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Abstract

We introduce methods and theory for functional or curve time series with long-
range dependence. The temporal sum of the curve process is shown to be asymp-
totically normally distributed, the conditions for this covering a functional version
of fractionally integrated autoregressive moving averages. We also construct an
estimate of the long-run covariance function, which we use, via functional principal
component analysis, in estimating the orthonormal functions spanning the dominant
sub-space of the curves. In a semiparametric context, we propose an estimate of
the memory parameter and establish its consistency. A Monte-Carlo study of finite-
sample performance is included, along with two empirical applications. The first of
these finds a degree of stability and persistence in intra-day stock returns. The second
finds similarity in the extent of long memory in incremental age-specific fertility rates
across some developed nations.

Keywords: curve process, functional FARIMA, functional principal component analysis,
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1 Introduction

Functional or curve time series arise in many fields, including biology, transportation,

environmental science, finance and demography (c.f., Chiou & Müller 2009, Kokoszka &

Zhang 2012, Chen et al. 2016, Shang 2016). They can be of basically two types. On the

one hand, they can arise by separating an almost continuous time record into natural con-

secutive intervals. Examples include intraday price curves of a financial stock (Kokoszka

& Zhang 2012), minute-by-minute traffic flow (Klepsch et al. 2017) and electricity price

curves (Chen & Li 2017). Figure 1 plots the intraday log-return curves for 6 US stocks

observed from 1 October 2014 to 31 December 2014. This typical example will be analysed

in Section 5.2. On the other hand, functional time series can also arise when observations

in a time period are considered as finite realisations of a continuous function. Examples

include age-specific mortality rates (Chiou & Müller 2009), age-specific fertility rates

(Hyndman & Ullah 2007) and yield curves (Hays et al. 2012). Figure 2 plots the annual

Australian age-specific fertility rates, where the function support for age lies between 15

and 49. This curve time series data set will be analysed in Section 5.3. In either case, the

object of interest is a time series of random functions bounded within a finite interval.

A relatively recent but growing literature has developed methods and theory for

functional time series, the bulk of it assuming stationarity over the temporal dimension,

indeed short-range dependence (c.f., Bosq 2000, Ferraty & Vieu 2006, Bathia et al. 2010,

Hörmann & Kokoszka 2010, Horváth & Kokoszka 2012, Horváth et al. 2014, Laurini

2014, Klepsch & Klüppelberg 2016, Liu et al. 2016, Aue et al. 2017, Aue & Klepsch 2017,

Kowal et al. 2017, 2018, Rice & Shang 2017). This work has entailed both parametric and

nonparametric modelling and is relevant to a wide variety of data.

On the other hand, there have been many notable developments in the time series

literature, especially over the past thirty years or so, on long-range dependent, or long

memory, time series models (c.f., Beran 1994, Robinson 2003, Palma 2007, Giraitis et al.

2012, Beran et al. 2013). These describe processes with greater persistence than short-

range dependent ones, such that in the stationary case auto-covariances decay very
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Figure 1: Perspective plots of the intraday log-return curves for 6 US stocks observed between 1

October 2014 and 31 December 2014.
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Figure 2: Age-specific fertility rates observed from 1921 to 2006 for ages from 15 through 49 in

Australia. Curves are ordered chronologically according to the colours of the rainbow. Curves

from the distant past are shown in red, while the most recent ones are in violet.

slowly and the spectral density is unbounded, typically at zero frequency. Time series

data arising in a variety of areas of the natural sciences, such as geophysics, as well as in

fields such as agriculture, economics and finance, have revealed evidence of long-range

dependence.

It is natural then to expect long-range dependence to arise in functional time series.

Indeed, Casas & Gao (2008) find evidence of long-range dependence in the daily volatility

curve, when treated as a functional time series. However, so far as we know, even basic

methodology for analysing functional time series with long-range dependence has not

yet been developed. The present paper attempts a start at filling this gap. Given the

lack of methods and theory, we focus initially on temporal sums of regularly-spaced

observations across each curve, establishing asymptotic distribution theory for this simple

statistic. Our result is then used in justifying some tools of statistical inference. Our

work reflects both the parametric and semiparametric modelling found in the long-range

dependence literature.
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We suppose that {Xt : t ∈ Z} is a sequence of functional observations, where Xt =

(Xt(u) : u ∈ C), C ⊂ R is a compact set, R is the real line and Z = {0,±1, . . . }. Much classic

literature such as Ramsay & Silverman (2005) assumes that the functional process {Xt}

is independent and identically distributed (i.i.d.) across t, which seems too restrictive

in many practical applications. Generally speaking, two major (stationary) short-range

dependent functional time series structures have been studied: one extends probabilistic

and statistical tools developed for mixing sequences (Ferraty & Vieu 2006, Bathia et al.

2010); the other extends certain linear and nonlinear sequences and martingale or m-

dependent approximation techniques (Bosq 2000, Hörmann & Kokoszka 2010, Horváth &

Kokoszka 2012, Rice & Shang 2017), where it is usually assumed that Xt = g(εt, εt−1, · · · ),

where g : S∞ → H and {εt : t ∈ Z} with εt = (εt(u) : u ∈ C) is a sequence of i.i.d.

random elements in a measurable space S, and H is a separable Hilbert space which will

be defined in Section 2.1 below.

However, the above weak dependence structures may leave something to be desired.

For instance, mixing is not easy to verify. Hörmann & Kokoszka (2010) give examples of

nonlinear curve processes with short-range dependence, but this may be unreasonable

in others (e.g., the two empirical examples in Sections 5.2 and 5.3). Thus, we study in

this paper a curve time series process with long-range dependence. In order to specify

the functional dependence structure, we will decompose the functional observations Xt

through projection onto a finite number of sub-spaces, spanned by orthonormal basis

functions, which are defined via eigenanalysis on a covariance function given in (2.3)

below. The dependence degree for the projected curve linear process varies over different

sub-spaces, as specified in Assumption 2 and Proposition 1 below. In particular, the sub-

space on which the projection has the strongest dependence (or the strongest signal) is

called the dominant sub-space. This sub-space typically contains most of the information

carried by the original curve process and would play an important role in empirical

studies. Under mild conditions, we establish a central limit theorem for the sum of

the long-range dependent curve process and its projection (i.e., Theorem 1), extending

well-known results developed for scalar time series.
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We further consider estimation of the long-run covariance function for the curve pro-

cess which is crucial in the subsequent Functional Principal Component Analysis (FPCA).

FPCA is a natural extension of Principal Component Analysis (PCA) in the multivariate

setting. The classical PCA conducts eigenanalysis on variance-covariance or correlation

matrices, obtaining the eigenvectors (corresponding to the first few largest eigenvalues)

and subsequently forming linear combinations of components in the multivariate vector

which highlight the variation strongly represented in the original multivariate data. In

contrast, FPCA conducts eigenanalysis on variance or covariance functions, obtaining

the eigenfunctions (corresponding to the first few largest eigenvalues) and forming lin-

ear combinations of functional observations which retain a large proportion of sample

variation. A more detailed comparison between PCA and FPCA can be found in Ramsay

& Silverman (2005) and Shang (2014). In this paper, through FPCA on the estimate of

the long-run covariance function (up to multiplication by a rate), we obtain consistent

estimates of the orthonormal functions spanning the sample dominant sub-space. In

addition, we introduce two easy-to-implement methods to determine the dimension

of the dominant sub-space and consistently estimate the memory parameter for the

projected curve process onto this sub-space. We introduce a functional version of the

fractionally integrated ARMA (FARIMA) process which is a natural extension of the

scalar FARIMA (c.f., Adenstedt 1974, Granger & Joyeux 1980, Hosking 1981) and show

that it satisfies our functional dependence structure; it is also employed in a Monte-Carlo

study of finite-sample performance.

The rest of the paper is organised as follows. Section 2 specifies the long-range

dependence structure for the curve process and gives some relevant limit theorems.

Section 3 constructs estimates of the orthonormal functions which span the dominant

sub-space, of the dimension of the dominant sub-space, and of the memory parameter.

Section 4 studies the functional FARIMA process. Section 5 provides numerical studies

including Monte-Carlo simulations and two empirical applications. Section 6 concludes

the paper. Detailed proofs of the main theoretical results appear in a supplemental

document (Li et al. 2018). Throughout the paper, “
d

−→” and “
P

−→” denote convergence
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in distribution and convergence in probability, respectively; “an ∼ bn” and “an ∝ bn”

denote an/bn → 1 and 0 < c1 6 an/bn 6 c2 < ∞, respectively, when n is sufficiently

large.

2 Modelling structure and large-sample properties

In this section, we introduce our model and functional long-range dependence struc-

ture, give some technical assumptions with discussion, and state relevant large-sample

properties.

2.1 Modelling structure

We model our functional time series by

Xt(u) =

∞∑

j=0

∫

C

bj(u, v)ηt−j(v)dv, (2.1)

where {ηt : t ∈ Z} with ηt = (ηt(u) : u ∈ C) is a sequence of i.i.d. random curves

satisfying Assumption 1 in Section 2.2 below, and {bj : j = 0, 1, 2, · · · } with bj =

(bj(u, v) : u, v ∈ C) is a sequence of kernels with associated integral operators defined

by Bj(x)(u) =
∫

C
bj(u, v)x(v)dv, x ∈ H. Here the space H is the set of measurable

functions satisfying
∫

C
x2(u)du < ∞, a separable Hilbert space with inner product

〈x1, x2〉 =
∫

C
x1(u)x2(u)du. Let the operator norm of the coefficient operators in (2.1) be

defined as

‖Bj‖O = sup {‖Bj(x)‖ : x ∈ H, ‖x‖ = 1} ,

where ‖ · ‖ is the L2-norm of square integrable functions on C. If summability of ‖Bj‖O

over j = 0, 1, 2, · · · is imposed, the auto-covariance functions between curve time series

Xt and Xt+k can be shown to be absolutely summable. As a result, {Xt : t ∈ Z} defined in

(2.1) has classic short-range dependence. This functional process has been systematically

studied in the books by Bosq (2000) and Bosq & Blanke (2007), and extended by Hörmann

& Kokoszka (2010) and Horváth & Kokoszka (2012).
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In this paper, we consider the more challenging case when the operator norm of the

kernel coefficient operators in (2.1) is not summable. Let the unnormalised long-run

covariance function

cn(u, v) = E

[
n∑

t=1

n∑

s=1

Xt(u)Xs(v)

]
(2.2)

be positive definite (or positive semi-definite). Hence, there exist λn1 > λn2 > · · · > 0

and an orthonormal function sequence {ψni : i = 1, 2, · · · } with ψni = (ψni(u) : u ∈ C)

such that

λniψni(u) =

∫

C

cn(u, v)ψni(v)dv. (2.3)

For the case of independent functional data, eigenanalysis is usually conducted on

the variance function E [Xt(u)Xt(v)], seeking an optimal linear combination of functional

observations which “maximise” it (c.f., Ramsay & Silverman 2005). However, for curve

time series, this approach loses dynamic sample information and the long-run covariance

function is more appropriate (c.f., Horváth & Kokoszka 2012). As cn(u, v) defined in (2.2)

is not normalised, it is easy to show that some eigenvalues λni diverge to infinity. In

particular, λni reflects dependence in the scalar process

xit =

∫

C

Xt(u)ψni(u)du, (2.4)

which is the inner product of Xt and ψni, and is usually referred to as the score in

functional data analysis. From (2.3) and (2.4), we readily have

λni =

∫

C

∫

C

cn(u, v)ψni(v)ψni(u)dvdu =

n∑

t=1

n∑

s=1

E
[
xitx

i
s

]
,

indicating that λni is the unnormalised long-run variance of
{
xit : t ∈ Z

}
, i = 1, 2, · · · .

Note that

‖Bj‖
2
O 6

∫

C

∫

C

b2
j(u, v)dudv

and assume
∞∑

j=0

‖Bj‖
2
O 6

∞∑

j=0

∫

C

∫

C

b2
j(u, v)dudv <∞, (2.5)
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which implies that the curve series defined in (2.1) converge almost surely. Using (2.4)

and (2.5), we write

Xt(u) =

∞∑

i=1

ψni(u)

∫

C

Xt(v)ψni(v)dv =

∞∑

i=1

xit ·ψni(u), (2.6)

which indicates that we may specify the functional dependence structure for Xt via the

scores xit, i = 1, 2, · · · .

Combining (2.1) and (2.4), it is straightforward to show that for each i

xit =

∞∑

j=0

∫

C

∫

C

bj(u, v)ηt−j(v)ψni(u)dudv

=

∞∑

j=0

∫

C

bij(v)ηt−j(v)dv, (2.7)

where bij(v) =
∫

C
bj(u, v)ψni(u)du, v ∈ C. Throughout the paper, we suppress depen-

dence of xit and bij(·) on n unless necessary. From (2.7), the temporal dependence of
{
xit : t ∈ Z

}
is mainly determined by the decay rate of bij(v) over j. This will be specified

in Assumption 2 below.

2.2 Assumptions

We next give some technical assumptions which will be used to derive the asymptotic

theorems in Section 2.3 below.

Assumption 1. The sequence {ηt : t ∈ Z} in (2.1) is composed of i.i.d. random functions

in a measurable space with mean zero and positive definite covariance function defined

by cη(u, v) = E [η0(u)η0(v)]. Furthermore,

‖Cη‖
2
S :=

∫

C

∫

C

c2
η(u, v)dudv <∞, (2.8)

where Cη is the covariance operator defined by

Cη(x)(u) =

∫

C

cη(u, v)x(v)dv, x ∈ H,

which is Hilbert-Schmidt with ‖Cη‖S being the Hilbert-Schmidt norm.
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Assumption 2. There exist bounded positive integers κ0 and p1 < p2 < · · · < pκ0
such

that, for i = pk−1 + 1, · · · ,pk with k = 1, · · · , κ0 and p0 = 0,

bij(u) ∼ ρi(u)j
−αk as j→ ∞, (2.9)

where u ∈ C, 1/2 < α1 < α2 < · · · < ακ0
< 1, the functions ρi(·) := ρni(·) satisfy

0 < ρ̄pk
6 · · · 6 ρ̄pk−1+1 <∞ for k = 1, · · · , κ0

with ρ̄i being the limit of
(
E〈ρi,ηt〉

2
)1/2

=
(
E〈ρni,ηt〉

2
)1/2

as n→ ∞; for i > pκ0
+ 1,

∞∑

i=pκ0
+1

∞∑

j=0

∥∥bij
∥∥ <∞, max

i>pκ0
+1

sup
16ι62

E
[
〈bi⌊ιj⌋,ηt〉

2
]

E
[
〈bij,ηt〉

2
] = O(1) as j→ ∞, (2.10)

where ⌊·⌋ denotes integer part.

Remark 1. Assumption 2 facilitates use of well-known limit results developed for scalar

or multivariate long-range dependent processes (c.f., Robinson 1994, 2003, Giraitis et al.

2012). In particular, (2.9) indicates that
{
xit : t ∈ Z

}
, i = pk−1 + 1, · · · ,pk, have the same

dependence degree, and moreover, as α1 is the smallest memory parameter,
{
xit : t ∈ Z

}
,

i = 1, · · · ,p1, have the strongest degree of long-range dependence (see Proposition 1

and Theorem 1 below). Furthermore, as ρ̄1 > ρ̄2 > · · · > ρ̄p1
, the first score process

{
x1
t : t ∈ Z

}
has the largest long-run variance, containing the strongest signal from the

original curve time series. An approximation of this score process will be used in Section

3.2 to estimate α1 via the R/S approach. Combining (2.6) and Assumption 2, we have

Xt(u) =

κ0+1∑

k=1

pk∑

i=pk−1+1

xitψni(u) =

κ0+1∑

k=1

Xtk(u), (2.11)

where

Xtk(u) =

pk∑

i=pk−1+1

xitψni(u),

p0 = 0 and pκ0+1 = ∞. In (2.11), Xt is decomposed into a summation of Xtk :=

(Xtk(u) : u ∈ C), the projection of Xt onto Sk, k = 1, · · · , κ0 + 1, where Sk = Sk(ψni :

pk−1 + 1 6 i 6 pk) is a (pk − pk−1)-dimensional sub-space spanned by ψni, i =

10



pk−1 + 1 · · · ,pk, defined via (2.3), and Sκ0+1 = Sκ0+1 (ψni : i > pκ0
+ 1) is the sub-space

spanned by the eigenfunctions ψni, i = pκ0
+ 1,pκ0

+ 2, · · · . In addition, the positive

integer κ0 is the number of sub-spaces on which the projection of the original curve time

series has long-range dependence.

Remark 2. Combining (2.9) and (2.10) in Assumption 2 leads to the summability con-

dition (2.5), indicating that the integral operators Bj(x)(u) =
∫

C
bj(u, v)x(v)dv, x ∈ H,

are Hilbert-Schmidt for j = 0, 1, 2, · · · . Furthermore, the conditions in Assumption 2

determine the decay rate of the operator norms ‖Bj‖O when j goes to infinity. In fact, by

the Cauchy-Schwarz inequality and the definition of the operator norm, we have for any

i = pk−1 + 1, · · · ,pk with k = 1, · · · , κ0, as j→ ∞,

ρ̄ij
−αk ∼

{

E

[∫

C

bij(v)ηt(v)dv

]2
}1/2

=

{

E

[∫

C

∫

C

bj(u, v)ηt(v)ψni(u)dudv

]2
}1/2

=

(
E

{

‖ηt‖
2

[∫

C

∫

C

bj(u, v)
ηt(v)

‖ηt‖
ψni(u)dudv

]2
})1/2

6

(
E

{

‖ηt‖
2

∫

C

[∫

C

bj(u, v)
ηt(v)

‖ηt‖
dv

]2

du

})1/2 [∫

C

ψ2
ni(u)du

]1/2

6
[
E‖ηt‖

2
]1/2

· ‖Bj‖O,

which together with Assumptions 1 and 2, implies that ‖Bj‖O is not summable over

j = 0, 1, 2, · · · .

Example 1 below connects (2.9) and (2.10) in Assumption 2 to the kernels bj in the

curve process (2.1), where the eigenfunctions of cn(·, ·) coincide with those of cη(·, ·).

Example 1. Let the kernels bj in (2.1) be defined as b0 = I (the identity operator), and

bj(u, v) = j−α⋆

[
1 +O(j−1)

]
B(u, v) + b⋆jB

⋆(u, v), j > 1,

where 1/2 < α⋆ < 1, {b⋆j : j = 1, 2, · · · } is a sequence of real numbers satisfying
∑∞

j=0 |b
⋆

j | <

11



∞ and sup16ι62

∣∣∣b⋆⌊ιj⌋/b⋆j
∣∣∣ = O(1) as j→ ∞,

B(u, v) =

p∑

k=1

γ⋆

kψ
⋆

k(u)ψ
⋆

k(v), B⋆(u, v) =
∞∑

k=p+1

γ⋆

kψ
⋆

k(u)ψ
⋆

k(v),

γ⋆

k, k = 1, 2, · · · , are positive constants (in non-increasing order) and ψ⋆

k are orthogonal

eigenfunctions of cη(·, ·) defined in Assumption 1 (with corresponding eigenvalues in

non-increasing order). For i = 1, · · · ,p, choosing ψni = ψ
⋆

i , we readily have

∫

C

bj(u, v)ψni(u)du ∼ j−α⋆

p∑

k=1

γ⋆

kψ
⋆

k(v)

∫

C

ψ⋆

k(u)ψ
⋆

i (u)du = j−α⋆γ⋆

iψ
⋆

i (v) as j→ ∞,

and thus verify (2.9) with κ0 = 1, p1 = p, α1 = α⋆ and ρi(u) = γ⋆

iψ
⋆

i (u). If we fur-

ther assume that
∑∞

k=1 |γ
⋆

k| < ∞, with the conditions on b⋆j , we can verify (2.10) in

Assumption 2.

2.3 Large-sample properties

We next present some large-sample properties, starting with a proposition which gives

the orders of the λni.

Proposition 1. Suppose that Assumptions 1 and 2 are satisfied. Then

λni ∼ θ
2
in

3−2αk , θ2
i =

ρ̄2
icαk

(1 − αk)(3 − 2αk)
(2.12)

for i = pk−1 + 1, · · · ,pk with k = 1, · · · , κ0, and

∞∑

i=pκ0
+1

λni = O(n), (2.13)

where cαk
=

∫∞

0 x
−αk(1 + x)−αkdx, ρ̄i and αk are defined as in Assumption 2.

Remark 3. It follows from the decomposition (2.11) and Assumption 2 that Xt(u) defined

in (2.1) can be decomposed into a summation of κ0 functional long-range dependent

processes {Xtk : t ∈ Z}, k = 1, · · · , κ0, and a short-range dependent process {Xt,κ0+1 :

t ∈ Z}. From Proposition 1, we may also derive the explicit form of the asymptotic

12



variance in the central limit theorem, see Theorem 1 and Remark 4 below. Furthermore,

by Assumption 2 and Proposition 1, we find that αk reflects the strength of the signal for

the projection of Xt on Sk. In particular, the projection of Xt(u) onto S1 typically contains

a large proportion of the information carried by the original process and thus results in

the strongest signal, see (2.17) below.

We next investigate the limit distribution of temporal sums, defining

Tn(u) =

n∑

t=1

Xt(u) =

κ0+1∑

k=1

n∑

t=1

Xtk(u) =

κ0+1∑

k=1

Tnk(u),

where Tnk(u) =
∑n

t=1 Xtk(u). For notational simplicity, write Tn = (Tn(u) : u ∈ C) and

Tnk = (Tnk(u) : u ∈ C). Proposition 1 suggests that in limit theorems normalisation rates

for Tnk will differ over k = 1, · · · , κ0 + 1. Our main focus is on the cases k = 1, · · · , κ0 for

which Tnk is constructed using the functional long-range dependent process Xtk, as limit

theorems for Tn,κ0+1 have been extensively studied (c.f., Bosq 2000, Berkes et al. 2013).

The following theorem establishes a central limit theorem for Tnk.

Theorem 1. Suppose that Assumptions 1 and 2 are satisfied, and max16k6κ0
(pk − pk−1)

is bounded. Then for each k = 1, · · · , κ0,

n−(3/2−αk) · Tnk
d

−→ Zk, (2.14)

where Zk is a Gaussian random element with zero mean and covariance function defined

by

σk(u, v) = lim
n→∞

1

n3−2αk
E [Tn,k(u)Tn,k(v)] = lim

n→∞

1

n3−2αk

pk∑

i=pk−1+1

λniψni(u)ψni(v).

(2.15)

Furthermore, Zk, k = 1, · · · , κ0, are mutually independent.

Remark 4. With the conditions in Assumption 2 and Proposition 1, (2.14) can also be

expressed as

n−(3/2−αk) · Tnk
d

−→

pk∑

i=pk−1+1

θiNiψi, (2.16)
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where θi is defined in Proposition 1, Ni, i = 1, 2, · · · ,pκ0
, are independent standard

normal random variables, and ψi is the limit of ψni as specified in Section 3 below. In

addition, Theorem 1 and Proposition 1 show that Tn is asymptotically dominated by Tn1

and in particular,

n−(3−2α1)
∥∥CT

n − CT
n1

∥∥
S
= o(1), (2.17)

where CT
n and CT

n1 are the covariance operators defined by

CT
n(x) = E [〈Tn, x〉Tn] , CT

n1(x) = E [〈Tn1, x〉Tn1] , x ∈ H.

Therefore, we call S1 the asymptotically dominant sub-space and obtain the following

result as a direct corollary of Theorem 1.

Corollary 1. Suppose that the conditions in Theorem 1 are satisfied. Then

n−(3/2−α1) · Tn
d

−→ Z1, (2.18)

where Z1 is defined as in Theorem 1.

Remark 5. Theorem 1 and Corollary 1 above not only generalise some classic limit

theorems for long memory time series (c.f., Davydov 1970, Robinson 2003, Giraitis et al.

2012) to the functional case, but also extend some existing theorems for short-range

dependent curve processes (c.f., Bosq 2000, Horváth & Kokoszka 2012). Theorem 1

and Corollary 1 still hold with slight modification under the more general condition:

bij(u) ∼ ρi(u) [j
−αkli(j)] as j→ ∞, where li(·) is a positive slowly varying function (c.f.,

Bingham et al. 1987) which depends on i. Our limit distribution theory is comparable to

theorems in Characiejus & Rauckauskas (2014) and Düker (2018) which consider Hilbert

space-valued long-range dependent linear processes with derivation heavily relying on

the theory of multiplication operator. However, it seems challenging to directly apply the

methodology in Section 3 below to their model framework, making it difficult to achieve

dimension reduction via FPCA.

Remark 6. In the above limit results, we assume the dimension p1 of the dominant

sub-space S1 (and of the other sub-spaces on which there is long-range dependence) is
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fixed, but we could allow p1 to diverge slowly with n. The limit distribution results in

Theorem 1 and Corollary 1 are still valid after modifying conditions and the proofs in Li

et al. (2018). For example, in Corollary 1, we need the implicit restriction that

lim
n→∞

1

n3−2α1

p1∑

i=1

λni <∞,

which together with Proposition 1, indicates that
∑p1

i=1 ρ̄
2
i is bounded. Hence, in case of

divergent p1, ρ̄i would converge to zero as the index i approaches p1 (from the left).

3 Estimation of the dominant sub-space

From (2.17) and Corollary 1, the projection of the curve process onto S1 typically contains

the bulk of the information carried by Xt(u) and in particular,

p1∑

i=1

λni

/ ∞∑

j=1

λnj = 1 + o(1).

Therefore, it is important to estimate S1. As the orthonormal functions ψn1, · · · ,ψnp1

depend on n, we define their limits as

ψi = lim
n→∞

ψni, i = 1, · · · ,p1. (3.1)

In this section, we show how to estimate the long-run covariance function (up to multi-

plication by a rate) for the curve process and use it to obtain estimates of ψ1, · · · ,ψp1
via

FPCA. Then we discuss how to consistently estimate p1 and α1.

3.1 Estimation of the orthonormal functions ψi

We start by estimating the long-run covariance function as it plays a key role in estimating

the ψi, i = 1, · · · ,p1. In order to carry out statistical inference on Tn defined in Section 2.3,

for example to set confidence regions, we also need to consistently estimate the limiting

covariance function implied by Corollary 1, and given by

c(u, v) = lim
n→∞

1

n3−2α1
E [Tn(u)Tn(v)] = lim

n→∞

1

n3−2α1
cn(u, v). (3.2)
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Consider the case of “I(0)” scalar time series zt, given for example by a linear process:

zt =

∞∑

j=0

b⋄jǫt−j, 0 <

∣∣∣∣∣

∞∑

j=0

b⋄j s
j

∣∣∣∣∣ <∞ (3.3)

for s on the unit circle of the complex plane, where {ǫt : t ∈ Z} is a sequence of i.i.d. scalar

random variables with zero mean and finite and positive variance σ2. The asymptotic

variance of n−1/2
∑n

t=1 zt is σ2
(∑∞

j=0 b
⋄
j

)2
, equivalently 2π times the spectral density of zt

at zero frequency. The latter can be consistently estimated using nonparametric spectral

density estimation. A great deal has been made of this topic in the econometric literature,

in the context of more general mean-like statistics, and with the introduction of such

terminology as “Heteroskedastic and Autocorrelation Consistent (HAC)” and “long-

run variance” estimation, but not only are these estimates based heavily on ideas from

the classical nonparametric spectral estimation literature, but the idea of studentising

a sample mean by such an estimate goes back to Jowett (1955) and Hannan (1957), so

relevant statistical literature long precedes the econometric work. If

b⋄0 = 1, b⋄j ∼ j−α with 1/2 < α < 1 as j→ ∞

in the scalar linear process (3.3), zt is not I(0) but I(d), 0 < d := 1 − α < 1/2, and its

spectral density diverges at zero frequency, so such methods cannot be used for inference

on n−H
∑n

t=1 zt with H = 3/2 −α. However, in the latter case, Robinson (1994, 2005) and

Abadir et al. (2009) develop and justify suitable studentisations, depending in part on

consistent estimates of H (indeed these apply also to “antipersistent” series I(d) with

−1/2 < d < 0, i.e., 0 < H < 1/2, where the spectral density vanishes at frequency zero).

In our functional time series setting, let Xn(u) =
1
n

∑n
t=1 Xt(u) and

rk(u, v) =






1
n

n−k∑

t=1

[
Xt(u) − Xn(u)

] [
Xt+k(v) − Xn(v)

]
, k > 0,

1
n

n−|k|∑

t=1

[
Xt+|k|(u) − Xn(u)

] [
Xt(v) − Xn(v)

]
, k < 0,

where |k| 6 m, m = mn is a user-chosen bandwidth sequence satisfying m → ∞ and
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m = o(n). If α1 is known a priori, define

cm(u, v) =
1

m3−2α1

∑

|k|6m

(m− |k|) rk(u, v) (3.4)

as an estimate of c(u, v). Let Cm and C be the operators defined by

Cm(x)(u) =

∫

C

cm(u, v)x(v)dv, C(x)(u) =

∫

C

c(u, v)x(v)dv, x ∈ H.

The following proposition shows the consistency of Cm.

Proposition 2. Suppose that the conditions in Theorem 1 are satisfied, E
[
‖ηt‖

4
]
< ∞

andm ∝ nγ with 0 < γ < min{1/(4α1 − 2), 1}. Then

∥∥Cm − C
∥∥
S
= oP(1). (3.5)

Remark 7. If α1 is unknown, (3.4) is infeasible. For an estimate α̃1 such that α̃1 − α1 =

oP(1/ logn), consider

c̃m(u, v) =
1

m3−2α̃1

∑

|k|6m

(m− |k|) rk(u, v).

Note that

c̃m(u, v) − c(u, v) = c̃m(u, v) − cm(u, v) + cm(u, v) − c(u, v)

=

(
1

m3−2α̃1
−

1

m3−2α1

)
∑

|k|6m

(m− |k|) rk(u, v) +

[cm(u, v) − c(u, v)] , (3.6)

and

m2α̃1−3 −m2α1−3 = OP (|α̃1 − α1| logm) ·m2α1−3

= oP (logm/ logn) ·m2α1−3

= oP(1) ·m
2α1−3 (3.7)

by standard calculation and using α̃1 − α1 = oP(1/ logn). By (3.5)–(3.7),
∥∥∥C̃m − C

∥∥∥
S
= oP(1),

where the operator C̃m is defined similarly to Cm but with cm(u, v) replaced by c̃m(u, v).
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We next estimate the orthonormal functions ψi, i = 1, · · · ,p1, defined in (3.1). From

Proposition 1, the p1 largest eigenvalues λ1, · · · , λp1
of c(u, v) defined in (3.1) are positive,

bounded away from zero and infinity and satisfy λi = limn→∞ λni/n
3−2α1 , and the sum

of the remaining eigenvalues tends to zero. Furthermore, by (2.3), (3.1) and (3.2), we may

show that ψ1, · · · ,ψp1
are the eigenfunctions of c(u, v) corresponding to the p1 largest

eigenvalues. Hence, we can implement FPCA on c̃m(u, v), a consistent estimate of c(u, v),

and estimate ψ1, · · · ,ψp1
. But since c̃m(u, v) is proportional to

ĉm(u, v) =
∑

|k|6m

(m− |k|) rk(u, v), (3.8)

it is obvious that the eigenfunctions via FPCA of c̃m(u, v) are the same as those of ĉm(u, v),

and using (3.8) does not require estimating α1. Hence, for practical applications we

consider eigenanalysis on ĉm(u, v) and let ψ̂1, · · · , ψ̂p1
be the eigenfunctions of ĉm(u, v)

corresponding to the p1 largest eigenvalues. The following theorem shows that ψ̂i

consistently estimates ψi and ψni (up to sign change), i = 1, · · · ,p1.

Theorem 2. Suppose that the conditions in Proposition 2 are satisfied, p1 is known, and

0 < λp1
< · · · < λ1 <∞. Then,

max
16i6p1

∥∥∥ψ̂i − τiψi

∥∥∥ = oP(1) (3.9)

and

max
16i6p1

∥∥∥ψ̂i − τniψni

∥∥∥ = oP(1) (3.10)

if τi = τni, where τi = sign(〈ψ̂i,ψi〉) and τni = sign(〈ψ̂i,ψni〉).

3.2 Estimation of α1

From Proposition 1 and Theorem 1, the first score process {x1
t : t ∈ Z} defined in (2.4) is

a long-range dependent linear process with memory parameter α1. We estimate α1 by

the so-called R/S method introduced by Hurst (1951, 1956) to study the behaviour of the

Nile and various reservoirs. A number of other memory parameter estimates have better

statistical properties than the R/S estimate (which, for example, is clearly inefficient in
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the case of Gaussian innovations), but the latter has the advantage of making relatively

quick and easy use of our asymptotic results. Define

Rn = max
16k6n

k∑

t=1

(
x1
t − x

1
)
− min

16k6n

k∑

t=1

(
x1
t − x

1
)

and

S∗n =

[
1

n

n∑

t=1

(
x1
t − x

1
)2

]1/2

, x1 =
1

n

n∑

t=1

x1
t. (3.11)

The R/S statistic may be defined by Rn/S
∗
n. From the argument in Section 3.1, the

eigenfunction ψn1 can be consistently estimated by ψ̂1, which suggests that we may

approximate x1
t by

x̂1
t =

∫

C

Xt(u)ψ̂1(u)du.

Define R̂n and Ŝ∗n like Rn and S∗n but with x1
t replaced by x̂1

t. Then a feasible R/S statistic

is R̂n/Ŝ
∗
n with the following asymptotic distribution.

Proposition 3. Suppose that the conditions in Theorems 1 and 2 are satisfied. Then we

have
1

nH1

R̂n

Ŝ∗n

P
−→ V, (3.12)

where H1 = 3/2 − α1,

V =
{

E
[
(x1

t)
2
]}−1/2

θ1

{

sup
06r61

[BH1
(r) − rBH1

(1)] − inf
06r61

[BH1
(r) − rBH1

(1)]

}

,

θ1 is defined in Proposition 1, and BH(·) is a fractional Brownian motion with index H.

The convergence result (3.12) motivates estimating α1 by

α̂1 = 3/2 − Ĥ1, Ĥ1 = log
(
R̂n/Ŝ

∗
n

)
/ logn.

Using Proposition 3, we may show that

α̂1 − α1 = OP

(
log−1 n

)
. (3.13)

Although α̂1 is consistent, the convergence rate in (3.13) is so slow that we cannot even

achieve the consistency of C̃m described in Remark 7 if α̂1 is used to construct c̃m(u, v),
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but, as discussed in Section 3.1, we do not require an estimate of α1 when conducting

eigenanalysis of ĉm(u, v). We conjecture that a faster rate of convergence can be obtained

if the local Whittle method is used to estimate α1 (c.f., Robinson 1995), which will be left

for future research. Whereas the classical R/S method focuses on estimating the Hurst

coefficient by log(R̂n/Ŝ
∗
n)/ logn, Lo (1991) considers a hypothesis testing procedure to

detect long memory by a modified statistic, where S∗n in (3.11) is replaced by the square

root of a consistent and positive estimate of the long-run variance. Our R/S estimate

uses only the first score process, and when the estimated dimension p̂1 of S1 (see Section

3.3 below) exceeds 1, it seems natural to normalise components in the multivariate score

process
(
x̂it, i = 1, · · · , p̂1

)
, where x̂it, i = 1, · · · , p̂1, are the approximate score processes

defined analogously to x̂1
t. Specifically, we construct

x̂Nt =

√√√√
p̂1∑

i=1

(x̂it)
2
, t = 1, · · · ,n,

and then apply the R/S method to the normalised score process {x̂Nt : t ∈ Z}. More details

are given Appendix B.1 in the supplemental document.

3.3 Estimation of p1

Another critical issue in practical implementation is to determine p1, the dimension

of the dominant sub-space S1. One commonly-used method is to select the first few

eigenfunctions (corresponding to the first few largest eigenvalues) of ĉm(·, ·) so that a

pre-determined amount, say 85%, of the total variation is accounted for. Horváth &

Kokoszka (2012) call this the CPV (cumulative percentage of total variance) method,

but it can be difficult to establish its consistency. Instead, we use a simple ratio method

introduced by Lam & Yao (2012) to determine p1. Specifically, letting λ̂m,i be the ith

largest eigenvalue of ĉm(·, ·), we estimate p1 by

p̂1 = arg min
16i6P̄

λ̂m,i+1

λ̂m,i

, (3.14)

where P̄ is a pre-specified positive integer and 0/0 = 1. To reduce estimation error in

practical implementation, we set λ̂m,i/λ̂m,1 as 0 if its absolute value is smaller than ǫ⋆, a
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pre-specified small positive number, so

λ̂m,i+1

λ̂m,i

=
λ̂m,i+1/λ̂m,1

λ̂m,i/λ̂m,1

= 0/0 = 1, (3.15)

if both
∣∣∣̂λm,i/λ̂m,1

∣∣∣ and
∣∣∣̂λm,i+1/λ̂m,1

∣∣∣ are smaller than ǫ⋆. The following proposition

shows the consistency of p̂1 defined in (3.14).

Proposition 4. Suppose that the conditions in Proposition 2 are satisfied. Then we have

p̂1
P
→ p1.

The proof of the above proposition is given in the supplemental document. The ratio

method will be used in our numerical studies to estimate the dimension of S1. Other

dimension selection methods proposed in the literature such as cross-validation (Hall &

Hosseini-Nasab 2006), bootstrap (Hall & Vial 2006), minimum description length (Poskitt

& Sengarapillai 2013), and Akaike information criterion (Li et al. 2013) may also be

applicable to estimate p1.

4 The functional FARIMA model

In this section, we study the functional FARIMA(p,d,q) process defined by

▽
dXt(u) = Yt(u), ▽ = 1 − B, −1/2 < d < 1/2, (4.1)

and

Yt(u) −

p∑

i=1

∫

C

φi (u, v) Yt−i(v)dv = ηt(u) +

q∑

i=1

∫

C

ϕi (u, v)ηt−i(v)dv, (4.2)

where B denotes the backshift operator, {ηt : t ∈ Z} satisfies Assumption 1 in Section

2.2, and φi(u, v) and ϕi(u, v) are the kernels with associated integral operators defined

by
∫

C
φi(u, v)x(v)dv and

∫

C
ϕi(u, v)x(v)dv, respectively, x ∈ H, and such that Yt(u) is

stationary with respect to t. When d = 0, (4.1) becomes the functional ARMA(p,q) of

Klepsch et al. (2017), while when q = 0, it further reduces to the functional AR(p) model

of Bosq (2000) and Liu et al. (2016), and when p = 0, it reduces to the functional MA(q)

model of Chen et al. (2016) and Aue & Klepsch (2017). We stress that d is fixed over
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the set C and since the main interest of the present paper is long-range dependence, we

only consider d ∈ (0, 1/2). We will show that, under mild conditions, Assumption 2

and Proposition 1 in Section 2 hold for the functional FARIMA, see Proposition 5 and

Remark 8 below. This model will be employed in Section 5 to generate curve time series

in simulation, where finite-sample performance of the methodology proposed in Section

3 will be examined. However, we do not give full consideration to the FARIMA model to

conserve on space.

For notational simplicity, let φi = φi(·, ·) and ϕi = ϕi(·, ·). As in Bosq (2000) and

Klepsch et al. (2017), for the functional ARMA(p,q) process {Yt} with Yt = (Yt(u) : u ∈ C),

we can write

Yt(u) =

∫

C

φ(u, v)Yt−1(v)dv+

q∑

i=0

∫

C

ϕi(u, v)ηt−i(v)dv, (4.3)

where

Yt(u) = [Yt(u), · · · , Yt−p+1(u)]
τ , ηt(u) = [ηt(u), 0, · · · , 0]τ ,

φ(·, ·) =




φ1 φ2 · · · φp

I O · · · O
...

...
...

...

O · · · I O




, ϕi(·, ·) =




ϕi O · · · O

O O · · · O
...

...
...

...

O O · · · O




,

ϕ0 = I, I and O denote the identity and zero operators, respectively, and “τ” denotes

transposition. Let Hp be the cartesian product of p copies of H (c.f., Chapter 5 of Bosq

2000). The following assumption ensures existence of a unique stationary and causal

solution to (4.3).

Assumption 3. Let ϕ1, · · · ,ϕq be the Hilbert-Schmidt kernels in the sense that
∫

C

∫

C

ϕ2
i(u, v)dudv <∞, i = 1, · · · ,q,

and let φ1, · · · ,φq satisfy

p∑

i=1

(∫

C

∫

C

φ2
i(u, v)dudv

)1/2

< 1.
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Following Theorem 3.8 of Klepsch et al. (2017), by (4.3) and Assumption 3 above, we

readily have

Yt =

∞∑

i=0

Ai(ηt−i), (4.4)

where Yt =
(
Yt(u) : u ∈ C

)
, ηt = (ηt(u) : u ∈ C), Ai is the integral operator on Hp with

kernel

αi(u, v) =






∑i
k=0

∫

C
φ

i−k
(u,u1)ϕk(u1, v)du1, 0 6 i 6 q− 1,

∑q
k=0

∫

C
φ

i−k
(u,u1)ϕk(u1, v)du1, i > q,

and φ
0
= I. Letting π(u1, · · · ,up) = u1, we obtain the following MA(∞) representation:

Yt =

∞∑

i=0

π [Ai(ηt−i)] . (4.5)

Note that

Xt = ▽
−dYt = (1 − B)

−d
Yt =

∞∑

i=0

βi,−dB
iYt =

∞∑

i=0

βi,−dYt−i, (4.6)

where, by Stirling’s formula,

βi,−d = β∗
i + β

⋄
i , β∗

i =
1

Γ(d)
i−1+d, β⋄

i = O
(
i−2+d

)
, (4.7)

and Γ(·) is the gamma function. A combination of (4.5) and (4.6) leads to

Xt =

∞∑

i=0

βi,−d

∞∑

j=0

π
[
Aj(ηt−i−j)

]
. (4.8)

Define the operator A∞ by

A∞(x)(u) =

∞∑

j=0

Aj(x)(u) =

∞∑

j=0

∫

C

αj(u, v)x(v)dv, x ∈ H, u ∈ C. (4.9)

Assumption 4. Let

c⋄(u, v) = E {π [A∞(η0)(u)]π [A∞(η0)(v)]} , u, v ∈ C.

There exist 0 < λ⋄p⋄
< · · · < λ⋄1 < ∞ and orthonormal functions ψ⋄

1(·), · · · ,ψ⋄
p⋄
(·) such

that

λ⋄kψ
⋄
k(u) =

∫

C

c⋄(u, v)ψ⋄
k(v)dv, k = 1, · · · ,p⋄, (4.10)

and λ⋄k = 0 when k > p⋄ + 1. The positive integer p⋄ is fixed.
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Let

Xt =

∞∑

i=0

βi,−d

∞∑

j=0

π [Aj(ηt−i)] =

∞∑

i=0

βi,−d · π [A∞(ηt−i)] , (4.11)

and X̃t = Xt − Xt. The following proposition describes the functional dependence

structure of Xt and X̃t, respectively.

Proposition 5. Suppose that Assumptions 1, 3 and 4 are satisfied.

(i) The curve process {Xt} is long-range dependent, and Proposition 1 in Section 2.3

holds with p1 = p⋄, κ0 = 1 and

λ⋄nj ∼
c1−dλ

⋄
j

d(1 + 2d)Γ 2(d)
n2d+1, j = 1, · · · ,p⋄, (4.12)

where λ⋄j and p⋄ are defined in Assumption 4, c1−d is defined as in Proposition 1,

and λ⋄nj is the jth largest eigenvalue of

c⋄n(u, v) = E

[
n∑

t=1

n∑

s=1

Xt(u)Xs(v)

]
, u, v ∈ C.

(ii) The curve process {X̃t} is stationary and short-range dependent.

Remark 8. Let S⋄ be a p⋄-dimensional sub-space spanned by the orthonormal eigenfunc-

tions ψ⋄
1 , · · · ,ψ⋄

p⋄
defined in (4.10). The proof of Proposition 5(i) shows that the projection

of the functional FARIMA(p,d,q) process {Xt} onto the space S⋄ is long-range dependent.

In addition, from Proposition 5(ii), we may show that S⋄ is the dominant sub-space. Fur-

thermore, Corollary 1 holds for {Xt}. The estimation methodology developed in Section 3

can also be used to estimate ψ⋄
1 , · · · ,ψ⋄

p⋄
and the parameter d = 1 − α1, and determine

the dimension p⋄, see the simulation study in Section 5.1 below.

Remark 9. In this section, we limit the discussion to the case that d is fixed over C,

ensuring that the theory in Section 2 and the methodology in Section 3 are applicable.

This assumption is restrictive, but, motivated by Characiejus & Rauckauskas (2014) and

Düker (2018), using the multiplication operator, it may be possible to extend (4.1) to

▽
d(u)Xt(u) = Yt(u), 0 < d(u) < 1/2, u ∈ C. (4.13)
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A different technique would be needed to derive the relevant limit theory for (4.13), while

the methodology proposed in Section 3 would need to be substantially generalised. We

will leave this to future study.

5 Numerical studies

This section provides Monte-Carlo studies of finite-sample performance and two empiri-

cal applications. In fact the data employed here, in common with many other data to be

found in practice, do not consist of continuous records over a finite interval, but rather

ones over discrete grids. We thus adopt the linear interpolation algorithm of Hyndman

et al. (2018) in the R software (R Core Team 2018) to convert discrete data points into a

continuous function before implementing the developed methodology.

5.1 Simulation study

We generate Xt by the functional FARIMA(p,d,q) model in (4.1) and (4.2), with C = [0, 1]

and {ηt : t ∈ Z} a sequence of i.i.d. standard Brownian motions over [0, 1], in the following

two cases:

Case 1: p = 1,d = 0.2,q = 0, φ1(u, v) = 0.34 × exp{−(u2 + v2)/2},

Case 2: p = 1,d = 0.2,q = 1, φ1(u, v) = 0.34× exp{−(u2 + v2)/2}, ϕ1(u, v) = 3
2

min(u, v).

The choice of constants in φ1 and ϕ1 ensures that both ‖φ1‖ and ‖ϕ1‖ are smaller than

one (c.f., Rice & Shang 2017, Kokoszka et al. 2017), so the simulated curve time series

are stationary and invertible. The sample sizes are n = 500, 1000 and 2000, with 1000

replications.

The number p1 of orthonormal functions in the dominant sub-space S1 is estimated

by either the CPV method to explain at least 85% of total variation or the ratio method

defined in (3.14) with P̄ = ⌊U/2⌋, whereU = 101 is the number of equi-spaced discretised

points (in simulating the curve samples). As shown in Table 1, for the FARIMA(1, 0.2, 0),
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over 92% of replications estimate p1 by p̂1 = 1 using the ratio method; and for the

FARIMA(1, 0.2, 1), over 97% of them estimate it as 1. The CPV method overestimates p1

more often than the ratio method, especially for the FARIMA(1, 0.2, 0).

Table 1: The numbers of replications producing different estimates p̂1 of p1 = 1 based on

the ratio method and the CPV method.

Functional FARIMA(1, 0.2, 0) Functional FARIMA(1, 0.2, 1)

Ratio method CPV method Ratio method CPV method

p̂1 500 1000 2000 500 1000 2000 500 1000 2000 500 1000 2000

1 920 973 995 784 851 893 978 997 1000 975 995 1000

2 65 27 5 208 148 107 20 3 25 5

3 7 8 1 2

4 5

6 2

7 1

Figures 3a and 3b plot the estimated eigenfunction corresponding to the largest

eigenvalue after implementing FPCA on ĉm(u, v) defined in (3.5) for the FARIMA(1, 0.2, 0)

and FARIMA(1, 0.2, 1), respectively, where, for simplicity, we selectm = 101 that is the

same as U, the number of discretised points in simulating curves, and smaller than the

sample size (while we have no reason for arguing that U should influence the value of

m). The estimated eigenfunction exhibits similar shape among all three sample sizes, and

the estimated eigenfunction for the FARIMA(1, 0.2, 1) differs slightly in shape from that

for the FARIMA(1, 0.2, 0) due to the moving average component.

For each of the 1000 replications, we estimate d = 1−α1 using the R/S method and the

results are presented using boxplots in Figure 4, from which we find that R/S performs

reasonably well, with accuracy improving as n increases. As the estimated number of

orthonormal functions spanning S1 can be more than one (in particular when n is either

500 or 1000), in the online supplement, we also consider normalising a set of principal
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(a) FARIMA(1, 0.2, 0) process
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(b) FARIMA(1, 0.2, 1) process

Figure 3: The first empirical eigenfunction for n = 500, 1000 and 2000.
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component scores (when p̂1 > 1) and then apply the R/S method to the normalised score

process.
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Figure 4: Boxplots for R/S estimates of d with the left one for FARIMA(1, 0.2, 0) and the

right one for FARIMA(1, 0.2, 1).

5.2 Application to US stocks

We now apply our methodology to intraday log-returns of the six US stocks listed in

Table 2. We select a time period of one year from 2 January 2014 to 31 December 2014,

containing 249 trading days after removing a half trading day on 24 December 2014. Let

SPt(u) denote the price of a stock on day t at time u. Following Aue et al. (2017) and

Kokoszka & Reimherr (2017), we introduce the intraday log-returns:

Xt(u) = lnSPt(u) − lnSPt(u− h), (5.1)

where h is a time window typically chosen as 1, 5 or 15 minutes. We take h = 5,

to avoid microstructure noise in 1-minute log returns; see also Aue et al. (2017) who

propose a functional GARCH model to fit such data. In Section 1, Figure 1 plots these

intraday log-return curves observed in the last quarter of 2014. Since all stocks trade from
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9:30am to 4:00pm, there are 78 measurements per day and n = 249 curves denoted by

{X1,X2, · · · ,X249} with Xt = (Xt(u) : u ∈ C), where C is the time interval between 9:30am

and 4:00pm. The high-dimensionality of the intraday observations makes application

of univariate/multivariate long-range dependence procedures impractical. With the

linear interpolation algorithm of Hyndman et al. (2018), we not only convert discrete

data points into a continuous function but also fill in missing values for the WFC and

XOM stocks, ensuring each daily curve is of the same length.

Table 2: Sectors and stocks used in this study.

Sector Symbol Full Name

Index S&P 500 Standard & Poor 500 Index

Currency Exchange EC Euro to Dollar

Futures CL Crude Oil (WTI Sweet Light) Futures

Technology AAPL Apple Inc

Financials WFC Wells Fargo & Company

Energy XOM Exxon Mobile Corporation

Using FPCA, the estimated eigenfunction corresponding to the maximum eigenvalue

is displayed in Figures 5a and 5c, with their corresponding principal component scores

in Figures 5b and 5d. When estimating the long-run covariance function, we choose

the value of m as 78, the same as the number of discrete points in a trading day. We

estimate α1 using R/S and the estimated first principal component scores, see Table 3,

from which we conclude that these six curve time series show a persistent pattern and

do not change rapidly over time. Furthermore, we estimate α1 for the first and second

halves of the sample (with the first half containing 124 curves and the second half 125)

to examine whether a structural break might cause the long memory; the results, also

presented in Table 3, suggest it is not. In addition, to quantify estimation uncertainty,

in the supplement we implement a bootstrap method introduced by Shang (2018) to

construct confidence intervals for the R/S estimates. Table 4 reports p̂1, based on the CPV
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and ratio methods. As above, the ratio method tends to select smaller p̂1 than CPV.
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Figure 5: The first estimated eigenfunctions and principal component scores for the

intraday log-return curves of the six stocks.

5.3 Application to age-specific fertility rates

Annual Australian fertility rates from 1921 to 2006 for each age from 15 to 49 are obtained

from the Australian Bureau of Statistics (Cat.No.3105.0.65.001, Table 38). There are n = 86
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Table 3: Estimates of α1 for the intraday log-return curves of the six stocks.

Sample period S&P 500 EC CL AAPL WFC XOM

All 249 curves 0.8761 0.7872 0.7525 0.7985 0.8005 0.8117

First 124 curves 0.8390 0.7870 0.7909 0.8197 0.7935 0.7915

Last 125 curves 0.8179 0.7791 0.7535 0.8033 0.8450 0.8272

Table 4: Estimation of the dimension of S1 for the intraday log-return curves.

Method S&P 500 EC CL AAPL WFC XOM

CPV 4 5 4 4 4 4

Ratio 2 1 2 3 4 4

curves from 1921 to 2006 denoted by {X1,X2, · · · ,X86}, where the function support C for

age lies between 15 and 49. Fertility rates are defined as the number of live births during

the calendar year, according to the age of the mother, per 1000 of the female resident

population of the same age on 30 June, and have changed slowly over time, as shown in

Figure 2, reflecting the changing social conditions affecting fertility. For example, there is

an increase in fertility in all age groups around the end of World War II (1945), a rapid

increase during the 1960s corresponding to the baby boom period (McDonald 2000), and

an increase at higher ages in more recent years caused by delay in child-bearing. Figure 2

suggests that the functional time series are non-stationary, so to generate series which we

hope are close to stationarity, we implement the transformation (Haberman & Renshaw

2012)

Xt(ui) = 2 ·
1 − Xt(ui)/Xt−1(ui)

1 + Xt(ui)/Xt−1(ui)
= 2 ·

Xt−1(ui) − Xt(ui)

Xt−1(ui) + Xt(ui)
, i = 1, · · · , I, (5.2)

where Xt(ui) denotes fertility rate for age ui in year t, and I denotes the number of

discrete ages. The denominator in (5.2) attempts to avoid the small phase difference

between the numerator and denominator. The Xt(ui) are called incremental fertility rates.

In Figure 6, we present these rates in Australia from 1922 to 2006.
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Using FPCA for the transformed curve time series {X1, · · · ,X86}, the estimated eigen-

function, corresponding to the largest eigenvalue, along with its corresponding principal

component scores are given in Figure 7. The value of m in the long-run covariance

function estimation is chosen as 29. This estimated eigenfunction seems to capture the

so-called fertility postponement happening in many developed countries in recent years.
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Figure 6: Australian incremental fertility rates from 1922 to 2006.

In addition to Australia, we further consider 13 other developed countries for which

data are available in Human Fertility Database (2016). These are all developed countries

with relatively long data series, see Table 5. The transformation defined in (5.2) is applied

to these age-specific fertility rates, and a stationarity test proposed by Horváth et al. (2014)

is used to examine whether or not the transformed functional time series is stationary.

Under the null hypothesis of stationarity, we present the p-values in Table 5, from which

we cannot reject the null hypothesis at the 10% level of significance.
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Figure 7: The first estimated eigenfunctions and principal component scores for the

Australian incremental fertility rates.

Table 5: The p-values of the stationarity test for various developed countries.

Country Data period p-value Country Data period p-value

Australia 1921:2006 0.241 Canada 1921:2011 0.365

Denmark 1916:2016 0.112 Finland 1939:2012 0.218

France 1946:2015 0.119 Germany 1956:2013 0.108

Iceland 1960:2012 0.108 Italy 1954:2014 0.140

Netherland 1950:2016 0.151 Spain 1922:2014 0.521

Sweden 1891:2016 0.113 Switzerland 1932:2014 0.137

UK 1974:2016 0.165 USA 1933:2014 0.238

33



Using the estimated first principal component scores, through implementing FPCA,

we obtain R/S estimates of α1 (see Table 6), which together with the results in Table 5, in-

dicate that the age-specific incremental fertility rates for the selected developed countries

exhibit stationary and long-range dependence structure, with all but one of the estimated

values less than 0.85. These results not only confirm the features shown in the functional

time series plots but also allow us to quantify the strength of long-range dependence. In

the supplemental document, we report the confidence intervals of the R/S estimates and

the estimated dimension of S1 using the CPV and ratio methods.

Table 6: Estimates of α1 for the age-specific incremental fertility rates from the 14 devel-

oped countries available in the Human Fertility Database (2016).

.

Country R/S estimates Country R/S estimates

Australia 0.7676 Canada 0.7667

Denmark 0.7305 Finland 0.7973

France 0.7335 Germany 0.7297

Iceland 0.9081 Italy 0.7459

Netherland 0.7292 Spain 0.8432

Sweden 0.7192 Switzerland 0.7367

UK 0.7927 USA 0.7636

6 Conclusion

This paper has introduced a functional or curve linear process with long-range depen-

dence and derived some relevant asymptotic theorems. The functional dependence

structure is specified via the projections of the curve process onto different sub-spaces

spanned by additive orthonormal functions. Under regularity conditions, we have es-

tablished a central limit theorem. In particular, we have shown that the projection of the

curve linear process onto the (asymptotically) dominant sub-space contains most of the

sample information carried by the original curve process. The orthonormal functions that
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span the dominant sub-space are estimated via classical FPCA on the estimated long-run

covariance function (up to multiplication by a rate). We also provide easy-to-implement

and asymptotically justified methods to estimate the memory parameter and dimension

of the dominant sub-space, respectively. These methodologies are illustrated via simula-

tions and empirical applications to US stock prices and age-specific fertility rates, both of

which appear to be long-range dependent over time.

The paper might be extended in several directions. First, hypothesis testing based

on the modified R/S statistic in Lo (1991) can be developed to detect the presence of

long memory in curve time series. Second, we might attempt to extend stationarity

to nonstationarity (e.g., the functional FARIMA(p,d,q) with d > 1/2). Other possible

extensions would allow the memory parameter to vary over C and a functional version

of fractional cointegration. Some of these are currently pursued in a separate project.

SUPPLEMENTARY MATERIAL

The supplemental document contains the detailed proofs of the theoretical results and

gives additional numerical results.
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Hörmann, S. & Kokoszka, P. (2010), ‘Weakly dependent functional data’, The Annals of Statistics 38(3), 1845–

1884.
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