UNIVERSITYW

This is a repository copy of An Algorithm for Computing Short-Range Forces in Molecular
Dynamics Simulations with Non-Uniform Particle Densities.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/143924/

Version: Published Version

Article:

Law, Timothy R., Hancox, Jonny, Wright, Steven A. orcid.org/0000-0001-7133-8533 et al.
(1 more author) (2019) An Algorithm for Computing Short-Range Forces in Molecular
Dynamics Simulations with Non-Uniform Particle Densities. Journal of Parallel and
Distributed Computing. pp. 1-11. ISSN: 0743-7315

https://doi.org/10.1016/j.jpdc.2019.03.008

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

university consortium eprints@whiterose.ac.uk
WA Universties of Leeds, Sheffeld & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://doi.org/10.1016/j.jpdc.2019.03.008
https://eprints.whiterose.ac.uk/id/eprint/143924/
https://eprints.whiterose.ac.uk/

Journal of Parallel and Distributed Computing 130 (2019) 1-11

journal homepage: www.elsevier.com/locate/jpdc

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

PARALLELAND
DISTRIBUTED
COMPUTING

An algorithm for computing short-range forces in molecular dynamics R

Check for

simulations with non-uniform particle densities

T.R. Law 2™ J. Hancox?, S.A. Wright ¢, S.A. Jarvis®

2 Department of Computer Science, University of Warwick, Coventry, UK
b Health and Life Sciences Team, Intel Corporation, St. Clare House, London, UK
¢ Department of Computer Science, University of York, York, UK

HIGHLIGHTS

We present the projection sorting algorithm for molecular dynamics simulations.
We provide optimised implementations for Intel Broadwell and Knights Landing.
We extend our implementations to multi-node environments using MPL

We investigate the performance of our algorithm in a biophysical MD simulation.
We observe serial speedups up to 5x, and good MPI scaling behaviour.

ARTICLE INFO ABSTRACT

Article history:

Received 15 September 2017

Received in revised form 5 September 2018
Accepted 14 March 2019

Available online 28 March 2019

Keywords:
Simulation
Molecular dynamics
Many-core

MPI

Algorithms

ARCHER

We present projection sorting, an algorithmic approach to determining pairwise short-range forces
between particles in molecular dynamics simulations. We show it can be more effective than the
standard approaches when particle density is non-uniform. We implement tuned versions of the
algorithm in the context of a biophysical simulation of chromosome condensation, for the modern
Intel Broadwell and Knights Landing architectures, across multiple nodes. We demonstrate up to 5x
overall speedup and good scaling to large problem sizes and processor counts.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computational simulations are widely used across many sci-
entific disciplines, spanning a variety of domains of investigation
from crystalline atomic structures to cell pathways, with numer-
ous software packages available. Of these, molecular dynamics
(MD) simulations are some of the most well known. Prominent
examples are LAMMPS [19], developed by Sandia National Lab-
oratories to simulate materials under the influence of various
physical potentials, and NAMD [18], which is more focused on
biological applications and has been used to solve important
recent medical problems, such as resolving the structure of the
HIV-1 virus responsible for AIDS [26].

Simulations on this scale require enormous computational
resources and the time is long since past where a single machine
could provide the necessary power. In our current age of falling

* Corresponding author.
E-mail address: timothy.law@warwick.ac.uk (T.R. Law).

https://doi.org/10.1016/j.jpdc.2019.03.008

clock-speeds, exploiting the increasing amounts of available par-
allelism at all levels - from large networked clusters, down to
optimal ordering of microarchitecture instructions — has become
crucially important. Maturing many-core architectures such as
Intel’s Knights Landing (KNL) and NVIDIA’s Pascal and Volta GPU
architectures epitomise this philosophy of “going wide”, but in
turn demand much more from implementations in order to ex-
tract maximum performance. Significant work has gone into op-
timising MD applications for such architectures [3,9,17].

In this paper we build on our previous work [13] with a
recent MD application designed to simulate chromosome conden-
sation [6]. Specifically, we extend our previous work to run on
new hardware and across large supercomputers, leveraging MPI
for inter-node communications.

Our primary focus is the development and optimisation of
an algorithm for pairwise short-range force calculations within
MD applications which we call projection sorting. Owing to their
computational expense and widespread applicability, pairwise
short-range forces such as these have received significant atten-
tion in the MD literature. Specifically, we focus on MD simulations

0743-7315/© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jpdc.2019.03.008
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.03.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:timothy.law@warwick.ac.uk
https://doi.org/10.1016/j.jpdc.2019.03.008
http://creativecommons.org/licenses/by/4.0/

2 T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11

where the particles exhibit non-uniform density. Many MD sim-
ulations are designed to handle materials such as atomic lattices,
or gases, which exhibit approximately constant particle density
throughout the simulation domain. When simulating, for ex-
ample, proteins or other macromolecules, they exhibit external
structure and exist within an irregular environment. Algorithms
designed for uniform densities can exhibit inefficiencies when
applied in situations such as these.
In this paper, we make the following contributions:

e We present the projection sorting algorithm, an improve-
ment to the computation of short-range interaction forces
between particles under certain organisational conditions;

e We optimise our algorithm for modern architectures includ-
ing Intel Broadwell and Intel Xeon Phi many-core architec-
tures;

e We extend our implementation to multi-node enviro
nments, enabling larger simulations to be computed;

e We investigate the performance of our algorithm in a mod-
ern biophysical MD simulation designed to investigate chro-
mosome condensation on two platforms, one an Intel Xeon
based platform, one based on Intel’s Xeon Phi Knights Land-
ing many-core architecture.

The remainder of this paper is structured as follows: Section 2
outlines related work in molecular dynamics simulations.
Section 3 details our projection sorting algorithm. Section 4
describes our implementation of this idea in the context of the
simulation from Cheng et al. [6], for both single and multi-node
systems and subsequent performance investigations. Finally,
Section 5 concludes this paper.

2. Background

MD is a computational method that uses simulation to study
the dynamical behaviour of systems of particles (commonly
atoms or molecules). It was developed in the 1950s by theoretical
physicists looking to study such systems but lacking suitable
analytical methods to do so [2,7]. Today, MD is used across a wide
range of scientific fields, including chemical physics, materials
science and biophysics.

Popular MD simulation packages include LAMMPS [19], NAMD
[5,12,18,21], DL_POLY [22] and GROMACS [1]. Significant work
has gone into optimising such applications for modern architec-
tures [3,9,17].

2.1. Force calculations

MD simulations primarily involve computing forces between
particles (based on factors such as position and velocity), and
computing their trajectories through numerical integration.
Forces to be computed typically fall into two categories: short-
and long-range. Long-range forces are those that do not tend to
zero over a finite distance, and therefore require inspection of
all particles during calculation. Short-range forces on the other
hand, do tend to zero over a finite distance. Only particles that
fall within a limited “cut-off radius” (r.) need be considered when
calculating short-range forces. Short-range forces are often the
most expensive components of MD simulations, therefore the
cut-off radius and the particle density (o) within the simulation
domain are two parameters that can greatly affect the overall
performance. This paper is primarily concerned with the calcula-
tion of short-range forces. In particular, we focus on short-range
forces based on “pair potentials”. This simply means that the total
force acting on a given particle is held equal to the sum of the
forces acting on it due to each individual pairwise interaction.
Most physical potentials are pair potentials, including Coulomb’s
law and Newton'’s law of gravitation.

2.1.1. Short-range force algorithms

The naive approach to calculating pairwise short-range forces
on a given particle is to iterate through all other particles, cal-
culate the distances between each pair, and only apply forces
for those within the cut-off radius. This takes quadratic time in
the number of particles and is therefore not scalable to larger
systems.

This can be accelerated by decomposing the simulation do-
main into disjoint uniform “cells”. A list is maintained for each
cell containing the particles resident. Particle-pair lookups are
then restricted to a small neighbourhood of cells within the
cut-off radius. This is called using “cell lists”, or the “link-cell”
approach [11,20].

As cells are cubic as opposed to the sphere indicated by the
cut-off radius, cell lists still carry an inefficiency in the number
of particle-pair checks required. This inefficiency increases as the
cell size is increased. For example, when . is used, the immediate
neighbourhood of 27 cells must be inspected. This has a volume of
(3r.)?, which is nearly 6.5 times greater than the sphere volume
of %nr?. Assuming a uniform particle density, 84% of the particle-
pair checks are unnecessary. While the inefficiency tends to zero
with the cell size (see Fig. 1a), programming overheads will erase
the benefit past a certain point, as the number of cells to be
inspected increases cubically as the size is decreased. Gonnet
discusses reducing the inefficiency by sorting the particles along
the axis connecting cell centres [8], although this introduces its
own overheads.

The situation can often be improved by using Verlet, or “neigh-
bour”, lists [23]. This approach was first developed by Loup Verlet
in 1967. A list is maintained per particle, storing only the particles
within a certain “Verlet radius” (r, > r.). Rather than building
this list every timestep, each list is reused a number of times (k).
Doing so requires knowledge of the maximum distance a particle
can move in a single timestep, called the “skin distance” of the
simulation (r5). Then, the Verlet radius is set r, = r. + krs. It
should be noted that Verlet lists and cell lists are not mutually
exclusive; cell lists are often an efficient way of building Verlet
lists. In this way, the cost of traversing the cell lists is amortised
over k timesteps.

One disadvantage of Verlet lists is that the number of particle-
pair checks is now tied to the speed at which particles move,
which can be undesirable when this is a large, or highly vari-
able, quantity. The rebuild period k should be chosen to strike
a balance between the frequency of expensive list rebuilds, and
the increased size of the lists. It is also clear that the viability of
using Verlet lists depends heavily on the skin distance; it must
be small relative to the cut-off radius or the number of spurious
pairs will be too high. Fig. 1b shows how the fraction of spurious
pairs increases rapidly with both k and r;. Nevertheless, many
modern MD codes, including LAMMPS [19] and NAMD [18], use
Verlet lists.

2.2. Spatial locality

Another class of optimisations involves reordering stored par-
ticles such that those local to each other in three dimensional
simulation space are also local in the computer’s memory (a one
dimensional space). Spatial locality is important in contemporary
computer architectures, whose performance often depends on
being able to work around memory latency by means of reuse
within multiple layers of cache, and the ability to predict and
prefetch data likely to be needed in the near future. Yao et al. dis-
cuss sorting particles along an axis of the simulation domain [25].
Anderson et al. demonstrate a successful application of a more so-
phisticated approach, whereby particles are ordered according to
their distance along a space-filling Hilbert curve [3]. The Hilbert

T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11 3

Fraction of spurious pairs

Fraction of spurious pairs

Fig. 1. (a) Cell lists - fraction of spurious pairs as a function of cell size for a fixed r. (assuming a uniform particle density). (b) Verlet lists - fraction of spurious
pairs as a function of rebuild period k and skin distance r; for a fixed r. (assuming a uniform particle density).

curve is chosen due to its locality preserving properties [15]. We
would note that this reordering process serves an orthogonal
purpose to the particle reordering we discuss in this paper. Space-
filling curves are used to improve locality in computer memory,
whereas projection sorting is used as a means to reduce the
particle neighbour search space.

Contrary to the methods discussed in this section, where
neighbouring particle pairs are determined explicitly by binning,
we propose an algorithm that uses sorting to implicitly find
neighbours. This has the advantageous side-effect of also ensuring
spatial locality.

3. Projection sorting

In this paper we develop the projection sorting algorithm, an
alternative approach to computing short-range forces (discussed
in Section 2.1.1). In this section we first provide an overview of
the algorithm, and then discuss it in relation to the state of the
art.

3.1. Overview

It is easy to see that when two particles are separated by a
distance greater than r. along any single axis (or any unit vector
v), the Euclidean distance between them cannot possibly be less
than rc. This is formalised for two particle position vectors a and
b and an arbitrary v in Eq. (1), and demonstrated graphically in
Fig. 2.

Vo,d,b € R?, (@ —b)- | < ||d — b]| (1)

It follows that if one were to order the particles by their scalar
projection onto such a vector, then for each particle there would
exist a contiguous block of particles extending either side within
rc along v. Only particles within this block could possibly be
within the cut-off radius (note that this is a necessary condition,
but not sufficient; a full distance check must still be carried out).
Outside of this block all particles could be disregarded. This fact
leads to the following three step algorithm:

1. Selecting U: The first step is to select a suitable vector v to
use for calculating the projections. For a simulation with
non-uniform particle density, the choice of v can greatly
impact the number of particles for which the projections
fall within the cut-off radius r.. Imagine a configuration
of particles where all are positioned along a straight line.
Choosing v to be perpendicular to this line would result

@9 (g)! '

Fig. 2. 2-dimensional illustration of projecting two position vectors onto the
x-axis. Eq. (1) clearly follows from Pythagoras’ theorem.

in all projections being the same, whereas choosing the
line itself would spread the projections out as much as
possible, and consequently minimise the number of dis-
tance checks and maximise performance. In general the
choice of v should be informed by knowledge of the spe-
cific simulation, and should ideally maximise the difference
between any pair of particle projections. Possible ways of
determining a reasonable value for v in general include
principal component analysis and linear regression.

2. Particle sort: The particles are then sorted according to
their scalar projections onto v. This creates a one-
dimensional spatial ordering within which forces can be
efficiently calculated.

3. Force sweep: For each particle i, loop over all particles
j, where j is bounded by kj, and ky;, the first particles
below and above i respectively for which the difference
between the scalar projections of j and i onto v exceeds Te.
It is guaranteed by Eq. (1) that no particle outside this set
will fall within the cut-off radius. The search space can be
further reduced to particles j, i < j < kp; by using Newton'’s
third law (N3).

4 T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11

(—')
T
27,

Fig. 3. 2-dimensional illustration of projection sorting on the x-axis. We wish
to determine which particles are within the cut-off radius of the filled particle
(the cut-off radius being marked by the solid circle). We calculate the projection
of each particle (indicated by the dotted lines), and perform full distance checks
only for those particles whose projections fall within the marked area on the
X-axis.

1| for (4 = 0; i < nb; i++) {

2 fxi = 0.0;

3 fyi = 0.0;

4 fzi = 0.0;

5 for (j =1+ 1; j < mnb; j++) {
6 if (projs[j] - projs[il > rc) break;
7 dx = p_x[j] - p_x[il;

8 dy = p_y[3] - p_ylil;

9 dz = p_z[j]l - p_z[il;

10 dsq = dx*dx + dy*dy + dz*xdz;
11 if (dsq <= rcsq) {

12 coeff = /* app-dependent */;
13 fxi += coeff * dx;

14 fyi += coeff * dy;

15 fzi += coeff * dz;

16 | #ifdef N3

17 f_x[j] -= coeff * dx;

18 f_y[jl -= coeff * dy;

19 f_z[j] -= coeff * dz;

20 | #endif

21 }

22 }

23 | #ifndef N3

24 for (j =1i-1; j > 0; j—-) {
25 if (projs[i] - projs[jl > rc) break;
26 V2

27 // as above

28 /).

29 }

30 | #endif

31 f_x[i] += fxi;

32 f_yl[i] += fyi;

33 f_z[i] += fzi;

34 | }

Listing 1: C-like pseudocode demonstrating the projection sorting
algorithm. It is assumed that the projs array contains scalar
projections of each particle position, and that this array and
the position arrays p_x, p_y and p_z are all sorted on these
projections. The resulting force arrays will also be sorted in this
manner. The N3 preprocessor directive indicates whether or not
Newton’s Third Law is being used to halve the search space.

Listing 1 gives pseudocode for a simple implementation of this
algorithm, and Fig. 3 demonstrates it graphically.

It should be noted that the vector v need not be reselected
every timestep (or indeed ever, depending on the simulation), but
instead only when the conformation of particles changes in such
a way that it is rendered suboptimal. In cases where the geometry
is not particularly stable, a periodic “v update” subroutine could
be introduced which is called every T timestep. Reselecting v
should never make the performance worse, so the only downside
to this process is the additional cost of the reselection itself. The
parameter T would be tuned to balance this cost (which would
be domain dependent) and the gains of using a more optimal
vector v. If the geometry of the simulation changes drastically,
it is possible that projection sorting may become less optimal, in
which case the simulation could switch at runtime to using Verlet
lists.

When partitioning the simulation into multiple spatial do-
mains (e.g. for distributed MPI execution), v can be different in
each domain, which allows for tuning of the projection sorting
algorithm based on local geometry. Use of N3 for force calcula-
tions complicates this somewhat, as implementations need to be
careful to calculate forces on ghost particles correctly, but it is
still possible. .

In the remainder of this paper, we select v by calculating
the vector connecting two distant particles in the dataset and
normalising it. We do this only once at the start of the simulation.

3.2. Comparison to Verlet lists

When seeking to compare projection sorting to Verlet lists,
it is helpful to break each algorithm down into two parts: pe-
riodic computation and force computation. Periodic computation
refers to work that needs to be done in preparation for the force
computation: for Verlet lists this is building the lists themselves,
including constructing cell lists, which needs to be done every k
timestep. For projection sorting this includes calculating particle
projections and sorting the particles by said projections, which
needs to be performed before every force computation. Force
computation refers to using the precomputed information to
calculate forces for a given set of particle positions. In this section
we discuss some of the trade-offs between projection sorting and
Verlet lists.

3.2.1. Periodic computation

The algorithmic complexity of computing projections and sort-
ing is straightforwardly O(n(1 + logn)). Building cell and Verlet
lists is more complex. The algorithmic complexity of the construc-
tion of cell lists (i.e. binning each particle depending on the cell
it is in) particles is O(n) (calculating the cells and adding each
particle to the appropriate list). Let S(i) be the set of particles in
cell i. Construction of each particle’s Verlet list depends on the
contents of the surrounding 3 x 3 x 3 cells. Let k = max; |S(j)|,
the size of largest cell. Then constructing all Verlet lists is O(nk)
(omitting the constant factor 3> = 27). Therefore the total
complexity of the periodic computation associated with Verlet
lists is O(n(1+ k)). Comparing the complexities therefore reduces
to comparing the logarithm of the number of particles against the
size of the cell lists. A concrete example from our simulations of
n = 128,000 particles yields the values logn ~ 17 and k = 44
(the maximum cell list size, although the mean non-empty cell
list size is 7.1).

T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11 5

3.2.2. Force computation

A key advantage of projection sorting is the highly contiguous
memory access pattern it affords during the force sweeps. As the
particles are sorted they are accessed in a linear order, which
allows the memory subsystems to work at peak efficiency, and
enables highly efficient SIMD vectorisation. Runtime analysis of
hardware counters reveals that the Verlet list implementations
encounter nearly three times as many L1 data cache misses as
the projection sorting implementations during the force sweeps,
and issue over twice as many loads.

Another key metric is the number of particle-pair checks per-
formed by each algorithm (previously discussed in Section 2.1.1).
The number of checks is a good predictor of an algorithm’s
performance [24]. Whether projection sorting or Verlet lists re-
quire more spurious checks depends on the skin distance, rebuild
period, and overall particle conformation. Typically, projection
sorting will require fewer checks along the axis of projection, but
more along orthogonal axes.

3.2.3. Communication costs

As MD simulations are almost always executed on clusters
nowadays, it is instructive to look at the effect an algorithm
might have on the communication costs of particle data between
nodes. When using a spatial decomposition, adjacent processors
need to share particle data so that particles on the edge of their
subdomains have access to particles within their cut-off radius,
but owned by another processor. As Verlet lists are constructed
based on r, > r., they require more data from adjacent proces-
sors than projection sorting does. The amount of communication
increases cubically with an increased cut-off radius, so can be
significant. Conversely, projection sorting needs to communicate
more frequently, so again we have a trade-off dependent on skin
distance.

In summary, projection sorting works by ordering particles
according to their scalar projections onto a specific vector v. This
ordering enables efficient calculation of forces, and the sorting it-
self is cheap in comparison to other methods. The primary factors
to consider when choosing between Verlet lists and projection
sorting are (roughly in order of importance):

e Geometry of the simulation (the set of particles having a
long axis favours projection sorting),

e Average movement of particles per timestep (lower allows
for a smaller ry),

e Projection sorting uses memory bandwidth more effectively,

e Higher SIMD width favours Verlet lists.

4. Experiments

In this section, we discuss highly optimised implementations
of the projection sorting algorithm described in Section 3 and the
combination of cell lists and Verlet lists described in Section 2, in
the context of a modern MD simulation. We then compare the
performance characteristics of the two.

4.1. Experimental setup

The vehicle for our implementation is a biophysical simula-
tion designed to emulate chromosome condensation published
by Cheng et al. [6]. The particles in this simulation are bun-
dles of proteins known as nucleosomes, and are represented as
homogeneous spheres of radius 5nm. They are connected by
“DNA-linkers”, modelled as ideal springs following Hooke’s Law.
These particles are free to move according to Brownian motion,
subject to certain constraints. One in particular concerns us: a
repulsive force designed to keep particles from overlapping each

k, -
fd) =k
3
¥
=
.‘é
b
<
g
<N
5
=
f(d) = W
0, —
| | |
0 10 15

Separation distance d (nm)

Fig. 4. Repulsive force on particle pairs within 15nm. k is a configurable
constant indicating the strength of the force.

other. Pairs of particles that come within 15 nm of each other are
repelled. Fig. 4 illustrates how the magnitude of this force varies
with distance.

In the original implementation, the majority (~95%) of the
runtime was spent computing these repulsion forces. This kernel
is an excellent candidate for the projection sorting algorithm.

4.1.1. Datasets

The initial dataset described by Cheng et al. [6] was derived
from a budding yeast cell and contains 2000 nucleosomes (see
Fig. 5). As no larger real datasets were available while this work
was being undertaken, we generate extended versions of the orig-
inal using statistical methods. We define three normal distribu-
tions, each parameterised using the mean and standard deviation
of the deltas between each nucleosome for the x, y and z axes
respectively. We then generate new conformations of length N
particles by sampling these distributions to perform an N step
random walk. After generation we simulate the conformation
for 100,000 timesteps to reach a relatively stable state, free of
artefacts caused by the random walk process. Synthetic datasets
are generated for N = 2¥. 103, 2 < k < 11.

4.1.2. Machine specifications

To run our experiments, two machines are used. Firstly, Orac, a
cluster at the University of Warwick consisting of 84 nodes, each
with 2 Intel Xeon E5-2680 v4 processors, for 2352 cores in total.
Each node is equipped with 128 GB of RAM, and connected with
an Intel Omni-Path X16 100 Gb/s interconnect. Orac is used to
run the Xeon experiments.

To run the Xeon Phi experiments we use the ARCHER Knights
Landing platform at the Edinburgh Parallel Computing Centre.
This consists of 12 nodes, each equipped with a Xeon Phi 7210
and 96 GB of RAM. The nodes are connected with a high per-
formance Cray Aries interconnect. Each Xeon Phi also has 16 GB
of fast onboard MCDRAM, which in this case is used to cache
accesses to the external memory.

We refer the reader to Table 1 for more details.

4.1.3. Compilation and execution

All of the code is compiled using the GNU C++ compiler,
v6.3.0 with the following performance flags: -03 -fopenmp. The
machine architecture is specified with -march=broadwell, and
-march=knl for Xeon and Xeon Phi respectively.

On Orac the application is launched using the mpirun com-
mand. As the application domain partitioning code currently only
supports power-of-two-sized decompositions and Orac has 28

6 T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11

Fig. 5. A visualisation of one of the datasets used — a conformation of yeast DNA dotted with nucleosomes.

Table 1
Summary of hardware configurations on Orac and the ARCHER Knights Landing
platform.

Orac KNL platform
nodes 84 12
Processor model Xeon E5-2680 v4 Xeon Phi 7210

Sockets x Cores x Threads 2 x 14 x 2 1x64 x4
Clock (GHz) 2.4 13
L1{i,d}/L2 (kB) {32,32}/256 {32,32}/512
Memory (GB) 128 96+16
SIMD ISA AVX2 AVX-512

cores per node, MPI ranks are distributed evenly among the avail-
able cores using the following flags: ——map-by socket:SPAN,
--bind-to core and --rank-by core. Each rank is assigned
to a unique core, and uses a single thread. We run up to 256 MPI
ranks, which is the largest power-of-two core count that Orac is
configured to allow. These ranks are spread as evenly as possible
across the 280 cores available on 10 nodes.

On ARCHER the application is launched using the aprun com-
mand. We use varying combinations of MPI ranks and OpenMP
threads, which is explained in more detail below. We use an
explicit mapping from software threads to hardware threads,
supplied using the -cc flag. We run up to four nodes (each Xeon
Phi supports up to 256 hardware threads).

All experiments are run for 1000 timesteps. When using Ver-
let lists, we set the skin distance to the empirical minimum
rs =15nm, and k = 5, which yields the best performance for
the given value of r;.

Detailed timing information is collected across all areas of the
code using the rdtsc hardware counter in order to achieve high
accuracy with minimal overhead.

4.2. Implementation

The basic structure of the application is based on the miniMD
mini-app from Sandia National Laboratories’ Mantevo suite [10],
which is in turn based on the larger and more complex LAMMPS
[19]. We use a spatial decomposition which theoretically scales
well with processor count, at the price of more complex load
balancing in the case of simulations with non-uniform particle
densities (like this one).

Each MPI rank stores an array of local particle positions and
ghost particle positions, and a corresponding array of forces on
each particle. At each timestep the forces on the local particles
are calculated. If N3 is enabled, some forces on ghost particles
will also be determined. These forces are then communicated
back to the owning rank. The local particle positions are then
updated based on the forces. If any particles have moved into
the domain of a different MPI rank these are communicated, and
new ghost particles are shared. This process then repeats. This
communication process is identical between projection sorting
and Verlet lists.

Currently the simulation implements a static load balancing
strategy wherein the problem domain is decomposed into small

cubic “patches” of uniform size. Each patch is then weighted
according to how many particles it contains, and patches are
distributed among processors by a recursive bisection algorithm,
such that all processors end up with a cuboidal subdomain
of approximately equal total weight. This strategy is used by
NAMD [16] and is based on work from Berger and Bokhari [4].

NAMD implements a layer of dynamic load balancing on top of
this, which distributes pairwise force calculations between neigh-
bouring processors. Our implementation does not currently do
this, although it is a possible extension. The static load balancing
performs well enough to show the differences between Verlet
lists and projection sorting.

The application is parallelised in a so-called “hybrid” fashion.
Within each MPI rank, OpenMP may be used to leverage multiple
threads. We use this capability to take advantage of simultaneous
multithreading (SMT), or hyperthreading, on Knights Landing.

Our implementation has two main build-time switches: use of
projection sorting or Verlet lists, and enabling or disabling halving
of the neighbour space using Newton’s third law. We refer to
these four variants below as PS N3, PS no N3, VL N3 and VL no N3.

4.2.1. Projection sorting

Force computation using the sorted conformation is hand-
vectorised using both AVX2 and AVX-512 intrinsics. We refer the
reader to our previous work [13] for more detailed information.

4.2.2. Verlet lists

Given the small cut-off radius in this simulation, it is desirable
to construct cell-lists based on a fine decomposition, otherwise
there will be many spurious checks. Calculating these naively (by
allocating a three dimensional array of bins) uses an infeasibly
large amount of memory, which increases cubically with the
problem size. Instead we use a lock-free hash map implementa-
tion (based on Margais et al. [14]) to construct the lists in a much
smaller amount of space, without sacrificing high performance
when running multiple threads.

Verlet list rebuilds (based on the cell-lists) and force computa-
tion using Verlet lists were hand-vectorised using both AVX2 and
AVX-512 intrinsics as described by Pennycook et al. [17].

4.3. Experiments

In this section we seek to empirically establish the perfor-
mance differences between our implementations of Verlet lists
and projection sorting in a realistic context. In order to do this,
we present the following comparisons:

e Raw performance comparisons between the two algorithms
for fixed numbers of processors and problem sizes (see
Section 4.3.1).

e A scaling study for each implementation, showing how the
performance changes with varying numbers of processors
and different problem sizes (see Section 4.3.2).

e Qualitative performance comparisons between the Xeon and
Xeon Phi platforms (see Section 4.3.3).

T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11 7

500
4a PS N3
E PS no N3
400 # VL N3
EEVL no N3

300

Walltime (s)

200

100

SRRRRRRRRRNNRY

128-2 256-1

232 16-16 32-8 64-4
ranks - # threads

Fig. 6. Observed simulation times on the ARCHER Knights Landing platform
across a variety of different runtime configurations (combinations of MPI ranks
and OpenMP threads) on a single Xeon Phi node. The x-axis shows the number
of MPI ranks and OpenMP threads used, for example 4-64 indicates 4 MPI ranks
and 64 OpenMP threads per rank. In all cases the 2,048,000 particle dataset is
simulated for 1000 timesteps. Lower walltime is better.

Prior to running any experiments on the ARCHER Knights
Landing platform, we first perform a series of experiments to
determine the optimal configuration of MPI ranks and OpenMP
threads on each Xeon Phi node for our application variants (op-
timal in the sense of lowest overall simulation walltime). The
results of these experiments are shown in Fig. 6. We find that
projection sorting performs best at 256 MPI ranks with a single
thread per rank, likely because sorting is not a thread-scalable
operation. The results when using Verlet lists are more balanced:
64 MPI ranks and four threads per rank yield the fastest results.
To simplify the comparison, we opt to use 64 MPI ranks and four
threads per rank for all subsequent Knights Landing experiments.
This configuration offers the best performance for Verlet lists
and only 20% below best performance for projection sorting.
It is important to use the same configuration for both as the
number of MPI ranks per node can dramatically affect the perfor-
mance as the simulation is scaled. Using the same number of MPI
ranks per node for all application variants ensures comparable
results.

5
4 |- -
o
=
k=]
g
& 2) 1
1 ___
—— N3
no N3
0 Il Il Il Il Il Il
1 4 8 16 32 64 128 256
ranks
(a)

4.3.1. Raw performance comparisons

Fig. 7 shows the speedup attained by projection sorting rela-
tive to the performance of Verlet lists, for the entire simulation
(including kernels unrelated to the repulsion calculations). This
is significant for all four configurations, reaching nearly 5x on
Orac.

We observe that PS attains a greater relative speedup when
N3 is disabled, although enabling N3 results in better absolute
performance. On ARCHER, PS sees approximately 1.7 x speedup.
We believe this lower speedup is due to better hardware support
for gather/scatter and vector compression on KNL, which VL relies
on.

Fig. 8 breaks these speedups down into periodic calculations,
force calculations and comms costs across Xeon and Xeon Phi.
Notable are the communication costs, which are higher for PS.
This is because VL only needs to communicate fully every k = 5
timestep, which fits with the approximate 0.2 x speedup we see.
We note also that the speedup improves with the number of
processors. We conjecture that this is due to the lower amount
of communication required per processor in PS (discussed in
Section 3.2.3). The higher communication costs are more than off-
set by the significantly lower periodic costs however. On ARCHER
these reach speedups of over 10x.

Fig. 9 shows the absolute CPU core time spent per particle
per timestep (the aggregate of all simulation kernels) for each
application variant. If the application scaled perfectly linearly we
would see flat lines here, as it is the time increases at scale
due to processing overheads. The Xeon Phi times are higher as
each single KNL core is slower than a single Xeon core. Time
per particle is often presented as a performance statistic for MD
simulations, however we would note that these numbers are not
directly comparable to other MD applications, as they include
time spent in domain-specific calculations of tension, angular and
condensing forces.

4.3.2. Scaling studies

Figs. 10 and 11 show the application’s strong and weak scaling
on Orac and ARCHER. Both algorithms scale well, with VL reach-
ing over 150x for 256 MPI ranks on Orac. VL generally scales
slightly better than PS, likely due to the lower communication
costs. We expect that this gap could be closed if PS was adapted
to use a skin distance (see Section 5.1).

Fig. 11 shows some anomalous super-linear scaling for PS,
likely due to the lower amount of data per processor improving
cache effectiveness.

Speedup (%)

—— N3
no N3
0 Il
64 128 256
ranks
(b)

Fig. 7. (a) shows the speedup of the full simulation of 2,048,000 particles when using PS, relative to a baseline using VL on Orac up to 256 MPI ranks, with a single
thread per rank. (b) shows the same on the ARCHER Knights Landing platform up to four nodes, with 64 MPI ranks per node and four OpenMP threads per rank.

Higher speedup is better.

8 T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11

12 T T
—— N3
no N3
10 - -
0
8 \ - = B
S g\//
o
= 6 =
g
=9
N
4 |- -
2 |- -
0 Il Il Il Il Il Il
1 4 8 16 32 64 128 256
ranks
(a)
8 T T T
—— N3
7 no N3 |
6 |- -

[
T

Speedup (x)

1
1 4 8 16 32 64 128 256

14 T T T

no N3
1.2 3

0.6 |
0.4 /
0.2 = %

1 4 8 16 32 64 128 256
ranks

()

Speedup (%)

14

—— N3

1260 no N3 | |

Speedup (%)

ranks

(b)

—— N3
3.5 no N3 ||

Speedup (x)

0.5 1

O |
64 128 256
ranks

—— N3
no N3
1.2 3

0.6 - |

Speedup (x)

0.2 |

0
64 128 256

Fig. 8. Speedup for PS kernel costs relative to VL kernel costs on Orac and the ARCHER Knights Landing platform. Orac results are shown up to 256 MPI ranks with
a single thread per rank, when simulating 2,048,000 particles. ARCHER results are shown up to four nodes with 64 MPI ranks per node and four OpenMP threads
per rank, when simulating 2,048,000 particles. (a) and (b) show periodic costs for Orac and ARCHER respectively, (c) and (d) show force calculation costs, and (e)

and (f) show communication costs. Higher speedup is better.

4.3.3. Xeon vs. Xeon Phi

It is inherently difficult to compare performance between
Xeon and Xeon Phi architectures, as they differ in almost ev-
ery important aspect. Equal numbers of cores are not compara-
ble, as KNL cores are much slower individually. In our previous
work [13] we found that the many-core architecture was well

suited to the force calculations as it has double the vector width
available.

Fig. 8d shows that disabling N3 gets a greater relative increase
to force calculation speedup than on Orac (cf. Fig. 8c). This is
because KNL crucially uses SMT to keep its execution units busy,
and multiple threads with N3 enabled necessitate atomic accesses

T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11 9

10 T 10
’g —— PS N3 Z —— PS N3
~ PS no N3 ~ PS no N3
) sl VL N3 |) s VL N3 4
g VL no N3 é VL no N3
= =
2 2
£ 6 : £ 6 g
< <
=% (=%
3 3
a a
g af 1 £ 1
® ®
g g
o o
S 2¢ 1 3 2 .
o o
S S
A N s B A
0"”‘\‘ Il Il Il Il Il 0 |
1 4 8 16 32 64 128 256 64 128 256
ranks # ranks
(a) (b)

Fig. 9. (a) shows the mean time in microseconds spent updating a single particle from one timestep to the next (normalised by the number of processor cores in
use) for each application variant on Orac, derived from simulations of 2,048,000 particles over 1000 timesteps. (b) shows the same for the ARCHER Knights Landing
platform. Lower is better.

250 [- ! F
—— PS N3 K L iem m m o m e]
PS no N3 ;
VL N3 :
200 |- VL no N3 l
/ 0.8 =
F
X 150 A x
=Y /) & 0.6 - |
< /! <
g g g
@ 100 - o) @ gyl
—— PSN3
50 i 0.2 PS no N3 i
VL N3
VL no N3
0 Il 0 Il Il Il Il Il Il
128 256 1 4 3 16 32 64 128 256
ranks
(b)

Fig. 10. Scaling on Orac up to 256 MPI ranks. (a) shows strong scaling over 2,048,000 particles and (b) shows weak scaling with 8000 particles per MPI rank. Higher
speedup is better.

4
1 ... -
3 08} .
5 <
= = 06 :
ED) ey
= =}
o4 g
& &
e s 0.4 8
1= —— PSN3 | —— PSN3
PS no N3 0.2 PS no N3 |+
VL N3 VL N3
VL no N3 VL no N3
0 Il
%4 128 256 64 128 256
ranks # ranks
(a) (b)

Fig. 11. Scaling on the ARCHER Knights Landing platform up to 256 MPI ranks. (a) shows strong scaling over 2,048,000 particles and (b) shows weak scaling with
8000 particles per MPI rank. Higher speedup is better.

10 T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11

to shared memory to prevent conflicts. KNL has poor support
for vectorised atomic writes. On Orac SMT is not used, therefore
the atomics are not necessary. This effect is also visible in the
VL rebuilds, which use atomics as part of a lock-free hash table
(compare Figs. 8b and 8a).

In summary, we have shown that - for this simulation - PS
is significantly faster than VL, and scales comparably to high
processor counts. This applies to both Intel Broadwell and Intel
Knights Landing.

5. Conclusions

In this paper, we present projection sorting, an alternative to
the traditional Verlet list algorithm for pairwise short-range force
calculations, and show that it can be significantly more effective
in a modern MD simulation of chromosome condensation.

We provide efficient parallel implementations of this strategy
for the modern multi- and many-core architectures, Intel Broad-
well and Knights Landing. We also extend the implementations
to multi-node environments enabling the use of large clusters to
significantly reduce runtimes.

We demonstrate relative speedups approaching up to 5x
across a range of problem sizes and processor counts. Our algo-
rithm scales comparably to the state of the art in both strong
and weak senses, with the runtime being reduced by up to
125x over 256 processors. These results are not just theoretical,
but are obtained from a real MD simulation. Our algorithm and
optimisations have been and continue to be used to facilitate
further experiments into chromosome condensation using this
simulation.

5.1. Further work

It is conceivable to use projection sorting in concert with
the skin distance, by only sorting the particles every k timestep,
and continuing up to the “Verlet” cut-off radius, r,, when per-
forming force sweeps. As the sort is considerably cheaper than
a Verlet rebuild, it is possible that the computational costs out-
weigh the benefits, but we note that it would also improve the
communication costs, which may balance this increase.

We are also investigating alternate spatial decomposition
strategies, to offset PS’ main disadvantage: that it must inspect
more particles in directions orthogonal to the projection axis.
We hypothesise that a “pencil” decomposition - decomposing
space into long thin slivers along the axis of projection - could
significantly decrease the number particles to be processed, in
addition to decreasing the communication complexity at high
scale.

Implementation of projection sorting in other existing MD
software would be valuable to establish the extent of its applica-
bility in a more general sense. NAMD is a popular production MD
package designed for simulation of large biomolecular structures
which has been the subject of substantial HPC research, and has
been shown to scale to over 500,000 cores. NAMD is a large code,
and implementing a new algorithm would be a time consuming
process, however we believe this would be a worthwhile endeav-
our, and is crucial to gaining further insight into the properties of
the projection sorting algorithm, and directions in which to take
it.

Acknowledgments

This work was supported by the Francis Crick Institute which
receives its core funding from Cancer Research UK (FC001003),
the UK Medical Research Council (FC001003), and the Wellcome
Trust, UK (FC001003), and by the Engineering and Physical Sci-

ences Research Council, UK and Intel Corporation, United States
(CASE award 1365607). This work used the ARCHER UK National
Supercomputing Service.

References

[

M.J. Abraham, T. Murtola, R. Schulz, S. Pall,].C. Smith, B. Hess, E. Lindahl,

GROMACS: High performance molecular simulations through multi-level

parallelism from laptops to supercomputers, SoftwareX 1-2 (2015) 19-25.

B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General

method,]J. Chem. Phys. 31 (2) (1959) 459-466.

J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynam-

ics simulations fully implemented on graphics processing units, J. Comput.

Phys. 227 (10) (2008) 5342-5359.

Berger, Bokhari, A partitioning strategy for nonuniform problems on

multiprocessors, IEEE Trans. Comput. C-36 (5) (1987) 570-580.

A. Bhatele, S. Kumar, C. Mei,].C. Phillips, G. Zheng, L.V. Kalé, Overcoming

scaling challenges in biomolecular simulations across multiple platforms,

in: Proceedings of the International Parallel and Distributed Processing

Symposium 2008, IEEE, 2008, pp. 1-12.

T.M.K. Cheng, S. Heeger, R.A.G. Chaleil, N. Matthews, A. Stewart,]. Wright,

C. Lim, P.A. Bates, F. Uhlmann, A simple biophysical model emulates

budding yeast chromosome condensation, eLife 4 (2015) e05565.

E. Fermi,]. Pasta, S. Ulam, M. Tsingou, Studies of Nonlinear Problems, Tech.

Rep, 1955.

P. Gonnet, A simple algorithm to accelerate the computation of non-

bonded interactions in cell-based molecular dynamics simulations, J.

Comput. Chem. 28 (2) (2007) 570-573.

A. Harode, A. Gupta, B. Mathew, N. Rai, Optimization of molecular dy-

namics application for Intel Xeon Phi coprocessor, in: Proceedings of the

International Conference on High Performance Computing and Applications

2014, IEEE, 2014, pp. 1-6.

[10] M.A. Heroux, D.W. Doerfler, P.S. Crozier, Improving performance via
mini-applications, IEEE Trans. Comput. (2009).

[11] RW. Hockney, S.P. Goel, JW. Eastwood, Quiet high-resolution computer
models of a plasma, J. Comput. Phys. 14 (2) (1974) 148-158.

[12] W. Jiang, J.C. Phillips, L. Huang, M. Fajer, Y. Meng, J.C. Gumbart, Y. Luo,
K. Schulten, B. Roux, Generalized scalable multiple copy algorithms for
molecular dynamics simulations in NAMD, Comput. Phys. Comm. 185 (3)
(2014) 908-916.

[13] T.R. Law, J. Hancox, TM.K. Cheng, R.A.G. Chaleil, S.A. Wright, P.A. Bates,
S.A. Jarvis, Optimisation of a molecular dynamics simulation of chromo-
some condensation, in: 2016 28th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), IEEE, 2016, pp.
126-133.

[14] G. Marcais, C. Kingsford, A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers, Bioinformatics 27 (6) (2011) 764-770.

[15] B. Moon, H.V. Jagadish, C. Faloutsos, J.H. Saltz, Analysis of the clustering
properties of the Hilbert space-filling curve, IEEE Trans. Knowl. Data Eng.
13 (1) (2001) 124-141.

[16] M.T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kalé, R.D. Skeel, K.
Schulten, NAMD: a parallel, object-oriented molecular dynamics program,
Int. J. Supercomput. Appl. High Perform. Comput. 10 (4) (1996) 251-268.

[17] SJ. Pennycook, CJ. Hughes, M. Smelyanskiy, S.A. Jarvis, Exploring simd
for molecular dynamics, using intel® xeon® processors and intel® xeon
phi™ coprocessors, in: Proceedings of the International Symposium on
Parallel and Distributed Processing 2013, IEEE Computer Society, 2013,
pp. 1085-1097.

[18] J.C. Phillips, R. Braun, W. Wang,]. Gumbart, E. Tajkhorshid, E. Villa, C.
Chipot, R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with
NAMD, J. Comput. Chem. 26 (16) (2005) 1781-1802.

[19] SJ. Plimpton, Fast parallel algorithms for short-range molecular dynamics,
J. Comput. Phys. 117 (1995) 1-19.

[20] B. Quentrec, C. Brot, New method for searching for neighbors in molecular
dynamics computations, J. Comput. Phys. 13 (3) (1973) 430-432.

[21] Y. Sun, G. Zheng, C. Mei, EJ. Bohm, J.C. Phillips, L.V. Kalé, T.R. Jones,
Optimizing fine-grained communication in a biomolecular simulation ap-
plication on Cray XK6, in: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis 2012,
IEEE, 2012, pp. 1-11.

[22] LT. Todorov, W. Smith, K. Trachenko, M.T. Dove, DL_POLY_3: new dimen-
sions in molecular dynamics simulations via massive parallelism,]J. Mater.
Chem. 16 (20) (2006) 1911-1918.

[23] L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical

properties of Lennard-Jones molecules, Phys. Rev. 159 (1) (1967) 98-103.

2

[3

[4

[5

6

(7

[8

[9

http://refhub.elsevier.com/S0743-7315(19)30204-7/sb1
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb1
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb1
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb1
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb1
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb2
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb2
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb2
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb3
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb4
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb4
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb4
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb5
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb6
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb7
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb7
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb7
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb8
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb9
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb10
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb10
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb10
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb11
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb11
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb11
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb12
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb13
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb14
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb14
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb14
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb15
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb16
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb17
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb18
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb18
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb18
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb18
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb18
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb19
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb19
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb19
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb20
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb20
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb20
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb21
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb22
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb22
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb22
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb22
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb22
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb23
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb23
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb23

T.R. Law, J. Hancox, S.A. Wright et al. / Journal of Parallel and Distributed Computing 130 (2019) 1-11 11

[24] U. Welling, G. Germano, Efficiency of linked cell algorithms, Comput. Phys.
Comm. 182 (3) (2011) 611-615.

[25] Z. Yao,]. Wang, G. Liu, M. Cheng, Improved neighbor list algorithm in
molecular simulations using cell decomposition and data sorting method,
Comput. Phys. Comm. 161 (1-2) (2004) 27-35.

[26] G. Zhao, J.R. Perilla, E.L. Yufenyuy, X. Meng, B. Chen,]. Ning, J. Ahn, A.M.
Gronenborn, K. Schulten, C. Aiken, P. Zhang, Mature HIV-1 capsid structure
by cryo-electron microscopy and all-atom molecular dynamics, Nature 497
(7451) (2013) 643-646.

Timothy Law completed his Ph.D. in 2017 at the
University of Warwick, in collaboration with Intel Cor-
poration, as a member of the Department of Computer
Science’s High Performance and Scientific Computing
group. His research focused on performance optimisa-
tion of scientific applications used for research in the
life sciences, in particular molecular dynamics, genome
assembly and sequence alignment.

Jonny Hancox is a Software Architect from the Health
& Life Sciences team at Intel Corporation. His work is
focused on helping scientists and clinicians to make
best use of the latest computational tools. Jonny
has worked in various technical roles throughout his
career, with an emphasis on extracting value from
unstructured and challenging datasets.

Steven Wright is a Lecturer at the University of York.
His research in High Performance Computing focuses
on the use of HPC in physics applications and energy-
aware optimisation of supercomputing applications. Dr.
Wright was previously a post-doctoral Research Fellow
at the University of Warwick, working with the Centre
for Computational Plasma Physics, colleagues from sev-
eral UK universities, the UK Atomic Energy Authority,
the Rutherford Appleton Laboratory and the UK Atomic
Weapons Establishment (AWE). Dr. Wright completed
his Ph.D. in 2014 at the University of Warwick, in
collaboration with AWE plc. and Los Alamos National Laboratory, focusing on
1/0 in parallel applications.

1 Professor Jarvis studied at London, Oxford and Durham
Universities before taking his first Lectureship at
the Oxford University Computing Laboratory. Here he
worked on the development of performance tools for
the BSP programming library, as well as teaching at
Brasenose, Lincoln and Keble Colleges. After a short
secondment to Microsoft Research in Cambridge, he
joined the University of Warwick, rising to Professor
in 2009. Professor Jarvis acted as Director of Research
from 2008 to 2013, leading the Department to rank
2nd (out of 89 UK Computing Departments) in the
2014 UK Research Excellence Frame-work (REF). In 2013 he was appointed
Chair of Department. Professor Jarvis has been a Visiting Exchange Professor
at New York University since 2017 and is currently a member of the Board of
Trustees at the Alan Turing Institute, the UK’s national institute for data science.
He is presently Deputy Pro Vice Chancellor (Research) at the University of
Warwick.

http://refhub.elsevier.com/S0743-7315(19)30204-7/sb24
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb24
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb24
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb25
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb25
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb25
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb25
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb25
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb26
http://refhub.elsevier.com/S0743-7315(19)30204-7/sb26

	An algorithm for computing short-range forces in molecular dynamics simulations with non-uniform particle densities
	Introduction
	Background
	Force calculations
	Short-range force algorithms

	Spatial locality

	Projection sorting
	Overview
	Comparison to Verlet lists
	Periodic computation
	Force computation
	Communication costs

	Experiments
	Experimental setup
	Datasets
	Machine specifications
	Compilation and execution

	Implementation
	Projection sorting
	Verlet lists

	Experiments
	Raw performance comparisons
	Scaling studies
	Xeon vs. Xeon Phi

	Conclusions
	Further work

	Acknowledgments
	References

