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A B S T R A C T

Trend analysis of air pollutant concentrations becomes problematic when applied to data from air quality

monitoring networks containing time series of differing lengths. The average trend from such data can be

misleading due to biases in the monitoring network. For example, if new monitoring sites located in more

polluted locations are added to a network, the introduction of these time series can leverage the trend upwards.

A method for resolving this problem was developed, using rolling window regression to recursively calculate the

change in pollutant concentration as a function of time, which can be used as a proxy for the true trend. The

efficacy of the method was established by conducting simulations with known trends. The rolling change trend

was shown to more accurately reflect the true trend than simply averaging the time series. Application of the

technique to estimate trends in NOx, NO2 and NO2/NOx concentrations at London roadside monitoring sites over

the period 2000–2017 revealed clear differences from the simple average. In particular, a significant monotonic

downward trend in NOx concentration was observed, in stark contrast to the average trend, which suggested

little change in NOx concentration had occurred over the same period. By accurately representing trends using

time series of different lengths, this method has the benefit of being able to describe changes in air quality for

locations and time periods with otherwise insufficient data.

1. Introduction

1.1. Background

Air quality monitoring networks are instrumental to the evaluation

and management of air pollution by governments, policy makers and

regulatory bodies. While other tools, such as emission inventories, are

often used to track changes in emissions, the complex nature of atmo-

spheric processes and local conditions mean that emissions data are not

necessarily an accurate indicator of pollutant concentration or ex-

posure. In contrast, ambient data from monitoring networks, subject to

rigorous analysis, can reveal the pollutant concentrations, correlations

and trends at measurement locations. Such information is invaluable for

estimating the actual effects of social and infrastructure changes, and

policy interventions on air quality.

Trend analysis is an important tool for examining the changes in

pollutant concentration over time (Anttila and Tuovinen, 2010;

Guerreiro et al., 2014), and can be used as evidence of the efficacy (or

lack thereof) of policy interventions (Font and Fuller, 2016). In cases

where the area under investigation contains a limited number of

monitoring sites, a common approach is to compare the trends at each

individual monitoring site to yield an overall impression of changes in

air quality in the area. For example, Mavroidis and Chaloulakou (2011)

used this approach to estimate trends in particulate matter (PM) and

ozone concentrations in Santiago, Chile 1989–1998 using data from

four monitoring sites. The trends at each site were compared in order to

establish a consensus, while differences between monitoring sites were

rationalised using contextual information about each site. Some studies

have attempted to replicate this approach with larger numbers of

monitoring sites, such as the study by Masiol et al. (2017), which

analysed the trends in concentration of a range of pollutants at 43

monitoring sites in the Veneto region of Italy. However, in the case of

large regions or areas with an extensive monitoring network of sites

available, this approach can be unwieldy and as such it may be bene-

ficial to aggregate data from multiple monitoring sites to gain a re-

presentative view of the average air quality. Cluster analysis has been

used to look at trends across a large number of sites allowing potential

drivers for observed changes to be investigated and differences within

and across regions to be explored (Malley et al., 2018).

Font and Fuller (2016) employed a different method to examine the

trends in roadside increments of various pollutants between 2005-2009

and 2010–2014 by averaging data from 65 London monitoring sites.
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Font and Fuller (2016) applied data capture filters and linear inter-

polation to ensure all individual time series from separate sites were of

equal length. The problem with this approach is that data filtering ex-

cludes some information from the analysis. Fleming et al. (2018) in

their analysis of ozone trends for the Total Ozone Assessment Report

highlight that, particularly in developing countries, time series only

span a few years and due to data capture requirements this limits the

number of sites available for trend analysis. In this case the study is

global and so there are still sufficient sites to provide the necessary data

for robust trend analysis, but the distribution of the data across the

globe is limited, with sparser sites in developing countries being more

likely to be removed. For areas with sparser monitoring site coverage,

or for trend analysis of long time periods, filtering the data may not be

practicable, and therefore it may be necessary to average over all

available monitoring sites to obtain a trend.

However, the trend in average concentration (average trend) over

monitoring sites of differing duration is sensitive to biases in the

monitoring network. Frequently, air pollution monitoring sites are

moved to more polluted locations, closed in locations with low pollu-

tion levels, or new sites are opened in highly polluted locations that

require more careful observation. The cumulative effect of site flux is

often therefore that a monitoring network is increasingly biased to-

wards monitoring sites with higher pollutant concentrations.

Duyzer et al. (2015) state that in their dual use for compliance

monitoring and assessing population exposure, the choice of monitoring

site location is made such as to provide data from the following: (i) the

locations where the highest concentrations occur, and (ii) locations

representative of the regional average. Typically, a distinction is made

between roadside monitoring sites, which provide highly localised data

from (i), and urban background monitoring sites, which are chosen to

represent (ii). For this reason, movement of roadside monitoring sites to

more polluted locations is not unexpected, but nonetheless has sig-

nificant effects on the average trend. This issue was demonstrated in a

2014 report for the Department for Environment, Food & Rural Affairs

(Defra, 2014). The long term trends in NO2 and PM10 concentration

were calculated using data from all monitoring sites in the AURN net-

work, and compared to those derived using data from long term sites

only. While the trends at urban background sites differed slightly, those

from roadside sites displayed considerable differences, which were at-

tributed to changes in monitoring site quantity and distribution over

time.

In this paper, a range of techniques for identifying and mitigating

the biasing effect of variation in time series length due to monitoring

site flux on the average trend are developed. The efficacy and robust-

ness of the methods are tested using simulated data. The methods are

illustrated by a trend analysis of NOx concentration, NO2 concentration

and NO2/NOx concentration ratio in London between 2000 and 2017

using data from roadside monitoring sites in the London air quality

network. Finally, potential future applications of the new techniques

are discussed.

London was chosen as the case study because of its unusual abun-

dance of monitoring sites, including long term sites. However this si-

tuation is rare, giving rise to the need for methods that allow for the

evaluation of the unbiased trend (i.e. the overall change in concentra-

tion across the network of monitoring sites) in the absence of long term

monitoring sites.

2. Method

2.1. Identification of bias effects on the trend

Evidence of a bias in the monitoring network was sought by com-

paring trends averaged over (i) time series of differing lengths and (ii)

time series of the same length. To this end, the trend in annual median

concentration using data from (i) all monitoring sites and (ii) long term

sites open for the entire duration of the period of study were compared.

In all cases, the average concentration was calculated using the median,

as it is more robust to skewed data and the presence of extreme values.

This comparison is possible only if sufficient data is available from

long term sites for the period of interest. In many cases, there may not

be any reliable long term sites available as a basis of comparison.

Additionally, any conclusions drawn from this comparison rely on the

validity of the assumption that the trend from long term sites is re-

presentative of the true trend, and is not unduly affected by external

influences.

In response to these limitations, a robust approach for observing and

mitigating the effect of opening sites with high concentrations on the

average trend was developed.

Rolling window regression (also known as rolling regression) is a

technique most commonly used in time series analysis of financial data

to examine variation in the output of a linear regression, such as the

regression coefficient, over time (Wang and Zivot, 2006). The technique

uses the same principle as a rolling average, except that a linear re-

gression is applied to each time period (window) rather than an

average. First, a rolling window width, n, is chosen. The data is parti-

tioned into −N n subsets, where N is the total number of observations

in the time series. Each subset is rolled one observation ahead from the

previous subset, resulting in a set of rolling windows of width n, each

offset from the consecutive windows by one observation, and where the

ith rolling window contains the observations i, …, + −i n( 1). Linear

regression is then applied to each rolling window.

A modification of traditional rolling regression was applied to the

data, where each rolling window of width n contained data only from

sites with measurements during every month within the period of the

window (i.e. open and operational for all years within the window),

ensuring that all time series within the window were of identical length.

Rolling trends in the concentration of the pollutant of interest for

each window were plotted, resulting in a series of overlapping n year

trends.

Comparison of the rolling trend and average trend using different

values of n reveals a ‘frame-by-frame’ view of the potential bias. Each

rolling trend overlaps with its neighbours for all years but one, and thus

excludes data from monitoring sites opening in that year. In this way,

by comparing trends in consecutive years, the effect of sites opening in

that year can be visualised.

2.2. Extraction of the underlying trend

An optimal method to counter the influence of monitoring site flux

on the average trend would aim to minimise the effect of the bias while

retaining as much of the data as possible.

The simplest solution would be the exclusion of all sites not mea-

suring constantly over the period of interest from the trend analysis via

the application of a data capture filter. However, this approach would

inevitably result in the sacrifice of a great deal of the available data, and

in study areas with low numbers of sites could result in the conclusion

that trend calculation was not possible. Furthermore, this method is

predicated on the assumption that the long term sites are representative

of the true trend in the location studied. Depending on the abundance

(or lack thereof) of long-term sites, as well as other location-dependent

external influences, this assumption may not be accurate.

An alternative method has been developed as an approach to this

problem, with the advantage of retaining virtually all of the available

data.

The method, which we shall refer to as the ‘rolling change method’,

recursively calculates a concentration change, which approximates the

trend in pollutant concentration. The concentration change in the first

time point (e.g. the first year) is set as the median concentration over all

monitoring sites in the first year. Next, the first moving window is

defined as the period between time points 1, …, + −n1 ( 1). Data is

drawn from the monitoring sites measuring throughout the duration of

the window, and a linear regression is fit to the data, as described in
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Section 2.1. The sum of the coefficient of the linear regression and the

concentration change of the previous time point is assigned as the

concentration change of the middle year of the moving window. The

moving window is shifted down the time axis by one time unit (e.g. one

year) and the process is repeated until the end of the time period of

interest is reached.

For example, suppose the rolling change trend between 2000 and

2017 was calculated using a window width of three years. The starting

point is the average of the annual average concentrations of all mon-

itoring sites in 2000. The first moving window would select data from

monitoring sites measuring constantly during 2000–2002, and fit a

linear regression to the data. The sum of the regression coefficient and

the concentration change in 2000 would be assigned as the con-

centration change for 2001. The moving window would then shift to

2001–2003 and repeat the process. The final moving window would use

data from 2015 to 2017 to calculate the concentration change in 2016.

Similarly to the data filtering method described in Section 1.1, the

rolling change method involves filtering monitoring sites by their data

capture. However, unlike established methods, data filtering is applied

over short windows of only 2–3 years, rather than the entire period of

the trend analysis, therefore more data is retained during filtering.

Fig. 1 shows a schematic of the process, while Equations (1) and (2)

describe the rolling regression and the recursive concentration calcu-

lation respectively. A more detailed algorithm can be found in

Appendix A.

The terms in Equations (1) and (2) are defined as follows: Yi is the

variable of average concentration from all sites with sufficient data

capture over the rolling window, i; Xi is the variable of time points

within the moving window, i; xi is the median year of Xi; βi is the

coefficient of the rolling regression over the window, i; εi is the irre-

ducible error of the rolling regression, and y∆ i is the change in con-

centration assigned to the year xi.

Equation (3) represents the rolling change trend itself. The trend is

the concentration change ( y∆ i) as a function of the median year of the

rolling window (xi).

= + +Y β β X εi i i i0 (1)

= +−y y β∆ ∆i i i1 (2)

= +y f x ε∆ ( )i i i (3)

The rolling change trend acts as a proxy for the trend in pollutant

concentration, retaining information about the relative changes in

concentration while discarding information regarding the relative

magnitudes. The rolling change trend is constituted of rolling trends

over n rolling windows, each fit to a set of time series of identical

length. In this way, the leveraging effect induced by the inclusion of

high magnitude time series does not affect the trend, so data from all

sites with a duration of at least n years can be included in the analysis.

The choice of n dictates the criteria for inclusion of monitoring sites into

the analysis. Larger values of n impose more stringent requirements for

site duration, and thus exclude more monitoring sites.

The functions used for the trend analysis in the paper, including the

calculation of rolling trends and rolling change trends, are available in

the aqtrends R package (Lang, 2018).

2.3. Description of data

The data used in the London case study were sourced from the

Automatic Urban and Rural Network (AURN) maintained by Defra, the

London Air Quality Network (LAQN) run by King's College London, and

the Air Quality England database collected by Ricardo Energy &

Environment.

Each of these networks contains a number of monitoring sites,

which record hourly observations of air pollutant concentrations. The

concentrations of NOx and NO2 were measured using the European

Commission reference method of chemiluminescence with mo-

lybdenum converter.

For each monitoring site, data more than 10 times the interquartile

range from the upper quartile was considered to be an outlier and re-

moved from the data set. Monitoring sites with less than 75% data

capture over the period during which they were measuring data were

not included in the trend analysis. The mean and the standard deviation

of the hourly NOx and NO2 concentrations measured at each monitoring

site is given in Supplementary Material 1.

The hourly data was used to calculate annual average concentra-

tions using three different methods of trend analysis. For the average

trend (all sites), all available data from all monitoring sites measuring

during the period of analysis was included in the average (median). The

average trend (using data from long term sites only) was calculated

using data only from sites measuring throughout the duration of the

period of analysis. This was defined as recording measurements during

every month within the period of analysis. Additionally, a data capture

criterion was applied to ensure that all long term sites had at least 90%

data capture over the period of analysis. Finally, for the rolling change

method, within each moving window, only data from sites with

Fig. 1. Schematic of the rolling change method. The output for the process as a

whole (the concentration change for the rolling window), i, is highlighted in

red. (For interpretation of the references to colour in this figure legend, the

reader is referred to the Web version of this article.)
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measurements during every month within the period of the window

was included in the calculation for that window.

London monitoring sites were selected as all sites within a bounding

box of coordinates 51.25°N, 51.71°N, −0.54°E, 0.28°E. This box was

roughly equivalent to the boundary of the M25 orbital motorway. The

data included 121 roadside sites and 99 urban background sites mea-

suring over the period 2000–2017. The roadside monitoring sites are

shown in Fig. 2. Of the 121 roadside sites, 102 sites measuring NOx and

105 sites measuring NO2 met the data capture requirements for the

trend analysis. Of these, 9 sites measuring NOx and 10 measuring NO2

were open for the entire duration of the period of trend analysis (long

term sites). More information about individual sites is given in Sup-

plementary Material 1.

All data importing, cleaning, transformation and analysis was car-

ried out in R.

3. Results and discussion

3.1. Testing the rolling change method through simulations

Simulations were carried out to compare the effectiveness of the

average trend and the rolling change trend to display the true change in

pollutant concentration over time. Data were simulated to mimic the

properties of the real monitoring data, but with the true trend known.

To reflect the various possible properties of a monitoring network, data

were generated from four scenarios:

(a) Long term monitoring sites. All of the time series had the same true

trend (with noise added) and the same length (equal to the length of

the entire time period (2000–2017)). Variation in the

concentrations of different time series was simulated by sampling

the concentration in the first year of the time series from a normal

distribution with a mean equal to the concentration of the true

trend in that year and a standard deviation of 10

( ∼X (true trend concentration,10 )2N ).

(b) Short term monitoring sites without a time-dependent bias in con-

centration. All of the time series had the same underlying trend, but

different lengths. The starting year of each time series was ran-

domly sampled from the standard uniform distribution, constrained

between 2000 and 2015. The time series length was also randomly

sampled from the standard uniform distribution, U (0,1). Variation

in the concentration of different time series was simulated using the

same method as described in (a) above.

(c) Short term monitoring sites with a time-dependent bias. Each time

series had the same underlying trend, but different lengths.

Additionally, in order to simulate the effect of increasing bias to-

wards more polluted locations over time, the simulated con-

centration in the first year of the time series was randomly drawn

from the standard uniform distribution, and multiplied by a bias

factor proportional to the starting year of the time series. The result

was that the concentration in latter years was more likely to be

higher than in former years. The bias factor took the form

= + +y x ε1 0.08i i i where y was the value of the bias factor, x was

the index of the starting year of the time series (between 1 and 18),

and ε was the random error. The error for each value of the bias

factor, εi, was randomly sampled from the normal distribution

N (0,0.5).

(d) A combination of time series generated according to the ‘long term’

scenario and the ‘short term with bias’ scenario. The method of

generating each time series was determined by random selection,

Fig. 2. Map showing the locations of the London roadside monitoring sites measuring NOx and NO2 used in the analysis. More information on individual sites can be

found in Supplementary Material 1.
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where the probability of generating a short term site was ten times

as likely as that of generating a long term site, in line with the

observed proportions of long term and short term sites in the

London roadside monitoring network.

For each scenario, 100 sets of simulated data, each consisting of 100

simulated time series, were randomly sampled. The rolling change

trend and the average trend were calculated for each sample of simu-

lated data, and their similarity to the ‘true trend’ (the function used to

create the simulated data) was evaluated using normalised cross-cor-

relation (NCC). The normalised cross-correlation of two time series is a

value between 1 and -1, where 1 means the two time series are perfectly

correlated, while −1 corresponds to perfect anti-correlation. The re-

sults are shown in Fig. 3.

The average trend in Scenarios (c) and (d) was considerably biased

relative to the known true trend, as was observed in the real data, but in

each case the rolling change trend provided a more accurate re-

presentation of the true trend.

Furthermore, the slope of the rolling change trend was shown to be

more accurate than that of the average trend. The slopes of each sam-

pled rolling change trend and average trend were calculated using the

Theil-Sen estimator, and compared to the slope of the true trend from

which the data were simulated to derive the percentage error. For the

combined scenario, the median error of the rolling change trend was

15%, while for the average trend the error was 293%.

The suitability of the technique for situations with limited data

available was also evaluated by applying the trend analyses to 100

samples of 4 time series simulated using the ‘combined’ scenario, as

shown in Fig. 4. As before, the rolling change trend represented the true

trend with greater accuracy than the average trend, indicating that the

method extends well to situations with a very limited number of

monitoring sites.

Simulated data was also used to demonstrate that the rolling change

method is robust to the use of different values of the moving window

width, n, as shown in Supplementary Material 2. The accuracy of the

rolling change method increases slightly as the window width in-

creases, however the amount of data filtered out also increases. To

achieve a reasonable balance between maximising the accuracy of the

rolling change trend, while maximising the amount of data retained in

the analysis, a window width of n=3 was used in the following ap-

plications of the method.

3.2. Long term trends in London ambient air quality

3.2.1. Identification of the bias effect on the trend

Comparison of the average trend over all London roadside sites

Fig. 3. Comparison of the average trend and rolling change trend (n=3) with the true trend of simulated data for four different scenarios. In each case, the trends are

derived from 100 random samples, each of 100 simulated time series. The lines correspond to the trends with NCC equal to the 50th, 10th and 1st percentile of the

NCC distribution over all 100 sampled trends — in other words, the median trend, the 10th worst trend and the worst trend, with respect to the similarity to the true

trend.
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during the period 2000–2017 with the average trend over long term

sites (those measuring constantly over the same time period) reveals a

dramatic difference in trend, as shown in the two left-hand plots in

Fig. 5. The trend of the long term sites is constituted of data from be-

tween nine and eleven monitoring sites. Therefore the disparity is un-

likely to be the result of lack of representativeness due to local influ-

ences. A more likely explanation is a bias towards opening new

monitoring sites in increasingly polluted locations, resulting in the

sudden introduction of high concentration time series causing abrupt

increases in the average concentration despite no commensurate in-

crease in the trends at individual sites.

The increase in bias in site location towards more polluted sites over

time was affirmed by comparing the median annual ambient con-

centrations at roadside monitoring sites opening and sites closing in a

given year across the period studied (see Supplementary Material 3).

The difference between the average concentration at sites that are

Fig. 4. Comparison of the average trend and

rolling change trend (n=3) with the true

trend of data from 5 time series simulated

using the ‘combined’ scenario. The trends

are derived from 100 random samples of

simulated data. The lines correspond to the

trends with NCC equal to the 50th, 10th and

1st percentile of the NCC distribution over

all 100 sampled trends — in other words,

the median trend, the 10th worst trend and

the worst trend, with respect to the simi-

larity to the true trend.

Fig. 5. Comparison of the rolling change trends in NOx concentration, NO2 concentration, and NO2/NOx ratio at London roadside sites 2000–2017, using n=3

(‘Rolling change method’) with the trend in the average concentration using data from (i) all available monitoring sites (‘Average trend (all sites)’) and (ii) long term

sites only (‘Data filtering method’). The lines represent a loess smooth fit to the data, and the shaded bands represent the 95% confidence interval around the smooth.

The numbers at each data point correspond to the number of monitoring sites contributing to the data point.
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opening and those that are closing is positive (i.e. concentrations are

higher at sites that are opening) over almost all years for NOx and NO2.

The effect of the bias in site location on the trend in average

roadside NOx and NO2 concentrations can be observed through a

comparison of the rolling trends over rolling windows of different

widths (n), as shown in Supplementary Material 4.

When the same trend analysis was applied to monitoring data from

London urban background sites, however, no bias in the average trend

was observed (see Supplementary Material 5), in corroboration of the

findings of the Defra report discussed in Section 1.1 (Defra, 2014). This

is, in part, because the bias towards opening sites in more polluted

locations is far less pronounced for urban background sites, which also

move less frequently than do roadside sites. Moreover, any bias in site

location is likely to have a smaller effect on the average trend at urban

background sites, because the NOx and NO2 concentrations are domi-

nated by non-local background sources rather than local traffic sources,

which constitute the major source at roadside sites.

3.2.2. Extraction of the underlying trend

Having established the existence of a bias effect on the average

trend by the short term sites, the next step is to mitigate this bias effect

in order to reveal the true underlying trend. The rolling change method

described in Section 2.2 was applied to the London roadside monitoring

data.

The rolling change trends in NOx concentration, NO2 concentration

and NO2/NOx ratio are shown in Fig. 5 (right). In all cases, these de-

rived trends bear a far closer similarity with the trend for the long-term

site (Fig. 5 (middle)) than with the biased average trend (Fig. 5 (left)),

offering further evidence in support of the technique's efficacy.

The rolling change technique reveals a more optimistic trend from

2000 to 2017 in NOx concentration at London roadside sites than that

implied by the average trend. Table 1 shows the Theil-Sen slopes of the

trends derived using the three different methods (the trend in average

concentration using data from (i) all sites and (ii) long term sites only,

and the trend derived using the rolling change method).

Application of the Theil-Sen estimator to the NOx concentration

trends in Fig. 5 yielded a slope of −2.52 [−3.32, −1.96] g m−3

year−1for the rolling change trend. In contrast, the gradient of the

average trend was −0.22 [−1.23, 1.00] g m−3 year−1. The rolling

change trend is a highly monotonic, almost linear decrease, while the

average trend indicates a fluctuation with initial decrease to 2007,

followed by a period of increase to 2013–14, with little overall change

in NOx concentration.

The differences between the average and rolling change trends in

NO2 concentration were less extreme, but nonetheless notable. Theil-

Sen slope of the rolling change trend was−0.90 [-1.13,−0.69] g m−3

year−1in comparison to −0.08 [-0.46, 0.24] g m−3 year−1for the

average trend. The rolling change trend revealed a monotonic down-

wards trend since 2003–4, with an increasingly steep gradient in later

years, while the average trend does not show any downward inclination

until 2012–13, and even shows a slight increase between 2008 and

2012.

The effectiveness with which the rolling change trend represents the

‘true trend’ was evaluated by comparison with trends in NOx and NO2

from emissions data, satellite data and previous studies of London air

quality.

The rolling change trend incorporates information from more

monitoring sites than would be possible using only long term sites or

individual sites. As such, it is more likely to be reflective of overall

trends in traffic emissions across London, and therefore more compar-

able with trends estimated by emissions inventories. The UK trend in

NOx emissions from urban driving sources (NAEI, 2018) is shown in

Fig. 6. The emissions data shows a monotonic, almost linear downward

trend between 2000 and 2016, similar to the rolling change trend in

NOx concentration from the London data (see Fig. 5). The emissions

trend shows a−56% change from 2000 to 2016, which is not dissimilar

to the −43% change in the rolling change trend in NOx concentration

over the same period. A smaller slope is expected for the ambient

concentration trend than the emissions trend because concentrations at

roadside are dominated by traffic sources but other sources also con-

tribute. One such source is natural gas combustion for domestic

heating, from which NOx emissions have decreased less between 2000

and 2017 than emissions from road transport sources, effectively de-

pressing the slope of the trend in ambient NOx concentration relative to

the trend in NOx emissions from transport sources (NAEI, 2018;

Wakeling et al., 2018).

A recent study of London air quality using satellite data estimated a

trend in NO2 concentration of −0.23× 105 molecules cm−2 year−1

between 2005 and 2015, which is approximately−1.76 g m−3 year−1,

assuming a column height of 10 km (Pope et al., 2018). The slope of the

rolling change trend (with 95% confidence intervals given in brackets)

in NO2 concentration over the same period from roadside monitoring

sites was −1.03 [-1.48, −0.74] g m−3 year−1, compared to the

average trend slope of −0.02 [-0.41, 0.31] g m−3 year−1. While nei-

ther trend indicates as large a downward trend as that from the satellite

data, the rolling change trend provides concordant evidence of a ne-

gative trend in NO2 over this period. Some disparity between the sa-

tellite data and monitoring data is expected, because the satellite

measurements integrate concentrations across the entirety of London,

while the ambient concentration data were measured exclusively at

roadside monitoring sites. As a result, the long term trends in the sa-

tellite data will be driven by multiple sources, including domestic ac-

tivity and power station emissions, in contrast to the trends in ambient

concentration which are heavily dominated by traffic sources.

The rolling change trends also corroborate the findings of Grange

et al. (2017) that the NO2/NOx vehicle emission ratio across Europe

follows a pattern of increase from 1995 to 2008 then decrease between

2009 and 2015. This pattern is replicated in the NO2/NOx rolling

change trend shown in Fig. 5 and reflects changes to the direct emission

of NO2 from diesel vehicles.

A comparison of the results of the study by Font and Fuller (2016)

examining trends in roadside increments of NOx and NO2 concentration

Table 1

Theil-Sen slope and 95% confidence intervals of the trend in average concentration (all sites), the trend in average concentration (long term sites) and the rolling

change trend in NOx, NO2 and NO2/NOx concentration at roadside in London 2000–2017.

Pollutant Method Theil-Sen slope (gm−3 year−1) 95% confidence interval

NOx Average trend (all sites) −0.22 [-1.23, 1.00]

NOx Average trend (longterm sites) −2.59 [-3.33, −1.37]

NOx Rolling change method −2.52 [-3.32, −1.96]

NO2 Average trend (all sites) −0.08 [-0.46, 0.24]

NO2 Average trend (longterm sites) −0.95 [-1.19, −0.62]

NO2 Rolling change method −0.90 [-1.13, −0.69]

NO2/NOx Average trend (all sites) 0.00 [-0.00, 0.01]

NO2/NOx Average trend (longterm sites) 0.00 [-0.00, 0.01]

NO2/NOx Rolling change method 0.00 [-0.00, 0.01]
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in London between 2005-2009 and 2010–2014 with those obtained

from the rolling change trend and the average trend are shown in Fig. 7.

As mentioned in Section 1.1, Font and Fuller (2016) applied data

capture filters and linear interpolation to include only time series of

similar length in the analysis. As a result, some data were excluded,

leaving data from 47 monitoring sites from which to derive trends. In

contrast, the use of the rolling change technique allowed for inclusion

of data from all available monitoring sites, which for 2005–2009 was 91

and 93 sites for NOx and NO2 respectively, and for 2010–2014, 85 and

86 sites respectively.

As can be seen in Fig. 7, for the period 2010–2014, the slope of the

rolling change trend was more similar to the trend calculated by Font

and Fuller (2016) than that of the average trend, although for the

period 2005–2009, the rolling change trend differed considerably from

that calculated by Font and Fuller (2016). Positive trends were ob-

served for both NOxand NO2 between 2005 and 2009 by Font and Fuller

(2016), while negative trends were observed using the rolling change

method. However, negative slopes were observed for both NOx and NO2

concentrations between 2010 and 2014, in corroboration of the find-

ings of Font and Fuller (2016).

Font and Fuller (2016) took advantage of the unusual abundance of

monitoring sites in London to implement a filtering method while

retaining enough data to robustly represent the overall trend in con-

centration. However, the applicability of this approach is limited to

situations with a similar abundance of monitoring sites available, ex-

cluding most urban areas. In these cases, the rolling trend method may

be the only robust method of calculating an overall long term trend in

ambient concentration.

Additionally, the data filtering method implemented by Font and

Fuller (2016) limits the time period over which the long term trend can

be analysed to periods over which a sufficient number of monitoring

sites are measuring constantly. For example, in an eighteen year trend

analysis of NOx or NO2 concentrations, such as the one demonstrated in

Section 3, the application of the data filtering method would constrain

the analysis to data from only nine or ten monitoring sites. In other

locations, it is unlikely that any monitoring sites have been measuring

constantly for eighteen years, and such a long term analysis would be

impossible.

Finally, as alluded to previously, data filtering methods are was-

teful. By excluding monitoring sites which are not measuring constantly

over the period of interest, a great deal of potentially important data is

not considered. The rolling change method's advantage over traditional

techniques is that it does not automatically exclude data from short

term monitoring sites, and so retains far more of the data in the

Fig. 6. Trend in UK NOx emissions from road

transport (urban driving) sectors between 2000

and 2016 (left) compared to the rolling change

trend in NOx concentration over the same period

(right). The lines represent a loess smooth fit to

the data, and the shaded bands represent the

95% confidence interval around the smooth.

Fig. 7. Comparison of the Theil-Sen slope calculated by Font and Fuller (2016) with the rolling change trend and the average trend in NOx and NO2 roadside

increments at London roadside monitoring sites between 2005-2009 and 2010–2014. The error bars represent 95% confidence intervals.
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analysis.

3.3. Potential applications

The rolling change method offers the following advantages over

traditional methods of trend analysis:

• Robust long term trend analysis across monitoring networks which

may be subject to time-dependent biases

• Enables long term trend analysis to be undertaken for areas with

few/no long term monitoring sites

A lack of long term roadside monitoring sites is a major barrier to

the analysis of long term trends in roadside pollutant concentrations. As

previously mentioned in Section 1.1, roadside monitoring sites are

frequently re-located to locations deemed more critical for compliance

monitoring, resulting in short time series. To illustrate this difficulty,

suppose the trend analysis of roadside NOx and NO2 concentrations

between 2000 and 2017 was carried out for other UK cities (excluding

London). In the UK, there are 4 functional urban areas (FUA) and 4

towns (excluding London) with long term roadside monitoring sites

measuring NOx and NO2 concentration over the period 2000–2017,

none of which has more than 1 monitoring sites. The scarcity of long

term roadside monitoring sites poses a serious problem for compre-

hensive long term trend analysis. However, use of the rolling change

method allows the relaxation of the constraint limiting the useable data

to that from long term monitoring sites. As a consequence, the range of

locations in which long term trend analysis is possible can be expanded

to areas which would be inaccessible using the established methods,

such as data filtering.

Moreover, the technique is broadly applicable to any situation re-

quiring the aggregation of multiple, concurrent time series of differing

lengths into a single, overall trend. For example, such a situation may

arise in other environmental sciences where continuous monitoring is

carried out over a network of sites, such as water quality monitoring,

soil monitoring or oceanography.

Even outside the environmental sciences, trend analysis of multiple

time series is routinely carried out in finance, quality control and the

social sciences. In these fields, as in environmental monitoring, it is

more usual for analysis to be limited to time series of the same length.

However, with the rapid growth of sensor technologies and the com-

mensurate increase in the automatic collection of time series data, the

ability to analyse variable length time series could be advantageous.

4. Conclusions

Air quality monitoring networks offer the potential to visualise and

quantify long-term trends over large regions through aggregation of

data from multiple monitoring sites. However, analysis of roadside

monitoring site data from the London network suggests caution is re-

quired when averaging data from a monitoring network containing

time series of variable duration. Movement, opening and closing of

monitoring sites introduce biases into the average trend, resulting in a

misleading view of the changes in air quality.

Techniques were developed with the aim of identifying and miti-

gating these influences to robustly represent the true long term trend. In

particular, a method involving the calculation of a change in con-

centration using rolling window regression was developed as an effec-

tive alternative to simple averaging. This technique was demonstrated

to estimate the true trend in pollutant concentration with far greater

accuracy than the simple average trend when applied to a set of time

series of disparate lengths.

The ability to use multiple time series of differing lengths in trend

analysis offers potential advantages for air quality and environmental

monitoring applications, as well as time series analysis in other fields.

An important advantage of the technique is that it maximises the use of

the information available and is suited to situations where a large

number of monitoring sites may not be available but where an ag-

gregate view of overall changes in concentrations is still valuable.
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Appendix A

The algorithm for the rolling change method described in Section

2.2 is as follows:

1. Choose the time range over which to calculate the trend, and the

value of the rolling window width, n.

2. Initialise y∆ 1 as the average of the annual average concentrations of

all monitoring sites in the first year, y1.

3. Identify the moving window, i, as the time period x1, …, + −x n1 ( 1).

4. Select the vector of dates encapsulated by the moving window, Xi.

5. Filter the concentration data to include only data from sites with ≥

90% data capture over the moving window. The result will be a

vector of concentration values of length n, Yi .

6. Fit a linear regression model to the filtered concentration data, (Xi,

Yi), as in Equation (1).

7. Calculate the concentration change over the moving window using

the regression coefficient, βi, and the concentration change of the

previous window, −y∆ i 1 using Equation (2).

8. Assign the concentration change, y∆ i, to the median date of the

rolling window, xi.

9. Slide the moving window by one time point towards the end of the

time range.

10. Repeat Steps 4–9 until the moving window reaches the end of the

time range.

11. The rolling change trend is y∆ i as a function of xi over all i (i.e. the

entire time range), as shown in Equation (3).
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