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ARTICLE INFO ABSTRACT

Trend analysis of air pollutant concentrations becomes problematic when applied to data from air quality
monitoring networks containing time series of differing lengths. The average trend from such data can be
misleading due to biases in the monitoring network. For example, if new monitoring sites located in more
polluted locations are added to a network, the introduction of these time series can leverage the trend upwards.
A method for resolving this problem was developed, using rolling window regression to recursively calculate the
change in pollutant concentration as a function of time, which can be used as a proxy for the true trend. The
efficacy of the method was established by conducting simulations with known trends. The rolling change trend
was shown to more accurately reflect the true trend than simply averaging the time series. Application of the
technique to estimate trends in NO,, NO, and NO,/NO,. concentrations at London roadside monitoring sites over
the period 2000-2017 revealed clear differences from the simple average. In particular, a significant monotonic
downward trend in NO, concentration was observed, in stark contrast to the average trend, which suggested
little change in NO, concentration had occurred over the same period. By accurately representing trends using
time series of different lengths, this method has the benefit of being able to describe changes in air quality for
locations and time periods with otherwise insufficient data.
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1. Introduction
1.1. Background

Air quality monitoring networks are instrumental to the evaluation
and management of air pollution by governments, policy makers and
regulatory bodies. While other tools, such as emission inventories, are
often used to track changes in emissions, the complex nature of atmo-
spheric processes and local conditions mean that emissions data are not
necessarily an accurate indicator of pollutant concentration or ex-
posure. In contrast, ambient data from monitoring networks, subject to
rigorous analysis, can reveal the pollutant concentrations, correlations
and trends at measurement locations. Such information is invaluable for
estimating the actual effects of social and infrastructure changes, and
policy interventions on air quality.

Trend analysis is an important tool for examining the changes in
pollutant concentration over time (Anttila and Tuovinen, 2010;
Guerreiro et al., 2014), and can be used as evidence of the efficacy (or
lack thereof) of policy interventions (Font and Fuller, 2016). In cases
where the area under investigation contains a limited number of
monitoring sites, a common approach is to compare the trends at each
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individual monitoring site to yield an overall impression of changes in
air quality in the area. For example, Mavroidis and Chaloulakou (2011)
used this approach to estimate trends in particulate matter (PM) and
ozone concentrations in Santiago, Chile 1989-1998 using data from
four monitoring sites. The trends at each site were compared in order to
establish a consensus, while differences between monitoring sites were
rationalised using contextual information about each site. Some studies
have attempted to replicate this approach with larger numbers of
monitoring sites, such as the study by Masiol et al. (2017), which
analysed the trends in concentration of a range of pollutants at 43
monitoring sites in the Veneto region of Italy. However, in the case of
large regions or areas with an extensive monitoring network of sites
available, this approach can be unwieldy and as such it may be bene-
ficial to aggregate data from multiple monitoring sites to gain a re-
presentative view of the average air quality. Cluster analysis has been
used to look at trends across a large number of sites allowing potential
drivers for observed changes to be investigated and differences within
and across regions to be explored (Malley et al., 2018).

Font and Fuller (2016) employed a different method to examine the
trends in roadside increments of various pollutants between 2005-2009
and 2010-2014 by averaging data from 65 London monitoring sites.
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Font and Fuller (2016) applied data capture filters and linear inter-
polation to ensure all individual time series from separate sites were of
equal length. The problem with this approach is that data filtering ex-
cludes some information from the analysis. Fleming et al. (2018) in
their analysis of ozone trends for the Total Ozone Assessment Report
highlight that, particularly in developing countries, time series only
span a few years and due to data capture requirements this limits the
number of sites available for trend analysis. In this case the study is
global and so there are still sufficient sites to provide the necessary data
for robust trend analysis, but the distribution of the data across the
globe is limited, with sparser sites in developing countries being more
likely to be removed. For areas with sparser monitoring site coverage,
or for trend analysis of long time periods, filtering the data may not be
practicable, and therefore it may be necessary to average over all
available monitoring sites to obtain a trend.

However, the trend in average concentration (average trend) over
monitoring sites of differing duration is sensitive to biases in the
monitoring network. Frequently, air pollution monitoring sites are
moved to more polluted locations, closed in locations with low pollu-
tion levels, or new sites are opened in highly polluted locations that
require more careful observation. The cumulative effect of site flux is
often therefore that a monitoring network is increasingly biased to-
wards monitoring sites with higher pollutant concentrations.

Duyzer et al. (2015) state that in their dual use for compliance
monitoring and assessing population exposure, the choice of monitoring
site location is made such as to provide data from the following: (i) the
locations where the highest concentrations occur, and (ii) locations
representative of the regional average. Typically, a distinction is made
between roadside monitoring sites, which provide highly localised data
from (i), and urban background monitoring sites, which are chosen to
represent (ii). For this reason, movement of roadside monitoring sites to
more polluted locations is not unexpected, but nonetheless has sig-
nificant effects on the average trend. This issue was demonstrated in a
2014 report for the Department for Environment, Food & Rural Affairs
(Defra, 2014). The long term trends in NO, and PM;, concentration
were calculated using data from all monitoring sites in the AURN net-
work, and compared to those derived using data from long term sites
only. While the trends at urban background sites differed slightly, those
from roadside sites displayed considerable differences, which were at-
tributed to changes in monitoring site quantity and distribution over
time.

In this paper, a range of techniques for identifying and mitigating
the biasing effect of variation in time series length due to monitoring
site flux on the average trend are developed. The efficacy and robust-
ness of the methods are tested using simulated data. The methods are
illustrated by a trend analysis of NO, concentration, NO, concentration
and NO,/NO, concentration ratio in London between 2000 and 2017
using data from roadside monitoring sites in the London air quality
network. Finally, potential future applications of the new techniques
are discussed.

London was chosen as the case study because of its unusual abun-
dance of monitoring sites, including long term sites. However this si-
tuation is rare, giving rise to the need for methods that allow for the
evaluation of the unbiased trend (i.e. the overall change in concentra-
tion across the network of monitoring sites) in the absence of long term
monitoring sites.

2. Method
2.1. Identification of bias effects on the trend

Evidence of a bias in the monitoring network was sought by com-
paring trends averaged over (i) time series of differing lengths and (ii)
time series of the same length. To this end, the trend in annual median
concentration using data from (i) all monitoring sites and (ii) long term
sites open for the entire duration of the period of study were compared.
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In all cases, the average concentration was calculated using the median,
as it is more robust to skewed data and the presence of extreme values.

This comparison is possible only if sufficient data is available from
long term sites for the period of interest. In many cases, there may not
be any reliable long term sites available as a basis of comparison.
Additionally, any conclusions drawn from this comparison rely on the
validity of the assumption that the trend from long term sites is re-
presentative of the true trend, and is not unduly affected by external
influences.

In response to these limitations, a robust approach for observing and
mitigating the effect of opening sites with high concentrations on the
average trend was developed.

Rolling window regression (also known as rolling regression) is a
technique most commonly used in time series analysis of financial data
to examine variation in the output of a linear regression, such as the
regression coefficient, over time (Wang and Zivot, 2006). The technique
uses the same principle as a rolling average, except that a linear re-
gression is applied to each time period (window) rather than an
average. First, a rolling window width, n, is chosen. The data is parti-
tioned into N — n subsets, where N is the total number of observations
in the time series. Each subset is rolled one observation ahead from the
previous subset, resulting in a set of rolling windows of width n, each
offset from the consecutive windows by one observation, and where the
ith rolling window contains the observations i, ..., i + (n — 1). Linear
regression is then applied to each rolling window.

A modification of traditional rolling regression was applied to the
data, where each rolling window of width n contained data only from
sites with measurements during every month within the period of the
window (i.e. open and operational for all years within the window),
ensuring that all time series within the window were of identical length.

Rolling trends in the concentration of the pollutant of interest for
each window were plotted, resulting in a series of overlapping n year
trends.

Comparison of the rolling trend and average trend using different
values of n reveals a ‘frame-by-frame’ view of the potential bias. Each
rolling trend overlaps with its neighbours for all years but one, and thus
excludes data from monitoring sites opening in that year. In this way,
by comparing trends in consecutive years, the effect of sites opening in
that year can be visualised.

2.2. Extraction of the underlying trend

An optimal method to counter the influence of monitoring site flux
on the average trend would aim to minimise the effect of the bias while
retaining as much of the data as possible.

The simplest solution would be the exclusion of all sites not mea-
suring constantly over the period of interest from the trend analysis via
the application of a data capture filter. However, this approach would
inevitably result in the sacrifice of a great deal of the available data, and
in study areas with low numbers of sites could result in the conclusion
that trend calculation was not possible. Furthermore, this method is
predicated on the assumption that the long term sites are representative
of the true trend in the location studied. Depending on the abundance
(or lack thereof) of long-term sites, as well as other location-dependent
external influences, this assumption may not be accurate.

An alternative method has been developed as an approach to this
problem, with the advantage of retaining virtually all of the available
data.

The method, which we shall refer to as the ‘rolling change method’,
recursively calculates a concentration change, which approximates the
trend in pollutant concentration. The concentration change in the first
time point (e.g. the first year) is set as the median concentration over all
monitoring sites in the first year. Next, the first moving window is
defined as the period between time points 1, ..., 1 + (n — 1). Data is
drawn from the monitoring sites measuring throughout the duration of
the window, and a linear regression is fit to the data, as described in
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Section 2.1. The sum of the coefficient of the linear regression and the
concentration change of the previous time point is assigned as the
concentration change of the middle year of the moving window. The
moving window is shifted down the time axis by one time unit (e.g. one
year) and the process is repeated until the end of the time period of
interest is reached.

For example, suppose the rolling change trend between 2000 and
2017 was calculated using a window width of three years. The starting
point is the average of the annual average concentrations of all mon-
itoring sites in 2000. The first moving window would select data from
monitoring sites measuring constantly during 2000-2002, and fit a
linear regression to the data. The sum of the regression coefficient and
the concentration change in 2000 would be assigned as the con-
centration change for 2001. The moving window would then shift to
2001-2003 and repeat the process. The final moving window would use
data from 2015 to 2017 to calculate the concentration change in 2016.

Similarly to the data filtering method described in Section 1.1, the
rolling change method involves filtering monitoring sites by their data
capture. However, unlike established methods, data filtering is applied
over short windows of only 2-3 years, rather than the entire period of
the trend analysis, therefore more data is retained during filtering.

Fig. 1 shows a schematic of the process, while Equations (1) and (2)
describe the rolling regression and the recursive concentration calcu-
lation respectively. A more detailed algorithm can be found in
Appendix A.

The terms in Equations (1) and (2) are defined as follows: Y; is the
variable of average concentration from all sites with sufficient data
capture over the rolling window, i; X; is the variable of time points
within the moving window, i; x; is the median year of X;; §; is the
coefficient of the rolling regression over the window, i; ¢; is the irre-
ducible error of the rolling regression, and Ay, is the change in con-
centration assigned to the year x;.

Equation (3) represents the rolling change trend itself. The trend is
the concentration change (Ay;) as a function of the median year of the
rolling window (x;).

=8, +BXi+& (€9)
Ay, = Ay, + B 2
Ay, =f() + & 3

The rolling change trend acts as a proxy for the trend in pollutant
concentration, retaining information about the relative changes in
concentration while discarding information regarding the relative
magnitudes. The rolling change trend is constituted of rolling trends
over n rolling windows, each fit to a set of time series of identical
length. In this way, the leveraging effect induced by the inclusion of
high magnitude time series does not affect the trend, so data from all
sites with a duration of at least n years can be included in the analysis.
The choice of n dictates the criteria for inclusion of monitoring sites into
the analysis. Larger values of n impose more stringent requirements for
site duration, and thus exclude more monitoring sites.

The functions used for the trend analysis in the paper, including the
calculation of rolling trends and rolling change trends, are available in
the aqtrends R package (Lang, 2018).

2.3. Description of data

The data used in the London case study were sourced from the
Automatic Urban and Rural Network (AURN) maintained by Defra, the
London Air Quality Network (LAQN) run by King's College London, and
the Air Quality England database collected by Ricardo Energy &
Environment.

Each of these networks contains a number of monitoring sites,
which record hourly observations of air pollutant concentrations. The
concentrations of NO, and NO, were measured using the European
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Fig. 1. Schematic of the rolling change method. The output for the process as a
whole (the concentration change for the rolling window), i, is highlighted in
red. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Commission reference method of chemiluminescence with mo-
lybdenum converter.

For each monitoring site, data more than 10 times the interquartile
range from the upper quartile was considered to be an outlier and re-
moved from the data set. Monitoring sites with less than 75% data
capture over the period during which they were measuring data were
not included in the trend analysis. The mean and the standard deviation
of the hourly NO, and NO, concentrations measured at each monitoring
site is given in Supplementary Material 1.

The hourly data was used to calculate annual average concentra-
tions using three different methods of trend analysis. For the average
trend (all sites), all available data from all monitoring sites measuring
during the period of analysis was included in the average (median). The
average trend (using data from long term sites only) was calculated
using data only from sites measuring throughout the duration of the
period of analysis. This was defined as recording measurements during
every month within the period of analysis. Additionally, a data capture
criterion was applied to ensure that all long term sites had at least 90%
data capture over the period of analysis. Finally, for the rolling change
method, within each moving window, only data from sites with
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Fig. 2. Map showing the locations of the London roadside monitoring sites measuring NO, and NO, used in the analysis. More information on individual sites can be

found in Supplementary Material 1.

measurements during every month within the period of the window
was included in the calculation for that window.

London monitoring sites were selected as all sites within a bounding
box of coordinates 51.25°N, 51.71°N, —0.54°E, 0.28°E. This box was
roughly equivalent to the boundary of the M25 orbital motorway. The
data included 121 roadside sites and 99 urban background sites mea-
suring over the period 2000-2017. The roadside monitoring sites are
shown in Fig. 2. Of the 121 roadside sites, 102 sites measuring NO, and
105 sites measuring NO, met the data capture requirements for the
trend analysis. Of these, 9 sites measuring NO, and 10 measuring NO,
were open for the entire duration of the period of trend analysis (long
term sites). More information about individual sites is given in Sup-
plementary Material 1.

All data importing, cleaning, transformation and analysis was car-
ried out in R.

3. Results and discussion
3.1. Testing the rolling change method through simulations

Simulations were carried out to compare the effectiveness of the
average trend and the rolling change trend to display the true change in
pollutant concentration over time. Data were simulated to mimic the
properties of the real monitoring data, but with the true trend known.
To reflect the various possible properties of a monitoring network, data
were generated from four scenarios:

(a) Long term monitoring sites. All of the time series had the same true
trend (with noise added) and the same length (equal to the length of
the entire time period (2000-2017)). Variation in the

concentrations of different time series was simulated by sampling
the concentration in the first year of the time series from a normal
distribution with a mean equal to the concentration of the true
trend in that year and a standard deviation of 10
(X ~ " (true trend concentration,102)).

(b) Short term monitoring sites without a time-dependent bias in con-
centration. All of the time series had the same underlying trend, but
different lengths. The starting year of each time series was ran-
domly sampled from the standard uniform distribution, constrained
between 2000 and 2015. The time series length was also randomly
sampled from the standard uniform distribution, U (0,1). Variation
in the concentration of different time series was simulated using the
same method as described in (a) above.

(c) Short term monitoring sites with a time-dependent bias. Each time
series had the same underlying trend, but different lengths.
Additionally, in order to simulate the effect of increasing bias to-
wards more polluted locations over time, the simulated con-
centration in the first year of the time series was randomly drawn
from the standard uniform distribution, and multiplied by a bias
factor proportional to the starting year of the time series. The result
was that the concentration in latter years was more likely to be
higher than in former years. The bias factor took the form
¥ =1+ 0.08x; + ¢ where y was the value of the bias factor, x was
the index of the starting year of the time series (between 1 and 18),
and ¢ was the random error. The error for each value of the bias
factor, ¢, was randomly sampled from the normal distribution
N(0,0.5).

(d) A combination of time series generated according to the ‘long term’
scenario and the ‘short term with bias’ scenario. The method of
generating each time series was determined by random selection,
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Fig. 3. Comparison of the average trend and rolling change trend (n = 3) with the true trend of simulated data for four different scenarios. In each case, the trends are
derived from 100 random samples, each of 100 simulated time series. The lines correspond to the trends with NCC equal to the 50th, 10th and 1st percentile of the
NCC distribution over all 100 sampled trends — in other words, the median trend, the 10th worst trend and the worst trend, with respect to the similarity to the true

trend.

where the probability of generating a short term site was ten times
as likely as that of generating a long term site, in line with the
observed proportions of long term and short term sites in the
London roadside monitoring network.

For each scenario, 100 sets of simulated data, each consisting of 100
simulated time series, were randomly sampled. The rolling change
trend and the average trend were calculated for each sample of simu-
lated data, and their similarity to the ‘true trend’ (the function used to
create the simulated data) was evaluated using normalised cross-cor-
relation (NCC). The normalised cross-correlation of two time series is a
value between 1 and -1, where 1 means the two time series are perfectly
correlated, while —1 corresponds to perfect anti-correlation. The re-
sults are shown in Fig. 3.

The average trend in Scenarios (c) and (d) was considerably biased
relative to the known true trend, as was observed in the real data, but in
each case the rolling change trend provided a more accurate re-
presentation of the true trend.

Furthermore, the slope of the rolling change trend was shown to be
more accurate than that of the average trend. The slopes of each sam-
pled rolling change trend and average trend were calculated using the
Theil-Sen estimator, and compared to the slope of the true trend from
which the data were simulated to derive the percentage error. For the

combined scenario, the median error of the rolling change trend was
15%, while for the average trend the error was 293%.

The suitability of the technique for situations with limited data
available was also evaluated by applying the trend analyses to 100
samples of 4 time series simulated using the ‘combined’ scenario, as
shown in Fig. 4. As before, the rolling change trend represented the true
trend with greater accuracy than the average trend, indicating that the
method extends well to situations with a very limited number of
monitoring sites.

Simulated data was also used to demonstrate that the rolling change
method is robust to the use of different values of the moving window
width, n, as shown in Supplementary Material 2. The accuracy of the
rolling change method increases slightly as the window width in-
creases, however the amount of data filtered out also increases. To
achieve a reasonable balance between maximising the accuracy of the
rolling change trend, while maximising the amount of data retained in
the analysis, a window width of n = 3 was used in the following ap-
plications of the method.

3.2. Long term trends in London ambient air quality

3.2.1. Identification of the bias effect on the trend
Comparison of the average trend over all London roadside sites
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during the period 2000-2017 with the average trend over long term
sites (those measuring constantly over the same time period) reveals a
dramatic difference in trend, as shown in the two left-hand plots in
Fig. 5. The trend of the long term sites is constituted of data from be-
tween nine and eleven monitoring sites. Therefore the disparity is un-
likely to be the result of lack of representativeness due to local influ-
ences. A more likely explanation is a bias towards opening new
monitoring sites in increasingly polluted locations, resulting in the

sudden introduction of high concentration time series causing abrupt
increases in the average concentration despite no commensurate in-
crease in the trends at individual sites.

The increase in bias in site location towards more polluted sites over
time was affirmed by comparing the median annual ambient con-
centrations at roadside monitoring sites opening and sites closing in a
given year across the period studied (see Supplementary Material 3).
The difference between the average concentration at sites that are
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opening and those that are closing is positive (i.e. concentrations are
higher at sites that are opening) over almost all years for NO,. and NO,.

The effect of the bias in site location on the trend in average
roadside NO, and NO, concentrations can be observed through a
comparison of the rolling trends over rolling windows of different
widths (n), as shown in Supplementary Material 4.

When the same trend analysis was applied to monitoring data from
London urban background sites, however, no bias in the average trend
was observed (see Supplementary Material 5), in corroboration of the
findings of the Defra report discussed in Section 1.1 (Defra, 2014). This
is, in part, because the bias towards opening sites in more polluted
locations is far less pronounced for urban background sites, which also
move less frequently than do roadside sites. Moreover, any bias in site
location is likely to have a smaller effect on the average trend at urban
background sites, because the NO, and NO, concentrations are domi-
nated by non-local background sources rather than local traffic sources,
which constitute the major source at roadside sites.

3.2.2. Extraction of the underlying trend

Having established the existence of a bias effect on the average
trend by the short term sites, the next step is to mitigate this bias effect
in order to reveal the true underlying trend. The rolling change method
described in Section 2.2 was applied to the London roadside monitoring
data.

The rolling change trends in NO,. concentration, NO, concentration
and NO,/NO, ratio are shown in Fig. 5 (right). In all cases, these de-
rived trends bear a far closer similarity with the trend for the long-term
site (Fig. 5 (middle)) than with the biased average trend (Fig. 5 (left)),
offering further evidence in support of the technique's efficacy.

The rolling change technique reveals a more optimistic trend from
2000 to 2017 in NO, concentration at London roadside sites than that
implied by the average trend. Table 1 shows the Theil-Sen slopes of the
trends derived using the three different methods (the trend in average
concentration using data from (i) all sites and (ii) long term sites only,
and the trend derived using the rolling change method).

Application of the Theil-Sen estimator to the NO, concentration
trends in Fig. 5 yielded a slope of —2.52 [—3.32, —1.96] g m~>
year ™ 'for the rolling change trend. In contrast, the gradient of the
average trend was —0.22 [—1.23, 1.00] g m ™3 year™'. The rolling
change trend is a highly monotonic, almost linear decrease, while the
average trend indicates a fluctuation with initial decrease to 2007,
followed by a period of increase to 2013-14, with little overall change
in NO, concentration.

The differences between the average and rolling change trends in
NO, concentration were less extreme, but nonetheless notable. Theil-
Sen slope of the rolling change trend was —0.90 [-1.13, —0.69] gm ™3>
year” 'in comparison to —0.08 [-0.46, 0.24] g m ™3 year 'for the
average trend. The rolling change trend revealed a monotonic down-
wards trend since 2003-4, with an increasingly steep gradient in later
years, while the average trend does not show any downward inclination
until 2012-13, and even shows a slight increase between 2008 and

Table 1
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2012.

The effectiveness with which the rolling change trend represents the
‘true trend’ was evaluated by comparison with trends in NO, and NO,
from emissions data, satellite data and previous studies of London air
quality.

The rolling change trend incorporates information from more
monitoring sites than would be possible using only long term sites or
individual sites. As such, it is more likely to be reflective of overall
trends in traffic emissions across London, and therefore more compar-
able with trends estimated by emissions inventories. The UK trend in
NO, emissions from urban driving sources (NAEIL, 2018) is shown in
Fig. 6. The emissions data shows a monotonic, almost linear downward
trend between 2000 and 2016, similar to the rolling change trend in
NO, concentration from the London data (see Fig. 5). The emissions
trend shows a —56% change from 2000 to 2016, which is not dissimilar
to the —43% change in the rolling change trend in NO, concentration
over the same period. A smaller slope is expected for the ambient
concentration trend than the emissions trend because concentrations at
roadside are dominated by traffic sources but other sources also con-
tribute. One such source is natural gas combustion for domestic
heating, from which NO, emissions have decreased less between 2000
and 2017 than emissions from road transport sources, effectively de-
pressing the slope of the trend in ambient NO,, concentration relative to
the trend in NO, emissions from transport sources (NAEI, 2018;
Wakeling et al., 2018).

A recent study of London air quality using satellite data estimated a
trend in NO, concentration of —0.23 x 10° molecules cm ™2 year ™!
between 2005 and 2015, which is approximately —1.76 g m ™3 year™?,
assuming a column height of 10 km (Pope et al., 2018). The slope of the
rolling change trend (with 95% confidence intervals given in brackets)
in NO, concentration over the same period from roadside monitoring
sites was —1.03 [-1.48, —0.74] ¢ m 3 year™ !, compared to the
average trend slope of —0.02 [-0.41, 0.31] g m ™3 year ™ '. While nei-
ther trend indicates as large a downward trend as that from the satellite
data, the rolling change trend provides concordant evidence of a ne-
gative trend in NO, over this period. Some disparity between the sa-
tellite data and monitoring data is expected, because the satellite
measurements integrate concentrations across the entirety of London,
while the ambient concentration data were measured exclusively at
roadside monitoring sites. As a result, the long term trends in the sa-
tellite data will be driven by multiple sources, including domestic ac-
tivity and power station emissions, in contrast to the trends in ambient
concentration which are heavily dominated by traffic sources.

The rolling change trends also corroborate the findings of Grange
et al. (2017) that the NO,/NO, vehicle emission ratio across Europe
follows a pattern of increase from 1995 to 2008 then decrease between
2009 and 2015. This pattern is replicated in the NO,/NO, rolling
change trend shown in Fig. 5 and reflects changes to the direct emission
of NO, from diesel vehicles.

A comparison of the results of the study by Font and Fuller (2016)
examining trends in roadside increments of NO,, and NO, concentration

Theil-Sen slope and 95% confidence intervals of the trend in average concentration (all sites), the trend in average concentration (long term sites) and the rolling
change trend in NO,, NO, and NO,/NO, concentration at roadside in London 2000-2017.

Pollutant Method Theil-Sen slope (gm ™3 year ') 95% confidence interval
NO, Average trend (all sites) —-0.22 [-1.23, 1.00]

NO, Average trend (longterm sites) —-2.59 [-3.33, —1.37]

NO, Rolling change method —2.52 [-3.32, —1.96]

NO, Average trend (all sites) —0.08 [-0.46, 0.24]

NO, Average trend (longterm sites) —-0.95 [-1.19, —0.62]

NO, Rolling change method —0.90 [-1.13, —0.69]
NO,/NO, Average trend (all sites) 0.00 [-0.00, 0.01]

NO,/NO, Average trend (longterm sites) 0.00 [-0.00, 0.01]

NO2/NO, Rolling change method 0.00 [-0.00, 0.01]
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Fig. 6. Trend in UK NO, emissions from road

™ ° transport (urban driving) sectors between 2000
qé 2 120 and 2016 (left) compared to the rolling change
S 200 I trend in NO,, concentration over the same period
;c_: g’_ (right). The lines represent a loess smooth fit to
g = the data, and the shaded bands represent the
S 8 100 95% confidence interval around the smooth.
‘@ 160 3
amm c
o}
5 e 2
o) ° 8 a0
Z 120 o)
Ll (3
= z
P4
2000 2005 2010 2015 2000 2005 2010 2015
Year Year
2005-2009 2010-2014
5.0
- 25
I
= z
®
o { I RS
>
© 0.0
: 1
= L4
2 25
[}
o 2
S t
»n
c 1
[
3 !
—_ z
3 8
oo *
S { l
Font and average rolling Font and average rolling
Fuller trend change Fuller trend change
(2016) trend (2016) trend

Fig. 7. Comparison of the Theil-Sen slope calculated by Font and Fuller (2016) with the rolling change trend and the average trend in NO, and NO, roadside
increments at London roadside monitoring sites between 2005-2009 and 2010-2014. The error bars represent 95% confidence intervals.

in London between 2005-2009 and 2010-2014 with those obtained
from the rolling change trend and the average trend are shown in Fig. 7.
As mentioned in Section 1.1, Font and Fuller (2016) applied data
capture filters and linear interpolation to include only time series of
similar length in the analysis. As a result, some data were excluded,
leaving data from 47 monitoring sites from which to derive trends. In
contrast, the use of the rolling change technique allowed for inclusion
of data from all available monitoring sites, which for 2005-2009 was 91
and 93 sites for NO, and NO, respectively, and for 2010-2014, 85 and
86 sites respectively.

As can be seen in Fig. 7, for the period 2010-2014, the slope of the
rolling change trend was more similar to the trend calculated by Font
and Fuller (2016) than that of the average trend, although for the
period 2005-2009, the rolling change trend differed considerably from
that calculated by Font and Fuller (2016). Positive trends were ob-
served for both NO,and NO, between 2005 and 2009 by Font and Fuller
(2016), while negative trends were observed using the rolling change
method. However, negative slopes were observed for both NO, and NO,
concentrations between 2010 and 2014, in corroboration of the find-
ings of Font and Fuller (2016).

Font and Fuller (2016) took advantage of the unusual abundance of
monitoring sites in London to implement a filtering method while

retaining enough data to robustly represent the overall trend in con-
centration. However, the applicability of this approach is limited to
situations with a similar abundance of monitoring sites available, ex-
cluding most urban areas. In these cases, the rolling trend method may
be the only robust method of calculating an overall long term trend in
ambient concentration.

Additionally, the data filtering method implemented by Font and
Fuller (2016) limits the time period over which the long term trend can
be analysed to periods over which a sufficient number of monitoring
sites are measuring constantly. For example, in an eighteen year trend
analysis of NO, or NO, concentrations, such as the one demonstrated in
Section 3, the application of the data filtering method would constrain
the analysis to data from only nine or ten monitoring sites. In other
locations, it is unlikely that any monitoring sites have been measuring
constantly for eighteen years, and such a long term analysis would be
impossible.

Finally, as alluded to previously, data filtering methods are was-
teful. By excluding monitoring sites which are not measuring constantly
over the period of interest, a great deal of potentially important data is
not considered. The rolling change method's advantage over traditional
techniques is that it does not automatically exclude data from short
term monitoring sites, and so retains far more of the data in the



P.E. Lang, et al.

analysis.
3.3. Potential applications

The rolling change method offers the following advantages over
traditional methods of trend analysis:

® Robust long term trend analysis across monitoring networks which
may be subject to time-dependent biases

e Enables long term trend analysis to be undertaken for areas with
few/no long term monitoring sites

A lack of long term roadside monitoring sites is a major barrier to
the analysis of long term trends in roadside pollutant concentrations. As
previously mentioned in Section 1.1, roadside monitoring sites are
frequently re-located to locations deemed more critical for compliance
monitoring, resulting in short time series. To illustrate this difficulty,
suppose the trend analysis of roadside NO, and NO, concentrations
between 2000 and 2017 was carried out for other UK cities (excluding
London). In the UK, there are 4 functional urban areas (FUA) and 4
towns (excluding London) with long term roadside monitoring sites
measuring NO, and NO, concentration over the period 2000-2017,
none of which has more than 1 monitoring sites. The scarcity of long
term roadside monitoring sites poses a serious problem for compre-
hensive long term trend analysis. However, use of the rolling change
method allows the relaxation of the constraint limiting the useable data
to that from long term monitoring sites. As a consequence, the range of
locations in which long term trend analysis is possible can be expanded
to areas which would be inaccessible using the established methods,
such as data filtering.

Moreover, the technique is broadly applicable to any situation re-
quiring the aggregation of multiple, concurrent time series of differing
lengths into a single, overall trend. For example, such a situation may
arise in other environmental sciences where continuous monitoring is
carried out over a network of sites, such as water quality monitoring,
soil monitoring or oceanography.

Even outside the environmental sciences, trend analysis of multiple
time series is routinely carried out in finance, quality control and the
social sciences. In these fields, as in environmental monitoring, it is
more usual for analysis to be limited to time series of the same length.
However, with the rapid growth of sensor technologies and the com-
mensurate increase in the automatic collection of time series data, the
ability to analyse variable length time series could be advantageous.

4. Conclusions

Air quality monitoring networks offer the potential to visualise and
quantify long-term trends over large regions through aggregation of
data from multiple monitoring sites. However, analysis of roadside
monitoring site data from the London network suggests caution is re-
quired when averaging data from a monitoring network containing
time series of variable duration. Movement, opening and closing of
monitoring sites introduce biases into the average trend, resulting in a
misleading view of the changes in air quality.

Techniques were developed with the aim of identifying and miti-
gating these influences to robustly represent the true long term trend. In
particular, a method involving the calculation of a change in con-
centration using rolling window regression was developed as an effec-
tive alternative to simple averaging. This technique was demonstrated
to estimate the true trend in pollutant concentration with far greater
accuracy than the simple average trend when applied to a set of time
series of disparate lengths.

The ability to use multiple time series of differing lengths in trend
analysis offers potential advantages for air quality and environmental
monitoring applications, as well as time series analysis in other fields.
An important advantage of the technique is that it maximises the use of
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the information available and is suited to situations where a large
number of monitoring sites may not be available but where an ag-
gregate view of overall changes in concentrations is still valuable.
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Appendix A

The algorithm for the rolling change method described in Section
2.2 is as follows:

1. Choose the time range over which to calculate the trend, and the
value of the rolling window width, n.

2. Initialise Ay, as the average of the annual average concentrations of
all monitoring sites in the first year, y,.

3. Identify the moving window, i, as the time period xi, ..., Xj4(n-1).

. Select the vector of dates encapsulated by the moving window, X;.

5. Filter the concentration data to include only data from sites with >
90% data capture over the moving window. The result will be a
vector of concentration values of length n, Y;.

6. Fit a linear regression model to the filtered concentration data, (X;,
Y;), as in Equation (1).

7. Calculate the concentration change over the moving window using
the regression coefficient, 3, and the concentration change of the
previous window, Ay,_, using Equation (2).

8. Assign the concentration change, Ay, to the median date of the
rolling window, Xx;.

9. Slide the moving window by one time point towards the end of the
time range.

10. Repeat Steps 4-9 until the moving window reaches the end of the
time range.

11. The rolling change trend is Ay, as a function of x; over all i (i.e. the
entire time range), as shown in Equation (3).

N
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