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Advances in processor design have delivered performance improvements for decades. As physical limits are

reached, refinements to the same basic technologies are beginning to yield diminishing returns. Unsustainable

increases in energy consumption are forcing hardware manufacturers to prioritise energy efficiency in their

designs. Research suggests that software modifications may be needed to exploit the resulting improvements

in current and future hardware. New tools are required to capitalise on this new class of optimisation.

In this paper, we present the Power Optimised Software Envelope (POSE) model, which allows developers

to assess the potential benefits of power optimisation for their applications. The POSE model is metric agnostic

and in this paper we provide derivations using the established Energy-Delay Product metric and the novel

Energy-Delay Sum and Energy-Delay Distance metrics that we believe are more appropriate for energy-aware

optimisation efforts. We demonstrate POSE on three platforms by studying the optimisation characteristics of

applications from the Mantevo benchmark suite. Our results show that the Pathfinder application has very

little scope for power optimisation while TeaLeaf has the most, with all other applications in the benchmark

suite falling between the two.

Finally, we extend our POSE model with a formulation known as System Summary POSE ś a meta-heuristic

that allows developers to assess the scope a system has for energy-aware software optimisation independent

of the code being run.
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∗Extension of Conference Paper: In our previous paper [35] we introduced a visual modelling tool called POSE, designed to

guide energy aware optimisation. In this paper, we extend our model with formulations based on two newly developed

metrics for assessing energy-aware optimisation, known as Energy-Delay Sum and Energy-Delay Distance [34]. We then

further extend our POSE model to include a new formulation known as System Summary POSE. System Summary POSE

allows us to reason about the scope an entire system has for energy-aware optimisations independently of any particular

code being run.
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1 INTRODUCTION

Scientific computing and numerical simulation have become indispensable tools in many areas of
science and engineering. Simulations allow scientists to test their theories in domainswhere physical
experimentation would be prohibitively costly, impractical, or dangerous. As a result, computational
methods have joined theory and experiment as central pillars of scientific investigation.

Maximising performance is paramount in scientific computing. Higher performance means more
calculations can be carried out, allowing scientists to increase the size, complexity or resolution
of their simulations. The field of High Performance Computing (HPC) exists to improve the per-
formance of supercomputers and the software which they run. HPC covers a broad spectrum of
disciplines. At one extreme, domain experts write high-level simulation software to model phe-
nomena of interest. At the other, hardware engineers design the processors and other components
that make up supercomputers. Performance engineering bridges the gap between these extremes,
seeking ways to optimise software to make better use of the available hardware.

This work investigates how conventional performance engineering techniques can be adapted to
support energy-aware software optimisation. It seeks to quantify the benefits which can realistically
be expected as a result of energy-aware optimisation. Specifically, this paper makes the following
contributions:

• We introduce the Power-Optimised Software Envelope (POSE), a model which helps per-
formance engineers to determine whether power or runtime optimisation will provide the
greatest benefits for their code;

• We provide derivations for POSE using the established Energy-Delay Product family of
metrics as well as the Energy-Delay Sum and Energy-Delay Distance [34] metrics;

• We demonstrate POSE on a number of applications from the Mantevo benchmark suite,
showing that PathFinder is the application least amenable to power optimisation and TeaLeaf
is the most amenable;

• Finally, we extend POSE to provide a model for system-wide power optimisation characteris-
tics. System Summary POSE is able to derive upper limits for the benefit of energy-aware
software optimisation on a given system independent of any specific software application.

The remainder of this paper is structured as follows: Section 2 summarises background work in
energy measurement and optimisation; Section 3 presents a survey of related work; Section 4
outlines the construction of POSE models; Section 5 demonstrates the use of POSE on applications
from the Mantevo benchmark suite; Section 6 introduces the System Summary POSE model and
demonstrates its application; finally, Section 7 concludes the paper.

2 BACKGROUND

2.1 Energy Measurement

Accurate measurement is fundamental to performance engineering. Processors incorporate built-in
clocks to maintain synchronisation and schedule interrupts. Engineers can use these clocks to
measure the runtime performance of their code. Energy monitoring capabilities are also appearing
in new processor designs.
Energy is the integral of power over time, or E = P̄t . Energy consumption can therefore be

calculated based on measurements of power draw and time. Various methods have been used to
measure power draw in HPC systems, both at system and component levels.
Energy used by computers is converted to waste heat, as per the first law of thermodynamics.

Thermal cameras can be used to measure the temperature of different components, and hence
estimate their power draw. Mesa-Martinez et al. use thermal cameras and custom heat sinks to

ACM Trans. Arch. Code Optim., Vol. X, No. Y, Article . Publication date: April 2019.



The Power-Optimised Software Envelope :3

measure CPU power consumption [32], while Hackenberg et al. follow a similar approach to
measure system-wide power consumption [20].
Computing platforms can also be instrumented with dedicated power sensors. Bedard et al.

develop PowerMon, a scheme formeasuring component-level power draw in commodity systems [4].
Using sense resistors with a known resistance, and a voltmeter, they measure the voltage drop
across the resistors to calculate the current flow using Ohm’s law.
An alternative approach to power measurement relies on the magnetic fields induced when

current flows through a wire. Laros et al. develop PowerInsight, a production quality power
monitoring platform which uses Hall effect sensors and Ampere’s law, rather than sense resistors,
to improve accuracy and reliability [27].
Hackenberg et al. instrument a large HPC cluster called Taurus with commercial power sen-

sors [18]. The resulting High Definition Energy Efficiency Monitoring (HDEEM) infrastructure
can be used to measure component-level power and energy consumption across large numbers of
nodes at high sample rates.

Intel introduced Running Average Power Limit (RAPL) to support power-aware frequency scaling
in the Sandy Bridge Processor [12]. As a side effect, performance engineers gained access to an
interface capable of reporting CPU energy consumption. Early versions of RAPL were model
based, but more recent processors incorporate dedicated power sensors. AMD included equivalent
functionality starting with their Bulldozer CPU [1], while similar schemes exist for GPU [8] and
Xeon Phi [28] platforms.

2.2 Energy-Aware Metrics

Metrics allow performance engineers to assess HPC systems and software based on properties
of interest. They enable meaningful comparison between different platforms and can be used to
quantify the effects of code changes.
Some metrics act as utility functions which measure the cost of running different programs.

These Figure-of-Merit (FoM) metrics can be used to rank different implementations of the same
algorithm in order to identify valid optimisations [22]. Runtime and energy consumption are both
examples of FoM metrics.

Until recently, runtime optimisation was ubiquitous in HPC while energy optimisation has been
confined to domains such as embedded systems and mobile robotics. Although energy consump-
tion is becoming a constraint for scientific computing, minimising runtime is still an important
optimisation objective.

Optimising software according to multiple properties simultaneously is known asMulti-Objective
Optimisation (MOO). MOO requires FoM metrics that strike the right balance between the poten-
tially conflicting requirements imposed by different optimisation objectives.
Gonzalez et al. propose Energy-Delay Product, a dimensionless FoM metric which combines

the energy and runtime costs incurred by processors [17]. Martin et al. generalise this into the
Etn family of FoM metrics, with parameters E and t corresponding to energy and time [31]. They
argue that Et2 provides the best balance for microprocessor design. Srinivasan et al. reach the same
conclusion, although for slightly different reasons [39].
Many authors have adopted these metrics from the hardware community and applied them to

software optimisation problems. Vincent et al. describe a technique which minimises Et1 using CPU
throttling [15]. Bingham and Greenstreet use Etn metrics to analyse runtime constraints imposed
by a fixed energy budget for various algorithms [6]. Laros et al. use Etn metrics to assess a number
of production applications and state that Et3 strikes the right balance between runtime and energy
for HPC [26]. Et1 has also been used extensively to quantify the efficiency of resource provisioning
and scheduling in cloud computing environments [36, 42].
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Bekas and Curioni further generalise Etn metrics to the form E · f (t), a product between energy
and an application dependent function of time [5]. They argue that this formalisation is able to
drive software optimisation, assuming an appropriate function f (t) can be identified.

In our previous work we have shown that metrics originating from the hardware community are
not suitable formeasuring software performance.We subsequently proposed two new dimensionless
metrics which are designed to support energy-aware performance optimisation [34]. In this paper
we provide derivations for POSE using both of these metrics, namely Energy-Delay Sum (EDS,
Equation 1) and Energy-Delay Distance (EDD, Equation 2).

M (θ ) = αEθ + βtθ (1)

M (θ ) =
√

(αEθ )2 + (βtθ )2 (2)

2.3 Energy-Aware Optimisation

Energy use can be reduced either by shortening runtime or decreasing power consumption. While
runtime optimisation has been well studied, power optimisation is less developed; however some
progress in this area has been made.

Dynamic Voltage and Frequency Scaling (DVFS) and sleep states are two hardware features often
exploited by power optimisations; DVFS allows processors to run at different clock speeds and
supply voltages, while sleep states allow processors to power down during periods of inactivity.

In multi-node systems, nodes off the critical path can use DVFS to lower their clock speeds and
reduce power draw [13]. Alternatively, they can temporarily increase their clock speeds to finish
their work quickly before entering into sleep states [38].

The Intel Intelligent Power Node Manager uses a combination of features like DVFS, sleep states
and memory throttling to maintain a system power cap. Pedretti et al. demonstrate its application
for node-level power capping on a Cray XC40 system [33]. Their findings indicate that, while power
capping can be used to maintain power limits, it can also introduce significant and unpredictable
runtime overheads. Nodes which approach the power limit are aggressively throttled, leading to
slow-downs which can cause cascading delays and performance variability.

3 RELATED WORK

Performance modelling techniques enable the rapid exploration of large hardware and software
design spaces. This paper presents a performance modelling technique which enables engineers to
make decisions that may influence the energy consumption of their codes.

3.1 Simulators

Performance simulators such as SST [37], WARRP [21] and PACE [9] gather performance data by
executing simplified representations of target applications. Using code as a modelling input shifts
the burden of model construction away from the user. Consequently, model accuracy depends
primarily on how faithfully the simulator is able to represent a target system.

Tools such as Wattch [7] and McPAT [29] extend performance simulators with models of power
draw. These models use the energy costs associated with particular hardware events to estimate
the power consumption of a simulated code.

3.2 Analytical Models

Analytical models distil the structure and behaviour of a program into a set of parameterised
mathematical expressions. Performance predictions are then obtained by solving these expressions
for the required input parameters. As a result of their mathematical nature, analytical models
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produce results more quickly than simulations, making them particularly suitable for parameter
studies. Ensuring the model is expressive enough to capture all possible program behaviours is
often challenging and requires a deep understanding of the target application and platform.
Examples of this approach include LogP [11], LogGP [2] and PRAM [25], which provide model

skeletons which must then be tailored to individual codes. This approach has also been applied to
modelling energy consumption, with examples including BTL [30] and CAPE [24].

Wu et al. construct an analytical performance model of runtime and energy consumption for two
HPC applications using performance counter data [41]. They use Spearman correlation and principle
component analysis to identify the counters most significantly correlated with the applications
performance and then use multivariant regression analysis to build a model capable of predicting
runtime and energy consumption.

3.3 Heuristic Models

Heuristic models represent the most abstract category of performance models and the one to which
our work belongs. Rather than attempting to faithfully represent an entire system, heuristic models
provide a simplified analogy which helps developers reason about particular properties of a code.
Ease of construction and the clarity of their insights mean heuristic models are well suited to the
early stages of optimisation.

Arguably the best known heuristic model is Amdahl’s Law [3], which states that the performance
gains from parallelisation are limited by the serial portion of a parallel program. A second prominent
example is the Rooflinemodel [40], which frames application performance in terms of its operational
intensity and two system bottlenecks: off-chip memory bandwidth and floating point performance.
This simplification limits Roofline’s use as a predictive model but does mean a developer can easily
isolate the limiting factor of code performance and target their optimisation efforts accordingly.

Choi et al. extended the Roofline model to identify the algorithmic conditions necessary for trade-
offs between runtime and energy [10]. In particular their łRoofline model of energyž highlights
how power consumption peaks when operational intensity places equal demands on memory and
floating point performance. With both subsystems under equal load, neither one can become a
bottleneck and force the other to enter an idle state waiting for more work. Idle subsystems draw
less power, so overall power consumption drops when either subsystem is left idling.

4 THE POWER OPTIMISED SOFTWARE ENVELOPE MODEL

In this paper, we outline the POSE model, a heuristic model that serves as a preliminary ‘first
cut’ modelling technique intended to guide energy-aware optimisation efforts. Our model draws
inspiration from the Roofline model in that its insights are presented in an intuitive graphical
format. Also like Roofline, our model does not directly identify optimisation opportunities but
rather identifies where optimisation efforts should be focussed.

The energy efficiency of a code can be improved either by shortening its runtime or by decreasing
its power consumption. The POSE model can quantify the potential benefits of each approach,
allowing developers to focus their efforts on whichever offers the greatest rewards.

POSE is metric agnostic and is compatible with all members of the Etn family, the EDS and EDD
metrics [34], and indeed any metric which is an element-wise monotonic function of runtime and
energy consumption. The only prerequisites are that runtime and energy consumption can be
accurately measured or calculated for the target platform.

4.1 Model Construction

POSE models partition the energy/runtime plane into areas with different performance characteris-
tics relative to some initial, unoptimised code.
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Fig. 1. POSE Model for Etn , EDS and EDD Metrics

Feasible Performance Envelope

POSE is built around the concept of a Feasible Performance Envelope (FPE). This is constructed
by plotting lines with gradient Pmin and Pmax as shown in Figure 1. These values represent the
minimum and maximum rates of power draw possible during normal operation of the target
platform. As such, the runtime and energy costs incurred by running any given code θ under
similar conditions are represented by a single point somewhere within this envelope.
The quantitative insights offered by POSE are calculated from the positions of the five vertices

labelled A ś E in Figure 1. Four of these vertices lie on an intersection between the FPE and one
of the POSE bounds. The remaining vertex D lies directly below the initial code θ on the Pmin

energy bound at coordinates (tθ , Pmintθ ). This vertex corresponds to the largest possible pure power
optimisation of θ , meaning an optimisation which reduces power consumption without any change
to runtime.

Optimisation Bound

POSE considers the metric used to guide optimisation in order to constrain the search space for
valid optimisations within the FPE.

Definition 1. For logically equivalent codes θ and λ, the transformation θ → λ is a valid optimi-

sation with respect to a cost metricM iffM(λ) dominatesM(θ ).

The optimisation bound passes through θ , linking all points λ with the same metric value as the
original code, such thatM(λ) = M(θ ). This bound is represented by the curve B Ð E in Figure 1.
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Compared to θ , all points below the optimisation bound will have strictly better performance in
terms of metricM , and all points above it will have strictly worse performance in terms ofM .

The equation for the optimisation bound depends on the optimisation metric used. Deriving an
equation for the optimisation bound involves finding an expression for the curve which links all
points λ with the same metric value as θ . Equations 3, 4 and 5 give derivations for the optimisation
bound using the Etn , EDS and EDD metrics, respectively.

M (λ) = M (θ )
Eλ tλ

n
= Eθ tθ

n

Eλ = Eθ

(

tθ

tλ

)n

(3)

M (λ) = M (θ )
αEλ + βtλ = αEθ + βtθ

αEλ = αEθ + βtθ − βtλ

Eλ = Eθ +
β

α
(tθ − tλ ) (4)

M (λ) = M (θ )
√

(αEλ )2 + (βtλ )2 =
√

(αEθ )2 + (βtθ )2

(αEλ )2 = (αEθ )2 + (βtθ )2 − (βtλ )2

Eλ =

√

Eθ
2
+

(

β

α

)2
(

tθ
2 − tλ

2
)

(5)

The intersections between the optimisation bound and the FPE determine the position of vertices B
and E in Figure 1. Vertex B represents the fastest possible code within the FPE which shares the
same metric value as θ . Any optimised version of θ with a runtime faster than B is guaranteed to
outperform the original unoptimised code in terms ofM . Similarly, vertex E represents the slowest
possible code with the same metric value as θ . By definition, any optimised version of θ must run
faster than E.

Contribution Bound

All optimised versions of the initial, unoptimised code θ must appear inside the FPE in the region
below the optimisation bound. The contribution bound further subdivides this region into runtime
and power optimisations.

Performance engineers seek to use the most appropriate tools while searching for optimisations.
Conventional time-based performance engineering techniques aremore appropriate when searching
for optimisations which result in large reductions in runtime, whereas energy-aware techniques
are better suited to finding optimisations which primarily reduce power consumption. POSE uses
the contribution bound to make this distinction.

Definition 2. An optimisation θ → λ with respect to metric M is considered to be a power

optimisation iff the improvement in terms ofM stems primarily from a reduction in power draw, such

thatM(tθ , Pλtθ ) dominatesM(tλ , Pθ tλ).
Most optimisations will impact both runtime and power consumption to some degree. Definition 2

determines which of these impacts causes most improvement in terms of metricM . It does this by
treating them as if they were two separate optimisations; a pure power optimisation (tθ , Pθ tθ ) →
(tθ , Pλtθ ), and a pure runtime optimisation (tθ , Pθ tθ ) → (tλ , Pθ tλ), and then comparing them to see
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which is most beneficial. Power optimisations are those which derive most of their benefits from
reduced power consumption rather than shorter runtimes, meaning that M(tθ , Pλtθ ) dominates
M(tλ , Pθ tλ).

Curve C Ð θ in Figure 1 links all points for which power and runtime factors contribute toM in
the same ratio as the original code. By Definition 2, any power-optimised versions of θ must lie
below this contribution bound.
The equation for the contribution bound also depends on the metric chosen. It is obtained by

letting M(tθ , Pλtθ ) = M(tλ , Pθ tλ), expanding the definition of M , re-arranging to make Pλ the
subject, then finally multiplying by tλ to provide a result in terms of energy. The general form for
Etn metrics, and EDS and EDD metrics is derived as follows:

M (tθ , Pλ tθ ) = M (tλ, Pθ tλ )
Pλ tθ · tθ n = Pθ tλ · tλn

Pλ = Pθ

(

tλ

tθ

)n+1

Eλ = Pθ tλ

(

tλ

tθ

)n+1

(6)

M (tθ , Pλ tθ ) = M (tλ, Pθ tλ )
αPλtθ + βtθ = αPθ tλ + βtλ

αPλ + β =
tλ

tθ
(αPθ + β )

αPλ =
tλ

tθ
(αPθ + β ) − β

Pλ =
tλ

tθ

(

Pθ +
β

α

)

− β

α

Eλ =
tλ

2

tθ

(

Pθ +
β

α

)

− tλ
β

α
(7)

M (tθ , Pλ tθ ) = M (tλ, Pθ tλ )
√

(αPλ tθ )2 + (βtθ )2 =
√

(αPθ tλ )2 + (βtλ )2

(αPλ tθ )2 = (αPθ tλ )2 + (βtλ )2 − (βtθ )2

Pλ
2
=

(

Pθ
tλ

tθ

)2

+

(

β tλ

α tθ

)2

−
(

β

α

)2

Pλ =

√

(

Pθ
tλ

tθ

)2

+

(

β tλ

α tθ

)2

−
(

β

α

)2

Eλ = tλ ·

√

(

Pθ
tλ

tθ

)2

+

(

β tλ

α tθ

)2

−
(

β

α

)2

(8)

The intersection between the contribution and Pmin energy bound determines the position of vertex
C in Figure 1. This vertex represents the fastest possible code which still meets the criteria to count
as a power-optimised version of θ . Any optimisation which reduces runtime below that of C must
have a larger impact on runtime than on power consumption, and as such would be considered a
runtime optimisation.
Vertex C can also be interpreted as the best possible outcome for power optimisation. This is

because, in addition to having the smallest runtime of any power optimisation, it also has the lowest
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The Power-Optimised Software Envelope :9

possible power draw as it lies on the Pmin energy bound. As such, it will have the best possible
metric value of any point within the power optimised region.

Optimisation Limit

The bounds described so far delineate those regions of the energy/runtime plane in which runtime
and power optimised versions of a given code can be found. The optimisation limit further partitions
runtime optimisations into those which could potentially be outperformed by some hypothetical
power optimisation and those which strictly dominate all possible power optimisations.
As its name suggests, the optimisation limit is closely related to the optimisation bound. The

optimisation limit links all points with the same metric value as a reference code, and as such is
similarly defined by Equations 3-5 for each of the metrics considered. The only difference is that
the optimisation limit connects all points with the same metric value as vertex C rather than θ .

Vertex C represents the best possible outcome from power optimisation; all optimisations which
lie below the optimisation limit must strictly dominate any possible power optimisation. Vertex
A lies on the intersection between the optimisation limit and the Pmax energy bound in Figure 1.
This vertex represents the fastest possible code with the same metric value as C , which in turn
corresponds to the best possible outcome from power optimisation. As such, any optimisation
which results in a faster code than A will outperform all possible power optimisations.

Because the optimisation bound and the optimisation limit are both based on Equations 3-5, the
expression for their coordinates are also similar. The only difference is that C replaces θ as the
reference point used, yielding Equations 9-11, for Etn , EDS and EDD, respectively.

M (λ) = M (C)

Eλ = PmintC

(

tC

tλ

)n

(9)

M (λ) = M (C)

Eλ = PmintC +
β

α
(tC − tλ ) (10)

M (λ) = M (C)

Eλ =

√

(PmintC )2 +
(

β

α

)2
(

tC
2 − tλ

2
)

(11)

4.2 POSE Insights

Figure 1 shows how POSE models partition the FPE into four distinct regions, each with different
performance characteristics.
Region 1 contains runtime optimisations which dominate the best case power optimisation in

terms of a given metricM (Strong Runtime Optimisation). Region 2 contains runtime optimisations
which dominate θ in terms ofM , yet may be outperformed by some power optimised version of θ
(Weak Runtime Optimisation). Region 3 contains optimisations for which improvements toM are
primarily due to reduced power consumption (Power Optimisation). Finally, Region 4 corresponds
to codes with performance strictly worse than that of θ (Performance Degradation).
The five vertices labelled A to E correspond to the extreme outcomes of energy-aware optimi-

sation. Comparing these outcomes to the initial performance of θ provides quantitative insights
about the optimisation potential for this code. These insights fall into two broad categories which
together help performance engineers decide if power optimisation is likely to prove worthwhile.
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The first category relates to the potential benefits from power optimisation. The difference in
energy between points θ and D places an upper bound on the amount of energy which can be saved
by reducing power consumption. Similarly, the difference in value betweenM(θ ) andM(C) gives
an upper bound for the improvement in a metric which can be delivered by power optimisation.
The second category relates to the scope a code has for power optimisation. The ratio tθ /tB

represents the smallest speed-up which guarantees a code that outperforms θ with respect toM .
The difference in runtime between points E and θ represents the maximum increase in runtime
which could be traded off to achieve a slower yet more energy efficient code. Finally, tθ /tA is the
smallest speed-up guaranteed to outperform any power optimised version of θ .

POSE results can be given in either relative or absolute forms by taking the ratio or the difference
between values. For example, an optimisation guaranteed to outperform θ in terms of M must
reduce runtime by at least tθ − tB seconds, or equivalently yield a relative speed-up of tθ /tB times.
Expressions for POSE coordinates are all linear functions in terms of tθ , meaning the ratios between
them remain constant regardless of changes to runtime. This property means relative results can
be used to predict large-scale optimisation characteristics from tests with shorter runtimes.

The results given by POSE are all bounds, and the true benefits of power optimisation will be more
modest in practice. Additionally, how potential benefits are realised will be application-specific;
two applications that exhibit the same runtime and power draw will have the same opportunities
for energy-optimisation, but may require different solutions. Even so, these values are useful as
they allow performance engineers to make informed decisions about where best to focus their
optimisation efforts.

4.3 POSE Metric Tuning

One thing to note is how metric tuning parameters affect POSE models. Figure 2 shows how POSE
varies in response to different Etn exponents; in this case, Energy (Et0) and Energy-Delay Cubed
Product (Et3). Higher values of n place more emphasis on runtime, resulting in less scope for
energy-aware optimisation. POSE is able to reflect this change through its various insights and
identify exactly how much the opportunity for energy-aware optimisation has been reduced by.
Figure 3 shows how POSE models for the EDS and EDD metrics compare to the same model

built with the Et3 metric. The parameterisations of the α and β coefficients used for the EDS and
EDD POSE models in this figure were chosen to mirror the relative energy/time costs of Et3. As a
result, the gradients of their optimisation bounds at point θ are the same as for Et3. Even so, the
optimisation bound for Et3 diverges from the other metrics, moving further away from the origin
and suggesting a larger scope for energy-aware optimisation.
This divergence happens because Etn metrics produce perverse optimisation incentives; Etn

places more emphasis on energy optimisations for efficient codes and on runtime optimisations for
fast codes [34]. Any small optimisation which improves energy efficiency will increase the apparent
benefits of further energy optimisations, leading to the concave curvature of the optimisation
bounds for Etn metrics.
Avoiding perverse optimisation incentives was a key design principle for both EDS and EDD.

They do not over-emphasise energy optimisation for efficient codes or runtime optimisations for fast
ones. As a result, POSE models built for these metrics will show less opportunity for energy-aware
optimisation than equivalent models built for Etn metrics if equivalent parameterisations are used.

5 POSE INVESTIGATION

This section uses POSE to investigate the energy-aware optimisation characteristics of codes from
the Mantevo [23] mini-application benchmark suite. Experiments were carried out on the Taurus
system operated by TU Dresden and an Intel KNL Developer Access Program (DAP) platform
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Fig. 3. Comparison of POSE Models for Different Metrics

installed at the University of Warwick. Results were gathered using the HDEEM instrumentation
infrastructure present on Taurus [18], and using a power meter on the Intel DAP platform.
Taurus is a heterogeneous cluster with several different classes of node. Work was carried out

on two of these partitions: one featuring dual twelve core Intel Xeon E5-2680 v3 CPUs and 64GB

of memory, and one featuring dual fourteen core Intel Xeon E5-2680 v4 CPU and 64GB of memory.
This represents one CPU from the Haswell microarchitecture family and one from the Broadwell
microarchitecture family (a die shrink of Haswell). The KNL platform contains an Intel Xeon Phi
7210 CPU with 16 GB MCDRAM and 96 GB of DDR4 memory.

5.1 Feasible Performance Envelope

The first step when applying POSE is to construct an FPE. Many manufacturers publish power
dissipation figures for their hardware, however for safety reasons these are usually conservative
estimates. POSE works best when the power bounds are as tight as possible; it is therefore advisable
to determine Pmin and Pmax empirically.

The value of Pmin is dependant on the programming model used and the nature of the application.
For this reason, four custom micro-benchmarks have been developed. Each micro-benchmark
executes a single jmp instruction each clock cycle, but does so in differing circumstances. omp_serial

is representative of an OpenMP application that contains a substantial portion of serial work, as
such it executes some instructions in a parallel block, before looping on a single jmp instruction in
a critical section; omp_parallel executes the same jmp instruction, but does so in a parallel block
on all available threads; mpi_parallel similarly performs the same jmp loop, but does so on each
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Table 1. Values that can be used for Pmin and Pmax for the three platforms

Benchmark Haswell Broadwell KNL

omp_serial 111.90 125.78 122.20
omp_parallel 181.14 180.90 166.00
mpi_parallel 167.76 172.20 166.10
mpi_serial 219.79 203.10 194.90
FIRESTARTER 345.57 329.69 311.80

Table 2. Description and run parameters for applications

Application Runtime Parameters / Input File Description

PathFinder -x medium_test.adj_list A graph search application

TeaLeaf tea_bm16_short.in A linear heat conduction equation solver

CloverLeaf clover_bm4.in A Lagrangian-Eulerian Hydrodynamics benchmark

CloverLeaf3D clover_bm.in A 3D implementation of CloverLeaf

miniMD -t 1 -n 30000 --half_neigh 0 (OpenMP) A molecular dynamics proxy using neighbour lists
-t num_ranks -n 30000 --half_neigh 0 (MPI)

CoMD -e -x 90 -y 90 -z 90 A classical molecular dynamics proxy using cell lists

miniFE -nx 512 -ny 512 -nz 256 A mini-app for unstructured implicit finite element codes

HPCCG 128 128 5376 (OpenMP) A simple conjugate gradient benchmark code
128 128 [5376 ÷ num_ranks] (MPI)

available MPI process; finally, mpi_serial is representative of an MPI application that contains
substantial serial work, and as such each rank waits on an MPI_Barrier except for rank 0, which
executes a jmp loop.
Any non-trivial code will perform more work per unit time than these minimal benchmarks.

Additional work means more transistors changing state per cycle, and hence a higher power draw.
FIRESTARTER [19] is used as the benchmark to measure Pmax. This tool is designed to trigger

peak power consumption on x86-64 based servers. It consists of hand optimised assembly routines
which raise the activity factor above the level achievable with high level languages.

In this paper we only consider fully occupied nodes, running at their highest available CPU
frequency. This corresponds to 24 threads/ranks at 2.5GHz for Haswell, 28 threads/ranks at 2.4GHz
for Broadwell and 256 threads/ranks at 1.3GHz for KNL.

Table 1 gives the values that can be used for the FPE for the Haswell, Broadwell and KNL systems
used in this study. Haswell has the largest range of power draw of the three platforms, while the
KNL platform has the smallest.

Of particular note, there is a large difference in the power draw of the omp_serial and mpi_serial

benchmarks, that are both representative of serialised portions of parallel applications. MPI ap-
plications with critical sections typically keep idle threads active using spinlocks. As a result, in
addition to the single active thread performing computation, the other threads also consume energy
checking the state of a barrier waiting for continuation. For applications that must necessarily
contain some serial work, OpenMP will therefore likely produce a more energy-efficient solution.

5.2 POSE Models for Code Optimisation

The next step in this investigation is to capture energy and runtime figures for real applications.
The Mantevo application suite was chosen because it covers a broad range of scientific computing
workloads.

All codes were compiled with the Intel C Compiler (icc) version 18.0. Each application was run
fifteen times on the same node to reduce the impact of random variations in runtime and energy.
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Table 3. Runtime and Energy for the Mantevo applications

Application
Haswell Broadwell KNL

Runtime (s) Energy (J) Runtime (s) Energy (J) Runtime (s) Energy (J)

PathFinder OpenMP 212.91 38 952.89 194.72 34 205.62 243.75 40 803.46

TeaLeaf
OpenMP 322.65 98 593.56 293.42 79 075.99 126.97 34 610.35
MPI 322.23 100 404.76 294.59 83 223.96 132.66 35 907.50

CloverLeaf
OpenMP 187.89 56 459.45 164.26 41 721.59 82.78 22 213.09
MPI 187.41 57 443.92 162.99 43 601.47 116.78 29 950.38

CloverLeaf3D
OpenMP 130.19 34 461.48 105.34 26 652.87 87.69 20 485.27
MPI 111.71 33 056.51 101.14 26 912.57 158.55 40 805.38

miniMD
OpenMP 140.83 34 939.13 104.68 24 986.60 89.28 20 037.16
MPI 132.06 34 493.59 99.08 25 366.42 85.93 20 114.99

CoMD
OpenMP 109.49 23 206.60 90.59 19 350.64 97.29 19 242.44
MPI 87.73 19 239.83 70.65 15 251.38 57.54 12 975.61

miniFE
OpenMP 113.66 26 754.53 103.15 23 764.70 203.89 33 898.46
MPI 86.35 23 953.16 74.27 18 845.43 87.25 19 706.01

HPCCG
OpenMP 199.90 39 226.18 136.01 28 021.77 167.80 28 249.75
MPI 57.15 17 738.34 52.26 14 472.43 78.86 17 764.55

Application parameters were tuned where necessary to ensure reasonable run times on single
nodes.
Table 2 details the applications used in this study and the runtime parameters or input files

used. Each application except PathFinder (for which only an OpenMP implementation exists) was
executed using pure OpenMP and pure MPI; where parameters differed between these executions,
they have been listed separately.
In these experiments, we use Et3 because Laros et al. found that this strikes the right balance

between energy and runtime for HPC [26]. This implies that a 1% reduction in runtime is approx-
imately three times more valuable than the same reduction in energy consumption. In order to
facilitate fair comparison between metrics, EDS and EDD parameterisations are based on the same
1:3 ratio. Whereas the Etn parameter operates in a relative fashion, EDS and EDD parameters are
based on absolute costs of consumption. In our study, the energy costs are around 300 times greater
than that of the runtime; for simplicity, we therefore scale runtime costs by a factor of 300 before
applying the same 3:1 ratio in order to compensate for this effect.
The parameterisation used for EDS is obtained by multiplying the 300 scaling factor and the

3:1 ratio together, resulting in the parameters α = 1 and β = 3 × 300 = 900. The parameterisation

of EDD is very similar, except that it uses a multiplier of
√
3 rather than 3 to account for the

square root present in the definition of EDD. This results in a parameterisation of α = 1 and

β =
√
3 × 300 ≈ 519.615.

We note that the metric parameterisation used in this paper is based on the previous work of
Laros et al. [26] and is used only to illustrate our model and analysis techniques. We believe that
the EDS and EDD metrics can be parameterised such that they produce a dollar-cost value based
on purchasing, energy and maintenance costs ś these values will therefore be machine and site
specific, and so we leave this to future work.
Table 3 lists the mean energy and runtime costs incurred by running codes from the Mantevo

suite. PathFinder, miniMD and TeaLeaf broadly cover the full range of mini-application power
consumption, with PathFinder having the lowest average power consumption on each platform and
TeaLeaf having the highest average power consumption. POSE models are reproduced graphically
in Figures 4, 5 and 6 respectively, and model summaries are presented in Table 4.
As a result of having the lowest average power consumption, our results show that PathFinder

is the code least amenable to power optimisation. PathFinder’s average power usage is near (or
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Fig. 4. Et3 POSE Models for PathFinder
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Fig. 5. EDS POSE Models for miniMD using MPI
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Fig. 6. EDD POSE Models for TeaLeaf using OpenMP

even below) Pomp_parallel, which is indicative that it is not using all available threads for all of its
execution. Using Pomp_serial as a baseline power opens up a larger power optimisation envelope, as
seen in Figure 4, but reducing parallelisation to achieve this power usage will almost certainly lead
to a larger runtime. Instead, it seems more likely that increasing parallelisation (and the average
power draw), would more effectively reduce energy consumption by lowering the runtime. Without
reducing parallelisation further, only 1% of the energy can be saved through power optimisation
on Haswell and KNL in the very best case ś equating to a saving of between 341 J and 386 J.
For Broadwell, the power draw is already below Pomp_parallel; for this reason, some of the insights
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Table 4. Platform specific POSE model summaries

Haswell Broadwell KNL

PathFinder (Runtime; Energy) 212.91 s; 38 952.89 J 194.72 s; 34 205.62 J 243.75 s; 40 803.46 J

Maximum energy saved by reduced power consumption 386.33 J; 1.01× −1019.23 J; 0.97× 341.51 J; 1.01×
Maximum improvement in Et 3 from power optimisation 1.02× 0.94× 1.02×
Minimum speed-up guaranteed to outperform θ 31.30 s; 1.17× 28.36 s; 1.17× 35.10 s; 1.17×
Worst case slowdown as a result of power optimisation 0.53 s; 1.00× −1.42 s; 0.99× 0.51 s; 1.00×
Speed-up required to dominate power optimisation 32.20 s; 1.18× 25.90 s; 1.15× 35.98 s; 1.17×
miniMD [MPI] (Runtime; Energy) 132.06 s; 34 493.59 J 99.08 s; 25 366.42 J 85.93 s; 20 114.99 J

Maximum energy saved by reduced power consumption 12 339.58 J; 1.56× 3986.12 J; 1.19× 5842.41 J; 1.41×
Maximum improvement in EDS from power optimisation 1.18× 1.07× 1.13×
Minimum speed-up guaranteed to outperform θ 8.94 s; 1.07× 5.94 s; 1.06× 5.51 s; 1.07×
Worst case slowdown as a result of power optimisation 11.56 s; 1.09× 3.57 s; 1.04× 5.48 s; 1.06×
Speed-up required to dominate power optimisation 27.96 s; 1.27× 12.31 s; 1.14× 14.86 s; 1.21×
TeaLeaf [OpenMP] (Runtime; Energy) 322.65 s; 98 593.56 J 293.42 s; 79 075.99 J 126.97 s; 34 610.35 J

Maximum energy saved by reduced power consumption 40 148.49 J; 1.69× 25 996.31 J; 1.49× 13 532.77 J; 1.64×
Maximum improvement in EDD from power optimisation 1.20× 1.13× 1.16×
Minimum speed-up guaranteed to outperform θ 10.98 s; 1.04× 14.32 s; 1.05× 4.03 s; 1.03×
Worst case slowdown as a result of power optimisation 30.80 s; 1.10× 18.74 s; 1.06× 9.61 s; 1.08×
Speed-up required to dominate power optimisation 62.92 s; 1.24× 46.83 s; 1.19× 20.72 s; 1.19×

presented in Table 4 show negative improvements, since this would require increasing the power
draw.

Conversely, TeaLeaf is the application most amenable to power optimisation, closely followed by
CloverLeaf. This is illustrated by the difference in scale between Figures 4 and 6, with POSE models
for TeaLeaf showing much greater scope for energy-aware optimisation. On all three platforms,
TeaLeaf has the highest average power usage (311.6W on Haswell, 282.5W on Broadwell, 272.6W
on KNL), and therefore logically has the most scope for power optimisation. As shown in Table 4,
energy consumption can potentially be improved by between 1.49× and 1.69× on the three platforms.
Through power optimisation the EDD FoM value can also be improved in the best case by between
1.13× and 1.20×.

For both TeaLeaf and CloverLeaf, there is only a small variation in performance between the
OpenMP and MPI variants. On the two Xeon platforms, the runtimes are within a few seconds in the
worst case, with MPI marginally faster, but using more energy as a result of a higher average power
draw. For the KNL platform, OpenMP leads to a higher average power draw but a considerably
lower runtime and therefore a more energy-efficient execution.
miniMD falls somewhere between the extremes of PathFinder and TeaLeaf with an average

power lying somewhere between 225W and 260W. On all three platforms, the MPI variant has a
lower runtime than the OpenMP implementation, but on both Broadwell and KNL, it runs 18W and
10W higher, respectively, leading to higher overall energy usage. Table 4 shows that the EDS FoM
can be improved by 1.18× for Haswell, 1.07× for Broadwell, and 1.13× for the KNL platform in the
best case focussing only on power optimisations. Compared to TeaLeaf, the possible improvements
from power optimisation are more modest, which logically follows from miniMD having a lower
average power usage.

Between the three platforms used in this paper, the maximum energy that can be saved is usually
lower on KNL, as a result of it exhibiting lower runtimes. The only exception to this is PathFinder,
where the application does not use all available threads throughout the execution. Across all
applications, the Broadwell platform consistently outperforms the Haswell platform in terms of
both runtime and energy usage ś the Broadwell CPU is a die shrink of the Haswell CPU with two
additional cores per socket and lower average power usage, showing the progress made between
processor generations.
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Table 5. POSE model summaries for Different Metrics on Haswell

Et
3 EDS EDD

PathFinder (212.91 s; 38 952.89 J)

Maximum energy saved by reduced power consumption 386.33 J; 1.01× 386.33 J; 1.01× 386.33 J; 1.01×
Maximum improvement in metric from power optimisation 1.02× 1.00× 1.00×
Minimum speed-up guaranteed to outperform θ 31.30 s; 1.17× 27.80 s; 1.15× 24.96 s; 1.13×
Worst case slowdown as a result of power optimisation 0.53 s; 1.00× 0.36 s; 1.00× 0.23 s; 1.00×
Speed-up required to dominate power optimisation 32.20 s; 1.18× 28.42 s; 1.15× 25.37 s; 1.14×
TeaLeaf [OpenMP] (322.65 s; 98 593.56 J)

Maximum energy saved by reduced power consumption 40 148.49 J; 1.69× 40 148.49 J; 1.69× 40 148.49 J; 1.69×
Maximum improvement in metric from power optimisation 2.85× 1.24× 1.20×
Minimum speed-up guaranteed to outperform θ 9.77 s; 1.03× 10.36 s; 1.03× 10.98 s; 1.04×
Worst case slowdown as a result of power optimisation 45.06 s; 1.14× 37.14 s; 1.12× 30.80 s; 1.10×
Speed-up required to dominate power optimisation 81.76 s; 1.34× 71.50 s; 1.28× 62.92 s; 1.24×

Table 5 shows how summary data changes between the three metrics outlined in this paper
for PathFinder and TeaLeaf on the Haswell platform. Between the three metrics used, our POSE
models show relatively minor differences between the Et3, EDS and EDDmetrics. For PathFinder, in
particular, the choice of metric has very little effect on the insights presented. As previously stated,
PathFinder is the application that has the lowest average power draw throughout its execution
and therefore its POSE model places tight bounds on its scope for energy-aware optimisation,
regardless of the metric used. In particular, only half a second can be theoretically traded for a
more energy-efficient execution of PathFinder.
The differences between metrics becomes more apparent on an application that is potentially

more amenable to power optimisation like TeaLeaf. The biggest difference between Et3 and our
novel metrics is illustrated in the second insight for TeaLeaf, where the Et3 FoM value can be
improved by up to 2.85× through power-optimisation. For both EDS and EDD, their FoM values
can only be improved by 1.24× and 1.20×, respectively.

The divergence in metric value highlights an important issue with Etn metrics. In this paper, the
EDS and EDD metrics have been parameterised to allow a fair comparison to Et3, however one
particular feature of both the EDS and EDD metrics is that they can be parameterised to represent
the monetary cost [34]; with carefully chosen parameters for EDS and EDD, POSE models can
represent potential savings in dollar cost. The divergence between Et3 and EDS/EDD may lead an
application developer to incorrectly focus on optimising for power when runtime optimisations
would deliver a better EDS or EDD value, and therefore a lower monetary cost.

For many of the applications summarised in Table 3, the choice of programming model results in
minor differences in runtime and energy performance. However, both miniFE and HPCCG use less
time and energy when parallelised with MPI. Figure 7 shows POSE models and power traces for
the OpenMP and MPI variants of miniFE.

The OpenMP implementations of both miniFE and HPCCG exhibit a lower average power draw
than their MPI equivalents but have a much higher runtime. Like PathFinder previously, this
suggests that they are not fully exploiting the available parallelism. From the POSE models shown
in Figure 7a, it seems there is less scope for power optimisation on the OpenMP variant and so it
would be more appropriate to explore runtime optimisations.

Figure 7b shows a temporal power trace for miniFE using OpenMP and MPI. From this data it is
clear that there is a serialised period present in the OpenMP variant, likely due to the grid creation
and decomposition being serialised. By parallelising this stage (as has been done successfully in
the MPI implementation), the runtime can be greatly improved and a more energy-efficient code
can be achieved.
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Fig. 7. POSE models for miniFE using OpenMP and MPI on Haswell, and associated temporal power traces.

This leads the the observation that codes with less scope for power optimisation likely have much
greater scope for energy optimisation through increasing parallelisation; therefore significantly
reducing runtime at the expense of slightly increasing the average power consumption. Conversely,
codes with more scope for power optimisation can likely have their power draw reduced through
close analysis of the balance between the memory and CPU subsystems, or through reducing the
parallelisation if this is possible without increasing the runtime. Furthermore, the choice of parallel
programming model may be important if there are inherently serial portions in the application.

6 SYSTEM SUMMARY POSE

Ordinary POSE models quantify the scope which exists for the energy-aware optimisation of
a specific code running on a given system. In this section, we present System Summary POSE,
an extension of POSE that allows developers to reason about system-wide power optimisation
characteristics without reference to any particular code.

Typically, POSE models use system Pmin and Pmax energy bounds together with the energy and
runtime costs incurred when running a code to calculate the scope that code has for power and
runtime optimisation. System Summary POSE is a meta-heuristic which determines the range
of results conventional POSE models could produce for a given system. This łbound-of-boundsž
approach allows developers to understand the scope a system has for energy-aware software
optimisation independent of the code being run.

6.1 System Summary POSE Derivation

System Summary POSE examines how the insights provided by POSE models vary in response
to changes in the initial code θ . Increasing the power consumption of a code while keeping its
metric value fixed leads to a corresponding increase in the scope for power optimisation. Figure 8
illustrates how such a change would be reflected in the output of an Et3 POSE model.

System Summary POSE determines which point along the optimisation bound B Ð E maximises
the value of each of the five key insights provided by POSE models. This maximum value then
serves as an upper limit on the values which the corresponding insight could take for real codes
running on the target system.
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Fig. 8. Et3 System Summary POSE Intuition

In practice, all POSE insights assume their maximum values at either vertex B or vertex E because
these points correspond to extremes of power consumption. As such, another interpretation
of System Summary POSE is as a pair of ordinary POSE models for the Pmin and Pmax energy
benchmarks.

Ordinary POSE models require four input parameters; the Pmin and Pmax values which define an
FPE and the energy and runtime costs for a specific code. A key feature of the relative forms of
POSE insights is that their runtime terms always cancel. Furthermore, the power draws at vertices
B and E are by definition Pmax and Pmin respectively. As a result, System Summary POSE is able to
derive system-wide power optimisation limits from just two unknowns, namely the values for Pmin

and Pmax.
The first relative POSE insight, Eθ /ED , places an upper limit on the amount of energy which can

be saved by reducing power consumption. Figure 8 makes it clear that this value is maximised when
θ = B and therefore Pθ = Pmax. Intuitively, the code with the most to gain from energy optimisation
is the one which exhibits the highest rate of power consumption. Substituting in Pθ = Pmax into
the definition of the first insight yields the following metric agnostic expression for system-wide
energy savings:

argmax
θ

Eθ

ED
= B

EB

ED
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Pmin · tθ

=

Pmax

Pmin
(12)

The second relative POSE insight,M(θ )/M(C), limits the maximum improvement in a metric which
can be attributed to power optimisation. This value depends on the metric used, however for any
valid metric (a monotonically increasing function of time and energy) this value is again maximised
when θ is at point B. Substituting in Pθ = Pmax and PC = Pmin yields the following system-wide
bounds for the Etn , EDS and EDD metrics respectively:

argmax
θ

M (θ )
M (C) =

Eθ tθ
n

EC tC
n

=

Pmax tθ
n+1

Pmin tC
n+1

=

Pmax
2
tθ

n+1

Pmin
2 tθ

n+1
(tC = tθ

(

Pmin
Pθ

)
1

n+1
)

=

(

Pmax

Pmin

)2

(13)
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argmax
θ

M (θ )
M (C) =

αEθ + βtθ

αEC + βtC

=

tθ

tC
· Pmax +

β/α
Pmin +

β/α (tC = tθ

(

Pmin+
β/α

Pθ +
β/α

)

)

=

(

Pmax +
β/α

Pmin +
β/α

)2

(14)

argmax
θ

M (θ )
M (C) =

√

(αEθ )2 + (βtθ )2
√

(αEC )2 + (βtC )2

=

tθ

tC
·

√

Pmax
2
+ (β/α)2

Pmin
2
+ (β/α)2

(tC = tθ

√

Pmin
2
+(β/α)2

Pθ
2
+(β/α)2 )

=

Pmax
2
+ (β/α)2

Pmin
2
+ (β/α)2

(15)

The third relative POSE insight, tθ /tB , represents the smallest speed-up which guarantees a code
that outperforms θ with respect toM . Uniquely, this value is maximised when θ runs at minimum
power, and is therefore located at point E. This is because any speed-up at all would guarantee an
improvement in terms ofM for codes with maximum power consumption Pmax. The derivations
for this system-wide bound for the Etn , EDS and EDD metrics are as follows:

argmax
θ

tθ

tB
=

tθ

tθ

(

Pθ
Pmax

)
1

n+1

tE

tB
=

(

Pmax

Pmin

)
1

n+1

(16)

argmax
θ

tθ

tB
=

tθ

tθ
Pθ +

β/α
Pmax+β/α

tE

tB
=

Pmax +
β/α

Pmin +
β/α (17)

argmax
θ

tθ

tB
=

tθ

tθ ·
√

Pθ
2
+(β/α)2

Pmax
2
+(β/α)2

tE

tB
=

√

Pmax
2
+ (β/α)2

Pmin
2
+ (β/α)2

(18)

The fourth relative POSE insight, tE/tθ , represents the maximum slowdown which could be traded
off to achieve a slower yet more energy efficient code. This insight is maximised at vertex B because
this point has the most scope for power optimisation. As a result, this system-wide bound takes on
the same values as Equations 16, 17 and 18 for the three metrics considered.

argmax
θ

tE

tθ
= B

=

tE

tB
(19)

The final relative POSE insight, tθ /tA, represents the smallest speed-up guaranteed to outperform
any power optimised version of θ . This insight is once again maximised at vertex B because this
point has the most scope for power optimisations and as such larger runtime optimisations are
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required in order to guarantee they outperform all possible power optimisations. Equations 20 ś 22
give the derivations of this system-wide bound for the Etn , EDS and EDD metrics.

argmax
θ

tθ

tA
=

tθ

tθ

(

Pmin
2

Pθ Pmax

)
1

n+1

=

1
(

Pmin
2

Pmax
2

)
1

n+1

=

(

Pmax

Pmin

)
2

n+1

(20)

argmax
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tθ
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1
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(Pmax+β/α)2

=
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(21)

argmax
θ
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tθ · Pmin
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Pθ
2
+(β/α)2 ·
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Pmax

2
+(β/α)2
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1
(

Pmin
2
+(β/α)2

Pmax
2
+(β/α)2

)

=
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2
+ (β/α)2
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2
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(22)

Equations 12 ś 22 highlight a number of interesting properties. Equation 12 does not depend on
the metric used, as it deals exclusively with energy savings and does not consider runtime. For Etn

metrics, Equation 13 shows that the runtime exponent n does not influence the degree to which
power optimisation can improve an Etn metric. Further, for the EDS and EDD metrics, Equations 14
and 21, and Equations 15 and 22 show that the second and fifth relative POSE insights are identical,
i.e., the maximum improvement in the metric that can be attributed to power optimisation is equal
to the minimum speed-up required to dominate power optimisations. Finally, The fact that the third
and fourth relative POSE insights are identical shows that the maximum slowdown from power
optimisation is the same as the smallest speed-up which is guaranteed to improve performance in
terms of M . Most significantly, all of these equations only depend on Pmin and Pmax. As a result,
System Summary POSE analysis can be carried out on any system for which these parameters are
known.

6.2 System Summary POSE Investigation

Building a System Summary POSE model requires only that we can measure the Pmin and Pmax

bounds for a given system. Table 1 in Section 5.1 provides these bounds for the three plat-
forms used throughout this paper. Table 6 shows the five key insights that System Summary
POSE can produce using the Et3, EDS and EDD metrics, where Pmax = PFIRESTARTER and Pmin =

min(Pomp_parallel, Pmpi_parallel).
The first key insight, the maximum amount of energy that can be saved by reducing power

consumption, does not depend on the metric used and shows that power optimisation could deliver a
2.06× improvement in energy consumption for Haswell nodes, a 2.01× improvement for Broadwell
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Table 6. System Summary POSE Insights for Haswell, Broadwell and KNL

Haswell Broadwell KNL

Maximum energy saved by reduced power consumption 2.06× 2.01× 1.88×
Et

3

Maximum improvement in Et 3 from power optimisation 4.24× 4.03× 3.53×
Minimum speed-up guaranteed to outperform θ 1.20× 1.19× 1.17×
Worst case slowdown as a result of power optimisation 1.20× 1.19× 1.17×
Speed-up required to dominate power optimisation 1.44× 1.42× 1.37×

EDS
Maximum improvement in EDS from power optimisation 1.36× 1.35× 1.29×
Minimum speed-up guaranteed to outperform θ 1.17× 1.16× 1.14×
Worst case slowdown as a result of power optimisation 1.17× 1.16× 1.14×
Speed-up required to dominate power optimisation 1.36× 1.35× 1.29×

EDD
Maximum improvement in EDD from power optimisation 1.31× 1.30× 1.23×
Minimum speed-up guaranteed to outperform θ 1.14× 1.14× 1.11×
Worst case slowdown as a result of power optimisation 1.14× 1.14× 1.11×
Speed-up required to dominate power optimisation 1.31× 1.30× 1.23×

nodes and a 1.88× improvement for KNL, in the best case. However, an improvement of this
magnitude would require reducing power consumption to near Pmin, with no increase in runtime.
Between the three platforms, each has a similar minimum power draw, but both the Broadwell
and the KNL nodes have a lower maximum power draw; leading to less scope for energy-aware
optimisation.
Each of the remaining insights are dependant on the parameterisation of the metric used. For

Et3, an applications runtime could potentially be increased by between 1.17× and 1.20× in the
worst case, in order to produce a slower, but more energy-efficient code. A minimum speed-up of
the same magnitude is required on each respective platform to outperform any power optimisation
in terms of Et3. Furthermore, a speed-up greater than approximately 1.4× is likely to outperform
any power-optimised application.
Across all three platforms, both EDS and EDD show less scope for system-wide energy-aware

optimisation. On Haswell, a 1.17× reduction in runtime will lead to better EDS performance, and a
1.36× reduction in runtime will outperform any power optimisation. For Broadwell and KNL, a
1.16× and 1.14× reduction in runtime will lead to a better EDS FoM value, respectively; a 1.35×
and 1.29× reduction in runtime will outperform any power optimisations. The insights produced
using EDD suggests even smaller improvements are required to outperform power optimisations.
As with ordinary POSE models, the biggest difference between the three metrics lies in the

second insight ś the maximum improvement in the metric FoM value that can be achieved through
power optimisation. In the best case, the Et3 FoM value can be improved by up to 4.24× on Haswell,
whereas the EDS and EDD values can only be improved by 1.36× and 1.31×, respectively. This
pattern is repeated across both Broadwell and KNL architectures, whereby the Et3 value can be
improved by up to 4.03× and 3.53×, whereas the EDS and EDD metrics can only be improved by
between 1.23× and 1.35×.
For applications exhibiting a high power draw (near Pmax), power optimisation can deliver

a significant reduction in energy costs; but the results in Table 6 show that modest runtime
optimisations (greater than ≈ 1.3×) are more likely to reduce energy expenditure.

System Summary POSE for Components

System Summary POSE models can also be built for individual subsystems as well as entire nodes.
Table 7 gives values that can be used for the Pmin and Pmax bounds for the CPU components of the
three platforms used in this study.
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Table 7. Values that can be used for Pmin and Pmax for the three platforms CPU component

Benchmark Haswell Broadwell KNL

omp_serial 52.33 67.85 80.84
omp_parallel 114.71 115.79 125.07
mpi_parallel 102.18 108.48 125.05
mpi_serial 148.54 147.66 142.64
FIRESTARTER 231.00 223.87 229.10

Table 8. System Summary POSE Insights for the CPU components in Haswell, Broadwell and KNL

Haswell Broadwell KNL

Maximum energy saved by reduced power consumption 2.26× 2.06× 1.83×
Et

3

Maximum improvement in Et 3 from power optimisation 5.11× 4.26× 3.36×
Minimum speed-up guaranteed to outperform θ 1.23× 1.20× 1.16×
Worst case slowdown as a result of power optimisation 1.23× 1.20× 1.16×
Speed-up required to dominate power optimisation 1.50× 1.44× 1.35×

EDS
Maximum improvement in EDS from power optimisation 1.40× 1.35× 1.31×
Minimum speed-up guaranteed to outperform θ 1.18× 1.16× 1.14×
Worst case slowdown as a result of power optimisation 1.18× 1.16× 1.14×
Speed-up required to dominate power optimisation 1.40× 1.35× 1.31×

EDD
Maximum improvement in EDD from power optimisation 1.60× 1.53× 1.48×
Minimum speed-up guaranteed to outperform θ 1.27× 1.24× 1.22×
Worst case slowdown as a result of power optimisation 1.27× 1.24× 1.22×
Speed-up required to dominate power optimisation 1.60× 1.53× 1.48×

As previously, the parameters for EDS and EDD are chosen to facilitate fair comparison with
Et3, i.e., using a 1:3 ratio. Since the magnitude of energy costs for the CPU will be around 200
times greater than that of the runtime, we additionally factor this into our choice of value for
the parameters. For EDS this results in the parameters α = 1 and β = 3 × 200 = 600. The

parameterisation of EDD is similar, but using a multiplier of
√
3 instead, resulting in α = 1 and

β =
√
3 × 200 ≈ 246.410.

Table 8 shows that power optimisation could potentially deliver a 2.26× reduction in Haswell
CPU energy consumption, a 2.06× reduction in Broadwell CPU energy consumption and a 1.83×
reduction in KNL CPU energy consumption. For each of the three metrics, the Haswell and
Broadwell CPUs show slightly more scope for power optimisation, with greater speed-ups required
to dominate power optimisation. This is also the case for KNL, except when using the Et3 metric ś
where smaller improvements are required due to the KNL CPU accounting for a greater proportion
of the nodes power draw (≈ 75%, compared to ≈ 65% for Haswell and Broadwell).
CPU energy consumption accounts for a significant portion of the energy used by high per-

formance systems [16]. It is therefore unsurprising that System Summary POSE yields similar
values for the platforms in this study and the CPUs they contain. However, the results in Table 8
do suggest that, in general, there is a greater opportunity for energy-aware optimisation on the
CPU, and these optimisations should translate to energy savings on the whole node.

System Summary POSE models for individual components are especially useful, since the results
can more easily transferred to other machines containing the same, or similar, hardware. Providing
the Pmin and Pmax bounds can be measured, a System Summary POSE model can be built and used.
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7 CONCLUSION

Historically, runtime was the main factor used to define the performance of HPC applications. More
recently, unsustainable increases in power draw have led energy consumption to join runtime as a
primary constraint in HPC. Performance engineers are facing a future in which they must minimise
both runtime and energy consumption in tandem. Existing tools must be updated and new tools
must be developed in order to support this emerging class of optimisation.
This paper outlines POSE, a mathematical and visual modelling tool which captures the trade

off between software power consumption and runtime. POSE allows developers to compare the
potential benefits of power and runtime optimisation and determine which approach is most
suitable for their code.

In this paper, we have demonstrated the POSE model by studying the optimisation characteristics
of codes from the Mantevo mini-application suite on three Intel-based platforms. On each platform,
TeaLeaf was found to have the most scope for single node power optimisation, with potential
improvements in the Et3 metric of up to 2.85× on the Haswell architecture. Conversely, PathFinder
had the least scope for power optimisation with improvements to the same metric limited to just
1.02× without sacrificing concurrency. When POSE models are formulated using energy-aware
metrics such as EDS and EDD, the potential benefits of power optimisation are considerably
constrained. Power optimisation of TeaLeaf could improve the EDS metric by up to 1.24× in the
best case, and the EDD metric value by up to just 1.20× on the Haswell platform. For all other
platforms, the best-case improvement is constrained further still.

This paper also presented an extension to POSE that allows developers to reason about the power
optimisation potential for a system or component, independently of any particular code, using only
the minimum and maximum power draw. Our results showed that, for the Haswell architecture,
power optimisation is limited to reducing node-level energy consumption by at most 2.06×. Again,
the Broadwell and KNL architectures show less opportunity for power optimisation ś a maximum
improvement of 2.01× and 1.88×, respectively.

Between the three metrics outlined in this paper, Etn metrics consistently show a greater scope
for power optimisation. In particular, System Summary POSE models show that the Et3 FoM value
can be improved by up to 4.24× from power optimisation on the Haswell platform. For both EDS
and EDD, the models suggest at most a 1.36× or 1.31× improvement ś highlighting how Etn metrics
may lead application developers to pursue power optimisation where little benefit may be derived.
POSE models like those contained in this paper are useful because they allow performance

engineers to focus their efforts where they will yield the greatest return. Additionally, it may be
possible to build energy-efficient supercomputers using component-level System Summary POSE
models to choose hardware that is amenable to this class of optimisation.

Future Work

This paper lays the foundation for the POSEmodel and outlines its use in energy-aware optimisation
studies. POSE has a number of potential uses which we intend to explore in the future. First, we
plan to revisit the use of frequency scaling and P-state selection to identify whether POSE can
highlight additional opportunities for power-optimisation [35]. Second, we wish to use POSE to
investigate the use of accelerator architectures; we believe GPU and FPGA architectures may offer
greater opportunities for power optimisation compared to the x86-64 architectures outlined in
this paper [14]. Third, we would like to validate the insights presented by POSE through a code
optimisation case study.
Further, we would like to investigate potential extensions to our POSE model. In contrast to

POSE, the Roofline Model of Energy can be used to analyse how the characteristics of a code relate
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to its power draw. The relationship between a POSE model and its roofline model of energy may
offer additional, more targeted insights for optimisation opportunities.
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