study i, arm k, is indicated by ti,k.

Because we have repeated measures from the same

individuals within each study, the observations may be

correlated, which can be captured with a multivariate

normal likelihood:

yi;k eMVN θi;k;Σi;k

� �
(1)

where yi,k is a vector of the observed summary measures

over time points, θi,k is a vector of modelled outcomes,

and Σi,k is an Mi × Mi covariance matrix:

where ρi;k;m1;m2
is the within‐study correlation between

summary measures at time points m1 and m2 for study i

arm k. In practice, correlations are rarely reported in

the literature and will only be available from studies

where we have IPD. In addition, the correlations esti-

mated from any available IPD will be at the individual

level, which may be different to correlations at the sum-

mary level.26

One approach to deal with unknown within‐study

correlations at the summary level, if IPD are available

or information on this correlation can be obtained from

external data, is to assume that the correlations seen

between time points for individual patients are the same

as those seen for summary measures, and also that cor-

relations in the study for which correlation information

is available also apply in the aggregate data trials.27,28

However, this might lead to ecological bias as there

is no guarantee that correlations at the individual level

will be the same as at the aggregate level. An alternative

is to estimate within‐study correlations based on the

aggregate data summaries by giving prior distributions

to the ρi;k;m1;m2
. This approach allows the possibility of

using informative prior distributions based on informa-

tion gained from external data. In order to identify cor-

relation parameters, some constraints will be required,

such as assuming a particular covariance structure. For

example, a compound symmetry structure can be

assumed, in which a single parameter, ρ, is estimated

for the correlation between all time points (assumed to

be the same across all studies): ρi;k;m1;m2
¼ ρ. Alterna-

tively, it might be more reasonable to assume an

autoregressive AR(1) structure in which covariances

are dependent on the amount of time between observa-

tions where ρi;k;m1;m2
¼ ρ

si;m2
−si;m1

si;2−si;1 .

When studies that report mean change from baseline

and final values at each time point are included,

they can contribute information to ρi;k;m1;m2
by modelling

separate likelihoods for both pieces of data (see below).29

2.1.1 | Mean change from baseline by time

Where aggregated summaries are reported as mean

change from baseline (baseline corresponding to

m = 1), we have summaries for time points m = 2, … ,

Mi defined as y
change
i;k;m ¼ yi;k;m − yi;k;1

� �
and their standard

errors se
change
i;k;m . Covariances between mean changes from

baseline across time‐points m1 and m2 (dropping the i,k

subscripts for ease of exposition) are

Cov ym1
− y1

� �
; ym2

− y1
� �� �

¼

ρm1;m2
sem1

sem2
− ρ1;m1

se1sem1
−

ρ1;m2
se1sem2

þ se21

which gives the (m1,m2)
th element of the covariance

matrix for the mean change from baselines, Σ
change
i;k .

We can then give a multivariate normal likelihood to

the aggregate mean outcomes for all time points:

y
change
i;k eMVN θ

change
i;k ;Σ

change

i;k

� �

where

Σi;k ¼

se2i;k;1 ρi;k;1;2sei;k;1sei;k;2 … ρi;k;1;Mi
sei;k;1sei;k;Mi

ρi;k;1;2sei;k;1sei;k;2 se2i;k;2 … ρi;k;2;Mi
sei;k;2sei;k;Mi

⋮ ⋮ ⋱ ⋮

ρi;k;1;Mi
sei;k;1sei;k;Mi

… … se2i;k;Mi

0
BBBB@

1
CCCCA
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θ
change
i;k ¼

θi;k;2 − θi;k;1

θi;k;3 − θi;k;1

⋮

θi;k;Mi
− θi;k;1

0
BBB@

1
CCCA:

By writing the model for mean change from baseline in

terms of the model for mean outcomes, we can combine

studies where some report mean outcomes and some

report mean change from baseline by giving each type

of data the appropriate likelihood and using a shared‐

parameter model.30 If some studies report both mean out-

comes and mean change from baseline, then both pieces

of data can be included. Modelling both outcomes simul-

taneously provides sufficient evidence to estimate the

correlations, ρi;k;m1;m2
.29

2.2 | Time‐course model

We put the time‐course model on the aggregate‐level

means:

θi;k;m ¼ f si;m; λi;k

� �

where f defines a functional relationship over time s, and

λi,k = (λ0,i,λ1,i,k,λ2,i,k,…) are a set of parameters that

describe the relationship in mean outcomes over time.

In all time‐course models, there will be a “nuisance

parameter” λ0,i which represents the “intercept” at time,

common across arms. Note that for many time‐course

models the λ0,i parameters will cancel out when using

change from baseline data. We put our modelling

assumptions on the remaining parameters, λ1,i,k,λ2,i,k,…,

leaving the λ0,i unconstrained (achieved in a Bayesian

analysis by giving independent vague prior distributions

to the λ0,i parameters).

2.2.1 | Exponential model

One of the most commonly used models is the exponen-

tial model, which has intercept λ0,i, and a single parame-

ter of interest, λ1,i,k, which represents the rate at which

the mean outcome falls over time, assuming a constant

rate of growth/decay:

θi;k;m ¼ λ0;i exp λ1;i;ksi;k;m

� �
: (2)

2.2.2 | Linear model

Another model with a single parameter of interest is the

linear model:

θi;k;m ¼ λ0;i þ λ1;i;ksi;k;m (3)

where λ0,i is the intercept and λ1,i,k the fall in mean out-

come for a unit increase in time.

2.2.3 | Emax model

A functional form commonly used in pharmacometrics,

which has two parameters of interest, is the Emax model:

θi;k;m ¼ λ0;i þ
λ1;i;k × si;m

λ2;i;k þ si;m
(4)

where the intercept λ0,i, often referred to as E0, is the ini-

tial outcome at baseline (time = 0), λ1,i,k, typically

referred to as Emax, is the maximum possible effect of a

treatment relative to baseline, and λ2,i,k, typically referred

to as ET50, is the time point at which 50% of the maxi-

mum treatment effect has been achieved.

2.2.4 | Piecewise linear model

Piecewise models can allow for considerable flexibility,

though they may not so accurately resemble true biologi-

cal relationships and may not be appropriate when the

intention is to predict values close to where the pieces

meet (the “knots”). The simplest example of this is a

two‐piece linear model with a single knot at s = S:

θi;k;m ¼
λ0;i þ λ1;i;ksi;m 0 ≤ s ≤ S

λ0;i þ λ1;i;kS
� �

þ λ2;i;k si;m − S
� �

s > S

(

(5)

where λ0,i is the intercept, λ1,i,k the change in mean out-

come for a unit change in time during time period (0,S),

and λ2,i,k the change in mean outcome for a unit change

in time during time period after S. The intercept for the

second piece (λ0,i+λ1,i,kS) ensures that the two regression

lines meet at the knot.

2.3 | Network meta‐analysis model

The NMA model describes the impact of treatments on

one or more of the parameters of the time‐course model,

λ1,i,k,λ2,i,k,…. If the NMA model is given for a single time‐

model parameter, λ1,i,k, we have

g λ1;i;k

� �
¼ μi þ δi;k

for a given link function g which transforms the outcome

to a scale where relative treatment effects may be

expected to be additive. μi is the time‐course model

4 PEDDER ET AL.



parameter (on the transformed scale) for arm 1 of study i,

and δi,k the study‐specific relative effect for the treatment

used in arm k relative to arm 1 of study i.

For example, for an exponential time‐course model

(Equation 2), it would be natural to put the NMA model

on the log‐scale:

log λ1;i;k

� �
¼ μi þ δi;k

where μi is the log growth/decay rate on arm 1, and δi,k is

the log rate‐ratio for treatment arm k compared with

treatment arm 1, of study i.

The μi are nuisance parameters and given indepen-

dent vague prior distributions in a Bayesian analysis to

allow these to be unconstrained. By treating these as

nuisance parameters, the focus of this modelling strat-

egy is on estimating relative treatment effects rather

than on characterising the time‐course on the reference

treatment (eg, placebo effect). In fact, because different

studies may have included different control (arm 1)

treatments, the μi do not have a consistent interpreta-

tion across studies.

Treatment effects can be either assumed common

(“fixed”) or similar/exchangeable (“random”) across stud-

ies. For the random effects model, study‐specific treat-

ment effects are assumed to be normally distributed

around a mean treatment effect that adheres to the

consistency relationships, with common between‐studies

variance τ2 across treatment comparison:

δi;k eN d1;ti;k − d1;ti;1 ; τ
2

� �
: (6)

The consistency relationships reflect the comparison

made between the treatment ti,k used on arm k and the

treatment ti,1 used on arm 1 of each study. The fixed effect

model is obtained by setting τ2 = 0. The model estimates

“basic parameters” d1,k, the pooled mean relative effect

for treatment k relative to treatment 1 (the reference

treatment for the NMA). The d1,k are each given indepen-

dent vague normal priors in a Bayesian analysis. All other

relative effects for treatment k relative to treatment c, dc,k,

can then be derived from the consistency relation-

ships12,30:

dc;k ¼ d1;k − d1;c: (7)

Time‐course functions with multiple (nonintercept) time‐

course parameters may have NMA models specified for

one or more of these parameters, although a relatively

rich dataset is required to estimate NMA models with

more than one treatment effect parameter.

Suppose we expect the treatments to influence two

parameters of the time‐course model, λ1,i,k and λ2,i,k (for

example these could represent Emax and ET50). The

NMA model proceeds as for a single parameter; however,

for a random effects model, we need to allow for correla-

tions between the study‐specific treatment effects on the

two time‐course parameters. Note that the link functions

g do not have to be the same for the different parameters:

g1 λ1;i;k

� �
¼ μ1;i þ δ1;i;k

g2 λ2;i;k

� �
¼ μ2;i þ δ2;i;k

etc:

(8)

The random effects model for δ1,i,k, δ2,i,k, etc needs to be

multivariate to allow for correlations between relative

effects on the different time‐course parameters.

For example, for the Emax model, the Emax parameter

λ1,i,k can be positive or negative, and so we can put the

model on the natural scale, whereas the ET50 parameter

λ2,i,k may only take positive values, and so it makes sense

to model this on the log scale, giving

λ1;i;k ¼ μ1;i þ δ1;i;k

log λ2;i;k

� �
¼ μ2;i þ δ2;i;k

with a bivariate random effects distribution:

δ1;i;k

δ2;i;k

� �
eN

d1;1;ti;k − d1;1;ti;1

d2;1;ti;k − d2;1;ti;1

 !
;

τ21 ρδτ1τ2

ρδτ1τ2 τ22

 ! !

(9)

where all parameters are as before, with an extra subscript

to indicate whether they relate to λ1,i,k or λ2,i,k. The corre-

lation between the treatment effects on the two parame-

ters is given by ρδ. Different parameterisations are

available for the between‐studies covariance matrix that

may be more computationally stable, such as a Cholesky

parameterization or a spherical parameterization.31 Fixed

effect models can be obtained by setting the between‐study

variance parameters to 0.

2.4 | Multi‐arm trials

When including multi‐arm trials, it is important to

account for correlation between relative effects within a

trial, as all relative effects will have the same comparator.

For a common between‐study variance, the correlation

between these relative effects will be 0.5.11 For MBNMAs

with a single nonintercept time‐course parameter, this

can be done either using a multivariate normal distribu-

tion to model a vector of random effects,30 or, for the pur-

poses of writing more generic code, using a conditional

univariate distributions formulation for the random effect

of arm k > 2, given all arms from 2 to k − 132:

PEDDER ET AL. 5



When modelling multiple nonintercept time‐course

parameters, the correlation between relative effects can

be modelled simultaneously to the correlation between

the parameters ρδ using a multivariate normal distribu-

tion on a vector of random effects, δi, whose length is

equal to the number of parameters multiplied by the

number of arms, Ki, in study i. For models with two

parameters of interest, this is

δi ¼

δ1;i;k

⋮

δ1;i;K

δ2;i;k

⋮

δ2;i;K

0
BBBBBBBBB@

1
CCCCCCCCCA

eN

d1;1;ti;k − d1;1;ti;1

⋮

d1;1;ti;K − d1;1;ti;1

d2;1;ti;k − d2;1;ti;1

⋮

d2;1;ti;K − d2;1;ti;1

0
BBBBBBBBB@

1
CCCCCCCCCA

;Ωi

0
BBBBBBBBB@

1
CCCCCCCCCA

:

The covariance matrix, Ωi, is a 2Ki × 2Ki matrix:

Ωi ¼

τ21
τ21
2

⋯ 2ρδτ1τ2 ρδτ1τ2

τ21
2

τ21 ⋯ ρδτ1τ2 2ρδτ1τ2

⋮ ⋮ ⋱ ⋮ ⋯

2ρδτ1τ2 ρδτ1τ2 ⋯ τ22
τ22
2

ρδτ1τ2 2ρδτ1τ2 ⋯
τ22
2

τ22

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

2.5 | Simplifying modelling assumptions

For models with many parameters, there may be insuffi-

cient data to be able to estimate all parameters (ie, the

parameters may not be identifiable). To aid identifiability

when there are two or more non‐nuisance parameters,

simplifying assumptions can be made to constrain the

parameters. In this way, a model can be constrained to

be as complex or simple as the data allow, provided there

is biological plausibility for any simplification. Note that

any shared parameters will be more influenced by

studies/treatments with more information (ie, those with

more observations within studies). One or more of the

following may be considered:

2.5.1 | Fixed effect models

One or more of the modelled parameters could be

modelled as a fixed treatment effect, reflecting an

assumption of homogeneity where different studies of

the same comparison estimate a common effect. So, if

there is a fixed effect model on the second parameter,

Equation 9 becomes

δ1;i;k eN d1;1;ti;k − d1;1;ti;1 ; τ
2
1

� �

δ2;i;k ¼ d2;1;ti;k − d2;1;ti;1

and if there is a fixed effect model on both parameters,

Equation 9 becomes

δ1;i;k ¼ d1;1;ti;k − d1;1;ti;1

δ2;i;k ¼ d2;1;ti;k − d2;1;ti;1 :

2.5.2 | Class‐effect models

Relative treatment effects for one (or more) of the param-

eters could be assumed to come from a hierarchical

model with a common mean, which may depend on

class13,33-35:

d2;1;k e D2;class; τ
2
class

� �
for k ∈ classf g: (10)

For example, in the Emax model, it may be that it is rea-

sonable to assume that treatments within the same class

might have a similar onset of action (and so have similar,

exchangeable treatment effects on ET50) but reach differ-

ent maximum effects (Emax).

An even more constrained model fixes the treatment

effects within a class to be equal:

d2;1;k ¼ D2;class for k ∈ classf g: (11)

2.5.3 | Constrain the baseline effect

To further aid identifiability of treatment effects, it may

be necessary to impose further constrains on the baseline

for one (or more) of the time‐course parameters, for

example with an exchangeable model:

δi;k
��

δi;2

⋮

δi; k−1ð Þ

0
B@

1
CAeN d1;ti;k − d1;ti;1

� �
þ

1

k − 1
∑

k − 1

j¼1

δi; j − d1;ti; j − d1;ti;1

� �	 

;

k

2 k − 1ð Þ
σ2

 !
:
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μ2;i eN η2; σ
2
μ2

� �
: (12)

This would imply that the reference treatment effects for

each study were assumed to be distributed about a single

common mean effect, η2, and would therefore only be

suitable in networks for which all included trials have

the same reference treatment (eg, placebo).

2.5.4 | Reduce to a single treatment effect

For models with multiple (nonintercept) time‐course

parameters, a further simplification is to only model

treatment effects on one of the time‐course parameters.

The other parameters are assumed to be treatment inde-

pendent and modelled on an absolute, rather than rela-

tive, scale:

g2 λ2;i;k

� �
¼ μ2;i;k:

The μ2,i,k could be left unconstrained or assumed

exchangeable for each treatment within a class.

2.6 | Testing for inconsistency

To test whether the consistency assumption (Equation 7)

holds, several approaches have been proposed for identi-

fying inconsistency between direct and indirect evidence

that arises within a closed “loop” of treatments for

which independent sources of information are avail-

able.15,36 It is important to note that available loops of

treatments to test for inconsistency will depend on the

choice of reference treatment used in the network.36,37

In addition, the evidence provided by studies with three

or more arms is not independent (due to the common

reference arm), and within‐study relative effects must

be internally consistent. Therefore, loops of evidence

consisting only of studies with three or more arms will

always be consistent.

Furthermore, the choice of reference treatment for a

study with three or more arms can affect whether it is

possible to test for inconsistency. For example, suppose

we have three different studies providing evidence on P

(Placebo) vs N (Naproxen 1000 mg/d), P vs C (Celebrex

200 mg/d), and PvsNvsC, respectively. If we take P as

the reference for the three‐arm trial, then the three‐arm

trial provides estimates of PvsN and PvsC, so the model

only estimates PvsN and PvsC directly (see Figure S3A ‐

Supporting Information). The NvsC effect is derived from

the PvsN and PvsC estimates. If, on the other hand, we

take N as the reference for the three‐arm trial, then the

three‐arm trial provides estimates of PvsN and NvsC,

which together with the two‐arm evidence provides inde-

pendent estimates of PvsN, PvsC, and NvsC, and we can

test for inconsistency. We use the convention that we

take placebo as reference for all studies that include a pla-

cebo arm. In studies without placebo, we use the first

drug alphabetically, at its lowest dose.

An unrelated mean effects (UME) model does not

include constraints forced by the consistency equations

and is equivalent to fitting separate pairwise meta‐

analyses to each direct comparison whilst sharing

treatment‐independent parameters across all the compari-

sons,16 such as between‐study heterogeneity or treatment‐

independent time‐course parameters. The results from

this model can then be compared with those from the

MBNMA. A better model fit (lower deviance) or lower

standard deviations (SD) for exchangeable parameters or

random treatment effects would suggest that inconsis-

tency may be present in the network.

A more explicit method for testing inconsistency for

specific comparisons is the node‐splitting method.15 This

technique involves splitting the evidence for a given com-

parison within a loop of treatments into “direct” evidence

from head‐to‐head RCT comparisons and “indirect” evi-

dence that arises from the consistency relationships. A

Bayesian P‐value can be calculated for the treatment

effects estimated using the direct and indirect evidence,

which represents the proportion of the two posterior dis-

tributions that overlap.

Note that when performing pairwise meta‐analyses to

estimate direct evidence, the sharing of parameters across

direct comparisons for which limited information is avail-

able can make tests for inconsistency conservative, and

this should be borne in mind when interpreting them.

For models with multiple time‐course parameters

(Equation 8), it is important to consider that inconsis-

tency may be present for treatment effects on either or

both of the time‐course parameters.

Donegan et al38 present inconsistency models to

explore consistency on two parameters. We suggest test-

ing for inconsistency on each time‐course parameter

separately, because if inconsistency is identified in

either parameter for a given comparison, then this

should be a cause for concern and should prompt fur-

ther investigation of the included studies to identify

the potential cause.

Multiple testing may also be an issue here, as the num-

ber of tests in a typical network will be multiplied by the

number of time‐course parameters in the MBNMA

model. However, inconsistency tests are typically under-

powered, and we advise erring on the side of caution as

it is better to incorrectly identify inconsistency when

there is none present than to incorrectly fail to identify

inconsistency when true inconsistency is present.
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2.7 | Treatment ranking for time‐course
relationships

In NMA, it is common to calculate ranking probabilities

(probability of being first best, second best, etc) for each

treatment within a network, as this is an easily interpret-

able measure for decision‐makers to use. In time‐course

MBNMA, we can rank on any function of the time‐course

model, which can allow for an extremely flexible

decision‐making framework. This could include ranking

based on any one of multiple time‐course parameters or

ranking on the predicted response at a desired follow‐up

time. For time‐course functions with multiple parame-

ters, note that the ranking of treatment effects may differ

for different time‐course parameters. For example, we

could have a treatment that ranks highest for ET50 indi-

cating that it acts more quickly than other treatments

but ranks lowest for Emax indicating that the overall

response is lower than for other treatments.

For models with less easily interpretable time‐course

parameters, it may also be beneficial to have an overall

ranking that takes into account the full time‐course rela-

tionship. Calculating the Area Under the Curve (AUC)

for the time‐course relationship for each treatment using

parameters estimated from the model is a pragmatic way

of doing this. However, care must be taken when choos-

ing the duration of time‐course over which to calculate

AUC, as treatment rankings may be sensitive to this

choice.

2.8 | Measures of model fit

Models are implemented using a Bayesian approach, and

therefore we use the posterior mean of the deviance

to compare the goodness‐of‐fit of the models,39 where

smaller values of deviance are preferred. Model selection

is based on the Deviance Information Criterion (DIC)

which represents a compromise between model fit and

model complexity,39,40 defined as the sum of the posterior

mean deviance (a measure of fit) and the effective num-

ber of parameters (a measure of complexity). We use pD

calculated using the Kullback‐Leibler information diver-

gence as the effective number of parameters.41 For the

selected final model (based on a univariate likelihood),

we also report the posterior mean of the residual deviance

(defined as the deviance for the model minus the devi-

ance for a saturated model), which can be compared with

the number of unconstrained data points to give an over-

all measure of model fit. Lack of fit is explored by plotting

an appropriate posterior summary (median if skewed) of

the contribution to the residual deviance for each data‐

point against time. Note, we do not compute residual

deviances for models with a multivariate likelihood in

which the correlation between time points is estimated

from the data, as the saturated model is not uniquely

defined.

2.9 | Model selection strategy

We propose a step‐by‐step approach for model selection

of time‐course relationships in MBNMA, recognising that

the available evidence may not be sufficient to be able to

estimate some of the more complex, but less restrictive,

models.

1. Plot study summaries (mean outcome) against time

to visually identify potential time‐course function

candidates and obtain expert opinion to assess their

biological plausibility if necessary.

2. Fit candidate time‐course models with fixed treat-

ment effects using a univariate likelihood that does

not account for correlations over time (univariate

models). Use simplifying modelling assumptions,

described above, if necessary to estimate the models

given the available data.

For each of these fitted models, plot the posterior

median of the contribution of each data‐point to the

residual deviance against time to check fit and to iden-

tify alternative time‐course relationships to explore.

Compare model fit statistics (posterior mean deviance

and DIC) and select a time‐course model with ade-

quate balance between fit and complexity (lowest

DIC) that also has biological plausibility.

3. For the selected univariate time‐course model, fit

random treatment effects models (if possible) with

the available data. Use model fit statistics and inspec-

tion of between studies SD parameters to assess pres-

ence of heterogeneity and choose between fixed and

random treatment effect models.

4. Check fit of the selected univariate model by compar-

ing posterior mean residual deviance to the total

number of data points

5. For the selected time‐course and treatment effects

model, fit models with multivariate likelihoods that

account for correlations over time with different

covariance structures. Select between the univariate

and multivariate formulations based on estimated

correlations and robustness of treatment effects

obtained (preferring the simpler models with lower

pV). Note the deviance statistics are not directly com-

parable for models with different likelihoods and so

cannot be used for model selection.

6. Check for consistency in final selected model (where

possible)
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a. Run UME model

b. If suggestive of possible inconsistency, perform

node splitting of closed loops

2.10 | Illustrative example—Pain in
osteoarthritis

The methodology is illustrated using a dataset of RCTs

investigating treatments for pain in patients with osteoar-

thritis. Pain was measured on the Western Ontario and

McMaster Universities Arthritis Index (WOMAC) scale42

and was recorded at multiple time points up to a maxi-

mum of 24 weeks. In order to maintain a consistent

imputation method for missing data across studies, only

those with last observation carried forward analyses

(LOCF) were included, as this was the imputation

method reported in the majority of papers. Agents with

multiple doses were split to form the network of treat-

ments, meaning that each combination of agent and dose

was considered to be a separate treatment. Although SDs

were typically available at baseline, they were missing for

269 out of 345 observations and were therefore imputed

accounting for changes over time using the method of

Boucher.43 We acknowledge that this is a high proportion

of data points for which to impute SD, but our aim here is

to illustrate the method rather than to provide clinically

useful treatment estimates. We note however that in

pharmacometrics, SD is not always reported as weighting

is often performed using sample size—in practice, we

would always recommend that SDs be reported and

measured.

The illustrative dataset consists of 23 RCTs comparing

29 treatments. Each study has a median of 3.5 (range: 2‐7)

follow‐up measurements, and all studies use LOCF

imputation for analyses. Figure 1 shows the network of

comparisons in the data, and Figure 2 shows mean

WOMAC pain in each study arm plotted over time for

each treatment. The dataset is freely available in the

Supporting Information (OsteoarthritisData.csv).44

2.11 | Implementation

Models were estimated using JAGS 4.2.0 (codes in the

Supporting Information). All fixed treatment effect

models were run on three independent chains for

20 000 iterations following 80 000 burn‐in iterations with

a thinning parameter of 10. For random treatment effect

models, convergence took more iterations—models were

run for 500 000 iterations following 400 000 burn‐in iter-

ations with a thinning parameter of 15. Gelman's r statis-

tic45 and visual inspection of the chains were used to

assess convergence. Vague normal prior distributions

(N(0,1000)) were given to the basic parameters d1,k, nui-

sance parameters μi, and treatment effect‐independent

time‐course parameters. For ET50 parameters in Emax

models, it was necessary to ensure that they only took

positive values so priors for these were specified on the

log‐scale. The between‐study SD and SDs on exchange-

able parameters were given uniform prior distributions

(U(0,5)). We inspect the posterior for the SDs to ensure

they are not being constrained by the prior. We also

assessed sensitivity of results to the prior by fitting the

same models using half‐normal prior distributions

(N(0,6.25)). In models with a multivariate likelihood, ρ

was given a uniform prior distribution (U(0,1)) to reflect

the belief that outcomes at different time points in the

same study are likely to be positively correlated. For

bivariate models with two nonintercept parameters, the

correlation between these parameters, ρδ, was given a

uniform prior distribution (U(−1,1)). For piecewise

time‐course models, knot location was selected through

trial‐and‐error by fitting models with different knot

values (allowing a minimum of 0.1 weeks between knots

in different models) and selecting the value from the best

fitting (lowest mean posterior deviance) model.

FIGURE 1 Network of treatment comparisons within the

MBNMA for the illustrative dataset of 24 RCTs for pain in

osteoarthritis. Each treatment is represented by a node. Where

direct RCT evidence exists for a particular comparison, the nodes

are connected by a line, the thickness of which is proportional to

the number of comparisons. All numbers represent doses (total

daily dose in mg). Abbreviations: Cel = Celebrex, Dul = Duloxetine,

Eto = Etoricoxib, Lum = Lumiracoxib, Naprox = Naproxcinod,

Nap = Naproxen, Oxy = Oxycodone, Rof = Rofecoxib,

Tram = Tramadol, Vald = Valdecoxib, NR = Dose not reported

[Colour figure can be viewed at wileyonlinelibrary.com]
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3 | RESULTS

Step 1. Visually inspect the data plotted against

time and consider biological plausibility of

time‐course functions

For all treatments, including placebo, visual inspection

of the data shows that WOMAC scores decrease over

time in a nonlinear fashion, with a rapid decline in pain

during the first 1 to 2 weeks that quickly levels out

(Figure 2). This suggests that a simple linear model will

not be a good fit for the data, but that exponential,

piecewise linear, or Emax models may be more suitable.

Both exponential and Emax models have good biological

plausibility and are frequently used for modelling phar-

macodynamic properties of drugs. However, the limited

number of observations at earlier follow‐up times sug-

gests that there may not be enough information to iden-

tify parameters that model the rapid decline, such as

ET50 parameters or parameters in the first piece of

piecewise models.

For two treatments (Duloxetine 90 mg/d and

Lumiracoxib (NR—dose not reported)), there is only data

from studies with baseline measurement and a single

follow‐up time compared with placebo, which is insuffi-

cient information to be able to identify any nonlinear

candidate time‐course function. We assumed that these

treatments followed the same time‐course function

(though with different time‐course parameter values) as

the other treatments in the network, and we consider

the impact of this assumption in the discussion.

Step 2. Compare time‐course models with univari-

ate likelihood and fixed treatment effects

Table 1 shows model fit statistics for linear, exponential,

piecewise linear, and Emax models (with various simplify-

ing assumptions). As expected, a linear time‐course

model gave a very poor fit to the data (Equation 3,

Figure 3, posterior mean deviance = 6935.2—Table 1).

An exponential time‐course was also a poor fit (Equation

2, Figure 3, posterior mean deviance = 5856.3—Table 1),

as it did not capture the fast rate of decline in WOMAC

scores that occurred within the first 2 weeks. A piecewise

linear time‐course with a knot at week one showed sub-

stantially better model fit (Equation 5, Figure 3, posterior

mean deviance = −189.3—Table 1) than the linear or

exponential models. However, by far, the best fitting

time‐course appeared to be an Emax model (Equation 4,

posterior mean deviances less than −441—Table 1).

Figure 3 shows that whilst the posterior mean contribu-

tion to the deviance displays a pattern for the linear and

exponential models (suggesting the time‐course is not

adequately captured), there is no systematic pattern dis-

cernible for the piecewise linear models and best‐fitting

Emax model (see below), and the deviance contributions

are much lower for the Emax model than the piecewise

linear model.

It was not possible to fit an Emax model with separate

treatment effects on the ET50 parameter, due to the lim-

ited number of observations at earlier time points in the

dataset. We were therefore obliged to make some simpli-

fying assumptions for ET50. We fitted class‐effect models

FIGURE 2 Plots of the mean WOMAC pain score for each of the studies in the pain in osteoarthritis dataset showing the most commonly

reported dose for each agent, plotted over time
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with exchangeable ET50 treatment effects (Equation 10)

with agent‐specific means (Emax model 1) or with a

common mean for all treatments (Emax model 3). We

also fitted class‐effect models with fixed ET50 treatment

effects (Equation 11) equal to agent‐specific values (Emax

model 2) or with an equal value for all treatments (Emax

model 4). For all of Emax models 1 to 4, we were also

obliged to further assume an exchangeable model for the

reference treatment effect (placebo in all studies), μET50;i

(Equation 12), to allow estimation.

Model fit was similar for Emax models 1 to 4, but the

model that assumed an equal treatment effect for ET50

for all treatments compared with placebo, common across

studies (Emax model 4), had the lowest DIC.

Step 3. Compare random and fixed treatment

effect models for selected time‐course model

Table 1 shows model fit statistics for a model that is iden-

tical to Emax model 4, but with a random treatment effects

model for Emax parameters (Equation 6) (Emax model 5).

The between‐study SD for treatment effects on Emax was

very low (0.09; 95%CrI: 0.00, 0.23), and although model

fit was slightly improved compared with the fixed effects

TABLE 1 Model fit statistics for time‐course models with univariate likelihood, fitted to the osteoarthritis pain dataset. For exchangeable

models, the heterogeneity parameter is reported as standard deviation (SD) = posterior mean SD (95% credible interval)

Model for λ1,i,k (Linear Slope,

Exponential Decay, or Emax) Model for λ2,i,k (Linear Slope, or ET50)

Time‐course model

Arm 1 effect,

μ1,i

Relative

treatment

effects, δ1,i,k

Arm 1 effect,

μ2,i

Relative treatment

effects, δ2,i,k DICa

Posterior

mean

devianceb pDc

Linear (λ1,i,k= slope) Unconstrained Fixed effect 7009.1 6935.2 73.9

Exponential

(λ1,i,k= decay rate)

Unconstrained Fixed effect 5931.8 5856.3 75.5

Piecewise linear

(λ1,i,k= slope period 1,

λ2,i,k= slope period 2,

knot = 0.1 wks)

Unconstrained Fixed effect Unconstrained Fixed effect −69.1 −189.3 120.2

Emax model 1

(λ1,i,k= Emax,

λ2,i,k= ET50)

Unconstrained Fixed effect Exchangeable

(Equation 12),

SD = 0.53

(0.25, 1.10)

Fixed effect d2,1,k has an

exchangeable class effect

with an agent‐specific

mean, SD = 0.11 (0.01,

0.48)

−274.5 −441.2 166.7

Emax model 2

(λ1,i,k= Emax,

λ2,i,k= ET50)

Unconstrained Fixed effect Exchangeable

(Equation 12),

SD = 0.50

(0.24, 0.97)

Fixed effect d2,1,khas a fixed

class effect for treatments

of same agent

−281.8 −443.1 161.3

Emax model 3

(λ1,i,k= Emax,

λ2,i,k= ET50)

Unconstrained Fixed effect Exchangeable

(Equation 12),

SD = 0.61

(0.34, 1.10)

Fixed effect d2,1,k has an

exchangeable class effect

with common mean

across all treatments,

SD = 0.13 (0.01, 0.48)

−284.3 −444.0 159.6

Emax model 4

(λ1,i,k= Emax,

λ2,i,k= ET50)

Unconstrained Fixed effect Exchangeable

(Equation 12),

SD = 0.64

(0.39, 1.15)

Fixed effect d2,1,k has a fixed

class effect constrained to

be equal for all

treatments

−289.9 −441.9 152.0

Emax model 5

(λ1,i,k= Emax,

λ2,i,k= ET50)

Unconstrained Random effects

(Equation 10),

SD = 0.09 (0.00,

0.23)

Exchangeable

(Equation 12),

SD = 0.65

(0.39, 1.16)

Fixed effect d2,1,k has a fixed

class effect constrained to

be equal for all

treatments

−287.9 −448.8 160.8

aDIC (= deviance + pD): It is a measure of model fit that penalises complexity.

bDeviance (= −2(log‐likelihood)): A measure of how closely the fitted values of the model fit the observed data.

cpD: The total number of effective parameters in the model, calculated using the Kullback‐Leibler information divergence.41
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model (Emax model 4), the added complexity resulted in a

higher DIC. There was insufficient data to be able to esti-

mate a bivariate random treatment effects model for Emax

and ET50 parameters (Equation 9). Nonetheless, we pro-

vide the JAGS code for this model in the Supporting

Information. Based on these results, we select the fixed

effects Emax model 4.

Step 4. Assess overall fit of selected univariate

model

The posterior mean residual deviance for Emax model 4

was 288.1, which is lower than the number of data points

(341), indicating a good fit to the data.

Step 5. Fit the selected time‐course model using a

multivariate likelihood

Accounting for residual correlation between time points

using a multivariate likelihood (Equation 1) for Emax

model 4 gave an estimated correlation of ρ = 0.28

(95%CrI 0.10, 0.41) when using a multivariate compound

symmetry covariance structure, and ρ = 0.50 (95%CrI

0.19, 0.65) when using a multivariate AR(1) covariance

structure (Table 2). Figure S1 (Supporting Information)

compares the univariate Emax model 4 treatment effects

with those from the equivalent multivariate specifications

with compound symmetry and autoregressive AR(1)

covariance structures. Estimates and their 95% CrIs

appear to be reasonably consistent between these models,

indicating that accounting for correlation leads to only

marginal differences in treatment estimates. Although

the differences are very slight, it is interesting to note that

use of a multivariate likelihood with compound symmetry

covariance structure typically leads to increased precision

of treatment estimates compared with the univariate like-

lihood model, whilst use of a multivariate likelihood with

AR(1) covariance structure has more of an effect on the

point estimate.

Predictions from the selected model (Emax model 4)

Figure 446 shows the predicted values from Emax model 4

for four illustrative treatments (others are given in Figure

S2 ‐ Supporting Information). There are many observa-

tions for treatments such as Celebrex 200 mg/d and

Naproxen 1000 mg/d, providing rich information on the

time‐course parameters, whilst for Duloxetine 90 mg/d

and Lumiracoxib (NR—dose not reported), the time‐

course is largely extrapolated and interpolated

AUC for time‐course relationships (Emax model 4)

Table 3 shows the median rank and their 95%CrI from

Emax model 4 for Emax treatment effects for each treat-

ment, and the AUC for each treatment calculated over

24 weeks follow‐up (the maximum latest follow‐up in

any of the included studies). As ET50 was constrained to

be equal across all treatments, the rankings are only

dependent on Emax, and therefore Emax rankings match

the AUC rankings. Etoricoxib 60 mg/d was the highest

median ranked treatment for both AUC and Emax.

Step 6. Test for inconsistency

In the osteoarthritis dataset, all studies included a

placebo arm. Within the contrast‐based NMA approach,

the relative effects within a study are only estimated for

each treatment versus the study reference treatment—it

FIGURE 3 Median posterior residual

deviance contributions over time from

univariate fixed treatment effects models

with linear, exponential, piecewise linear,

and Emax (model 4) time‐course

relationships in the pain in osteoarthritis

dataset. Residual deviances closer to 0

indicate a better fitting model.

Nonlinearity in these plots indicates that

the effect of time has not been properly

accounted for. The scales for residual

deviance vary between the upper and

lower panels
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is not necessary to estimate relative effects between

nonreference treatments within a multi‐arm study

because these will be defined by the difference between

the relative effects for each treatment versus the study

reference, as each study must be internally consistent.

Therefore, there were no closed loops of treatments in

the network that were made up of independent sources

of evidence, and as a result it was not possible to test

for inconsistency (Figure S3A ‐ Supporting Information).

For illustrative purposes, to create a dataset in which it

is possible to test for inconsistency, we expanded our

inclusion criteria to all studies irrespective of their

FIGURE 4 Predicted means and 95% CrI from the final model (Emax model 4) for the pain in osteoarthritis dataset for Celebrex 200 mg/d,

Duloxetine 90 mg/d, Lumiracoxib (dose not reported), and Naproxen 1000 mg/d, plotted over time. The thicker red line indicates the

assumed placebo response (calculated from the data). The shading of the 95% CrI indicates observations present in the dataset at each time

point [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Model fit statistics for the Emax model 4 time‐course model (see Table 1), comparing univariate and multivariate likelihoods,

fitted to the osteoarthritis pain dataset. For the exchangeable baseline parameters, standard deviations (SD) are reported as posterior mean SD

(95% credible interval). Correlation is reported as posterior mean (95% credible interval)

Model for λ1,i,k (Emax) Model for λ2,i,k (ET50)

Time‐course model

Arm 1 effect,

μ1,i

Relative

treatment

effects, δ1,i,k

Arm 1 effect,

μ2,i

Relative

treatment

effects, δ2,i,k

Correlation,

ρ DICa

Posterior

mean

devianceb pDc

Emax model 4

univariate likelihood

Unconstrained Fixed effect Exchangeable

(Equation 12),

SD = 0.64

(0.39, 1.15)

Fixed effect, d2,1,k
equal for all

treatments

0 −289.9 −441.9 152.0

Emax model 4

multivariate

likelihood, compound

symmetry

Unconstrained Fixed effect Exchangeable

(Equation 12),

SD = 0.68

(0.43, 1.18)

Fixed effect, d2,1,k
equal for all

treatments

0.28 (0.10,

0.41)

−266.2 −425.8 159.6

Emax model 4

multivariate

likelihood, AR(1)

Unconstrained Fixed effect Exchangeable

(Equation 12),

SD = 0.66

(0.41, 1.17)

Fixed effect, d2,1,k
equal for all

treatments

0.50 (0.19,

0.65)

−278.9 −437.0 158.1

aDIC (= deviance + pD): It is a measure of model fit that penalises complexity.

bDeviance (= −2(log‐likelihood)): A measure of how closely the fitted values of the model fit the observed data.

cpD: The total number of effective parameters in the model, calculated using the Kullback‐Leibler information divergence.41

PEDDER ET AL. 13



method of imputation. This added an extra seven studies

to create an “augmented dataset” (30 studies in total).

The augmented dataset is freely available in the

Supporting Information (AugmentedInconsistencyData.

csv).44 One of these additional studies47 compared

Celebrex 200 mg/d, Rofecoxib 25 mg/d, and Naproxen

100 mg/d but not Placebo. This created two loops in the

network in which direct and indirect estimates came

from independent sources, meaning it was possible to test

for inconsistency (Figure S3B ‐ Supporting Information).

In the augmented dataset, results from the UME

model were very similar to the MBNMA model (Emax

model 4). Posterior mean residual deviance was 374.0

for the UME model compared with −370.3 for the

MBNMA model, whilst the between‐study SD for the ref-

erence treatment effect for ET50 was almost identical for

both UME (0.69 (95%CrI: 0.43, 1.18) and MBNMA models

(0.69 (95%CrI: −0.44, 1.18). There is therefore no evi-

dence to invalidate the consistency assumption.

A node splitting model was fitted for the two closed

loops of treatments in the network that comprised inde-

pendent data sources, giving two comparisons on which

to node split (Figure S3B ‐ Supporting Information).

For both comparisons, the MBNMA estimate was

effectively a weighted average of the direct and indirect

estimates, as would be expected, though in both the indi-

rect evidence is more precise and therefore has the

greatest influence on the MBNMA result (Figure 5). The

TABLE 3 Median (95%CrI) rankings (1 = best) for AUC and Emax treatment effects for Emax model 4. Simplifying assumptions on ET50

that constrain it to be equal across all treatments mean that the rankings for AUC are identical to the rankings for Emax treatment effects

Treatment Median AUC Rank (95% CrI) Median Emax Rank (95% CrI)

Etoricoxib 60 mg/d 1 (1, 3) 1 (1, 3)

Etoricoxib 90 mg/d 2 (1, 4) 2 (1, 4)

Rofecoxib 125 mg/d 3 (1, 6) 3 (1, 6)

Etoricoxib 30 mg/d 4 (3, 12) 4 (3, 12)

Oxycodone 44 mg/d 5 (1, 25) 5 (1, 25)

Rofecoxib 25 mg/d 6 (4, 15) 6 (4, 15)

Naproxcinod 1500 mg/d 7 (5, 11) 7 (5, 11)

Naproxen 1000 mg/d 10 (6, 14) 10 (6, 14)

Celebrex 400 mg/d 11 (6, 21) 11 (6, 21)

Etoricoxib 10 mg/d 12 (5, 27) 12 (5, 27)

Naproxcinod 750 mg/d 13 (7, 23) 13 (7, 23)

Etoricoxib 5 mg/d 14 (5, 28) 14 (5, 28)

Lumiracoxib ( not reported) 14 (7, 24) 14 (7, 24)

Valdecoxib 20 mg/d 15 (6, 25) 15 (6, 25)

Rofecoxib 12 mg/d 16 (7, 25) 16 (7, 25)

Lumiracoxib 100 mg/d 17 (11, 23) 17 (11, 23)

Lumiracoxib 400 mg/d 17 (10, 24) 17 (10, 24)

Tramadol 300 mg/d 17 (8, 24) 17 (8, 24)

Valdecoxib 10 mg/d 17 (7, 26) 17 (7, 26)

Celebrex 200 mg/d 18 (13, 23) 18 (13, 23)

Lumiracoxib 200 mg/d 19 (12, 24) 19 (12, 24)

Valdecoxib 5 mg/d 19 (8, 26) 19 (8, 26)

Tramadol 400 mg/d 20 (8, 27) 20 (8, 27)

Duloxetine 90 mg/d 22 (8, 28) 22 (8, 28)

Celebrex 100 mg/d 25 (17, 27) 25 (17, 27)

Tramadol 200 mg/d 25 (17, 27) 25 (17, 27)

Tramadol 100 mg/d 27 (22, 28) 27 (22, 28)

Placebo 0 mg/d 28 (27, 29) 28 (27, 29)

Naproxcinod 250 mg/d 29 (26, 29) 29 (26, 29)
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Bayesian P‐value representing the overlap of the posterior

distributions for the direct and indirect evidence was 0.69

for Celebrex 200 mg/d vs Naproxen 1000 mg/d and 0.79

for Celebrex 200 mg/d vs Rofecoxib 25 mg/d indicating

no evidence of inconsistency in either loop of treatments.

3.2 | Model checking

For all models for which results are reported, Gelman's r

statistic and visual inspection of the chains were indica-

tive of convergence. Convergence diagnostic plots for

the final model (Emax model 4) and for a nonconverging

“ideal” Emax model with no simplifying assumptions on

ET50 are given in the Supporting Information.

Posterior densities were not constrained or strongly

influenced by priors. In the final model (Emax model 4),

the SD for the exchangeable study reference treatment

effect was 0.64 (95%CrI: 0.39, 1.15) when using a uniform

(U(0,5)) prior and 0.64 (95%CrI: 0.39, 1.16) when using a

half‐normal () prior (Figure S4 ‐ Supporting Information).

For the random Emax treatment effects model (Emax model

5), the between‐study SD for random Emax treatment

effects was 0.09 (95%CrI: 0.00, 0.23) when using either a

uniform (U(0,5)) prior or a half‐normal () prior, suggesting

the choice of prior is not influential.

4 | DISCUSSION

We have presented a method to pool evidence from trials

that form a network of comparisons across multiple

treatments, reporting continuous summary outcome

measures over multiple time points. The method respects

the randomisation in RCTs, can include a variety of dif-

ferent functional forms for the time‐course, allows for

testing of consistency of the evidence, and demonstrates

how a multivariate likelihood can be used to account

for residual correlation between time points.

In the pain in osteoarthritis dataset, we found that the

Emax model provided the best fit and allowed for the

greatest degree of flexibility, both in the time‐course

shape and in the specification of various time‐course

parameters (Emax and ET50). The Emax model with the

lowest DIC (Emax model 4) assumed a fixed effect across

all nonplacebo treatments on ET50 (Equation 12). In this

model, we estimated AUC of the time‐course function

over 24 weeks follow‐up and found Etoricoxib 60 mg/d

to have the highest ranked AUC.

Whilst WOMAC pain in this dataset was measured as

a continuous outcome, MBNMA can also be performed

on any data provided it can be summarised as a continu-

ous outcome that can be assumed to have a normal like-

lihood. This therefore allows for binary data (ie, %

respondents at each follow‐up time) to be analysed using

MBNMA if they are summarised as log‐odds and are not

near the boundary probabilities (0% or 100%).

4.1 | Time‐course function

Previous methods for performing NMA on longitudinal

data have typically accounted for the dependency

between different follow‐up times by either modelling

an appropriate time‐course function18,19 or using non-

parametric approaches to account for responses at each

time point.21,34 To our knowledge, none of the methods

FIGURE 5 Posterior densities for the effect of naproxen (1000 mg/d) versus Celebrex (200 mg/d) and Rofecoxib (25 mg/d) versus Celebrex

(200 mg/d) on Emax for the direct and indirect evidence arising from node splitting when testing for inconsistency using Emax model 4 for

the augmented dataset. Bayesian P‐value of 0.69 and 0.79, respectively, representing the proportion of the densities that overlap
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for modelling longitudinal continuous data in NMA have

described methods for testing inconsistency.

Jansen et al19 used fractional polynomials to model a

nonlinear trend, with an inflated variance for each time

point to approximate correlations between observations.

These allow for a very flexible shape for modelling the

time‐course relationship. However, fractional polyno-

mials are difficult to interpret and may not have a clear

biological justification, making them less desirable for

use in pharmacometric studies, where the objective is to

define how the efficacy of a treatment changes over

time rather than to simply account for it. For modelling

time‐course in pharmacometrics, exponential and Emax

functions are typically used, as these have a biological

basis in describing the mechanism of drug action and

elimination from the body.48 Taking this into account,

Ding and Fu18 modelled an exponential shape in NMA

and described how their model could be adapted for a sig-

moid shape similar to that of an Emax function.

Nonparametric models that do not specify a particular

time‐course relationship have also been proposed,

although these do not allow for any interpolation or

extrapolation of treatment effects at unmeasured points

in time, which makes them less applicable to drug devel-

opment. Ishak et al21 used a multivariate likelihood to

account for the dependency between different time

points. Dakin et al34 used a saturated model to estimate

treatment effects separately for different time bins,

although for this method more data are required to reli-

ably estimate the treatment effects for each bin.

One of the strengths of our MBNMA framework is

that information on time‐course characteristics can be

inferred from other treatments or agents by assuming

varying degrees of similarity and thus improving

identifiability. However, sharing information on time‐

course parameters across a network assumes exchange-

ability, and it is important to be aware of the implications

of this assumption and to consider whether it holds

across different agents or classes of treatments.

4.2 | Correlation between time points

Having selected an appropriate time‐course relationship

in the pain in osteoarthritis dataset, we found that esti-

mated residual correlation was reasonably high. This was

in contrast to our expectation that explicitly modelling

the time‐course should have generated conditional inde-

pendence. However, accounting for this correlation had

only a slight impact on treatment effect estimates or 95%

CrIs. This suggests that for MBNMA where the focus is

on summary estimates, whilst accurately characterising

the within‐study correlation and covariance structure

may be important, it is likely to be less critical than accu-

rately characterising the time‐course. With regards to the

importance of modelling within‐study correlation, there

is some debate in the literature. A simulation study by

Ishak et al49 suggests that the impact of ignoring within‐

study correlation on treatment estimates may typically be

small, even in cases where there has been no specific

modelling of a time‐course function. However, Riley50

has shown that this is only the case when between‐study

variation is large relative to within‐study variation, or

when there are complete data with only small differences

in the within‐study covariance matrices across studies.

Ahn and French2 support this position, demonstrating

that ignoring correlation in longitudinal MBMA led to

inflated residual variance. We are currently performing a

simulation study to further examine the relationship

between time‐course fit and correlation in MBNMA.

Note that the estimated covariance matrix in the mul-

tivariate likelihood will depend on the time‐course model

fitted, and the strength and importance of correlations

between time points are also likely to depend consider-

ably on how close together follow‐up measurements are

in time, with closer measurements expected to be more

strongly correlated.

Previous longitudinal MBMA methods that account

for correlated residuals have been developed in a

frequentist framework, using NONMEM software to

allow for modelling of interarm variability in addition to

interstudy variability.2 The authors used an exponential

model for the time‐course and also accounted for nonlin-

ear dose‐response in their model. Although we follow a

Bayesian approach and our model is formulated some-

what differently, our multivariate model with a com-

pound symmetry covariance structure is similar to their

method. However, the key difference is that our approach

respects randomisation and allows for inconsistency test-

ing. Without these features, the methods are unlikely to

meet the requirements of reimbursement agencies.

4.3 | Modelling assumptions

For our selected Emax model in the pain in osteoarthritis

dataset (Emax model 4), assuming a fixed effect across all

nonplacebo treatments for ET50, whilst allowing all treat-

ment effects to be different for Emax implies that the onset

of action is the same for the different treatments relative

to placebo, but that treatments differ in the maximal

change in outcome achieved. In practice, this might be

considered an unusual modelling assumption, as one

might expect ET50 to differ between active treatments,

particularly for those acting via different biological path-

ways. However, the onset for all these treatments was
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very rapid, and there were insufficient observations at

early time points to reliably estimate this. In fact, none

of the included studies report WOMAC scores within a

week from baseline. Given that this is later than the esti-

mated ET50 (approximately 0.6 weeks), it is not surprising

that this parameter is difficult to estimate. For this exam-

ple, we would therefore caution against making infer-

ences at very early time points. Using informative prior

distributions for the τ2ET50
or for dET50;1;k parameters for

which information is sparse may improve estimation.

Information from noncomparative pharmacodynamic

studies of different agents may be useful to provide sup-

port for specific prior distributions. Another approach

may be to incorporate information from other treatments

in a more biologically plausible manner, such as by using

the dose‐response relationships between treatments

within an agent.17

Explicitly modelling the bivariate correlation between

Emax and ET50 may in some circumstances also provide

additional information to help identify ET50 and reduce

the need for such strong simplifying assumptions. This

is likely to be the case when correlation between Emax

and ET50 is high. However, in the pain in osteoarthritis

example, this still was not sufficient to help identify

ET50, even when alternative parameterizations for the

covariance matrix were used.31

Within time‐course MBNMA, it is necessary to assume

the same time‐course function for the included set of treat-

ments. Whilst themean responses over time for most treat-

ments supported the use of an Emax function, there were

only two observations (baseline and one follow‐up mea-

surement) for studies comparing Lumiracoxib (NR—dose

not reported) vs Placebo and Duloxetine 90 mg/d vs

Placebo.

For Lumiracoxib NR, it was reasonable to assume that

the time‐course function will be similar to other doses

of Lumiracoxib for which there are more observations.

However, there are no other doses of Duloxetine to make

an equivalent assumption, and as the mechanism of

Duloxetine is also different to any other agent in the

dataset, it may follow a different time‐course function.

Yet, as this treatment did not contribute any indirect evi-

dence to the rest of the network (which could induce bias

in other treatment estimates if modelled appropriately)

and there was no evidence to suggest a different time‐

course function would be applicable for this treatment,

we feel it is reasonable to assume a similar time‐course

function to other treatments provided treatment effect

estimates for Duloxetine 90 mg/d are interpreted

with caution. This case highlights the importance of

understanding the underlying pharmacometrics of treat-

ments in the data, and of dialogue between clinicians,

pharmacometricians, and analysts.

An additional assumption made in all the Emax models

due to the inclusion of Lumiracoxib NR and Duloxetine

90 mg/d was that of an exchangeable placebo (Equation

12), as the lack of multiple follow‐up measurements

made separate estimation of all three parameters for the

time‐course (E0, ET50, and Emax) impossible for these

comparisons. This is likely to have caused a certain

degree of shrinkage and may therefore induce bias in

treatment estimates for ET50 due to back‐propagation of

the information on the reference treatment.9

4.4 | Inconsistency

In NMA, two approaches are typically used for dealing

with longitudinal studies. A single consistent time point

may be used for analysis across studies, ignoring evidence

from other time points. Alternatively, the final time point

from studies with different follow‐up times may be

“lumped” together to allow for networks to be connected,

yet this lumping can often be a source of inconsistency

and/or heterogeneity.16 Whilst MBNMA solves the issue

of lumping together studies with different follow‐up times

or discarding information on multiple time points, the

choice of model will affect the presence of inconsistency.

We suspect that a poorly fitting time‐course model may

induce inconsistency. It is therefore important to explore

different functional forms and identify a good model

before testing for inconsistency.

For the purposes of drug development, the potential

for inconsistency testing in MBNMA may in fact be rela-

tively rare. The typical design of Phase II trials is multi‐

arm placebo‐controlled, meaning that there are no closed

loops of treatments that are not made up of multi‐arm

trials (as in the illustrative osteoarthritis dataset). As

these trials must inherently be internally consistent, this

provides no means to test for inconsistency. However,

we are still relying on the consistency assumptions to

make indirect comparisons, so although in these cases

we cannot formally test for inconsistency it is important

to consider whether these assumptions are valid.

For the pain in osteoarthritis augmented dataset, we did

not find any evidence of inconsistency in the augmented

dataset when including non‐LOCF studies, and parameter

estimates were robust to their inclusion. In practice, we

would recommend careful consideration of inclusion

criteria to ensure only studies on which the consistency

assumption is expected to hold are included.13

It is worth noting that a standard NMA performed by

“lumping” the latest time point in each of the studies

(an approach frequently used but not one that we would

recommend) highlights the benefit of performing

MBNMA when dealing with different follow‐up times. In
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terms of DIC, a random treatment effects NMA was pre-

ferred over a fixed treatment effects NMA, with a nonzero

between‐study SD (0.25 (95%CrI: 0.17, 0.36)). A Bayesian

P‐value for the node‐split of Celebrex 200 mg/d vs

Naproxen 1000 mg/d was 0.011 and for Celebrex 200 mg/

d vs Rofecoxib 25 mg/d was 0.100 suggesting reasonable

evidence of inconsistency in both comparisons that was

particularly concerning given that the direct and indirect

evidence for both showed opposite directions of effect.

Therefore, by accounting for time‐course using MBNMA,

we have explained heterogeneity and inconsistency that

can arise when using standard NMA methodology.

4.5 | Limitations

There are a few limitations to the methodology that we

seek to investigate further in simulation studies. The first

is that the quantity of data required for MBNMA may be

significant, particularly for more complex time‐course

functions. This therefore means that analyses may typi-

cally require strong simplifying assumptions within the

modelling that are difficult to test. This could relate to

the assumption that time‐course functions are the same

across all treatments within the network, but also to the

need to interpolate or extrapolate over the time‐course

when few observations are available for a particular

treatment.

We also do not fully understand the importance of cor-

rectly accounting for the correlation between time points,

and how failure to do this might affect estimates for

different parameters in the model. We believe that the

impact of this is likely to depend on the key parameters

of interest in the model. Simulation can help to shed light

on this issue.

4.6 | Future direction

In future work, we plan to incorporate simultaneous dose‐

response and time‐course modelling into the MBNMA

framework,17 and to develop simulation studies to explore

the robustness and data requirements of dose‐response,

time‐course, and methods for assessing inconsistency

in MBNMA. We are also developing an R package for

MBNMA to facilitate its implementation.

5 | CONCLUSION

MBNMA combines the strengths of both MBMA and

NMA, leading to a statistically robust framework for syn-

thesising evidence on multiple treatments at multiple

time points whilst preserving randomisation and allowing

for assessment of consistency. By unifying these statistical

techniques, the methods can provide both the informa-

tion needed to inform drug‐development decisions, and

also the rigour required by reimbursement agencies to

incorporate valuable evidence from drug development

into the decision‐making process.

5.1 | Highlights

Within drug development, MBMA is increasingly used to

inform drug decisions such as whether to proceed to fur-

ther clinical trials, and if so, what the design of the study

should be. However, these types of analyses typically

model each drug separately by pooling individual study

arms, which breaks the randomisation and ignores

within‐study comparisons, effectively losing the advan-

tages of the RCT design and potentially inducing bias in

the resulting estimates.

Our MBNMA framework preserves randomisation by

modelling relative effects and allows for testing of incon-

sistency between direct and indirect evidence. This man-

uscript extends previous methodology on dose‐response

MBNMA to allow the modelling of nonlinear time‐course

characteristics, incorporating multiple study time points

and accounting for correlation between them.

MBNMA combines techniques from two different

disciplines, pharmacometrics and evidence synthesis,

thereby acting as a bridge between early phase clinical

research and Health Technology Appraisal.

Glossary

Agent = an intervention/compound/drug

Identifiability = the capacity for parameters in a model to

be reliably estimated

Treatment = a specific dose and agent combination.
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