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Abstract. In a cyclic executive, a series of pre-determined frames are
executed in sequence; once the series is complete the sequence is repeated.
Within each frame individual units of computation are executed, again in
a pre-specified sequence. The implementation of cyclic executives upon
multi-core platforms is considered. A Linear Programming (LP) based
formulation is presented of the problem of constructing cyclic execu-
tives upon multiprocessors for a particular kind of recurrent real-time
workload – collections of implicit-deadline periodic tasks. Techniques are
described for solving the LP formulation under different kinds of restric-
tions in order to obtain preemptive and non-preemptive cyclic executives.

1 Introduction and motivation

Real-time scheduling theory has made great advances over the past several
decades. Despite these advances, interactions with industrial collaborators in
highly safety-critical application domains, particularly those that are subject to
stringent certification requirements, reveal that the use of the very simple cyclic
executive approach [1] remains surprisingly wide-spread for scheduling safety-
critical systems. A cyclic executive (CE) is a simple deterministic scheme that
consists, for a single processor, of the repeated execution of a series of frames,
each comprising a sequence of jobs that execute in their defining sequence and
must complete by the end of the frame. Although there are a number of draw-
backs to using cyclic executives (some are discussed in Section 2), this approach
offers two significant advantages, predictability and low run-time overhead , that
are responsible for their continued widespread use in scheduling highly safety-
critical systems.

Highly safety-critical real-time systems have traditionally been implemented
upon custom-built single-core processors that are designed to guarantee pre-
dictable timing behavior during run-time. As safety-critical software has become
more computation-intensive, however, it has proved too expensive to custom-
build hardware powerful enough to accommodate the computational require-
ments of such software; hence, there is an increasing trend towards implementing
safety-critical systems upon commercial off-the-shelf (COTS) platforms. Most
COTS processors today tend to be multi-core ones; this motivates our research



described here into the construction of CEs that are suitable for execution upon
multi-core processors.

This research. We derive several approaches to constructing cyclic executives
for implicit-deadline periodic task systems upon identical multiprocessors. These
approaches share the commonality that they are all based upon formulating the
schedule construction problem as a linear program (LP). Cyclic executives in
which jobs may be preempted can be derived from solutions to such LPs; since
efficient polynomial-time algorithms are known for solving LPs, this approach
enables us to design algorithms for constructing preemptive CEs that have run-
ning time polynomial in the size of the CE.

In order to construct non-preemptive CEs from a solution to the LP, the
LP must be further constrained to require that some variables may only take
on integer values: this is an integer linear program, or ILP. Solving an ILP is
known to be NP-hard [8], and hence unlikely to be solvable exactly in polynomial
time. However, the optimization community has recently been devoting immense
effort to devise extremely efficient implementations of ILP solvers, and highly op-
timized libraries with such efficient implementations are widely available today.
Since CEs are constructed prior to run-time, we believe that it is reasonable to
attempt to solve ILPs exactly rather than only approximately, and seek to obtain
ILP formulations that we will seek to solve exactly to construct non-preemptive
multiprocessor CEs for implicit-deadline periodic task systems. However if this
is not practical for particular problem instances, we devise an approximation
algorithm with polynomial running time for constructing non-preemptive CEs,
and evaluate the performance of this approximation algorithm vis-a-vis the ex-
act one both via the theoretical metric of speedup factor, and via simulation
experiments on synthetically generated workloads. We additionally show that
for a particular kind of workload that is quite common in practice – systems of
harmonic tasks – even better results are obtainable.

2 Cyclic Executives

In this section we provide a brief introduction to the cyclic executive approach
to hard-real-time scheduling. This is by no means comprehensive or complete;
for a textbook description, please consult [11, Ch. 5.2–5.4].

In the cyclic executive approach, a schedule called a major schedule is de-
termined prior to run-time, which describes the sequence of actions (i.e., com-
putations) to be performed during some fixed period of time called the major
cycle. The actions of a major schedule are executed cyclically, going back to the
beginning at the start of each major cycle.4 The major schedule is further di-
vided into one or more frames (also known as minor schedules or minor cycles).

4 Multiple major schedules may be defined for a single system, specifying the desired
system behavior for different modes of system operation; switching between modes
is accomplished by swapping the major schedule used. If a major cycle is of not too
large a duration, then switches between modes may be restricted to only occur at
the end of major cycles.



Each frame is allocated a fixed length of time during which the computations
assigned to that frame must be executed. Timing correctness is monitored at
frame boundaries via hardware interrupts generated by a timer circuit: if the
computations assigned to a frame are discovered to have not completed by the
end of the frame then a frame overrun error is flagged and control transferred
to an error-handling routine.

The chief benefits of the cyclic executive approach to scheduling are its im-
plementation simplicity and efficiency, and the timing predictability it offers: if
we have a reliable upper bound on the execution duration of each computation
then an application’s schedulability is determined by construction (i.e., if we are
successful in building the CE then we can be assured that all deadlines are met).

The chief challenge lies in constructing the schedules. This problem is ren-
dered particularly challenging by the requirement that for implementation effi-
ciency considerations, timing monitoring is performed only at frame boundaries
— as stated above, a timer is set at the start of a frame to go off at the end of
the frame, at which point in time it is verified that all actions assigned to that
frame have indeed completed execution (if not, corrective action must be taken
via a call to error-handling routines). CE’s are typically used for periodic work-
loads. Hence the schedule-generation approach proposed in [1] requires that at
least one frame lie within the interval formed by the instants that each action —
“job” — become available for execution, and the instant that it has a deadline.
For efficiency considerations, it is usually required that all tasks have a period
that is a multiple of the minor cycle, and a deadline that is no smaller than
the minor cycle duration. Schedule construction is in general highly intractable
for many interesting models of periodic processes [1]; however, heuristics have
been developed that permit system developers to construct such schedules for
reasonably complex systems (as Baker & Shaw have observed [1], “if we do not
insist on optimality, practical cases can be scheduled using heuristics”).

In this paper, we model our periodic workload as a task system of implicit-
deadline periodic tasks. Some of our results additionally require that the tasks
have harmonic periods: for any pair of tasks τi and τj , it is the case that Ti divides
Tj exactly or Tj divides Ti exactly. Although this does constitute a significant
restriction on the periodic task model, many safety-critical systems appear to
respect this restriction.

3 Workload Model

Throughout this paper we assume that we are given a task system τ = {τi =
(Ci, Ti)}

N
i=1 of N implicit-deadline periodic5 tasks that are to be scheduled upon

an m-processor identical multiprocessor platform. The worst-case execution time
(WCET) of τi is Ci, and its period is Ti. Let P denote the least common multiple
(lcm) of the periods of all the tasks in τ (P is often called the hyper-period of
τ), and let F denote the greatest common divisor (gcd) of the periods of all the

5 We highlight that these are periodic, not sporadic, tasks: τi generates jobs at time-
instants k × Ti, for all k ∈ N.



N and m Number of tasks and processors

τi = (Ci, Ti) The i’th task has worst-case execution time Ci and period Ti

P lcmN
i=1{Ti} – the hyperperiod . Selected as major cycle duration

F gcdN
i=1

{Ti}. Selected as minor cycle (frame) duration
f The amount of execution that a single processor can accommodate in

one frame. Upon unit-speed processors, f = F
Φk The k’th frame, for k ∈ {1, 2, . . . , P/F}

n The total number of jobs in one hyperperiod. n =
∑N

i=1
(P/Ti)

ji = (ai, ci, di) The i’th job, 1 ≤ i ≤ n. Its arrival time, WCET, and absolute deadline
J The collection of these n jobs
xijk LP variable: the fraction of the i’th job assigned to the j’th processor

during the k’th frame

Fig. 1. Some of the notation used in this paper

tasks in τ . P is selected as the duration of the major cycle, and F the duration
of the minor cycle, of the CE’s we will construct.

Some further notation and terminology: Let J = {j1, j2, . . . , jn) denote all
the jobs generated by τ that have their arrival times and deadlines within the
interval [0, P ), and let ai, ci and di denote the arrival time, WCET, and (ab-
solute) deadline respectively of job ji. (We will often represent a job ji by an

ordered 3-tuple of its parameters: ji
def

= (ai, ci, di). We refer to the interval [ai, di)
as the scheduling window of this job ji.) Note that the number of jobs n may
in general take on a value that is exponential in the number of tasks N . Since
we are seeking to explicitly construct a schedule for the n jobs, we believe that
it is reasonable to evaluate the efficiency of algorithms for constructing these
schedules in terms of the number of jobs n to be scheduled rather than in terms
of the number of periodic tasks N .

Without loss of generality, we assume that the tasks are indexed according
to non-decreasing periods: Ti ≤ Ti+1 for all i, 1 ≤ i < N . For harmonic task
systems τ , the tasks have harmonic periods: Ti divides Ti+1 exactly for all i,
1 ≤ i < N .

Example 1 Consider a system τ comprising three tasks τ1, τ2, and τ3, with periods

T1 = 4, T2 = 6, and T3 = 12. P = lcm(4, 6, 12) = 12; F = gcd(4, 6, 12) = 2. (Therefore,

minor cycle duration is 2, and major cycle duration is 12.) For this τ , J comprises the

six jobs j1–j6 depicted in Figure 2. There are (12/2) = six frames or minor cycles within

the major cycle – these are labeled in the figure as Φ1, Φ2, . . . , Φ6 with Φk spanning the

interval [2(k − 1), 2k].

4 Representing Cyclic Executives as Linear Programs

In this section we represent the problem of constructing a cyclic executive as
a linear program. We start out with a brief review of some well-known facts
concerning linear programs that we will use in later sections of the paper.
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Fig. 2. The jobs generated by the task system of Example 1.

4.1 Some Linear Programming Background

In an integer linear program (ILP), one is given a set of v variables, some or all of
which are restricted to take on integer values only, a collection of “constraints”
that are expressed as linear inequalities over these v variables, and an “objective
function,” also expressed as a linear inequality of these variables. The set of all
points in v-dimensional space over which all the constraints hold is called the
feasible region for the integer linear program. The goal is to find the extremal
(maximum or minimum, as specified) value of the objective function over the
feasible region.

A linear program (LP) is like an ILP, without the constraint that some of the
variables are restricted to take on integer values only. That is, in an LP over a
given set of v variables, one is given a collection of constraints that are expressed
as linear inequalities over these v variables, and an objective function, also ex-
pressed as a linear inequality of these variables. The region in v-dimensional
space over which all the constraints hold is again called the feasible region for
the linear program, and the goal is to find the extremal value of the objec-
tive function over the feasible region. A region is said to be convex if, for any
two points p1 and p2 in the region and any scalar λ, 0 ≤ λ ≤ 1, the point
(λ ·p1 + (1− λ) ·p2) is also in the region. A vertex of a convex region is a point
p in the region such that there are no distinct points p1 and p2 in the region,
and a scalar λ, 0 < λ < 1, such that [p ≡ λ · p1 + (1− λ) · p2].

It is known that an LP can be solved in polynomial time by the ellipsoid
algorithm [9] or the interior point algorithm [7].

We now state without proof some basic facts concerning linear programming
optimization problems.

Fact 1 The feasible region for a LP problem is convex, and the objective function
reaches its optimal value at a vertex point of the feasible region.

An optimal solution to an LP problem that is a vertex point of the feasible region
is called a basic solution to the LP problem.



Fact 2 A basic solution to an LP can be found in polynomial time.

Fact 3 Consider a linear program on v variables with each variable subject to the
constraint that it be ≥ 0 (such constraints are called non-negativity constraints).
Suppose that in addition to these non-negativity constraints there are c other
linear constraints. If c < v, then at most v of the variables have non-zero values
at each vertex of the feasible region (including at all basic solutions).

4.2 An LP representation of CEs

Given a periodic task system comprising N tasks for which an m-processor cyclic
executive is to be obtained, we now describe the construction of a linear program
with

(

N ×m × (P/F )
)

variables, each of which is subject to a non-negativity

constraint (i.e., each may only take on a value ≥ 0), and
(

n+(m+N)× (P/F )
)

additional linear constraints.

§1. Variables. We will have a variable xijk denote the fraction of job ji that is
scheduled upon the j’th processor during the k’th frame. The index i takes on
each integer value in the range [1, n] (recall that n denotes the total number of
jobs generated by all the periodic tasks over the hyper-period). For each i,

– The index j takes on each integer value in the range [1,m].
– Note that job ji may only execute within those frames that are contained

in the scheduling window – the interval [ai, di) – of job ji. The index k,
therefore, only takes on values over the range of frame-numbers of those
frames contained within [ai, di).

The total number of xijk variables is equal to
(

N × m × (P/F )
)

, where N
denotes the number of periodic tasks, m denotes the number of processors, and
P/F represents the number of minor cycles.

§2. An objective function. Let f denote the amount of computing that can
be accomplished by a processor executing for the duration F of an entire frame;
for unit-speed processors, f = F . We will define the following objective function
for our LP:

minimize f (1)

The value of f obtained by solving the LP represents the minimum amount
of computation needed to be completed by an individual processor within a
duration F ; if the available processors can indeed accommodate this amount of
computation, then the solution is a feasible one.
§3. Constraints. Since the xijk variables represent fractions of jobs, they must
all be assigned values that are ≥ 0; hence, they are all subject to non-negativity
constraints. In addition, these variables are used to construct a linear program
representation of a CE, via the following constraints:

1. We represent the requirement that each job must receive the required amount
of execution by having the constraints

∑

all j,k

xijk = 1 for each i, 1 ≤ i ≤ n (2)



There are n such constraints, one per job.
2. We represent the requirement that each processor may be assigned no more

than f units of execution during each minor cycle by having the constraints

∑

all i

xijk · ci ≤ f for each j, 1 ≤ j ≤ m and k, 1 ≤ k ≤ P/F (3)

There are m× (P/F ) such constraints.
3. We represent the requirement that each job may be assigned no more than

f units of execution during each minor cycle by having the constraints

∑

all j

xijk · ci ≤ f for each i, 1 ≤ i ≤ n and k, 1 ≤ k ≤ P/F (4)

There are N × (P/F ) such constraints.

The total number of constraints is thus equal to [n+ (m+N)× (P/F )].

§4. Solving the LP. With regards to the LP constructed above, observe that

1. Given an assignment of integer values (i.e., either 0 or 1) to each of the xijk

variables that satisfy the constraints of the LP, we may construct a non-
preemptive cyclic executive in the following manner: for each xijk that is
assigned the value 1, schedule the execution of job ji on the j’th processor
during the k’th frame.

2. Given an assignment of non-negative values to the xijk variables that sat-
isfy the constraints of the LP, we may construct a global preemptive cyclic
executive in the following manner. For each xijk that is assigned a non-zero
value, schedule job ji for a duration xijk × ci on the j’th processor during
the k’th frame. (Of course, care must be taken to ensure that during each
frame no job executes concurrently upon two different processors – we will
see in Section 5 below how this is ensured.)

That is, an integer solution to the ILP yields a non-preemptive cyclic executive
while a fractional solution yields a global preemptive cyclic executive. We discuss
the problem of obtaining such solutions, and thereby obtaining preemptive and
non-preemptive cyclic executives respectively, in Sections 5 and 6 respectively.

5 Preemptive Cyclic Executives

In this section we discuss the problem of constructing preemptive cyclic exec-
utives for implicit-deadline periodic task systems by obtaining solutions to the
linear program described above.

Let us suppose that we have solved the linear program, and have thus ob-
tained an assignment of non-negative values to the xijk variables that satisfy
the constraints of the LP. We now describe the manner in which we construct a
preemptive cyclic executive for the ko’th frame Φko

; the entire cyclic executive
is obtained by repeating this procedure for each ko, 1 ≤ ko ≤ (P/F ).



For each job jio observe that

χio

def

=
m
∑

j=1

xiojko

represents the total amount of execution assigned to job jio during frame Φko

in the solution to the LP. By Constraint 4 of the LP, it follows that χio ≤ f
for each job jio ; i.e. no job is assigned more than f units of execution over the
frame. Additionally, it follows from summing Constraint 3 of the LP over all m
processors (i.e., for all values of the variable j in Constraint 3) that

(

n
∑

io=1

χio

)

≤ m× f.

We have thus shown that (i) no individual job is scheduled during the frame for
more than the computing capacity of a single processor during one frame, and
(ii) the total amount of execution scheduled over the interval does not exceed
the cumulative computing capacity of the frame (across all m processors). We
may therefore construct a schedule within the frame using McNaughton’s wrap-
around rule [12] in the following manner:

1. We order the jobs that receive any execution within frame Φko
arbitrarily.

2. Then we begin placing jobs on the processors in order, filling the j’th processor
entirely before starting the (j+1)’th processor. Thus, a job jio may be split across
processors, assigned to the last t time units of the frame on the j’th processor and
the first (χio − t) time units of the frame on the (j+1)’th processor; since χio ≤ f ,
these assignments will not overlap in time.

It is evident that this can all be accomplished efficiently within run-time poly-
nomial in the representation of the task system.

Implementation. In Section 6.2 below, we describe experiments that we have
conducted comparing ILP-based exact and LP-based approximate algorithms
for constructing non-preemptive CEs. These experiments required us to solve
LPs, similar to the kind described here, using the Gurobi Optimization tool [6];
performance of the Gurobi Optimization tool scaled very well with the size of
the task system in these experiments.

6 Non-preemptive Cyclic Executives

We now discuss the process of obtaining 0/1 integer solutions to the linear pro-
gram defined in Section 4.2; as discussed there, such a solution can be used to
construct non-preemptive cyclic executives for the periodic task system repre-
sented using the linear program.

Let us start out observing that in order for a non-preemptive cyclic executive
to exist, it is necessary that any job fits into an individual frame; i.e., that

N
max
i=1
{Ci} ≤ f (5)



Any task system for which this condition does not hold cannot be scheduled
non-preemptively.

Let us now take a closer look at the LP that was constructed in Section 4.2.
Consider any 0/1 integer solution to this LP. Each xijk variable will take on
value either zero or one in such a 0/1 integer solution; hence in the LP, the
Constraints 2 render the Constraints 4 redundant . To see why this should be so,
consider any job (say, jio), and any frame (say, Φko

). From Constraints 2 and
the fact that each xijk variable is assigned a value of zero or one, it follows that
in any 0/1 integer solution to the linear program we will have

(

∑

j

xiojko
= 0

)

or
(

∑

j

xiojko
= 1

)

,

depending upon whether job jio is scheduled (on any processor) within the Frame
Φko

or not. We thus see that at most one of the xiojko
’s can equal 1, from which it

follows that Constraint 4 necessarily holds for job jio within Frame Φko
. We may

therefore omit the Constraints 4 in the linear program. Hence for non-preemptive
schedules, we have a somewhat simpler ILP that needs to be solved, comprising

(

N ×m×
P

F

)

variables but only
(

n+m×
P

F

)

constraints.

6.1 An approximation algorithm

The problem of finding a 0/1 solution to a Linear Program is NP-hard in the
strong sense; all algorithms known for obtaining such solutions have running
time that is exponential in the number of variables and constraints. As we had
mentioned earlier, this intractability of Integer Linear Programming does not
necessarily rule out the ILP-based approach to constructing cyclic executives
that we have described above, since excellent solvers have been implemented
that are able to solve very large ILPs in reasonable amounts of time.

However, the fact of the matter is that not all ILPs can be solved efficiently.
We now describe an approximation algorithm for constructing Cyclic Executives,
that does not require us to solve ILPs exactly. The algorithm is approximate in
the sense that it may fail to construct Cyclic Executives for some input instances
for which CE’s do exist (and could have been constructed using the exponential-
time ILP-based method discussed above). In Theorem 1 we quantify the non-
optimality of our approximation algorithm.

Our algorithm starts out constructing the linear program as described in
Section 4.2, but without the Constraints 4 (as discussed above, the Constraints 2
render these redundant). However, rather than seeking to solve the NP-hard
problem of obtaining a 0/1 integer solution to this problem, we instead replace
the 0/1 integer constraints with the requirement that each xijk variable be a
non-negative real number no larger than one (i.e., that 0 ≤ xijk ≤ 1 for all
variables xijk), and then obtain a basic solution6 to the resulting linear program

6 Recall from Section 4.1 above that a basic solution to an LP is an optimal solution
that is a vertex point of the feasible region defined by the constraints of the LP.



(without the constraint that variables take on integer values). As stated in Fact 2
of Section 4.1, such a basic solution can be found efficiently in polynomial time.

Recall that our LP has
(

N × m × P
F

)

variables but only
(

n + m × P
F

)

constraints. By Fact 3 of Section 4.1, at most
(

n + m × P
F

)

of the variables

will take on non-zero values at the basic solution. Some of these non-zero values
will be equal to one – each such value determines the frame and processor upon
which a job is to be scheduled in the cyclic executive. I.e., for each xijk that is
assigned a value equal to one in the basic solution, we assign job ji to the j’th
processor during frame Φk.

It remains to schedule the jobs which were not assigned as above — these
are the jobs for which Constraint 2 was satisfied in the LP solution by having
multiple non-zero terms on the LHS. This is done according to the following
procedure; the correctness of this procedure is proved in [10].

1. Consider all the variables X
def

= xijk that have been assigned non-zero values
strictly less than one in the basic solution. That is,

X
def

=
{

xijk such that 0 < xijk < 1 in the basic solution
}

2. Construct a bipartite graph with
(a) A vertex for each job jio such that there is some (one or more) xiojk ∈ X.

Let V1 denote the set of all such vertices that are added.
(b) A vertex for each ordered pair [jo, ko] such that there is some (one or

more) xijoko
∈ X. Let V2 denote the set of all such vertices that are

added.
(c) For each xiojoko

∈ X add an edge in this bipartite graph from the vertex
in V1 corresponding to job jio , to the vertex in V2 corresponding to
ordered pair [jo, ko].

3. It has been shown in [10] that there is a matching in this bipartite graph
that includes all the vertices in V1. Such bipartite matchings can be found
in polynomial time using standard network-flow algorithms.

4. Once such a bipartite matching is obtained, each job corresponding to a
vertex in V1 is assigned to the processor and frame corresponding to the
vertex in V2 to which it has been matched. In this manner, each processor in
each frame is guaranteed to be assigned at most one job during this process
of assigning the jobs that were not already assigned in the basic solution.

6.2 Evaluating the approximation algorithm

We now compare the effectiveness of the polynomial-time approximation algo-
rithm of Section 6.1 with that of the ILP-based exact algorithm (solving which
takes exponential time in the worst case). We start out with theoretical evalu-
ation: Corollary 1 quantifies the worst-case performance of the approximation
algorithm via te speedup factor metric. We have also conducted some simulation
experiments on randomly-generated workloads, to get a feel for typical (rather
than worst-case) effectiveness – these are discussed in Section 6.2 below.



Theorem 1 Let fopt denote the minimum amount of computation that must be
accommodated on an individual processor within each frame in any feasible m-
processor CE for a given implicit-deadline periodic task system τ . Let Cmax de-

note the largest WCET of any task in τ : Cmax
def

= maxτi∈τ{Ci}. The polynomial-
time approximation algorithm of Section 6.1 above will successfully construct a
CE for τ upon m processors, with each processor needing to accommodate no
more than (fopt + Cmax) amount of execution during any frame.

Proof: Since (as we had argued in Section 4) an integer solution to the ILP
represents an optimal CE, observe that the minimum value of f computed in
an integer solution to an ILP would be equal to fopt. And since the ILP is more
constrained than the Linear Program, the minimum value for f computed in
the (not necessary integral) solution to the LP obtained by the polynomial-time
algorithm of Section 6.1 is ≤ fopt. Let fLP denote this minimum value of f
computed as a solution to the LP; we thus have that fLP ≤ fopt.

In constructing the CE above, the polynomial-time algorithm of Section 6.1
schedules each job according to one of two rules:

1. If variable xiojoko
is assigned a value one in the solution to the LP, then job

jio is scheduled upon the jo’th processor during frame Φko
.

2. Any job jio not scheduled as above is scheduled upon the processor-frame
pair to which it gets matched in the bipartite matching.

Clearly, the jobs assigned according to the first rule would fit upon the processors
if each had a computing capacity of fLP within each frame. Now, observe that the
matching in the bipartite graph assigns at most one job to each processor during
any given frame; therefore, the additional execution assigned to any processor
during any frame is < Cmax. Hence each processor could accommodate all the
execution assigned it within each frame provided it had a computing capacity of
at least fLP + Cmax, which is < (fopt + Cmax). ⊓⊔

The speedup factor of an algorithm A is defined to be smallest positive real
number x such that any task system that is successfully scheduled upon a par-
ticular platform by an optimal algorithm is successfully scheduled by algorithm
A upon a platform in which the speed or computing capacity of all processors
are scaled up by a factor (1 + x).

Corollary 1 The polynomial-time approximation algorithm of Section 6.1 has
a speedup bound no larger than 2.

Proof: By Theorem 1 above, If a CE can be constructed for task system τ by
an optimal algorithm upon m speed-fopt processors, it can be scheduled by the

polynomial-time algorithm of Section 6.1 upon m speed-
(

fopt + Cmax

)

proces-

sors. The corollary follows from the observation that Cmax is necessarily ≤ fopt;

hence
(

fopt + Cmax

)

/fopt is ≤ 2fopt/fopt ≤ 2. ⊓⊔



Experimental evaluation We saw above (Corollary 1) that the polynomial-
time approximation algorithm of Section 6.1 has a speedup factor no worse
than 2. We have conducted some experiments on randomly-generated synthetic
workloads to further compare the performance of the approximation algorithm
with the exact approach of solving the ILP.

Workload generation. The task system parameters for each experiment were
randomly generated using a variant of the methods used in prior research such
as [5, 3], in the following manner:

– Task utilizations (Ui) were generated using the UUniFast algorithm [2].
– Task periods were set to be at one of F × {1, 2, 3, 4} (the frame size F

was set equal to 25ms in these experiments, in accordance with prior recent
work on cyclic executives such as [5, 3]). Periods were assigned randomly
and uniformly over these four values. (Since we are restricting attention in
this paper to implicit-deadline systems, job deadlines were set equal to their
periods.)

– Task WCETs were determined as the product of utilization and period.
– All task systems in which one or more tasks had a WCET greater than minor

cycle duration F , were discarded (since such systems are guaranteed to have
no feasible non-preemptive schedules).
(For some of our experiments, we needed task systems in which the largest
WCET of any task (the parameter Cmax of Theorem 1 was bounded at one-
half of three-quarters the frame size. In generating task systems for these
experiments, we discarded all task systems in which some task had WCET
greater than the bound.)

– All the experiments assumed a four-processor platform (m← 4).

Experiments conducted, and observations made. We conducted two sets
of experiments; in each experiment within each set,

1. A task system was generated using the procedure detailed above, with a spec-
ified number of tasks, a specified total utilization, and for some experiments,
a specified bound on Cmax.
Each task system so generated was scheduled in two different ways.

2. First, it was scheduled non-preemptively by generating a linear program as
described in Section 4.2, and then solved as an ILP using the Gurobi [6]
optimization tool (instrumented to time out after two seconds of execution,
earlier experiments indicating that for systems of 20 tasks on 4 processors,
longer runs never improved upon the value obtained within the first two
seconds).

3. Second, it was scheduled preemptively by solving the linear program ob-
tained above as an LP (i.e., without any integrality constraints) using Gurobi,
and then applying the technique described in Section 6.1 to obtain a non-
preemptive cyclic executive. The maximum amount of computation assigned
to any processor within an individual frame in this schedule was determined,
and designated as fmax.



  

Fig. 3. Investigating how speedup factor changes with overall system utilization. The
mean observed speedup factor over 400 task systems at each utilization is depicted, as
is the range within one standard deviation from the mean.

4. The speedup factor needed by the polynomial-time approximation algorithm
for this particular task system was then computed as

max
(

1,
fmax

F

)

(Recall that F denotes the frame size, chosen to equal 25 ms in our experi-
ments.)

We now describe the two sets of experiments separately.

§1: Variation of speedup factor with system utilization. As explained
above, the speedup bound of 2 identified in Corollary 1 above is a worst-case
one. In this set of experiments, we set out to determine how the speedup factor
of a randomly-generated system tends to depend upon the cumulative utilization
of the task system. We therefore generated 400 task systems, each comprising
20 tasks, to have cumulative system utilization equal to U , for each value of U
between 0 and 4 in steps of 0.05. The observed speedup factor needed by the ap-
proximation algorithm to schedule each task system was determined as described
above, and the average and standard deviations computed. These values, plot-
ted in Figure 3, show a clear increasing trend: as overall utilization increases,
so does the speedup factor needed to construct a non-preemptive schedule using
the approximation algorithm.

§2: Variation of speedup factor with Cmax. Theorem 1 reveals that the
speedup factor depends upon the value of Cmax, the largest WCET of any indi-
vidual task. To investigate this relationship, we generated 100 task systems with
overall utilization U for each value of U between 2 and 4 in steps of 0.05, in which



  

Fig. 4. Investigating how observed speedup factor depends upon Cmax, the largest
WCET of any task. The mean observed speedup factor over 100 task systems is plotted,
for Cmax bounded at 1

2
, 3

4
, and 1 times the frame size.

the value of Cmax was bounded from above at half the frame size, three quarters
the frame size, and the full frame size. The observed speedup factor needed by
the approximation algorithm to schedule each task system was determined as
described above, and the average over the 100 individual task systems at each
data point computed. These values, plotted in Figure 4, show a clear increasing
trend within each system utilization: the larger the bound on Cmax, the greater
the observed speedup factor.

6.3 Special case: harmonic task systems

Let us now consider systems in which the tasks have harmonic periods: for any
pair of tasks τi and τj , it is the case that Ti divides Tj exactly or Tj divides Ti

exactly. Many highly safety-critical systems are explicitly designed to respect
this restriction; additionally, many systems that are not harmonic are often
representable as the union of a few – two or three – harmonic sub-systems.

For any job ji, let us define Fi to be the set of frames that lie within ji’s
scheduling window. For the task system of Example 1 (as depicted in Figure 2),
e.g., we have

F1 = {Φ1, Φ2},F2 = {Φ3, Φ4},F3 = {Φ5, Φ6},F4 = {Φ1, Φ2, Φ3},F5 = {Φ4, Φ5, Φ6},

and F6 = {Φ1, Φ2, Φ3, Φ4, Φ5, Φ6}.

Lemma 1 For any two jobs ji and jℓ in harmonic task systems, it is the case
that

(

Fi ⊆ Fj

)

or
(

Fj ⊆ Fi

)

or
(

Fi

⋂

Fj is empty
)



⊓⊔

A polynomial-time approximation scheme (PTAS) was derived in [4] for the
problem of scheduling on restricted identical machines with nested processing set
restrictions; this PTAS can be directly applied to our problem of constructing
non-preemptive cyclic executives for implicit-deadline periodic task systems with
harmonic periods. This allows us to conclude that for the special case of harmonic
task systems, polynomial-time approximation algorithms may be devised for
constructing cyclic schedules that are accurate to any desired degree of accuracy.

7 Conclusions

Cyclic executives (CEs) are widely used in safety-critical systems industries, par-
ticularly in those application domains that are subject to statutory certification
requirements. In our experience, current approaches to the construction of CEs
are either ad hoc and based on the expertise and experience of individual system
integrators, or make use of tools that are based on model checking or heuristic
search.

Recent significant advances in the state of the art in the development of linear
programming tools, as epitomized in the Gurobi optimizer [6], have motivated us
to consider the use of linear programming for constructing CEs. We have shown
that CEs for workloads that may be modeled as collections of implicit-deadline
periodic tasks are easily and conveniently represented as linear programs (LPs).
These LPs are solved very efficiently in polynomial time by LP tools like Gurobi;
such solutions directly lead to preemptive CEs. If a non-preemptive CE is desired
then one must solve an integer LP (ILP), which is a somewhat less tractable
problem than solving LPs. However, our experiments indicate that Gurobi is
able to solve most ILP problems representing non-preemptive CEs for collections
of implicit-deadline periodic tasks quite effectively in a reasonable amount of
time. We have also developed an approximation algorithm for constructing non-
preemptive CEs that runs in polynomial time, and performs quite favorably in
comparison to the exact algorithm in terms of both a worst-case quantitative
metric (speedup factor) and in experiments on randomly-generated synthetic
workloads.
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