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Abstract
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parameters of the underlying continuous time model into those of an equivalent model of
the observed data. Based on manipulations of a general state-space form, the results may
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1 Introduction

The fact that many important macroeconomic series are available only quarterly, while

others may be available monthly and some financial series are available at a daily or higher

frequency has led to a growing interest among multivariate time series analysts in techniques

designed to model data available at different frequencies. The traditional response, to

express the data at a common low frequency through aggregation or systematic sampling,

is not only seen as a wasteful use of data but also bypasses questions of significant practical

importance, such as how one should model the current value of a low frequency variable given

more recent observations of high frequency covariates, see Foroni and Marcellino (2013) for

an overview.

A variety of methods have been proposed to build models that utilise mixed frequency

data efficiently, with an evident split between approaches that feature an underlying model

at some fundamental frequency and those that do not. Prominent among the latter group is

the Mixed Data Sampling (MIDAS) approach of Ghysels et al. (2004) and Ghysels (2016),

in which the mass-parameterisation problem that results from regressing a low frequency

variable on a large number of lags of a number of high frequency series is overcome by the

use of constrained lag polynomials. Where that problem is less pronounced, the unrestricted

version, or U-MIDAS, of Foroni et al. (2015) may be applied. The comparison of MIDAS

with an alternative method is given in Schumacher (2016) in which bridge equations are

used to interpolate a high frequency model of the low frequency variables.

More fundamental approaches, which attempt to estimate a set of deep parameters for

a single frequency model using mixed frequency data, have their origins in the multivariate

temporal aggregation studies of, among others: Lütkepohl (1987); Marcellino (1996) and

Marcellino (1999). Techniques include the use of the Kalman filter, see Zadrozny (1988) and

Seong et al. (2013) and an adaptation of the Yule Walker equations, see Chen and Zadrozny

(1998) and Zadrozny (2016). This approach has the advantage of enabling the analyst to

draw inference or to impose a priori restrictions on the parameters of the fundamental model.

In most cases, the fundamental model is phrased in discrete time, although Zadrozny (1988)

is a notable exception.

There is a long and venerable tradition of macroeconomic modelling in continuous

time, much of it following the pioneering work of Rex Bergstrom, see Bergstrom (1990) and

Bergstrom and Nowman (2007). This approach has been based on the construction and

evaluation against data of the exact discrete representation: a mapping from the continuous

time parameters to the first and second order properties of a corresponding discretely ob-

served time series. In addition to being of interest in its own right, the exact discrete time

model is computationally more efficient than the Kalman filter approach, once the set-up

costs of deriving the discrete time model have been borne, Bergstrom (1985). That tradition

has, however, tended to ignore the possibility of mixed frequency data. Despite the avail-

ability of, for example, monthly observations for some series, the model of Bergstrom and

Nowman (2007) is quarterly. Recently Chambers (2016) has sought to address this issue,

providing results for the first order continuous time model. This paper generalises those

results to the second and higher order models often used in applied work.

We derive a mapping from the continuous time parameters to the first and second order
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properties of a corresponding mixed frequency time series, which we refer to as the exact

discrete representation for mixed frequency data. We allow the time series to contain both

systematically sampled stock variables, such as prices or interest rates, and time aggregated

flow variables, such as GDP or profits. The vectors of high and of low frequency observations

are allowed to contain data of both types, generalising the results in Chambers (2016)

in which the high frequency variables were stocks and the low frequency flows. This is

sufficiently general to cover a wide range of data sources. The case in which a (non-uniform)

weighted average of data collected over different points of the observation cycle would require

more expansive methods.

It is common to conceptualise a model of temporal aggregation or mixed frequency data

in discrete time as a matter of missing data in a larger state space model. That approach is

not open when the missing data forms a continuous record and so other methods have been

deployed in, for example, Chambers and Thornton (2012), Thornton and Chambers (2017),

based around: casting the model in state-space; performing the aggregation; before finally,

solving out for the ARMA representation. This paper follows that approach. Not only can

this be extended to mixed frequency data, it can be iterated to cover multiple frequencies.

In contrast to a missing observations approach, the number of unobservable elements of the

state vector will not increase as a result of the mixed frequency aggregation, but will remain

determined by the autoregressive order of the continuous time system and the number of

flow variables. This is likely to offer computational advantages when the high frequency

variables are available with much higher frequency than the low.

Section 2 covers the journey from a continuous time ARMA model to an analogue

describing a mixed frequency vector. Section 3 explains the estimation algorithm and section

4 includes a simulation study, suggesting that a mixed frequency technique out-performs

traditional estimation methods based on the concentration of data to a single frequency.

Section 5 contains an application of the methods to a well-known data set of (high frequency)

stock price and (low frequency flow) dividend data, and section 6 concludes.

In such a treatment it can be difficult to serve those competing masters: generality and

comprehensibility. While all notation is explained when introduced in the text, the following

is a short guide to the conventions used in the paper. In general, x(t) and xt denote a

sequence of vectors of variables of interest in continuous and discrete time respectively, ξt
a sequence of state vectors, typically including xt alongside unobservable elements. The

scalar n denotes a dimension. The superscripts f refers to flow variables and s to stocks

and for mixed frequencies, h denotes high and l denotes low, appearing as superscripts on

state (sub-)vectors and subscripts when partitioning matrices. Superscripts in parentheses

refer to the level of aggregation. The symbol .̃ is generally used when a system has been

augmented to aggregate flows. The expression ⌊.⌋ denotes the largest integer less than or

equal to while ⌈.⌉ denotes the smallest integer greater than or equal to.
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2 Mixed frequency CARMA

2.1 Model

The continuous time ARMA (p, q) model for the n× 1 vector x(t) is given by

Dpx(t) = a0 +Ap−1D
p−1x(t) + . . .+A0x(t)

+e(t) + V1De(t) + . . .+ VqD
qe(t), t > 0, (1)

whereD denotes the mean square differential operator 1. The n×1 vector e(t) is a continuous

time white noise process with zero mean and second order properties

E

[∫ t2

t1

e(r)dr

∫ t2

t1

e(s)′ds

]

= Σ(t2 − t1) ,

E

[∫ t2

t1

e(r)dr

∫ t2

t1

e(τ + s)′ds

]

= 0, |τ | > |t2 − t1|.

The condition that p > q is important in ensuring that x(t) has an integrable spectral

density matrix and hence a finite variance. The parameters of interest are the n× 1 vector,

a0, and n× n matrices A0, . . . , Ap−1, V1, . . . , Vq and finally the symmetric matrix Σ.

For these parameters to be estimated without access to a continuous record we write

(1) as a first order differential equation. In keeping with Zadrozny(1988), Chambers and

Thornton (2012) and Thornton and Chambers (2017), define the np× 1 state vector y(t) =

[x(t)′, y2(t)
′, . . . , yp(t)

′]′. Then equation (1) may be expressed in state space form

Dy(t) = a+Ay(t) + V e(t), (2)

where

A =

















Ap−1 I 0 . . . 0

Ap−2 0 I . . . 0
...

...

A1 0 0 . . . I

A0 0 0 . . . 0

















, V =

















Vp−1

Vp−2

...

V1

I

















, a =

















0

0
...

0

a0

















,

with Vj = 0 for j > q. This is not the only possible representation of the system but the

capacity to hold derivatives of e(t) give it preference over rivals, see discussion in Thornton

and Chambers (2017).

The task is to solve (1) in such a way that it produces a law of motion for an observable

data vector. We imagine that x(t) contains both stock variables, which are systematically

sampled, and flow variables, which are time aggregates, and that variables of each type

feature in the high and low frequency data vectors. Without loss of generality we first

1More precisely, if x(t) is mean square differentiable then there exists a process ξ(t) satisfying

lim
δ→0

E

{

x(t+ δ)− x(t)

δ
− ξ(t)

}

2

= 0,

which we denote Dx(t) = ξ(t)
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partition the vector x(t) as

x(t) =





xs(t)

. . .

xf (t)



 =















xhs(t)

xls(t)

. . .

xhf (t)

xlf (t)















,

where, xs(t) (ns × 1) contains nhs + nls = ns stock variables and xf (t) (nf × 1) contains

nhf + nlf = nf flow variables. For now, we assume only two frequencies are available

and use m to denote the number of high-frequency observations between low frequency

observations. The extension to multiple frequencies is discussed briefly later. The following

table summarises the nature and dimension of the observable data, their relationship to x(t)

and their availability.

Observed vector Observation Dimension Availability

xhs
t = xhs(t) nhs t = 1, 2, . . . , T.

xhf
t =

∫ t

t−1
xhf (r)dr nhf t = 1, 2, . . . , T.

xls
t = xls(t) nls t = m, 2m, . . . ,m ⌊T/m⌋ .

xlf
t =

∫ t

t−m
xlf (r)dr nlf t = m, 2m, . . . ,m ⌊T/m⌋ .

We use nh = nhs + nhf , (nl = nls + nlf ), to denote the number of high (low) frequency

variables in x(t).

Our aim is to translate the process in x(t), t > 0 into one for the n(m) ≡ mnh + nl

vector, x
(m)
t , for t = m, 2m, . . . , Tm, where

x
(m)′
t = [x

(m)h′
t , xls′

t , xlf ′
t ],

which contains the current and m− 1 lags of the observed high frequency stocks and flows

x
(m)h
t = [xh′

t , xh′
t−1, . . . , xh′

t−m+1]
′,

with xh
t =

[

xhs′
t , xhf ′

t

]

′

, above the observed low frequency stocks and the observed low fre-

quency flows. The strategy follows three steps: a) produce a state space model containing

the skip-sampled and (at least the high frequency) time aggregated variables together at a

common high frequency; b) implement a second round of aggregation to account for the ab-

sence of observations of the low frequency variables; and c) recover a linear process describing

the laws of motion for the observable data vector, a so-called exact discrete representation

for the mixed frequency data. The first step requires the augmentation of the system with

further variables to aggregate the flows but these will be the only increase in unobservable

elements. Otherwise our approach is distinguished by only appending observables to the

system, keeping it of relatively low dimension. At each stage it will be necessary to parti-

tion the state vector in different ways to highlight the evolution of the system: in a) this is

between the flow aggregators and the rest; in b) the important distinction is between high
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and low frequency; while in c) it is between observable and unobservable state variables.

2.2 Continuous to high frequency discrete time

As in Thornton and Chambers (2017), we append the state vector with nf extra elements,

partitioned without loss of generality y0(t) = [yh′0 (t), yl′0 (t)]
′, to capture the aggregated flows,

using the relationship

Dy0(t) = xf (t) ⇒ y0(t)− y0(t− j) =

∫ t

t−j

xf (s)ds. (3)

It is most convenient to insert yh0 (t) (yl0(t)) immediately beneath xhs(t) (xls(t)), thereby

rewriting the np+ nf state vector as

ỹ(t) = [xhs′(t), yh′0 (t), xls′(t), yl′0 (t), x
f (t)′, y2(t)

′, . . . , yp(t)
′]′.

The consequence of (3) is to interject nhf (and nlf ) null columns into A and nhf (and nlf )

rows into (2) all of which are null apart from a single 1 in each row, picking out xhf (t) (or

xlf(t)), some nf + nls (nf ) cells after the principal diagonal. The state equation is now

Dỹ(t) = ã+ Ãỹ(t) + Ṽ e(t), (4)

see the appendix for further details. The solution to (4), conditional on ỹ(0), is

ỹ(t) = eÃtỹ(0) +

∫ t

0

eÃ(t−s)
[

ã+ Ṽ e(s)
]

ds, t > 0, (5)

where eA = I +A+A2/2! +A3/3! + . . . and it follows that

ỹ(t) = c̃+ C̃ỹ(t− 1) + u(t), u(t) =

∫ t

t−1

C̃(t− s)Ṽ e(s)ds, (6)

for t = 1, . . . , T , where C̃(r) = erÃ, C̃ = C̃(1), c̃ =
[

∫ 1

0
C̃(r)dr

]

ã. Using Lemma A1 and

the definition of the matrix exponential it is easy to show that columns nhs + 1 : nh of C̃

are null apart from ones on the principal diagonal, confirming that nothing in the system

depends on yh0 (t− 1) other than yh0 (t). Removing the ones from these columns is equivalent

to subtracting yh0 (t− 1) from yh0 (t), thereby, from (3), introducing the high frequency flows

into a new state vector

ξ̃
(1)
t =

[

xhs′(t),

∫ t

t−1

xhf (r)′dr, xls(t)′, ylf ′0 (t), xf ′(t), y2(t)
′, . . . , yp(t)

′

]′

,

with state equation

ξ̃
(1)
t = c̃+ Φ̃ξ̃

(1)
t−1 + u(t). (7)

The simultaneous redefinition of ξ̃
(1)
t−1 on the right hand side of (7) is permitted by the

corresponding null columns in Φ̃, indicating that xhf
t−1 has no influence on the system.
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At this point ξ̃
(1)
t contains xhs

t , xhf
t and xls

t . The low frequency stocks are yet to be

aggregated from ylf0 (t) but it is worth noting that columns nh + nls + 1 : n are also null

apart from ones on the principal diagonal.

2.3 High to mixed frequency

In this part of proceedings, we draw the distinction between the high and low frequency

elements of ξ̃
(1)
t . The move to mixed frequency is then a specialisation 2 of the method

outlined for discrete time linear processes in Thornton (2019). It will translate (7) into a

system with a state vector

ξ
(m)
t = [ x

(m)′
t , y

(m)′
t ]′, (8)

with y
(m)
t =

[

xf ′(t), y2(t)
′, . . . , yp(t)

′
]

′

the unobservable elements of the state vector which

will remain of dimension b ≡ (p− 1)n+ nf regardless of the magnitude of m.

The method for transforming these relationships to a mixed frequency process comes

simply from splitting equation (7) into its high frequency observables, xh
t , from the low

frequency observables and the unobservable variables, ξ̃lt =
[

xls′(t), ylf ′0 (t), y
(m)′
t

]

′

,

xh
t = c̃h + Φ̃hhx

h
t−1 + Φ̃hlξ̃

l
t−1 + uh

t , (9)

ξ̃lt = c̃l + Φ̃lhx
h
t−1 + Φ̃llξ̃

l
t−1 + ul

t, (10)

where we have similarly partitioned

Φ̃ =

[

Φ̃hh Φ̃hl

Φ̃lh Φ̃ll

]

, c̃ =

[

c̃h
c̃l

]

, ut =

[

uh
t

ul
t

]

≡

[

Θh

Θl

]

ut,

and Θh (Θl) contains the top nh (bottom n(p− 1) + nf + nl) rows of the np+ nf identity

matrix. Lagging (10) and substituting into (9) and (10) a total of m−1 times then produces

(see Thornton (2019) for discussion of the details) the mixed frequency system

ξ̃
(m)
t = c̃(m) + Φ̃(m)ξ̃

(m)
t−1 + u

(m)
t , (11)

where ξ̃
(m)
t−1 ≡ [ x

(m)h′
t−1 ξ̃l′t−m ]′ is constructed with an unusual pattern of lagging, u

(m)
t =

[u′

t, u
′

t−1, . . . , u
′

t−m+1]
′ and

Φ̃(m) =





















Φ̃hh Φ̃hlΦ̃lh Φ̃hlΦ̃llΦ̃lh . . . Φ̃hlΦ̃
m−2
ll Φ̃lh Φ̃hlΦ̃

m−1
ll

0 Φ̃hh Φ̃hlΦ̃lh . . . Φ̃hlΦ̃
m−3
ll Φ̃lh Φ̃hlΦ̃

m−2
ll

0 0 Φ̃hh . . . Φ̃hlΦ̃
m−4
ll Φ̃lh Φ̃hlΦ̃

m−3
ll

...
...

...
. . .

...
...

0 0 0 . . . Φ̃hh Φ̃hl

Φ̃lh Φ̃llΦ̃lh Φ̃2
llΦ̃lh . . . Φ̃m−1

ll Φ̃lh Φ̃m
ll





















,

2The restriction implied by the continuous time model that p > q is very helpful in simplifying the general
problem.
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c̃(m) =





















c̃h + Φ̃hl

∑m−2
j=0 Φ̃j

llc̃l
c̃h + Φ̃hl

∑m−3
j=0 Φ̃j

llc̃l
...

c̃h + Φ̃hlc̃l
c̃h

∑m−1
j=0 Φ̃j

llc̃l





















,

and

Θ(m) =





















Θh Φ̃hlΘ̃l Φ̃hlΦ̃llΘ̃l . . . Φ̃hlΦ̃
m−2
ll Θ̃l

0 Θh Φ̃hlΘ̃l . . . Φ̃hlΦ̃
m−3
ll Θ̃l

0 0 Θh . . . Φ̃hlΦ̃
m−4
ll Θ̃l

...
...

...
. . .

...

0 0 0 . . . Θh

Θ̃l Φ̃llΘ̃l Φ̃2
llΘ̃l . . . Φ̃m−1

ll Θ̃l





















.

We pause to remark upon a similarity between equations (11) and (7) which is such that,

if multiple frequencies were required, the intervening steps could be repeated to perform

additional aggregations as required, see Thornton (2019).

All that remains is to recover the low frequency flow variables from ξ̃lt and ξ̃lt−m. It is

not too difficult to verify that since the columns of nh+nls+1 : n of Φ̃, relating to ylf0 (t−1),

are null apart from ones on the principal diagonal, so are columns mnh + nls + 1 : n(m) of

Φ̃(m): since columns nls +1 : nl of Φ̃ll are null apart from ones on the principal diagonal so

are those of Φ̃j
ll by Lemma A2; and, as those columns of Φ̃hl are null so are those of Φ̃hlΦ̃

j
ll

by Lemma A3. This is to say that the coefficients on ylf0,t−m in Φ̃(m) are null apart from

the block relating to ylf0,t, which contains the identity matrix. In an identical move to that

performed on yhf0,t−1, removing that identity matrix is equivalent to taking ylf0,t−m over to

the left hand side and thereby introducing the variable ylf0,t − ylf0,t−m = x
(m)lf
t into the state

vector, ξ
(m)
t = [ x

(m)h′
t ξl′t ]′ defined by equation (8). The resulting system

ξ
(m)
t = c̃(m) +Φ(m)ξ

(m)
t−1 +Θ(m)u

(m)
t (12)

where Φ(m) differs from Φ̃(m) only in that the aforementioned columns, now relating to xlf
t−m,

are null. This feature would make it impossible to reconstruct y0,t from the other elements

in the state vector, were it not observable. Methods to reconstruct the other elements of

ξ
(m)
t are the focus of the next section.

2.4 ARMA reconstruction

For this final part of proceedings the most important distinction is between the observable

and the unobservable elements of ξ
(m)
t , since the exact discrete representation for the linear

system (12) results from using lags of the former and disturbance to replace the latter. The

observable data, x
(m)
t = S1ξ

(m)
t , t = m, 2m, . . . , ⌊T/m⌋m, where S1 = [I, 0] has n(m) rows.
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The unobservable data, y
(m)
t = S2ξ

(m)
t , where S2 = [0, I] has b = (p− 1)n+ nf rows. The

task is to replace y
(m)
t with lags of x

(m)
t , the intercept and the disturbance, noting that the

high frequency observables on the right hand side of equation (12) are lagged one, rather

thanm periods. In order to split equation (12) into x
(m)
t and y

(m)
t and their lags at frequency

m, we need the selection matrices Sxl,ξl and Sy,ξl to separate the low frequency elements of

the state vector, ξlt, into observables and unobservables, respectively. Using these to collect

terms to write

Nax
(m)
t = Nbx

(m)
t−m +Φ12y

(m)
t−m + c̃

(m)
1 +Θ

(m)
1 u

(m)
t , (13)

y
(m)
t = Ncx

(m)
t +Ndx

(m)
t−m +Φ22y

(m)
t−m + c̃

(m)
2 +Θ

(m)
2 u

(m)
t , (14)

where c̃
(m)
i = SiC̃

(m), Θ
(m)
i = SiΘ

(m), Φij = SiΦ
(m)S′

j ,

Na = −





















−Inh Φ̃hh Φ̃hlΦ̃lh Φ̃hlΦ̃llΦ̃lh . . . Φ̃hlΦ̃
m−3
ll Φ̃lh 0

0 −Inh Φ̃hh Φ̃hlΦ̃lh . . . Φ̃hlΦ̃
m−4
ll Φ̃lh 0

0 0 −Inh Φ̃hh . . . Φ̃hlΦ̃
m−5
ll Φ̃lh 0

...
...

. . .
. . .

...

0 0 0 0 . . . −Inh 0

0 Sx,ξΦ̃lh Sx,ξΦ̃llΦ̃lh Sx,ξΦ̃
2
llΦ̃lh . . . Sx,ξΦ̃

m−2
ll Φ̃lh −Inl





















,

Nb =





















Φ̃hlΦ̃
m−2
ll Φ̃lh 0 Φ̃hlΦ̃

m−1
ll S′

x,ξ

Φ̃hlΦ̃
m−3
ll Φ̃lh 0 Φ̃hlΦ̃

m−2
ll S′

x,ξ

Φ̃hlΦ̃
m−4
ll Φ̃lh 0 Φ̃hlΦ̃

m−3
ll S′

x,ξ

...
...

...

Φ̃hh 0 Φ̃hlS
′

x,ξ

Sx,ξΦ̃
m−1
ll Φ̃lh 0 Sx,ξΦ̃

m
ll S

′

x,ξ





















,

Nc = Sy,ξ

[

0 Φ̃lh Φ̃llΦ̃lh Φ̃2
llΦ̃lh . . . Φ̃m−2

ll Φ̃lh 0
]

,

and

Nd = Sy,ξ

[

Φ̃m−1
ll Φ̃lh 0 Φ̃m

ll S
′

x,ξ

]

.

In order to produce an expression for y
(m)
t−m that may be substituted into (13) define the

following vectors of lagged observable variables, for g lags,

x̄t = [x
(m)′
t−m, . . . , x

(m)′
t−(g+1)m]′;

unobservables,

ȳt = [y
(m)′
t−m, . . . , y

(m)′
t−(g+1)m]′;

and disturbances,

ūt = [u
(m)′
t−m, . . . , u

(m)′
t−gm]′.

8



The resulting system of g(n(m) + b) equations in (g + 1)b unknowns is

M̄ȳt = N̄ x̄t + H̄ + Θ̄ūt, (15)

where H̄ = [i′g ⊗ c̃
(m)′
1 , i′g ⊗ c̃

(m)′
2 ]′, with ig denoting a g vector of ones,

N̄ =
[

N1 N2 N3 . . . Ng Ng+1

]

=































−Na Nb 0 . . . 0 0

0 −Na Nb . . . 0 0
...

...
...

...
...

0 0 0 . . . −Na Nb

Nc Nd 0 . . . 0 0

0 Nc Nd . . . 0 0
...

...
...

...
...

0 0 0 . . . Nc Nd































.

Θ̄ =
[

Θ̄1 Θ̄2 Θ̄3 . . . Θ̄g−1 Θ̄g

]

=

































Θ
(m)
1 0 0 . . . 0 0

0 Θ
(m)
1 0 . . . 0 0

...
...

...
...

...

0 0 0 . . . 0 Θ
(m)
1

Θ
(m)
2 0 0 . . . 0 0

0 Θ
(m)
2 0 . . . 0 0

...
...

...
...

...

0 0 0 . . . 0 Θ
(m)
2

































.

Equation (15) can only be solved for ȳ if the g(n(m) + b)× (g + 1)b matrix

M̄ =































0 −Φ12 0 . . . 0 0

0 0 −Φ12 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 −Φ12

Ib −Φ22 0 . . . 0 0

0 Ib −Φ22 . . . 0 0
...

...
...

...
...

0 0 0 . . . Ib −Φ22































,

has full column rank, a necessary condition for which is that g ≥ b/n(m). Provided that these

conditions are met, the top b rows of ȳt, y
(m)
t−m, may be substituted into (13), thereby giving

an expression for x
(m)
t in terms of its own lags at frequency m and lags of the disturbance

term ut. That expression is summarised in the following Theorem.

Theorem 1 Provided that M̄ has full column rank then for matrix R such that RM̄ is

9



non-singular the observed vector x(m) then satisfies the discrete time ARMAX(g + 1, g)

system

Nax
(m)
t = F1x

(m)
t−m + . . .+ Fg+1xt−(g+1)mG0 + ηt, t = (g + 2)m, . . . , ⌊T/m⌋m,

where F1 = Nb + Φ12M̂N1 then Fj = Φ12M̂Nj for (j = 2, . . . , g + 1); and, G0 = c̃
(m)
1 +

Φ12M̂H̄,

M̂ = [Ib, 0b×gb][RM̄ ]−1R = [M̂1, M̂2],

M̂1 = [M̂1,1, M̂1,2, . . . , M̂1,g],

M̂2 = [M̂2,1, M̂2,2, . . . , M̂2,g],

the matrices M̂1,i and M̂2,i (i = 1, . . . ,m) being b× n(m) and b× b, respectively.

Γ
(m)
j = E(ηtη

′

t−jm) =











g
∑

i=j

CiΩuC
′

i−j , j = 0, . . . , g,

0, j > g,

where C0 = S1, Cj = Φ12(M̂1,jS1 + M̂2,j+1S2) (j = 1, . . . , g), and

Ωu = Θ(m)

[∫ t

t−1

C̃(t− r)Ṽ ΣṼ ′C̃(t− r)′dr

]

Θ(m)′.

Proof The proof follows that of Theorem 1 in Chambers (1999), allowing the possibility

that M̄ may not be square. Once M̄ has full column rank there exists a matrix R such that

RM̄ is non-singular. We may then get yt−m from the first nξ equations of

ȳt = [RM̄ ]−1R[N̄ x̄t + H̄ + Θ̄ūt].

Substituting back into equation (13) gives the expression in the Theorem. The covariance

structure of the disturbance is due to the white noise properties of the continuous time

disturbance e(t). �

Theorem 1 generalises the expressions in Chambers (2016) to higher order continuous

time ARMA (p, q) models. The expressions for Na and Nb are familiar but with a higher

order model there are also unobservables in our state representation for which we must

later solve. The same is true of mixed stock-flow processes, which we chose to handle in

a similar manner but Chambers solves based on an assumption that a sub-matrix of A is

non-singular. This type of assumption is relatively common in handling mixed stock flow

data and corresponds to assumptions on the rank of M̄ . It should be noted that the quasi-

upper triangular form of Na, resulting from the form of Φ(m), with the identity matrix on

the principal diagonal provides a convenient method to express the high frequency variables

in terms of their own lags at high-frequency in between observations of the low frequency

variables. This has the effect of providing expressions valid at all points in the observation

cycle, not simply every m periods, overcoming the so-called ‘ragged edge’ problem.

The disturbance vector on this mixed frequency process, ηt, has a moving average rep-
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resentation of order g. Its covariance structure features both the moving average parameters

of the continuous time model, via Ṽ , and the autoregressive parameters, via both the ma-

trices C̃ and Cj . This transforms the moving average structure of η from being a nuisance

to an important source of information about the autoregressive parameters to be utilised in

estimation.

The form of the representation will depend on the choice of matrix R. A natural choice

is to set R = [M̄ ′M̄ ]−1M̄ ′, the Moore-Penrose inverse, as was the case in the following

sections, but others may be available and may lead to lower order representations. For

example, if it is possible to chose an R such that RNg+1 = 0 then the representation would

only be based on g low frequency lags. Given that all but n columns of both Nb and Nd are

null, Ng+1 has a nullspace of dimension at least g(nm + b) − n from which future research

may determine it possible to construct the columns of a suitable R.

3 Estimation techniques

Gaussian estimation, see Bergstrom (1983, 1990), uses the exact observed ARMA represen-

tation derived in Theorem 1 as the foundation of a quasi-maximum likelihood estimator. It

involves calculations of the n(m) residual vector, ηt, and its implied covariance structure,

given a particular point in the parameter space. With a sample of size T , there will be

⌊T/m⌋ − g − 1 completed sample cycles and a ragged edge of size T −m ⌊T/m⌋ for which

only high frequency observations are available. We define the vector of discrete time distur-

bances, η = (η′(g+2)m, η′(g+3)m . . . , η′T∗)′, where T ∗ = m ⌈T/m⌉. In the event that T is not

an integer multiple of m the bottom nl +m(⌈T/m⌉ − T )nh rows of ηT∗ are left null so that

η has n∗ = Tnh + ⌊T/m⌋nl − (g + 1)n(m) non-zero elements.

The covariance matrix, Ωη = E(ηη′), has a block Toeplitz structure with ij’th block

denoted by the n matrix

Ωη,ij =

{

Γ
(m)
i−j , |i− j| ≤ g,

0, |i− j| > g,

noting that Γ
(m)
−j = Γ

(m)′
j with Γ

(m)
j defined in Theorem 1. A quasi-maximum likelihood

estimator may be obtained by imagining that η has a multivariate normal distribution,

enabling the likelihood to be evaluated as

logL = −
n∗

2
log(2π)−

1

2
log |Ωη| −

1

2
η′Ω−1

η η.

As pointed out in Bergstrom (1983, 1990), the sparse nature of Ωη makes it possible to

accelerate the calculation of this likelihood. Since Ωη is positive definite and symmetric we

can find a lower triangular matrix, U , such that

UU ′ = Ωη,

with the sparse nature of Ωη reflected in the sparse nature of U , further details are given in

Bergstrom (1983) and in Thornton and Chambers (2017). A vector of normalised residuals,
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ζ such that E(ζ) = 0 and E(ζζ ′) = In∗ , satisfying Uζ = η may be recovered by a recursive

operation and it follows straightforwardly that,

logL = −
n∗

2
log(2π)−

1

2
ζ ′ζ − log(|U |),

where log(|U |) is easily calculated as the sum of the terms on the principle diagonal of

U . Calculation of U involves inverting a maximum of T − g lower triangular matrices of

dimension n(m), but in practice Uij and Ui+1,j+1 often converge quickly, removing the need

to calculate the rows of U further, see Bergstrom (1990, ch 7). The non-zero blocks in block

row i contain coefficient matrices for a moving average representation of ηim. In addition

to its use in computing the log-likelihood function, the vector of normalised residuals ζ =

[ζ ′1, ζ
′

2, . . . , ζ
′

T ]
′ can be used to conduct a general test of dynamic specification. Bergstrom

(1990, chapter 7) proposed a portmanteau-type test statistic of the form

Sl =
1

n(T − l)

l
∑

r=1

(

T
∑

t=l+1

ζ ′tζt−r

)2

,

which, under the null hypothesis that the model is correctly specified, has an approximate

χ2
l distribution for sufficiently large l and T − l, where l (> p) denotes the number of lags

used.

4 Simulation

To show the effectiveness of these techniques we test them against simulated data. We

simulated 10,000 replications of 240 (high frequency) observation points for a two variable

system containing a stock variable, observed every period, and a flow aggregated over every

three - mirroring 20 years of monthly data in a stock and quarterly data for a flow. Estimates

were then made of the continuous time parameters using the above methods and compared

to those if only quarterly data were used, that is to say with two out of every three stock

observations discarded. By way of benchmarking, the performance of these estimators is

reported relative to an infeasible high frequency estimator, where the analyst is granted

access to all data at the monthly frequency.

Each experiment is based on a random set of autoregressive and moving average pa-

rameters, subject to the constraints of miniphaseness and stationarity. We allowed for con-

temporaneous correlation in the continuous time disturbance vector, setting the covariance

matrix to

Σ =

[

1 0.5

0.5 1

]

,

in all experiments. The reported figures are for estimates of the Choleski decomposition

Q =

[

s11 0

s21 s22

]

=

[

1 0

0.5 0.86603

]

,

with Σ = QQ′
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Table 1 contains the results for the CAR(1), which corresponds to (1) with p = 1. Data

were simulated using parameters

A0 =

[

−0.6427 −0.1004

−0.9534 −0.5819

]

,

which has eigenvalues 3 -0.9232 and -0.3014. It is not surprising that both the bias and root

Table 1: Bias and RMSE for estimates of the continuous time ARMA (1, 0) model relative
to the infeasible high frequency estimator

bias RMSE

frequency low mixed low mixed
Ahh 3.0866 0.1659 17.2331 1.0716
Ahl 1.6084 6.3118 3.3678 1.2646
Alh 15.1196 −4.2985 31.9687 1.5013
All 43.9308−21.8481 6.3845 1.4950
s11 1.0694 0.8939 9.7174 0.9643
s21 1.1539 0.7250 6.5325 0.8688
s22 1.1329 1.3177 1.4699 1.3178

mean 9.5859 −2.3903 10.9534 1.2119

mean square error are typically larger in both than in the infeasible model, particularly for

parameters Alh and All related to the low frequency series. The mixed frequency model

does, however, perform far closer to the infeasible estimator than the the low frequency

estimator does, with a root mean square error typically less than 50 per cent larger than

the infeasible estimator, compared to the large multiples reported by the low frequency

estimator. This difference is at its most pronounced for parameters that measure the effect

of the high frequency variables within the system, Alh and Ahh. Table 1 confirms and

extends the results in Chambers (2016), who explored the continuous time AR(1) with pure

stock variables, that the performance of the mixed frequency estimator often lies closer to

that of the infeasible estimator than to that of the low frequency estimator.

Table 2 covers the stationary CARMA (2,1) model in which

A0 =

[

−0.6671 −0.6793

−0.1466 −0.5488

]

, A1 =

[

−0.2448 −0.1167

−0.2328 −0.5757

]

,

with eigenvalues −0.4705 ± 0.6603i and −0.1348 ± 0.3936i. Although the performance of

the mixed frequency estimator is adversely affected, it remains preferable to that of the low

frequency estimator in terms of root mean square error.

3Eigenvalues with negative real parts correspond to a stationary discrete time model with roots outside
the unit circle.
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Table 2: Bias and RMSE for estimates of the continuous time ARMA (2, 0) model relative
to the infeasible high frequency estimator

bias RMSE

frequency low mixed low mixed
Ahh

1 17.3675 52.7681 6.8045 5.9426
Ahl

1 35.7049 74.7739 10.1851 6.9697
Alh

1 77.2112 67.8104 8.6129 2.8974
All

1 47.1320 73.9560 12.1618 7.5928
Ahh

2 19.9365 31.6971 23.1845 6.1825
Ahl

2 20.2668 10.1674 12.7794 2.3802
Alh

2 29.2322 33.9392 22.7937 7.1593
All

2 24.3162 42.6729 20.5259 12.6005
s11 6.4019 9.5575 13.6134 7.8108
s21 2.9950 2.4619 6.6859 2.6348
s22 0.9920 −3.3096 3.4317 5.2601

mean 25.5960 36.0450 12.7981 6.1301

5 Application:a cointegrated model of stock prices and

dividends

To illustrate the applicability of these techniques, we now consider a multivariate model

of stock prices and dividends using the popular dataset of Shiller (2000)4, which provides

a time series of monthly figures for stock prices and dividends for the Standard and Poor’s

index. The monthly figures for dividends are, however, based on the linear interpolation of

quarterly figures. The above framework allows the estimation of a model of monthly stock

and quarterly dividends, with the observed dividend payout, dt =
∫ t

t−1
d(τ)dτ , regarded as a

flow variable, reflecting an observed accrual of profits over the observation period. It reprises

the relationship estimated in Thornton and Chambers (2016) with the enhancement that

the differing data frequencies are handled internally within the aggregation of the underlying

model rather externally via interpolation.

We follow the seminal work by Campbell and Shiller (1987) in analysing the relation-

ship between the logarithm of the stock price and the logarithm of dividends using the

data spanning the period 1871–1986. The sample is chosen to pre-date the fashion for com-

panies to remunerate investors by re-purchasing shares, thereby raising their price, rather

than externally paying dividends, which is liable to disrupt the relationship. Both series

display unit-root type behaviour. Following the work of Campbell and Shiller (1987) on

the so-called ‘present value model’ it is widely postulated that, since stock prices should

represent the discounted flow of future dividends, which are themselves highly persistent,

the long run relationship between the two series is a form of cointegration, with the discount

factor determining the cointegrating vector, see Thornton and Chambers (2016) for further

discussion on the foundations of this and other models as well as the treatment of dividends.

We consider three models based on equation (1) with x(t) = (s(t), d(t))′. In a two

4The data are available at http://www.econ.yale.edu/˜shiller/data.htm.
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variable continuous time system, cointegration implies that we may write, without loss of

generality, A0 = αβ′, where α′ = [α1, α2] and β′ = [1, β1] is a cointegrating vector such that

β′x(t) is stationary. We would expect β1 to be negative and slightly above one in magnitude

to reflect the discounting of future dividends, while α1 and α2 may be interpreted as speed-

of-adjustment parameters, with error correction implying α1 < 0 and α2 > 0.

Estimates for the CARMA(1, 0) model,

Ds(t) = a0,1 + α1s(t) + α1β1d(t) + u1(t),

Dd(t) = a0,2 + α2s(t) + α2β1d(t) + u2(t),

where u(t) = [u1(t), u2(t)]
′ ∼ N (0,Σu) and Σu = QQ′ with Q a lower triangular matrix,

are reported in Table 3.

Table 3: Estimates of cointegrated CARMA(1, 0) model for stock prices and dividends

Ds(t) Dd(t)
a′0 0.0000 −0.0277

(0.0047) (0.0064)
α′ 0.0006 0.0199

(0.0047) (0.0032)
β′ 1.0000 −1.4542

( - ) (0.1049)
Q′ 0.0420 −0.0018

(0.0008) (0.0012)
0.0000 −0.0278
( - ) (0.0009)

log L 4116.5509
S12 S20 [0.0001] [0.0032]
(standard errors in parentheses)
[p-values in braces]

The estimate of β1 is close to −1.45, but α1 is not statistically significantly different from

zero and has the wrong sign, placing the burden of error correction within the system on

dividends. Indeed the left hand column suggests that, in the absence of more short-run

sophisticated dynamics, stock-prices follow a random walk. The Bergstrom S statistic is in

the extreme right tail of its asymptotic distribution for both 12 and 20 lags, suggesting a

higher order dynamic structure is needed.

We also report estimates of CARMA(2, 0) and CARMA(2, 1) systems in Tables 4 and

5 respectively; the latter is given by

D2s(t) = a0,1 +A1,11Ds(t) +A1,12Dd(t) + α1s(t) + α1β1d(t) + w1(t), (16)

D2d(t) = a0,2 +A1,21Ds(t) +A1,22Dd(t) + α2s(t) + α2β1d(t) + w2(t), (17)

where w1(t) = u1(t)+Θ11Du1(t)+Θ12Du2(t) and w2(t) = u2(t)+Θ21Du1(t)+Θ22Du2(t)

are defined for notational convenience. The CARMA(2, 0) model is obtained by setting

Θij = 0 (i, j = 1, 2).

The addition of higher order dynamics significantly improves the fit of the model, with

a likelihood ratio test preferring the CARMA (2, 0) over the CARMA (1, 0) and the two

coefficients on the principal diagonal of A1 statistically significantly different from zero.
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Table 4: Estimates of cointegrated CARMA(2, 0) model for stock prices and dividends

D2s(t) D2d(t)
a′0 0.0143 0.0056

(0.0142) (0.0260)
A′

1 −2.4555 0.1541
(0.2196) (0.1497)
−0.1711 −0.5062
(0.1755) (0.0825)

α′ −0.0091 0.0121
(0.0099) (0.0024)

β′ 1.0000 −1.4699
( - ) (0.1108)

Q′ 0.1302 −0.0083
(0.0084) (0.0073)
0.0000 0.0168
( - ) (0.0018)

log L 4174.0984
S12 S20 [0.0032] [0.0343]
(standard errors in parentheses)
[p-values in braces]

The speed of adjustment parameters have the expected signs and are now both statistically

significant. There is still, however, some evidence of dynamic misspecification according

to the Bergstrom S statistic. The inclusion of the moving average disturbance into the

continuous time model appears to satisfy the specification test, albeit marginally at 12 lags.

The likelihood ratio test of the restriction that the four continuous time MA parameters are

jointly zero is over 20, well into the critical region for its asymptotic χ2
4 distribution, with

the individual t-ratios suggesting that it is the parameter Θ22 in the equation describing the

law of motion for dividends that benefits most from the inclusion. In all three specifications

the estimate of β1 remains remarkably stable at between -1.45 and -1.48.

6 Conclusions

We have derived the exact discrete representation for a vector of mixed frequency data

generated by a continuous time ARMA (p, q) model, featuring both stock and flow variables

at both frequencies. This extends the framework in Chambers (2016) in both the order of

the model and the type of aggregation scheme. The advantage of this approach is that it

enables a relatively computationally efficient evaluation of the quasi-likelihood. Simulation

evidence suggest that this estimator out-performs more traditional techniques based on a

concentration of the data to a single low frequency.

7 Data availability statement

The data used in the application are included as a supplementary file. They were downloaded

from Robert Shiller’s website, http://www.econ.yale.edu/˜shiller/data.htm and are discussed
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Table 5: Estimates of cointegrated CARMA(2, 1) model for stock prices and dividends

D2s(t) D2d(t)
a′0 0.0180 0.0084

(0.0090) (0.0123)
A′

1 −1.8157 0.1827
(0.4798) (0.1666)
−0.3068 −0.0875
(0.2297) (0.0535)

α′ −0.0123 0.0037
(0.0063) (0.0014)

β′ 1.0000 −1.4790
( - ) (0.1092)

Θ′

1 −0.2884 −0.4693
(0.6008) (0.5330)
−1.0927 −6.0214
(6.3414) (2.3683)

Q′ −0.0987 0.0085
(0.0233) (0.0091)
0.0000 0.0039
(- ) (0.0013)

log L 4185.0373
S12 S20 [0.0517] [0.1911]
(standard errors in parentheses)
[p-values in braces]

in Shiller (2000).
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Detail on the matrices in equation (4)

The decision to insert yh0 (t) (yl0(t)) immediately beneath xhs(t) (xls(t)), in other words in

the order that xhf
t (xlf

t ) will ultimately appear in the state matrix, simplifies the narrative

at the cost of splitting up pre-defined blocks of the A matrix. In general we partition the

Ak matrices in (4).

Ak =
(

Ahs
k Als

k Ahf
k Alf

k

)

, k = 0, 1, . . . p− 2,
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where Aj
k is n × nj for j = hs, ls, hf, lf , while similarly partitioning Ap−1 both vertically

and horizontally,

Ap−1 =











Ahs,hs
p−1 Ahs,ls

p−1 Ahs,hf
p−1 Ahs,lf

p−1

Als,hs
p−1 Als,ls

p−1 Als,hf
p−1 Als,lf

p−1

Ahf,hs
p−1 Ahf,ls

p−1 Ahf,hf
p−1 Ahf,lf

p−1

Alf,hs
p−1 Alf,ls

p−1 Alf,hf
p−1 Alf,lf

p−1











,

where Ai,j
p−1 is ni × nj for i, j = hs, ls, hf, lf , then we can write

Ã =









































Ahs,hs
p−1 0 Ahs,ls

p−1 0 Ahs,hf
p−1 Ahs,lf

p−1 I 0 0 0 0 . . . 0

0 0 0 0 I 0 0 0 0 0 0 . . . 0

Als,hs
p−1 0 Als,ls

p−1 0 Als,hf
p−1 Als,lf

p−1 0 I 0 0 0 . . . 0

0 0 0 0 0 I 0 0 0 0 0 . . . 0

Ahf,hs
p−1 0 Ahf,ls

p−1 0 Ahf,hf
p−1 Ahf,lf

p−1 0 0 I 0 0 . . . 0

Alf,hs
p−1 0 Alf,ls

p−1 0 Alf,hf
p−1 Alf,lf

p−1 0 0 0 I 0 . . . 0

Ahs
p−2 0 Als

p−2 0 Ahf
p−2 Alf

p−2 0 0 0 0 I
. . . 0

...
...

...
...

...
...

...
...

...
...

. . .
. . .

...

Ahs
1 0 Als

1 0 Ahf
1 Alf

1 0 0 0 0 0 . . . I

Ahs
0 0 Als

0 0 Ahf
0 Alf

0 0 0 0 0 0 . . . 0









































.

The first, third, fifth and sixth block rows of this matrix contain nhf , nlf , nhf and nlf

rows respectively. The second and fourth block rows (columns) contain nhf and nlf rows

(columns) respectively and the identity matrices in block columns 7–10 identify them as

containing nhs, nls, nhf , and nlf columns respectively. Outside the first six rows and ten

columns the blocks are n× n.

This matrix is similar to the transition matrix in equation (8) of Thornton and Chambers

(2017) apart from no longer dividing the flow variables by the time span and a reorder-

ing carried out by pre-multiplication by (and post-multiplication by the transpose of) the

permutation matrix

P =















0 0 Inhs 0 0

0 0 0 Inls 0

Inhf 0 0 0 0

0 Inlf 0 0 0

0 0 0 0 Ib















.

As P is orthogonal C̃ is similarly a reordering of the exponential matrix in equation (11) of

Thornton and Chambers (2017), without dividing the flows by the time span.

Lemmas In moving through the equations (4) to (12) we will make use of the following

easily verified results concerning them×nmatrix A = [a1, a2, . . . an], with j’th column, aj =

[0, 0, . . . , 0]′ and n×n matrix B = [b1, b2, . . . bn], with j’th column, bj = [0, . . . , 0, 1, 0, . . . , 0]′

with the 1 in the j′th cell.

Lemma A1) The j’th column of CA equals aj , for any conformable matrix C .

19



Lemma A2) The j’th column of Bk equals bj , for any k = 0, 1, 2, 3, . . ..

Lemma A3) The j’th column of CABk equals aj , for any k = 0, 1, 2, 3, . . ..
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