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Abstract

We consider a stochastic nonlinear Schrodinger equation with multiplicative noise
in an abstract framework that covers subcritical focusing and defocusing Stochastic
NLSE in H'! on compact manifolds and bounded domains. We construct a martingale
solution using a modified Faedo—Galerkin-method based on the Littlewood—Paley-
decomposition. For the 2d manifolds with bounded geometry, we use the Strichartz
estimates to show the pathwise uniqueness of solutions.
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1 Introduction
The article is concerned with the following nonlinear stochastic Schrédinger equation

du(t) = (—iAu(t) — iF(u(t)))dt — iBu(t) o dW (), >0,

20 — uo. (1.1)
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in the energy space E4 = D(A%), where A is a selfadjoint, non-negative operator
A with a compact resolvent in an L?-space H, F a nonlinearity, B a linear bounded
operator, W is a Wiener process and the equation is understood in the (multiplicative)
Stratonovich sense.

Three basic examples of the operator A are

o the negative Laplace—Beltrami operator — A, on a compact Riemannian manifold
(M, g) without boundary,

e the negative Laplacian — A on a bounded domain of R? with Neumann or Dirichlet
boundary conditions,

e fractional powers of the first two examples.

The two basic model nonlinearities are

e the defocusing power nonlinearity F, (u) := |u|*~ 'y with subcritical exponents
in the sense that the embedding E4 — L%*! is compact
e and the focusing nonlinearity F, (1) := —|u|*~'u with an additional restriction

to the power «.

The typical noise term has the form

—iBu(t) o dW () = =i Y _ enu(t) o du(t) = —% D epu) =iy enu)dpu)  (1.2)

m=1 m=1 m=1

with a sequence of independent standard real Brownian motions (B,,),,<n and func-
tions (e;),en Satisfying certain regularity and decay conditions that guarantee the
convergence of the series on the RHS of (1.2) in the space E4.

The main aim of this study is twofold. Firstly, it proposes to construct a martingale
solution of problem (1.1) by a stochastic version of a compactness method. Secondly,
it proposes to prove the uniqueness of solutions by means of the stochastic Strichartz
estimates. In this respect it differs from many previous papers on stochastic nonlinear
Schrodinger equations, notably [8,18,28], and references therein, in which the proofs
of both the existence and the uniqueness were obtained by means of appropriate
stochastic Strichartz estimates. The compactness approach to the existence of solutions
of 1-D stochastic Schrodinger equations in variational form has recently been used
in a paper [31] by Keller and Lisei. Classical references for the construction of weak
solutions of the deterministic NLSE by a combination of a compactness method and the
Galerkin approximation are [23,24] for intervals and [42] as well as [56] for domains
of arbitrary dimension. Let us point out that Burq et al. [4] also used a compactness
method in the proof of their Theorem 3 but instead of the Galerkin approximation they
used an approximation by more regular solutions. In particular, we give a new proof of
these results. But we would like to emphasise that the deterministic case is significantly
simpler since our spectral theoretic methods to construct the approximations of the
noise term are not needed.

In technical sense, the present paper is motivated by the construction of a global
solution of the cubic equation on compact 3d-manifolds M generalizing the existence
part, see Theorem 3 of Burq et al. [4], to the stochastic setting. In three dimensions, the
fixed point argument from [8] is restricted to higher regularity, because it requires the
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Martingale solutions for the stochastic nonlinear...

Sobolev embeddings H*'9 < L°°, which are more restrictive in 3D than in 2D. Hence,
this approach only yields local solutions, which is the motivation for constructing a
global solution in H' (M) with an approximation procedure based on the conservation
laws of the NLSE without using the dispersive properties of the Schrédinger group.
We remark that in [4], the authors also prove uniqueness for the deterministic NLSE
in 3D. For the equation with noise this question will be addressed in a forthcoming
paper.

In the present paper, we construct a martingale solution of problem (1.1) by a
modified Faedo—Galerkin approximation

> O<1 3)
Mn(o) = Pn”O» .

{ dup(t) = (—1Au,(t) — 1Py F (u,(t))) dt —iS, B(Syun(t)) odW(t), ¢
in finite dimensional subspaces H,, of H spanned by some eigenvectors of A. Here,
P,: H — H, are the standard orthogonal projections and S,: H — H, are self-
adjoint operators derived from the Littlewood—Paley-decomposition associated to A.
The reason for using the operators (S, ), <y lies in the uniform estimate

sup [|SullLr—rr <00, 1< p <o0,
neN

which turns out to be necessary in the estimates of the noise due to the L?-structure
of the energy, see (1.4) below, and which is false if one replaces S, by P,. Using the
Littlewood—Paley decomposition via the operators (S, ),en can be viewed as the one
of the main analytical contributions of this paper. We remark that in the mean time,
a similar construction has been used in [29] to construct a solution of a stochastic
nonlinear Maxwell equation by estimates in L? for some g > 2. This indicates that
our method has potential to increase the field of application of the classical Faedo—
Galerkin method significantly.

On the other hand, the orthogonal projections P, are used in the deterministic part,
because they do not destroy the cancellation effects which lead to the mass and energy
conservation

1 N
||u||i2 = const, §||A%u||iz + F(u) = const (1.4)

for solutions u# of problem (1.1) in the deterministic setting, where F denotes the
antiderivative of the nonlinearity F. Note that in the case FJ—L () = £|u|* tu, the

@+l In the stochastic case, the mass

antiderivative is given by I:"f = :I:#||u||La+1.

a+1
conservation ||u, ||i2 = const for solutions of (1.3) holds almost surely due to the
Stratonovich form of the noise. Moreover, the conservation of the energy is carried
over in the sense that a Gronwall type argument yields the uniform a priori estimates,

forevery T > 0,

spE[ sup Jun ()}, | <00, swpE[ sup i@t | <00 (15)
neN Lre[0,T] neN Lre[0,T]
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Combined with the Aldous condition [A], see Definition 4.3, which is a stochastic
version of the equicontinuity, the estimates (1.5) lead to the tightness of the sequence
(4n)nen 1n the locally convex space

Zr == C([0,T1, E%) N L*T0, T; L*'(M)) N C,, ([0, T1, E),

where C,, ([0, T'], E 4) denotes the space of continuous functions with respect to the
weak topology in E 4. The construction of a martingale solution is similar to [7] and
employs a limit argument based on Jakubowski’s extension of the Skorohod Theorem
to nonmetric spaces and the Martingale Representation Theorem from [21, chapter §].
Our main result is the following Theorem.

Theorem 1.1 Let T > O and ug € E s. Under the Assumptions 2.1,2.4,2.6,2.7, there
exists amartingale solution (Q, .7:", ]f”, W, Iﬁ‘, u) of Eq. (1.1) (see Definition 2.9), which

satisfies
ueLI(Q, L0, T; Ey)) (1.6)
forall g € [1, 00) and
lu@ll g2y = luoll2ny  Bras. forallt €10, T1.

As an application of Theorem 1.1, we get the following Corollary. Note that an
analogous result holds in the case of a bounded domain, see Corollary 3.4.

Corollary 1.2 Let (M, g) be a compact d-dimensional Riemannian manifold without
boundary. Let T > 0 and ug € H! (M). Under Assumption 2.7 and either (i) or (ii)

: Ceen A
1) Fu) = ul* ‘uwitha € (1,1+_(d_2)+),
(i) Fu) = —lul* tuwitha e (1,1+ %),

the equation

du(t) = (iAgu(t) — iF(u(t)) dt —iBu(t) o dW(t) in H'(M), (17
u(0) = ug, '
has a martingale solution with
ue L9(Q, L0, T; H (M))), (1.8)

forall g € [1, 00) and
lu@ 20 = luoll 2y P-a.s. forallt € [0, T].

Furthermore, we address the question of uniqueness of the solution from Corol-
lary 1.2 in two dimensions.

@ Springer



Martingale solutions for the stochastic nonlinear...

Corollary 1.3 In the situation of Corollary 1.2 withd = 2, there exists a unique strong
solution of (1.7) in H'(M) and the martingale solutions are unique in law.

We obtain pathwise uniqueness by an improvement of the regularity of solutions
based on the Strichartz estimates by Bernicot and Samoyeau from [13] and BrzeZniak
and Millet from [8]. Ondrejat showed in [44] in a quite general setting, that this is
sufficient to get a strong solution. In fact, our uniqueness result is more general than we
have formulated in Corollary 1.3. On the one hand, we allow possibly non-compact of
manifolds with bounded geometry. On the other hand, uniqueness holds in the strictly
larger class L™ (2, LP (0, T; H*(M))) with r > a, B := max {2, «} and

(=L ] fora € (1, 3],

2 £
S €9 aia—1)—1
( a(a—1) 2

1] foroa > 3.

For the details, we refer to Theorem 7.5

Let us point out that the stochastic nonlinear Schrédinger equations are used in
the fiber optics, nonlinear photonics and optical wave turbulence, see for instance a
recent review paper [51] by Turitsyn et al. and references therein. There is also an
extended literature on the nonlinear Schrodinger equations on special manifolds, as
e.g. Schwarzschild manifolds, see papers [1,38,40]. In these papers the Schrodinger
equation is somehow related to the corresponding nonlinear wave equation which
in turn appears in the theory of gravitational fields. Furthermore, we would like to
mention the article [48] which deals with the derivation of the Schrédinger equation
on manifolds. From a mathematical point of view, important questions are how the
geometry of the manifold influences the qualitative behavior of solutions and how the
geometry of the manifold and the external noise influence the well-posedness theory.
Nonlinear Schrodinger equations on manifolds have been studied e.g. by Burg et al.
[3.,4], see also references therein. The motivation for these authors was “to evaluate
the impact of geometry of the manifold on the well-posedness theory, having in mind
the infinite propagation speed of the Schrodinger equation”.

The paper is organized as follows. In the Sects. 2 and 3, we fix the notation, formulate
our Assumptions and present a number of typical examples of operators A, a model
nonlinearity F and noise coefficients B covered by our framework. In Sect. 4, we
are concerned with the compactness results that we will be using later on. In Sect. 5,
we formulate the Galerkin approximation equations and prove the a priori estimates
which are sufficient for compactness in view of Sect. 4. Section 6 is devoted to the
proof of Theorem 1 and in Sect. 7, we focus on uniqueness in the case of 2d manifolds
with bounded geometry.

2 Notation and assumptions

In this section, we want to fix the notations, explain the assumptions and formulate an
abstract framework for the stochastic nonlinear Schrédinger equation.
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Let (X, X, ) be a o-finite measure space with metric p satisfying the doubling
property,i.e. u(B(x,r)) <ooforallx € X and r > 0 and

(B (x,2r)) S p(B(x,r)). (2.1
This estimate implies
w(B(x,tr) Stlp(B(x,r), xeX, r>0, t>1 (2.2)

and the number d € N is called doubling dimension. Let M C X be an open subset
with finite measure and L9 (M) for ¢ € [1, oco] the space of equivalence classes of

C-valued g-integrable functions. For ¢ € [1, oc], let ¢/ := qu € [1, oo] be the

conjugate exponent. In particular, for ¢ € [1, oo] it holds that 5 + % = 1. We
further abbreviate H := L%(M). In the special case that M is a Riemannian manifold,
H?*49(M) denotes the fractional Sobolev space of regularity s € R and integrability
q € (1, 0o) and we shortly write H*(M) := H*2(M). For a definition of these spaces,
we refer to Definition B.1.

If functions a, b > 0 satisfy the inequality a < C(A)b with a constant C(A) > 0
depending on the expression A, we write a <4 b. I[f we have a <4 b and b <4 a,
we write a <4 b. For two Banach spaces E, F, we denote by L(E, F) the space of
linear bounded operators B: E — F and abbreviate L(E) := L(E, E). Furthermore,
we write £ < F, if E is continuously embedded in F'; i.e. E C F with natural
embedding j € L(E, F). The space Cl’z([O, T] x E, F) consists of all functions
@: [0,T]x E — Fsuchthat (-, x) € C1([0, T, F) foreveryx € Eand @(¢, -) €
C 2(E , F)foreveryt € [0, T]. Fortwo Hilbert spaces H; and H;, the space of Hilbert—
Schmidt operators B: H] — H> is abbreviated by HS(H{, H>). The resolvent set of a
densely defined linear operator A: E O D(A) — E on a Banach space E is denoted
by p(A). For a probability space (€2, F, IP) , the law of a random variable X: Q2 — E
is denoted by PX.

Assumption and Notation 2.1 We assume the following:

(i) Let A be a non-negative selfadjoint operator on H with domain D(A).

(i) There is a strictly positive selfadjoint operator S on H with compact resolvent
commuting with A which fulfills D(S¥) < E 4 for sufficiently large k. Moreover,
we assume that S has generalized Gaussian (pg, p6)-b0unds for some pg € [1, 2),
ie.

1
4L m\ =T
1, e™1 1 < Cu(B(x,1m)% " e"p{_c(w> }

B(x,tm) B(y.tm) " £(Lro,L0) = t
2.3)

forallt > O and (x, y) € M x M with constants ¢, C > 0 and m > 2.
(iii) The Hilbert space E4 := D(A%) equipped with the inner product

(u,v)EA = (u,v)H—i—(A?u,A?v)H, u,v € Ey,
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(iv)

is called the energy space and the induced norm || - || g, is called the energy norm
associated to A. We denote the dual space of E4 by E’ and abbreviate the duality
with (-, -) := (-, -) E% Ex> where the complex conjugation is taken over the second
variable of the duality. Note that (E4, H, E*) is a Gelfand triple, i.c.

Ep— HZH"— E}.
Leta € (1, p6 — 1) be such that E 4 is compactly embedded in L+ (M). We set

Pmax ‘= Sup {p € (1,00]: Eq4 < LP(M) is continuous}

and note that pmax € [ + 1, o0]. In the case pmax < 00, we assume that E4 —
LPmax (M) is continuous, but not necessarily compact.

Remark 2.2 (a) The operator S plays the role of an auxiliary operator to cover the

(b)

©

different examples from Sect. 3 in a unified framework. Typical choices are S :=
I+ A, S:=AorS:=1+ AYP for some g > 0.

If po = 1, thenitis proved in [6] that (2.3) is equivalent to the usual upper Gaussian
estimate, i.e. for all # > O there is a measurable function p(t,-,): M x M — R
with

S Hx) = /M pt,x,y)fOHu(dy), t>0, aexeM

forall f € H and

P %, )] < — S exp {—c <M>} 2.4)
W(B(x, 1)) f

for all # > 0 and almost all (x, y) € M x M with constants ¢, C > 0 and m > 2.
The generalized Gaussian estimate (2.3) is used in the proof of Proposition 5.2,
where spectral multiplier theorems for S in L”(M) for p € (po, p), respec-
tively a Mihlin M# functional calculus of S for some g > 0 are employed. The
Mihlin functional calculus is defined and studied in [32,34]. For additional infor-
mation about spectral multiplier theorems for operators with generalized Gaussian
estimates, we refer to [33,55]. Note that spectral multiplier results with different
assumptions are also sufficient for our analysis below, see e.g. [20], where a result
for the Laplace—Beltrami operator on a compact Riemannian manifold is explicitly
stated without mentioning the doubling property in this particular case.

We start with some conclusions which can be deduced from Assumption 2.1.

Lemma 2.3 (a) There is a non-negative selfadjoint operator A on E* with D(A) =

(b)

Eawith A= AonH.
The embedding E4 — H is compact.
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(c) There is an orthonormal basis (hy),cN and a nondecreasing sequence (Ap),en
with A, > 0 and A, — oo asn — oo and

o0

o0
Sx =" hn(x.hn) yhn. x €D(S)={x € H: Y Al(x. hy) yI* < 00

Proof (ad a) The operator A is defined by

The estimate
~ 1 1
{Ap, V)| < [|A2@lllA2Y |la < l@llEs 1Y ] E,

shows that A is well-defined and a bounded operator from E, to E7 with ||A|| <1.

Moreover, one can apply the Lax—Milgram-Theorem to see that 7 + Aisa surjective
isometry from E4 to E’. If one equips £ with the inner product

(58 g =+ AT U+ AT ), et e Ex

one can show the symmetry of A as an unbounded operator in E’. Hence, A is
selfadjoint, because —1 € p(A).

(ad b) The embedding E4 — Lt (M) is compact by Assumption 2.1(iv) and
L*t1 (M) < H is continuous due to u(M) < oo. Hence, E4 < H is compact. (ad
c) Immediate consequence of the spectral theorem, since S has a compact resolvent.

O

In most cases where this does not cause ambiguity or confusion, we also use the
notations A for A. We continue with the assumptions on the nonlinear part of our
problem.

Assumption 2.4 Leta € (1, p(’) —1) be chosen as in Assumption 2.1. Then, we assume
the following:

(i) Let F: L*T\(M) — Laail (M) be a function satisfying the following estimate
+1
IIF(M)IILaail(M) S Mullfasi gy, w € L5 (M). (2.5)
Note that this leads to F: E4 — E;“ by Assumption 2.1(iv), because E4 —
Lo (M) implies (L4TH(M))* = Laaj(M) < E%. We further assume and

F(0) =0and

Re(iu, F(u)) =0, ue L*T'(M). (2.6)
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(i) The map F: Lty — LuTH(M) is continuously real Fréchet differentiable
with

wrt S %) ue LT (M. 2.7)

/! o
”F [u]”LOH'IA)LT L 'H(M)’

(iii) The map F has a real antiderivative F , 1.e. there exists a Fréchet-differentiable
map F: LT (M) — R with
F'lulh = Re(F(u),h), u,he L (M). (2.8)

By Assumption 2.4(ii) and the mean value theorem for Fréchet differentiable maps,
we get

[Fx) = FOD)I ast < sup [|F'ltx + (1 —0)ylllllx — yll e+t
L (M) ™ 0,1

—1
S (Ixlzestany + 190 zarian) ™™ 11X = Yllzes1 .
x,y e LM, 2.9)

which means that the nonlinearity is Lipschitz on bounded sets of L+ (M).
We will cover the following two standard types of nonlinearities.

Definition 2.5 LeAt F satisfy Assumption 2.4. Then, F is called defocusing, if F (u) >0
and focusing, if F(u) <0 forallu € L1 (M).

Assumption 2.6 We assume either (i) or (i'):

(i) Let F be defocusing and satisfy

Il oy S F@), ue L ). (2.10)

(i) Let F be focusing and satisfy

—F@) S Mullfih e e L. (2.11)

and there is 6 € (0, 37) with
(H, Ep)gy = LT\ (M), (2.12)

Here (-, -)g,1 denotes the real interpolation space and we remark that by [54, Lemma
1.10.1], (2.12) is equivalent to

1
Nl gy S Nl Nl u € Ea, (2.13)

for some B; > 0 and B> € (0,2) with o + 1 = B; + B>. Let us continue with the
definitions and assumptions for the stochastic part.
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Assumption 2.7 We assume the following:

(i) Let (2, F, P) be a probability space, Y a separable real Hilbert space with ONB
(fm)menN and W a Y-canonical cylindrical Wiener process adapted to a filtration
F satisfying the usual conditions.

(i) Let B: H — HS(Y, H) be a linear operator and set B,,u := B(u) f,, foru € H
and m € N. Additionally, we assume that B,, € L(H) is selfadjoint for every
m € N with

o
Y Bl < oo (2.14)

m=1

and assume B, € L(E4) and B,, € L(L*TY(M)) form € Nand « € (I, p6 -1
as in Assumption and Notation 2.1 with

o0 o0
D IBullZey <00 Y IBullZ uer, < 0. (2.15)
m=1 m=1

For the special case, when the B, are pointwise multiplication operators, see
Sect. 3.5 below.

Remark 2.8 The estimates (2.14) and (2.15) imply
B e L(H,HS(Y,H)), Be L(Es,HS(Y,E,)), Be L(LO"H(M), y(Y, LOH'I(M))),

where y (Y, L¥t1(M)) denotes the spaces of y-radonifying operators from Y to
LOH_I(M).

Finally, we have sufficient background to formulate the problem which we want to

solve. We investigate the following stochastic evolution equation in the Stratonovich
form

du(t) = (—1Au(t) —i1F(u(t))dt —iBu(t) odW(t), t € (0,T),

2.16
u(0) = uo, 210
where the stochastic differential is defined by
1
—i1Bu(t) o dW(t) = —iBu(r)dW(r) + 3 try (M(u(1))) dt, (2.17)

with the bilinear form M (u) on Y x Y defined by

M) (y1, y2) := —iB'[ul(—=iBw)y1)y2, u€H, yi,y €Y.
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For the purpose of giving a rigorous definition of a solution to problem (2.16), it is
useful to rewrite the equation in the Itd form. Therefore, we first compute

try (M) = Y —iB'[ul(~iB W) fu) fu = — Y B (BW) fin) fn
m=1 m=1
==Y BBut) fu=— ) Bu.
m=1 m=1

Hence, Eq. (2.16) will be understood in the following It6 form

du(t) = (—iAu(t) —iF (u(t) + p @) dt — iBu@®)dW @), te(0,T

)
4(0) = uo. (2.18)

where the linear operator u defined by
1 o0
. 2
w(u) = _EX:IB'"M’ ueH,
m=

is the Stratonovich correction term.
Most of our paper will be concerned with the construction of a martingale solution.

Definition 2.9 Let 7 > 0 and ug € E4. A martingale solution of the Eq. (1.1) is a
system (fZ f ]f” W, ]F‘ u) consisting of
e a probability space (fz, F , ]f”) ;

e a Y-valued cylindrical Wiener W process on ;

e a filtration F = (ﬁ) with the usual conditions;
1€[0,T]

e a continuous, IF’-adapted, E;-valued process such that u € LZ(Q x [0, T], E:)
and almost all paths are in C, ([0, T'], E4),

such that the equality

t

t
u(t) =uy+ / [—1Au(s) —iF(u(s)) + n(u(s))]ds — i/ Bu(s)dW(s) (2.19)
0 0

holds almost surely in Ejg forallt € [0, T].

3 Examples

In this section, we consider concrete situations and verify that they are covered by the
general framework presented in the last section.
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3.1 The model nonlinearities

The class of the general nonlinearities from the Assumptions 2.4 and 2.6 covers the
standard focusing and defocusing power nonlinearity.

Proposition 3.1 Let o € (1, 00) be chosen as in Assumption 2.1. Define the following
function

Il gy we L ).

FEru) :=+u*'u, Ffu):=+
Then, Fwi satisfies Assumption 2.4 with antiderivative ﬁf
Proof Obviously, F£: L4+ (M) — L& (M) due to

I Fa @l et ue L (M),

_ o
(M) - ||u||L0(+1(M)7

Furthermore,

Re(iv, FE(v)) = :l:Re/ vl Tdy = +Re [i||v||§jjl(M)] —0.
M

We can apply the Lemma 3.2 below with p = o 4+ 1 and

a—1
@(a,b):(a2+b2> ’ <Z) a,b e R,

to obtain part (ii) and (iii) of Assumption 2.4. O

The next Lemma contains the differentiability properties of the nonlinearity. For a
proof, we refer to the lecture notes [26, Lemma 9.1 and Lemma 9.2].

Lemma3.2 Let (S, A, ) be a measure space and o > 1.

(a) Let p > 1. Then, the map G1:LP(S) — R defined by G|(u) := ||u||IL7,,(S) is
continuously Fréchet differentiable and for all u, h € LP(S), we have

G'lulh = Re/ lu|P " uhdp.
s

() Let p > c and @ = (@1, P7) € C](Rz, R2). Assume that there is C > 0 with

a—1

2

|®(a, b)| < C (a2 +bz)7 . @@ b)) <C <a2 +b2> . abeR
Then, the map
G:LP(S) — L&(S), G(u):= ®;(Reu,Imu) +i®s(Re u, Im u)
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is continuously Fréchet differentiable and for u, h € L?(S), we have

, _ Reh . Reh
G'lulh = V& (Reu,Imu) '(Imh> +i1Vdr(Reu, Imu) '<Imh)

and

i —1
IG'tll, 2 < Cllulf;".

3.2 The Laplace-Beltrami operator on compact manifolds

In this subsection, we deduce Corollary 1.2 from Theorem 1.1. Let (M, g) be a com-
pact d-dimensional Riemannian manifold without boundary and A := —Ag be the
Laplace—Beltrami operator on M.

Proof of Corollary 1.2 Step 1. Let X = M, p be the geodesic distance and p be the
canonical volume measure on X. From [16, Section 4, p. 329], we obtain the local

doubling property of X, i.e. there is C; > O such that forallx € X and r € (0, 1) we
have

p(B(x,2r)) < Ciu(B(x,r)). (3.1

Dominated convergence implies that the function f: X x [1, max{l, diam(M)}] —
(0, 00) defined by

f(x,r) = u(B(x,r)), x € X, re|[l,max{l,diam(M)}],

is continuous. Since X x [1, max{1, diam(M)}] is compact, we therefore obtain that

Cp = inf n(B(x,r)) > 0. 3.2)
xeX,re[l,max{l,diam(M)}]
In particular, this yields
w(M)
n(B(x,2r)) < ) n(B(x,r)) (3-3)

forevery x € X and r € [1, max{1, diam(M)}]. For x € X and r > diam(M), we get
(B (x,2r)) = (M) = u(B(x,r)). (3.4)

Combining (3.1), (3.3) and (3.4) implies the doubling property (2.1).
Step 2 Let S := I — Ag. Then, S is selfadjoint, strictly positive and commutes with

A. Moreover, S has a compact resolvent and D(S¥) < E4 holds for every k € N.
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Furthermore, S has upper Gaussian bounds by [25, Corollary 5.5 and Theorem 6.1],
since these results imply

p(x,y)?
CIR

p }, t>0, (x,y)eMxM

c _
|p(t’-xv Y)| S the texp{_

for the kernel p of the semigroup (e"s) ;-0 - This is sufficient for (2.4) since (2.2)
implies B

1 w(B(x, 1)) w(M)
A7 S B0y = a0

In particular, S has generalized Gaussian bounds with pg = 1, see Remark 2.2. Next
note that by Proposition B.2(a), the scale of Sobolev spaces on M is given by

H (M) = R (S—%) —D (S%) —D ((—Ag)%) . s>0,

where the last identity can be deduced from the spectral theorem and (1+1)% ~<; 1415,
In particular, we have E4 = H'(M). Let ] <a < 1+ ﬁ. Then, by Proposition
B.2(c) and Lemma 2.3, the embeddings

Es=H'M)— H Y (M)=E%, Ep=H'M)<— L“"'(M)

are compact. Hence, Assumption 2.1 holds with our choice of A and S.
Step 3 In view of Proposition 3.1, Assumption 2.4 holds. Next, we check Assump-

tion 2.6. Obviously, F(j fulfills (i) for ¢ € (1, 1+ ﬁ). Let us consider F, for
ae(l,1+3).
Case 1 Letd > 3. Then, pmax := dsz2 is the maximal exponent with H 1(M ) —

LPmax(M). Since o € (1, pmax — 1), we can interpolate L%+ (M) between H and
LPmax (M) and get

1-6 % 1-6 0
Y 1 T PP 11 e P G

withf = ‘218;3 € (0, 1). Therestriction B, := f(a+1) < 2 from Assumption 2.6(i")

is equivalentto o < 1 + 3.
Case 2 In the case d = 2, Assumption (i') is guaranteed for a € (1, 3). To see this,
take p > 3%0[ which is equivalent to 0 (o + 1) < 2 when 0 € (0, 1) is chosen as

_ (@a—Dp
(@+D(p—-2)
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We have H'(M) < LP(M) and as above, interpolation between H and L?” (M)
yields

1 +1)(1-06 +1)6
o S Ml S

”u”La-H(M) L2

Case 3Letd =1 and fix ¢ € (0, %). Proposition B.2 yields

HETE(M) > L¥M), HE (M) = [L2(), B ()

%—&-a
Hence,
+1 2 —1 2 —1 243 —e)a—1 (S+e)a—1)
il < Ivllialvlife S |Iv||Lz||v||';%+g Sl vl 1 .

The condition (% +é&)(a — 1) < 2isequivalenttox < 1 + ];LZE. Choosing ¢ small
enough, we see that Assumption 2.6(i) is true for @ € (1, 5).
Step 4 The Steps 1-3 and Theorem 1.1 complete the proof of Corollary 1.2. O

Remark 3.3 Note, that the 3-dimensional case with a cubic defocusing nonlinearity,
ie.

d=a=3, Fu) =F;®u)=uu

is admissible in our framework. In the deterministic setting, i.e. B = 0, a global
unique weak solution to this problem in H L(M) was constructed in [4, Theorem 3].
Uniqueness in the stochastic case will be proved in a forthcoming paper. In [8], the
authors considered the stochastic problem, but only obtained global solutions in the
2-dimensional case.

3.3 Laplacians on bounded domains

We can apply Theorem 1.1 to the stochastic NLSE on bounded domains.

Corollary 3.4 Let M C R? be a bounded domain and A be the Laplacian with Dirich-
let or Neumann boundary conditions. In the Neumann case, we assume that OM is
Lipschitz. Under Assumption 2.7 and either (i) or (ii)

: el y
() Fu) = |ul*'uwitha € (1’1+—(d—2)+)’
(i) Fu) = —|ul* " uwitha € (1,14 %),

the equation

(3.5)

du(t) = (Au(t) —iF(u(t))dt —iBu(t) odW () in H'(M),
u(0) = ug € H'(M),
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has a martingale solution which satisfies
we LU(Q, L™, T; H' (M)

forall g € [1, 00).

We remark, that one could consider uniformly elliptic operators and more general
boundary conditions, but for the sake of simplicity, we concentrate on the present two
examples.

Proof In the setting of the second section, we choose X = RY. Hence, the doubling
property is fulfilled. We consider the Dirichlet formay:V x V — C,

av(u,v)zf Vu-Vodx, u,veV,
M

with associated operator (Ay, D(Ay)) in the following two situations:

(i) V = Hy (M)
(i) V = H'(M) and M has Lipschitz-boundary.

The operator A HIM) = Ap is the Dirichlet Laplacian and Ap1(y) = Ay is the
Neumann Laplacian. In both cases, V. = E 4, by the square root property (see [46,
Theorem 8.1]) and the embedding E 4, <~ LYt (M) is compactiff | < o < pmax—1
with pmax = 2 + ﬁ. Hence, we obtain the same range of admissible powers «
for the focusing and the defocusing nonlinearity as in the case of the Riemannian
manifold without boundary.

In the Dirichlet case, we choose S := A = —Ap, which is a strictly positive opera-
tor and [46, Theorem 6.10], yields the Gaussian estimate for the associated semigroup.
Hence, we can directly apply Theorem 1.1 to construct a martingale solution of prob-
lem (3.5).

In the Neumann case, we have 0 € o(Ay) and the kernel of the semigroup
(e7'AV),_, only satisfies the estimate

1
m m—1
Ip(t, x, y)| < Lle” exp { —c (M)
u(B(x,tm)) !

for all + > 0 and almost all (x,y) € M x M with an arbitrary ¢ > 0, see [46,
Theorem 6.10]. In order to get a strictly positive operator with the Gaussian bound
from Remark 2.2, we fix ¢ > 0 and choose S := ¢/ — Ay. Finally, the computation
of the admissible range of exponents « in the focusing case is similar to the third step
of the proof of Corollary 1.2. O

t>0

3.4 The fractional NLSE

In this subsection, we show how the range of admissible nonlinearities change when
the Laplacians in the previous examples are replaced by their fractional powers (—A)#
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for B > 0. Exemplary, we treat the case of a compact Riemannian manifold without
boundary. Similar results are also true for the Dirichlet and the Neumann Laplacian
on a bounded domain. Let us point out that there exists a huge literature on the subject
of fractional NLSE apparently starting with a paper [36] by Laskin.

In the setting of Sect. 3.2, we look at the fractional Laplace—Beltrami operator given
by A = (—A g)/S for B > 0, which is also a selfadjoint positive operator by the
functional calculus and once again, we choose S := I — Ag. We apply Theorem 1.1
with

Ea=D(A?) =D <(1 - Ag)g) — HP (M),

see Proposition B.2(a). Note that D(S¥) < E, holds for every k € N with k > g
The range of admissible pairs («, 8) in the defocusing case is given by

d (11+—4ﬂ )
2 T ar1 TS\ T o)

since this is exactly the range of « and 8 with a compact embedding E4 < L%1(M)
[see Proposition B.2(c)]. In the focusing case, analogous calculations as in the third
step of the proof of Corollary 1.2 (with the distinction of 8 > %, B = %’ and 8 < %)
imply that the range of exponents reduces to

ae(l,l—i—‘%ﬁ).

Hence, we get the following Corollary.

Corollary 3.5 Let (M, g) be a compact d-dimensional Riemannian manifold without
boundary, B > 0 and ugy € HP(M). Under Assumption 2.7 and either (i) or (ii)
: _ =1, i 48
G) F(u) = |ul*'u witha e (1, 1+ (d_zﬁ)+),
(i) Fu) = —|u|*'u witha e (1, 1+ %) ,

the equation

du(t) = (=i (~89)" u®) = iF@(®) dt = iBu(®) 0 W), 1 >0,

3.6)
u) = ug € H# (M),
has a martingale solution <fl, ]:', I@, W, IF', u) in HP (M) with
weld (sz L0, T; Hﬂ(M))) (.7)

forall g €[1, 00).
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3.5 The model noise
In Corollaries 1.2 and 3.4, we considered the general linear noise from Assumption 2.7.
If M is either a compact Riemannian manifold or a bounded domain, let us consider
the following example. Let (B,,),, <y the multiplication operators given by

Bu = enu

for u € H with real valued functions e,,, m € N, that satisfy

HYM)YNL®M), d=>3,
em € F:={HY (M), d=2, (3.8)
H' (M), d=1,

for some g > 2 in the case d = 2. Moreover, we assume

o0

2
> llemllF < oo.
m=1

We get
lemullLr < llemllLeanllullLr, — ue LP(M),

for p € [1, oc]. First, let d > 3. The Sobolev embedding H'(M) < LPm (M) for

Pmax = % and the Holder inequality with % = }7 + ﬁ yield

IV (emu) Iz < luVenllp2 + lemVullp2 < Vel pallullLoms + llem || oo an | Vaell 2

S (IVemllpa + llemllzeon) lullgr,  we H' (M),

Now, letd = 2 and ¢ > 2 as in (3.8). Then, we have F < L°°(M). Furthermore, we
choose p > 2 according to % = % + % and observe H' (M) < LP(M). As above,
we obtain

1
IV (emu) 12 S (IVemlie + lemllzoon) lul gt S llemllgrallull g, uwe H' (M).
Hence, we conclude in both cases
1
lemullgr S llemllFllullygr,  meN, ueH (M)

For d = 1, this inequality directly follows from the embedding H LMy — LoWm).
Therefore, we obtain

00
Z ”Bm”%;(EA) <0

m=1
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for arbitrary dimension d. The properties of B,, as operator in £(L**!(M)) and in
£(L2(M)) can be deduced from the embedding F < L°°(M).

We close this section by remarks on natural generalizations of the linear, conser-
vative noise considered in this paper. The details have been worked out in the second
author’s dissertation [27].

Remark 3.6 As in [8, Section 8], it is possible to replace the linear Stratonovich noise
in Theorem 1.1, see also Assumption 2.7, by a nonlinear one of the form

i 2 (g(uiu).

NI'—*

Bu(w) i= =iBy (g(uPu).  puiw) =

where we assume the Lipschitz and linear growth conditions

N 2j
lg(ul ulle, Sllulle,, — lgUul™DullLr S llullee,
2j 2j
gl u — g(vI) vliLr S llu—vlize

for j € {1,2} and p € {a + 1,2}. In the case of H'-based energy spaces, i.e. the
A = —A on abounded domain or A = — A, on a Riemannian manifold, one can take
g€ C2([0, 00), R) which satisfies the following conditions:

suplg(r)| < oo, sup(l+r)lg'()| < oo, sup(l+r3)g"(r)] < co. (3.9)

r>0 r>0 r>0
This kind of nonlinearity is often called saturated and typical examples are given by

r r2+or) log(1 +or)
: = : =TI 0. 00),
Tror 8200 oy 80T et von 0™

gi1(r) =

for a constant o > 0. For the Galerkin equation, we then take

: . = e
du, = <_1A”n —iPyF (up) — ) Z SnBan (g(un|2)2”n)> dr —i Z San(g(Wn‘z)un)d.Bmy

m=1 m=1

un (0) = Ppug.

Unfortunately, this approximation does not respect mass conservation, but one still
has

supE [ sup ||un(t)||%,} <L (3.10)
neN tel0,T]

which is enough for our purpose.
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Remark 3.7 Another possible generalization of the noise is to drop the assumption that
By, m € N, is selfadjoint. Then, the correction term p has the form

1 o0
w(u) == —3 Z B Bu.
m=1

This kind of noise is called non-conservative and was considered in [12,28]. The
existence result is then based on the approximation

1 o0 o0
du, = (—iAun —iPyF (un) = 5 > SnB,’;Bmun> dt =i Sy BuutndBu.

1, (0) = Pyup,

and the a priori estimates as well as the convergence results can be proved analogously.
We only have to replace mass conservation by the estimate (3.10). The uniqueness
result in Sect. 7, however, only holds for selfadjoint B,,, since this is the crucial
assumption in Lemma 7.4.

4 Compactness and tightness criteria

This section is devoted to the compactness results which will be used to get a martingale
solution of (1.1) by the Faedo—Galerkin method.
Let A and o > 1 be chosen according to Assumption 2.1. We recall that the energy

space E 4 is defined by E4 := D(A%). We start with a criterion for convergence of a
sequence in C ([0, T'], BY ), where the ball IB%Z-A is equipped with the weak topology.

Lemma 4.1 Letr > Oand (up),eny C L°°(0, T; E o) be a sequence with the properties

(@) sup,en lunllLo©,1:E4) <7,
(b) up — uin C([0, T], E}) for n — oo.

Then u,,u € C([0, T],]B%%A)for all n € N and u,, — u in C([0, T],IB%’EA)for
n— oo.

Proof The Strauss-Lemma A.3 and the assumptions guarantee that
up € C([0,T1, E}) NL¥(0,T; Ea) C Cy([0,T1, En)

foralln € Nand sup, ¢ 77 llun(t)l £, < r.Hence, we infer thatu, € C([0, T, ]B’EA)
foralln € N.Forh € E4

sup [(un(s) —u(s), h)| < lup —ulicqo,ry,e)lhlle, = 0, n— oo.
5€l0,7]

By (a) and Banach-Alaoglu, we get a subsequence (i, ),y and v € L®(0, T; E»)

with u,,—*v in L°°(0, T; E4) and by the uniqueness of the weak star limit in
L%(0,T; E}), we conclude u = v € L¥(0, T; Ex) with [lullz<,7;£4) <7-
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Lete > O and & € E}. By the density of E4 in E, we choose h, € E4 with
&

lh — hg||E§ < 7. and obtain for large n € N
[(un(s) —uls), h)| < Hun(s) —u(s), h — he)| + Hun(s) — u(s), he)l

< Nlun(s) —u() |y llh — hellpr + un(s) — uls), he)l

<2 I3 n e

=Ty TaTE
independent of s € [0, T']. This implies supscjo 71 [{un(s) — u(s), h)| — 0 forn —
ooandall h € EY, ie u, — uin Cy([0, T], E4). By Lemma A.2, we obtain the
assertion. O

We define a Banach space ZT by
Zr = C([0,T], E%) N L*T 0, T; LT (M))
and a locally convex space Z7 by
Zr = Zr N Cy([0, T1, E4).

The latter is equipped with the Borel o-algebra, i.e. the o-algebra generated by the
open sets in the locally convex topology of Z7. In the next Proposition, we give a
criterion for compactness in Zr.

Proposition 4.2 Let K be a subset of Zr and r > 0 such that

(@) sup,ck lullLo©,1:E4) <73
(b) K is equicontinuous in C ([0, T, E:f\), ie.

lim sup sup [lu(t) —u(s)||gx = 0.
=0y ek |1—s|<8 4

Then, K is relatively compact in Zt.

Proof Let K be a subset of Z7 such that the assumptions (a) and (b) are full-
filled and (z,),eny C K. We want to construct a subsequence converging in
LY, T; LYYN(M)), C([0, T1, E%) and Cy, ([0, T1, En).

Step 1 By (a), we can choose a constant C > 0 and for each n € N a null set I,
with ||z, (#)||g, < C forall t € [0, T]\I,. The set [ := UneN I, is also a nullset and
foreach t € [0, T]\/, the sequence (2, (7)), is bounded in E 4.

Let (t.i)jeN C [0, T1\I be a sequence, which is dense in [0, T]. By Lemma 2.3, the
embedding E4 < H is compact, which yields that E4 < E7 is also compact.
Therefore, we can choose for each j € N a Cauchy subsequence in £} again denoted
by (zn (t J))n <y - By a diagonalisation argument, one obtains a common Cauchy sub-

sequence (2, (7)), o -
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Let & > 0. Assumption (b) yields § > 0 with

e
sup sup |lu(t) —u(s)|py < 3 4.1
uek |t—s|<s

Let us choose finitely many open balls Ual, ceey UaL of radius 6 covering [0, T']. By

density, each of these balls contains an element of the sequence (t j)j ey Saytj, €U é

for I € {1,...,L}. In particular, the sequence (zn (tjl))neN is Cauchy for all [ €

{1,...,L}.Hence,

e
lzn(2j) = zm(tj) g% < 3 I=1,...,L, (4.2)
if we choose m, n € Nsufficiently large. Now, we fixt € [0, T]andtake!/ € {1, ..., L}

with |t;, — | < 5. We use (4.1) and (4.2) to get

lzn(2) — Zm(t)”EZ < llzn(®) — zn(tjl)”Ef4 + ”Zn(tj[) - Zm(tjl)”E; + Hzm(tjl) - Zm(t)”E; <e.
4.3)

This means that (z,),cy is a Cauchy sequence in C([0, T'], E7}) since the estimate
(4.3) is uniform in ¢ € [0, T].

Step 2 The first step yields z € C([0, T], E}) with z, — z in C([0, T], E) for
n — oo and assumption (a) implies, that there is » > 0 with sup,, .y l|z» ||L°°(O,T,EA) <
r. Therefore, we obtain z € C ([0, T], IB%%A) andz, — zin C([0, T, B%A) forn — oo
by Lemma 4.1. Hence, z, — z in C, ([0, T'], E4).

Step 3 We fix againe > 0. By the Lions Lemma A.4 with Xg = E4, X = L*'(M),

Xy =E),p=a+landg = Mwweget
1 1
1010 gy < EONVIEET + Cegllull st (44)

for all v € E 4. The first step allows us to choose n, m € N large enough that

_ a+1 €
”Zn Zm”c([() Tl, ) = 2C30

The special choice v = z,(t) — z,,(¢) for t € [0, T] in (4.4) and integration with
respect to time yields

+1 +1 +1
||Zn —Zm ||(zoz+l(0 T: Lot+l(M)) = 8()”Zn m ||i“+l(O,T;EA) + CE()“Zn —Zm ”(Z‘oﬂrl(o T'E*)

+1
= 8OT||Zn - Z’"”(Z,"O(O,T;EA) + CE()T”ZH Zm”c([() T], E*)

1
< &0T 20 + CagTlzn = 2nI{i0 71,55

P
cL 8

-2 2
Hence, the sequence (z,),cy is also Cauchy in L*+1(0, T; L4+t (M)). o
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In the following, we want to obtain a criterion for tightness in Z7. Therefore, we
introduce the Aldous condition.

Definition 4.3 Let (X,,), <y be a sequence of stochastic processes in a Banach space
E. Assume that for every ¢ > 0 and n > 0 there is § > 0 such that for every sequence
(Tn)nen of [0, T']-valued stopping times one has

sup sup P{|X,((ta +O) AT) = Xp(m)llE = 1} < &.
neN0<60<6

In this case, we say that (X,,),en satisfies the Aldous condition [A].

The following Lemma (see [41, Lemma A.7]) gives us a useful consequence of the
Aldous condition [A].

Lemma 4.4 Let (X,,)neN be a sequence of continuous stochastic processes in a Banach
space E, which satisfies the Aldous condition [A]. Then, for every ¢ > 0 there exists
a measurable subset A, C C([0, T, E) such that

PX"(Ag) > 1—¢, lim sup sup |lu(t) —u(s)|g = 0.

“YueA; |t—s|<8

The deterministic compactness result in Proposition 4.2 and the last Lemma can be
used to get the following criterion for tightness in Z7.

Proposition 4.5 Let (X)uen be a sequence of continuous adapted E’-valued pro-
cesses satisfying the Aldous condition [A] in E’} and

supE I:”Xn”%OO(O,T;EA):I < 0.
neN

Then the sequence (IP’X”)neN is tight in Zt, i.e. for every ¢ > 0 there is a compact set
K. C Z7 with

PXi(Ke) > 1 —¢

foralln € N.

2

Proof Let ¢ > 0. With Ry := (% sup,en E [||X,,||%oo(0 T'EA)D , We obtain

1 e
PIXalimoriey > Ri} < 25F (Xl orie | < 5-

By Lemma 4.4, one can use the Aldous condition [A] to get a Borel subset A of
C([0, T], E}}) with

PXr(A) > 1 — %, neN, limsup sup |lu(t) —u(s)lg; =0.

8=0yeA |1—s|<8
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We define K := AN B where B := {u € Zy:||lullp~0,7:£,) < R1}. This set K is
compact by Proposition 4.2 and we can estimate

PX"(K) > PX" (AN B) > PXr (A) —P¥" (B°) > 1 - =1l—¢

NSRS

£
2
forall n € N. |

In metric spaces, one can apply Prokhorov Theorem (see [47, Theorem I1.6.7])
and Skorohod Theorem (see [5, Theorem 6.7]) to obtain convergence from tightness.
Since the space Z7 is a locally convex space, we use the following generalization to
nonmetric spaces.

Proposition 4.6 (Skorohod—Jakubowski) Let X be a topological space such that there
is a sequence of continuous functions f,: X — C that separates points of X. Let A
be the o-algebra generated by ( f,),, . Then, we have the following assertions:

(a) Every compact set K C X is metrizable.
(b) Let (t4n),en be a tight sequence of probability measures on (X, A) . Then, there
are a subsequence (I’Ll’lk)keN , random variables Xy, X for k € N on a common

probability space (S, F, P) with PXk = n fork € N, and X — X P-almost
surely for k — oo.

We stated Proposition 4.6 in the form of [9] (see also [30]) where it was first used to
construct martingale solutions for stochastic evolution equations. We apply this result
to the concrete situation and obtain the final result of this section.

Corollary 4.7 Let (X;)nen be a sequence of adapted E’-valued processes satisfying
the Aldous condition [A] in E} and

sup]E[HX ||LOO(0T EA)] < 00.
neN

Then, there are a subsequence (X, )keN and random variables X, X fork € Non
a second probability space (Q,F, P) with PXc = P¥n for k € N, and Xy —> X
P-almost surely in Zt for k — oo.

Proof We recall that Zy = C ([0, T, E%) N LT1(0, T; LT (M) N Cy ([0, T1, Ea)
is a locally convex space. Therefore, the assertion follows by an application of
the Propositions 4.5 and 4.6 if for each of the spaces in the definition of Z7 we
find a sequence f,,,: Zr — R of continuous functions separating points which
generates the Borel o-algebra. The separable Banach spaces C([0, T], E%) and
LeT10, T; L1 (M)) have this property.

Let {h,,: m € N} be a dense subset of Ejf‘. Then, we define the countable set
F:={fmsm €N, 1 € [0, T]NQ} of functionals on C, ([0, T], E4) by

St ) = (u(t), hm)
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form e N, 1t €[0,T]NQandu € Cy([0, T], E4). The set F separates points, since
foru,v e Cy([0, T], Ea) with f,, ,(u) = fin (v) forallm € Nandz € [0, TINQ,
we get (u, hy) = (v, hy,) on [0, T] for all m € N by continuous continuation and
therefore u = v on [0, T']. Furthermore, the density of {/,,: m € N} and the definition
of the locally convex topology yield that ( fm,t)m eN.re[0.T]ng generate the Borel o -
algebra on Cy, ([0, T1, E5). Y O

5 The Galerkin approximation

In this section, we introduce the Galerkin approximation, which will be used for the
proof of the existence of a solution to (1.1). We prove the well-posedness of the
approximated equation and uniform estimates for the solutions that are sufficient to
apply Corollary 4.7.

By the functional calculus of the selfadjoint operator S from Assumption and Nota-
tion 2.1, we define the operators P,: H — H by P, := 1(0’2n+l)(S) forn € Ny. Recall
from Lemma 2.3, that S has the representation

o0 o0
Sx = ka(x,hm)Hhm, x € D(S) = {x € H: Z)L,znl(x,hm)mz < oo] ,
m=1

m=1

with an orthonormal basis (h,,),,cy and eigenvalues A,, > 0 such that A, — o0 as
m — o0. For n € Ny, we set

H, := span {hm:m eN, A, < 2”+1}
and observe that P, is the orthogonal projection from H to H,. Moreover, we have

P,x = Z (x,hm)Hhm, xeH.

Am <n+l
Note that we have /1, € [en D(S*) form € Nand thus, we obtain by the assumption

D(Sk) < E4 for some k € N that H, is a closed subspace of E4 for n € Ny. In
particular, H, is a closed subspace of E . The fact that the operators S and A commute

by Assumption 2.1 implies that P, and A% commute. We obtain

Puxlly, = 1 Pax |3y + 143 Poxly = [ Paxly + | P, AZ x|
[Puxlg, = 1Paxly + 1A2 Pax |3y = | Paxllyy + 1 PaA2 x|y

<lxl%,. x€Ea, (5.1)
and

[ Puvllgr = sup |(Pav, x) | < lvllgs sup [[Paxlle, < llvllg.
Ixllg, <1 Il <1
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By density, we can extend P, to an operator P,: E — H, with || P, || EX—Ey < 1 and

(v, Pv) R, (v, Pw) = (Pyv, w) ve Ey, wekEjs. (5.2)

H

Despite their nice behaviour as orthogonal projections, it turns out that the oper-
ators P,,n € N, lack the crucial property needed in the proof of the a priori
estimates of the stochastic terms. In general, they are not uniformly bounded from
L (M) to Lt (M). To overcome this deficit, we construct another sequence
(Sn)nen of operators S,: H — H, using functional calculus techniques and the gen-
eral Littlewood—Paley decomposition from [34].

We take a function p € C2°(0, co) with supp p C [%, 2land ), ., P27 =1
for all t > 0. We define p,, = p(27") form € N and pg := Zg1=foo p(27"), so
that we have anozo pm(t) = 1forallt > 0. The sequence (o), eN, is called dyadic
partition of unity.

Lemma 5.1 We have the norm equivalence

. (5.3)
Lot+1(M)

Z m Pm (S)X

m=0

Ixllzatiary = sup
lalloo g =1

where the operators pm(S), m € N, are defined by the functional calculus for selfad-
joint operators.

Proof By Assumption 2.1(ii), we obtain that the restriction of (T (¢)),>¢ to LYt (M)
defines a cp-semigroup on Let1(M), see Theorem 7.1. in [46]. We denote the cor-
responding generator by Sy4+1. Lemma 6.1. in [34] implies that the operator S, is
0-sectorial and has a Mihlin M#-calculus for some 8 > 0. For a definition of these
properties, we refer to [34, Section 2]. The estimate (5.3) follows from Theorem 4.1
in [34]. O

In the next Proposition, we use the estimate from Lemma 5.1 to construct the
sequence (S;,), <y Which we will employ in our Galerkin approximation of the problem
(1.1). For amore direct proof which employs spectral multiplier theorems from [33,55]
rather than the abstract Littlewood—Paley theory from [34], we refer to [27]. Moreover,
we would like to remark that in the meantime, a similar construction has also been
applied to use the Galerkin method in the context of stochastic Maxwell equation, see
[29].

Proposition 5.2 There exists a sequence (Sp),en, of selfadjoint operators S,: H —
H, forn € Ny with Sy — ¥ in E4 forn — oo and € E 4 and the uniform norm
estimates

sup ISulleay = 1, sup ISulleey =1, sup [ISullgasty <00 (5.4)
neNy neNy neNy

Proof We fix n € N and define the operators S,: H — H forn € Ny by S, :=
anzo om (S) via the functional calculus for selfadjoint operators. The operator p,, (S)
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is selfadjoint for each m, since p,, is real-valued. Hence, S, is selfadjoint. By the
convergence property of the functional calculus, we get S, — ¢ in E4 for all
¢ € E4. A straightforward calculation using the properties of the dyadic partition of
unity leads to

Six= > (X hw)yhm+ D oaCm) (%, hm) yhim, u € H.
A <27 Jm€[21, 201

Therefore, S, maps H to H, and we have sup, oy, [|Sullczy < 1. The second

estimate in (5.4) can be derived as in (5.1), since S,, and A% commute. To prove the
third estimate, we employ Lemma 5.2 with (@n)en, @s an = 1 for m < n and
ay = 0 for m > n and obtain for x € L*H (M)

> ampm(S)x

m=0

< sup
Lot (M) llalloo gy =1

||Sn.x||Lu+l(M) = S ||X||Lw+l(M)-

)
Z am Pm (S)x
m=0

LD"H(M)
]

Using the operators P, and S, n € N, we approximate our original problem (1.1)
by the stochastic differential equation in H, given by

du,(t) = (—iAu,(t) —iP, F (u,(¢)))dt —iS, B(S,u,(t)) o dW (1),
u, (0) = Pyup.

With the Stratonovich correction term

1 o0
= =5 DSBS

m=1

the approximated problem can also be written in the It6 form

duy (1) = (—iAuy (1) — i Py F (uy (1)) + ptn (un(2))) dt — i8S, B(Spun (£))dW (),
u, (0) = Pyug.
(5.5)

By the well known theory for finite dimensional stochastic differential equations
with locally Lipschitz coefficients, we get a local wellposedness result for (5.5).

Proposition 5.3 For each n € N, there is a unique local solution u, of (5.5) with
continuous paths in H, and maximal existence time t,, which is a blow-up time in
the sense that we have lim SUP; iz, (o) 1Un(t, @) H, = 00 for almost all » € 2 with
T (w) < o0.

The global existence for Eq. (5.5) is based on the conservation of the L2-norm of
solutions.
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Proposition 5.4 For each n € N, there is a unique global solution u, of (5.5) with
continuous paths in H,, and we have the estimate

lun O H, = llunOllg = I Pauolla < lluolla (5.6)
almost surely for all t > 0.
Proof Step 1 We fix n € N and take the unique maximal solution (u,, 7,) from
Proposition 5.3. We show that the estimate (5.6) holds almost surely on {r < t,,}. The

function @: H, — R defined by @ (v) := ||v||%1 for v € H, is twice continuously
Fréchet-differentiable with

@'[vlhy =2Re (v, h1) . @"[v][h1, ha] =2Re (h1, ha),,

for v, hy, hy € H,. For the sequence (7,k), _y Of stopping times

keN
Tok = inf {t € [0, T ]: lun (D f, = k} ATy, k€N,
we have 1, x ' 7, almost surely and the It6 process u, has the representation
t t
un(t) = Pyug +/ [—iAup(s) — 1Py F (un(s)) + pn(un(s))]ds —i/ Sn B (Sputy (s))dW (s)
0 0

almost surely on {r < 7, } for all k € N. We fix k € N. Since we have

tr <(D//[Mn ()] (=18, B (Spun(s)) , —iS, B (Snun(s)))>

]

2Re ( — 18y B (Snttn () fm, —18p B (Snttn(s)) fm)H
m=1
o0
=2 11SuBuSutn ()13
m=1
fors € {t < 7,1}, the Itd lemma yields
t
lun ()13 = Il Pauoll; +2 fo Re (itn(5), —iAun (s) = iPuF (tn(5)) + 1tn (tn(5))) yds
t o0 t 5
+2 /0 Re (160 (s), ~i8 B(Suttn ()AW () + 3 /0 10 B Suttn (5)]13ds
=1

almost surely in {t < 7, r}. We fix v € H, and m € N and calculate

Re (v, —idv), =Re il a*v]}, ] =0,
Re (v, —iP, F (v)), = Re(iv, F (v)) =0,
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o0

2Re (v, 1n () Z (v, (SuBuSa)* v) ZnSnB Suvll,

where we used (5.2) and Assumption 2.4(i) for the second term and the fact, that the
operator S, B,, S, is selfadjoint for the third term. Analogously, we get

Re (v, =18, B(S4v) fn) ;; = Re (v, =18, By Syv) ,; = Re [i(v, S, BuSpv) ;] = 0.

Thus, we obtain ||u, (t)||%1 = ||P,,u0||%1 < ||u0||%_1 almost surely in {t < 7, }.

Step 2 To show 1, = oo almost surely, we assume the contrary. Therefore, there
is Qo € F with P(Qp) > 0 such that 7,(w) < oo and 7, k(@) / T,(w) for all
o € 0. Hence, 7, x < 00 on Qo and by the continuity of the paths of u, and the
definition of 7, x, we get |lu, (T, k (@), ®)||H, = k for all @ € Qp and k € N. This
is a contradiction to Step 1, where we obtained ||u, (t)||g < ||uo|lz almost surely in
{t < 1y }. Therefore, u, is a global solution and we have

lun O, = lun@Olla = | Pauolln < lluolla
almost surely for all 7 > 0. O

The next goal is to find uniform energy estimates for the global solutions of the
Eq. (5.5). Recall that by Assumption 2.4, the nonlinearity F has a real antiderivative
denoted by F.

Definition 5.5 We define the energy £(u) of u € E4 by
L o1 5 ~
E(u) :=§||A2u||H+F(u), uekEy.

Note that £(u) is welldefined by the embedding E4 — LT (M). In contrast
to the uniform L>-estimate in [0, 00), we cannot exclude the growth of the energy
in an infinity time interval. So, we fix 7 > 0 from now on. As a preparation, we
formulate a Lemma, which simplifies the arguments, when the Burkholder—Davis—
Gundy inequality is used.

Lemma5.6 Letr € [1,00),e>0,T >0and X € L" (2, L>®(0, T)). Then,

Xl 200 < 1K@ o0 + 3 / Xl @reommds, €0, T].

Proof By interpolation of L2(0, 1) between L>°(0, t) and L' (0, ¢) and the elementary
inequality v/ab < ea + ﬁb fora, b > 0 and ¢ > 0, we obtain

IXN220.0) = IIXIILOC(O t)IIXIILl(0 p = elXlie.n + —IIXIILl(o 0
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Now, we take the L" (£2)-norm and apply Minkowski’s inequality to get

1 t
I1XNr @, 20,0 < €NXlILr@,0.0)) + E/o X (s)IlLr()ds
1 t
< el Xl @.Loo.0) + E/(; I XL (2.L%00.5))ds.

]

The next Proposition is the key step to show that we can apply Corollary 4.7 to the
sequence of solutions (u,),en of the Eq. (5.5) in the defocusing case.

Proposition 5.7 Under Assumption 2.6(i), the following assertions hold.
(a) Forallg € [1, 00) thereis a constant C = C(q, |uollg,, o, F, (Bp)men,T) >0
with

q
supE[ sup [llun(01} + @] ] < €.
neN tel0,T]

Inparticular, forallr € [1, 0o) thereis C1 = C1(r, |uollg,. @, F, (Bn)men, T) >
0

supE[ sup lun (1), ] = €1
neN t€[0,T]

(b) The sequence (u,)neN satisfies the Aldous condition [A] in EZ.

Proof (ad a) By Assumption 2.4(ii) and (iii), the restriction of the energy £: H, — R
is twice continuously Fréchet-differentiable with

&'lvlhi = Re(Av + F(v), hy);
"W h1, hal =Re (A2h1, A%hs),, + Re(F'[vlha, hy)

for v, h1, hy € H,. We compute

tr (& 10n ()] (=i B (Syitn(5)) s i1 B (Syttn () )

=Y E"un($)] (—iSy B Suttn (5), =18, By Syttn (5))
=1

= > IA2 Sy BuSutta() 13 + > Re(F [un ()] (SyBus Suttn (5)) . Sy B St ()

=1 m=1

and therefore, [t6’s formula and Proposition 5.4 lead to the identity
litn D11 + € (un(0)) = | Pauolgy + & (Pauto)
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t
+/ Re(Auy (s) + F(un(s)), —1Aup(s) — 1Py F(up(s)))ds
0

t

+ | Re{Aun(s) + F(un(s)), pn(un(s)))ds

+ Re(Auy, (s) + F(up(s)), =18, B (Spu,(s)) dW(s))

© t
Z/ 1A% S, By Syt () ds
m=1

0| = o\;c\

8

N =

/ Z (F'[tn ()] (Su B Spttn () s Sy B Sutt (5))ds (5.7)

almost surely for all 7 € [0, T']. We can use (5.2) for

Re(F(v), —iP, F(v)) = Re [i(F(v), P, F(v))] = 0:
Re [(Av, —iPy F(v)) + (F(v), —iAv)] = Re [—(Av, iF (v)) + (Av, iF(v))] -

Re (Av, —iAv),, =Re [i”AU”%[] _0
for all v € H,, to simplify (5.7) and get
t
lun (O3 + € (@) = | Pauoll3; + € (Puuo) +/0 Re(Aun (s) + F(tn(5)), fin (ttn(s)))ds
t
+ / Re(Au, (s) + F(u,(s)), =S, B (Spu, (s)) dW(s))
0
1T& )
+ 5 Z‘/O ”AZSanSnun(S)HHdS
m=1

1 [T & ,
+ 5/0 ZRC<F [ty ()] (Sp By St (5)) 5 Sp By Spttn (5))ds (58)

m=1

almost surely for all # € [0, T']. Next, we fix § > 0, ¢ > 1 and apply the It6 formula
to the process on the LHS of (5.8) and the function @: (—%, o0) — R defined by
@ (x) := (x + 3)?. The derivatives are given by

' (x) = q (x +3)q_1 , " (x) = qlg—1(x +3)q_2, X € (—%, oo) .

With the short notation
Y(s) =8+ llun(®) 7y + € wa(s)). s €[0,T],
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we obtain

t
Y(n? = [8 + | Pauol|% + & (Pnuo)]q + q/o Y ()" Re(Auy (s) + F(uy (5)), ftn n(s)))ds

t
+ q/ Y(s)q_1 Re(Au, (s) + F(u,(s)), —iS, B (Syu, (s)) dW(s))
0

o t
q _ 1
+ 52 /0 Y ()1 A2 S, By Syt (5) 13, ds

m=1

0 t
+ %Z / Y ()77 Re(F' [ ()1 (Su B Spttn (5)) » Sy B St (5))ds
m=1 0

o t
+ %(q -ny / Y ()77 [Re(Auy (5) + F(tn (), =i, B Spun())Pds — (5.9)
m=1 0

almost surely for all # € [0, T]. In order to treat the stochastic integral, we use Propo-
sitions 5.2 and 5.4 to estimate for fixed s € [0, T]
[(Aun(5). =iSy BuSnttn(9)) ;| < 1 A2 () 1| A2 S, By Syt ()1 1
< ||A%un(s)||H”SanSn”n(s)”EA
< A2 #1512 Bl 2 it () 2,
< (In )1 + 1A 3w ) 1Bl e
SYOBullcey (5.10)

and (2.5), (2.10) and Proposition 5.2 to estimate
[(F (un(s)), =1Sp B Spun(s))| < ||F(un(s))||LaT+1(M)”SanSnun(s)”LaH(M)

1 2
< Netn NG als gy 1S 17 sy 1Bl 2oy

S F )| Bl peny
S Y(S)HBm”L(LaH)- (511)

The Burkholder—-Gundy-Davis inequality, the estimates (5.10) and (5.11), Assump-
tion 2.7 and Lemma 5.6 applied to the process X = Y7 with r = 1 yield for any
e>0

E|[ sup
s€[0,1]
1

t P 2
SE ( |3 [P0 A0 + F ). =i, B0, dr)
0 m=1

/S Y (r)?~ Re(Auy (r) + F(uy(r)), —iS, B (Snun(r))dW(r)>H
0
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1
t 2 1 t
<E </ Y(r)zqdr> <e¢E| sup Y(s)? +—/ E| sup Y(r)?|ds.
0 sel0,1] de Jo rel0,s]

(5.12)

The integrands of the deterministic integrals can be estimated by using the bounds
(5.4), Proposition 5.4 for the linear and (2.5) as well as (2.10) for the nonlinear part.
We fix s € [0, T'] and get
Re (At (), (S3BuS)? tun()) yy < 1AZun ()11 A% (S B Su) () 11
< 1ALy )11 (2 B S un(5)I

1
< A2 1Sl g 1B 10 (9D £

< (lea I + 14200 )13 ) 1Buli2 s,

SYOIBullZgy: (5.13)
Re(F (tn (5)). (Su B S) ttn () < IF n (DI gt 1 (SuBon S0 ten ()] 1 4y

S Nutn NG gy 1S sty 1Bl i,

S Fun)IBul ety S YOIBul ey (5.14)

1
IAZ Sy B Suttn ()17 < 1SuBuSutta O E, < 1SulE ) 1B 17 10 91,
1
= 1Bl sy (a1 + 142 0) 1 )
S Bl Z g Y (5) (5.15)

form € Nand s € [0, T]. By the bounds (5.4) of S,, and the Assumptions (2.7) and
(2.10) on the nonlinearity

Re(F' [t ()] (S Bin Suttn (8)) » Sy Bin Suttn ()) S “F/[un(s)]“LaH_)LﬂTﬂ ‘ISVIBmSanl(S)IIia+](M)
S Mt NGl ) 150 1 gty 1Bl o

S Fn@ Bl ey S Y OBl s
(5.16)

Substituting the inequalities (5.12) to (5.16), into the identity (5.9), we get for each
tel0,T]

q 'S
1]«:[ sup Y(s)q:| <4 [5+ | Paueoll +£(P,,u0)] —HE/ > 1Bl g, Y ()9ds

se[0,t] m=1

t o0
+E /0 D IBulg e Y ()7ds
m=1

1 t
+ ¢E| sup Y(s)? —|——/ E| sup Y(s)? |dr
rel0,] 4e Jo | sefon
o0 t t o0
+EY’ /0 Bl g, (5)7ds + E /0 D Bl oy Y (9)7ds
m=1 m=1
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t o0
+E / Y)Y max{|Bull 7z, 1Bnll% o Yds

m=1
t

q
< [+ ol +epan)] + B [ voyras

1 t
+ ¢E| sup Y(s)? +—/ E| sup Y(s)? |dr
ref0.1] 4e Jo | sef0.r

q
Sr [5 + lluoll? + S(Pnuo)} +¢E [ sup Y(S)q}
ref0.1]

+/tIE{ sup Y(s)q:| dr. (5.17)
0

s€[0,r]

Choosing ¢ > 0 small enough in inequality (5.17), the Gronwall lemma yields

E[ sup ¥(s)9] < C [5+ luoll?, +5(Pnuo)]qe0’, 1 €[0.T],
s€[0,1]

with a constant C > 0, which is uniform in » € N. Because of

1 2 1 2 1
E(Puuo) S A2 PauollFy + | Parcol§ 5, ) S 1 Partoll, + I Pawoll ' S 1

we obtain the assertion of Proposition 5.7, part (a).
(ad b) Now, we continue with the proof of the Aldous condition. We have

t

t t
uy(t) — Pyug = —i/ Auy(s)ds — i[ P, F(u,(s))ds +/ n Uy (s))ds
0 0 0
t
i / Su B(Sytn (AW (s)
0

= Ji(t) + J2(1) + J3(1) + Ja(1)
in H, almost surely for all # € [0, T'] and therefore
4
ln (0 +0) AT) = un(@)lles, < D Ik ((Tn +0) AT) = (Tl
k=1
for each sequence (1,),c of stopping times and 6 > 0. Hence, we get

4

P {ln((@ +0) A T) = (o)l =} < Y P11 +0) AT) = di@lley = 7
k=1

(5.18)
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for a fixed n > 0. We aim to apply Tschebyscheff’s inequality and estimate the
expected value of each term in the sum. We use part a) for

(T +O)AT (T +O)AT .
ElJi((ta +) AT) = Ji(@)llgs < E/ [ Aup ()|t ds < E[ lA2u, ()l nds
n Tn

1

2

59E|: sup ||”n(5)|EAi| §9E|: sup ||Mn(S)||EA:| <6Cy;
s€[0,T] s€[0,T1]

the embedding Laail (M) — E7 and the estimate (2.5) of the nonlinearity F for

(tn +O)AT
Ell2((ta +0) AT) = J2(t)ll gy < E/ 1P F (n (s))| 5 ds
n

(tn +O)AT
/ I F (un(s)ll 5 ds
Tn

(th+0)AT
E/T” |F(u"(s))”L°‘%l(M ds

(th+0)AT
]E ”ul’l(s)”(qurl(M)dS

A

2\

91@[ sup [lun(s)[%,] < 6Ca
s€[0,T]

Propositions 5.2 and 5.4 for

1

(Tp+O)AT 0
EIJ3((ta +6) A T) = J3(w)llg; = 5E / > (SuBuSi)? n(s)ds
T

n m=1

E}

1 (ta+OAT X
—E/ D 1 (SuBwSw)* un()ll g ds

m=1

AN

(T +OANT

Z 1B 1712y 1t (5) || s

seE[ sup ||un(s)||H]=cae.
s€[0,T]

| /\

(ta+OAT X
E / Zn (Su B Sn)* n(9)ll rds

Finally, we use the It isometry and again the Propositions 5.2 and 5.4 for

2

5 (ty+0)AT
ElJs((ta + ) AT) — J4(Tn)”E:; <E / SuB (Spun(s)) dW(s)
T

H
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(T +O)AT ’
_E / 150 B (Suttn()) sy, ds
Tn

(Ta+O)AT
_E /
: >

L m=1

||S,,Bmsnun<s)||%,ds}

[ (o +OAT X ) 5
<E f S B2 gl (5) 13
T

L™ m=1

SOE[ sup lun(s)l17] = 0Ca.
s€[0,T]

By the Tschebyscheff inequality, we obtain for a given > 0

4 4C0
P{IIJk((fn +O)AT) = J(T)llgy = g} < ;E”Jk((fn +OAT) = Ji(m)llg; < =
(5.19)
for k € {1, 2, 3} and
16 16C46
Pl +0) AT) = Il = 3} < LTI+ 0 AT) = da@ly = = 5
(5.20)
Let us fix ¢ > 0. Due to estimates (5.19) and (5.20) we can choose 81, ...,84 > 0

such that
P{IJe((@ +6) A T) = i@l = 7 = 5
k((Tn k(Tn E2_4 =2
forO <6 <éyandk =1,...,4. With § := min {8y, ..., 84}, using (5.18) we get
P{IJ(@a +0) AT) = Ji(@lg; = 0 <o

foralln € Nand 0 < 6 < § and therefore, the Aldous condition [A] holds in E;‘;. O
We continue with the a priori estimate for solutions of (5.5) with a focusing non-
linearity. Note that this case is harder since the expression

Il +E@) = vlE, + F), veH,,

does not dominate ||v||2 XK because F is negative.

Proposition 5.8 Under Assumption 2.6(i’), the following assertions hold:

(a) Forallr € [1, 00), thereisaconstant C = C(r, |luollg,, & F, (Bu)men.T) >0
with

supE|: sup IIun(t)IIEA} =C.
neN t€[0,T]
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(b) The sequence (u)nen satisfies the Aldous condition [A] in E¥;.

Proof Let ¢ > 0. Assumption 2.6(i") and Young’s inequality imply that there are
y > 0 and C; > 0 such that

el S Ellully, + Cellully,  u € Ea, (521)

and therefore by Proposition 5.4, we infer that
_if- < a+1 < 2 C Y
Wn ) S Nun I gy S elln @I, + Cellun 011
1
S elA2un gy +elluollyy + Celluollyy, 1 €[0,T].  (5.22)

By the same calculations as in the proof of Proposition 5.7 we get

1 1 N

EnAfun(s)u%, = Eun(s)) — F(un(s))

= —F(un(s)) + € (Pyuo) + f Re(Auy () 4 F(uy (), pn (un (r)))dr
0

+ /S Re(Aun (r) + F(un(r)), =iSy B (Spun(r)) dW(r))
0

1 & 8 1
500 [ 1AYS B S, Fyr
2m=1 0

+3 / C S R lun ()] (52 BuStn(1))» SaBuSutin()dr (5.23)
0 m=1

almost surely for all s € [0, T']. In the following, we fix g € [1,00) and ¢ € (0, T']
and want to apply the L9 (2, L°°(0, t))-norm to the identity (5.23). We will use the
notation

1
X(5) = [luolly + 1A% 0 + N OIGEL | s €107 (524)

and estimate the stochastic integral by the Burkholder—Gundy—Davis inequality and
the estimates (5.10) and (5.11) as well as Lemma 5.6

f Re(Aun (r) + F(un(r)), =18, B (Squn (r)) dW(r))
0

La(2,L>°(0,1))
1

00 2
(Z [{Aun(r) + F(un (1)), —isanSnu,,m)F)

m=1

A

L4(,L2([0,1]))

S IX N 2o, 220,07

1 t
< el XllLa@,L>0,n) + E/ 1 X\lLa(,L00,s))ds. (5.25)
0
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By (5.22), we get

A 1
| = Panlla@ixonm S e |1atuld +elluolly + Celluolly-

(5.26)

L4(2,1%°(0,1))

For the following estimates, we will use (5.13)—(5.16) and the Minkowski inequality
and obtain

/‘ Re(Aun(s) + F(un(s)), pn(un(s)))ds
0

‘
< H/ X(s)ds
0

o0 .
1
> /uAfsanSnun(s)n%,ds
0
m=1

t
‘/ X (s)ds
0

|3 ReF 501 (S, B S0 5) . Syt ()1
0 m=1

t
/ X (s)ds
0

By (5.23) and the estimates (5.25)—(5.29), we get

La(2,L>°(0,1))

t
S / 1 X () za()ds; (5.27)
L1(Q) 0

L9(2,L>(0,1))

S

t
< / 1 X ()l La(ds; (5.28)
L@ Jo

L4(2,1°(0,1))

t
N S / X () lLa(ds. (5.29)
0

L4()

Aun 12 2
A2 un g +elluolly

1
<e H A2u, ()| ‘
La@.Lo 0.0 l (O %

L9(Q,L%(0,1))
+ Celluolly + lluolie,

t
"‘/ X () La@ds + el XlLa@.L20.1)
0
1 t
+ E/o 1 X1 e (22,L%(0,5))ds
t
+/ 1 X ()]l 24 () ds. (5.30)
0

In order to estimate the terms with X by the LHS of (5.30), we exploit (5.21) to get

1

@rhg |7
+E| sup [un ()l
|:se[0,11 et

Q)

1
> 2
XNz @,200(0,0) < llug 1% +]E|: sup HAzMn(S)HHq]
s€[0,7]
1

1 q

2

< luoll, +E{ sﬁ)pluAfunm)n,j]
se€l0,1
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Q=

1
> 2
+ slﬁ{ sup \|A2un<s>u,j] +ellugl?y + Celluolly;
s€l0,1]

1 2
sup |AZ un(s)llyy
sel0.1]

< + luoliFy + ol

L9()

Hence, by (5.24), we obtain

L2
a3,

L(Q,L>(0,0)

1
Se[1atu @]

L9(2,L%(0,1))
+ elluolly + Celluollyy + lluoll £,

13
+/
0

1
+ e |1A2u 13|

2
ds + tlluolly + tlluolly

So2
A u 3|

L4(2,L2°(0,s))

2 Y
+ €llu + &l|lu .
Lz MOl + elluoly

Choosing ¢ > 0 small enough, we get

1
3 2
4tz

L9(Q,L®(0,1) —

t
1
<C , T, c H A2y} d
1(luoll g4 61)+/0 2(q) || 1AZunlly LIQL%0.5)

for all ¢ € [0, T'] and thus, the Gronwall Lemma yields

1
[14%u, )13

< Ci(luollg,, T, q)e®> D", 1 e]0,TI.
L4(2,L>(0,1))

This implies that there is C > 0 with

2
sup B[ sup s ()13, ] = C.
neN t€[0,T]

since the H-norm is conserved by Proposition 5.4. Therefore, we obtain the assertion
for r > 2. Finally, the case r € [1, 2) is an application of Holder’s inequality.
(ad b) Analogous to the proof of Proposition 5.7(b). O

6 Construction of a martingale solution

The aim of this section is the construction of a solution of Eq. (1.1) by a suitable
limiting process in the Galerkin equation (5.5) using the results from the previous
sections. Let us recall that

Zr == C([0,T], E%) N L0, T; L*T'(M)) N C,, ([0, T1, Ea).
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Proposition 6.1 Let (uy),cn be the sequence of solutions to the Galerkin equation
(5.5).

(a) There are a subsequence (unk) weny @ probability space (Q, F, INP’) and random
%

variables v, v: Q — Z7 with P% = P“x such that Uk v P-a.s. in Zr for
k — oo.

(b) We have vy € C ([0, T1, Hy) P-a.s. and for all r € [1, 00), there is C > 0 with

sup]l:: |:||Uk||rLOO(0,T;EA):| =C.
keN

(c) Forallr € [1, 00), we have

B[ Iolm om0 < C
with the same constant C > 0 as in b).

For the precise dependence of the constants, we refer to the Propositions 5.7 and
5.8.

Proof (ad a) The estimates to apply Corollary 4.7 are provided by Propositions 5.7
and 5.8.

(ad b) Since we have u,, € C ([0, T], Hy) P-a.s. and C ([0, T'], Hy) is closed in
C([0, T], Ej) and therefore a Borel set , we conclude vy € C ([0, T'], Hy) P-as. by
the identity of the laws. Furthermore, the map C ([0, T'], Hx) > u > ||u||2°°(O,T;EA) €
[0, 00) is continuous and therefore measurable, so that we can conclude that

B [Iuell~o 760 = [ 0 0,750 B @0)
(0.T:E4) CUO.T1. Hy) (0.T:Ey)

:/ ||u||2w(0,T;EA)dIP’“"k (u)
C([0,T], Hy)
=E [||”11k ||200(0,T§EA)] .

Use the Propositions 5.7 in the defocusing respectively 5.8 in the focusing case to get
the assertion.

(ad ¢) We have v, — v almost surely in L*+1(0, T; L¥t!(M)) by part (a). From
part (b) and the embedding L>(0, T'; E4) — L*T1(0, T; L**1(M)), we obtain that
the sequence (v,), <y is bounded in Lt (@ x [0, T] x M). By Vitali’s Theorem (see
[22, Theorem VI, 5.6]), we conclude

vp — v in L3(Q, L*TN0, T; L¥T (M)

forn — 00.Onthe other hand, partb) yields the existence of v € L"(Q,L®(0, T; En))
for all r € [1, oo) with norm less than the constant C = C(||lugllg,, T,r) > 0 and

@ Springer



Martingale solutions for the stochastic nonlinear...

a subsequence (v, ),y - Such that v, —*? for k — oo. Especially, v,,—*0 for
k — ooin L2(, L*1(0, T; L*1(M))) and hence,

v="7€e L (2 L®0,T; Ey)).

O

The next Lemma shows, how convergence in Z7 can be used for the convergence
of the terms appearing in the Galerkin equation.

Lemmaé6.2 Let z, € C([0,T], H,) forn € Nand z € Zr. Assume z,, — z for
n— ooinZr.Then, fort € [0, T]and ¥ € Eq4 asn — o0

(Zn(t)7 1;/f)H - (Z(t)a 1//>7

t t
f (Azn(s),W)Hdse/‘ (Az(s), ¥)ds,
0 0

t t

/O (i (en(s) . ) s — /O (1 2(s) . ¥)ds,
t t

/O (PaF(n(5)). ¥) s — /O (F((s)). ¥)ds.

Proof Step 1 We fix € E4 and t € [0, T]. Recall, that the assumption implies
Zn — zforn — oo in C([0, T, Ej). This can be used to deduce

|(zn (0). V), — (2 @), V)| < llzn — zleqo,r.ep ¥ ilie, = 0.
By zn — zin Cy([0, T1, E4) we get supsc(o.7) [{zn(s) — 2(s), )| = 0 forn — oo

and all ¢ € E%. We plugin ¢ = Ay and use (Az,(s), ¥) = (z,(s), Ay) forn e N
and s € [0, ] to get

t t
fo|(Azn<s>,vf)H—<z<s>,Aw>|ds=/0 [{zn () — 2(s), Ay)| ds

<T sup [{zu(s) —2(s), AY)| — 0, n — oo.
5€[0,T]

Step 2 First, we fix m € N. Using that the operators B,, and §,, are selfadjoint, we
get

t
2 2
[ N(Siusirznorw), = Bz, )
t
)
0
t
O ‘

[ |(BatsE = DB,z v) s

ds

((s,, — D) ByS2 By Spzn(s). W)H‘ ds
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(B2 (za(s) — 2(s)), ¥)| ds

(B,i(sn — Dza(s), w)H

t t
+f ds+/
0 0

< Tlzalleqo.r1.e5) | Bullz e o 1Sal e o 1S = DY l1E,
+ Tlizallcqo, 1, E5) ISnll2E I Bmll £Es) ISn + T e 1(Sn = 1) (B ) |l E4

+Tlzallcqo.rep S =1 (B2Y) I,

+Tllzn — zllcqoren 1 BallcEn ¥ lE, — 0, n— oo,

since S, — ¢ in E4 for ¢ € E, by Proposition 5.2 and z, — zin C([0, T'], E%).
By the estimate

t
I
= TN, [I6SuBuS? et lznllcqo. ey + 1BalcEn I2lcqo e |

Sty 1BullZg,, €1' M)

(SuBuS?2a().¥) | = (Bra(s), ¥ ds

and Lebesgue’s convergence Theorem, we obtain

and therefore

(B2 2(s), M ds — 0.  n — oo,

(S4B 2n(s), ¥ )

H

t t
fo (un<zn(s>>,x/f),,dse/0w(z(s)),wds, n - co.

Step 3 Before we prove the last assertion, werecall z, — zin L*T1(0, T; LT (M))
for n — oo. We estimate

t
/0 [(PaF(en()), ), — (F(z(5)), )] ds
t t
5/0 I(F(zn(S)),(Pn—I)w)lderfo {F(zu(s)) — F(z(s)), ¥)lds  (6.1)

where we used (5.2). For the first term in (6.1), we look at

1
/ I(F (zn(5)), (Pn = DY)l ds < |F @)l 7;e5) 1 (Pn = DVl E,
0
< —
SUEGDI oy g 1o = DY I,
g ”Z””(z“(O,T;L"'*'l(M))”(P" - I)E””EA

S.; ”Zn||Iz"‘+l(0,T;L"‘+1(M))”(P” - 1)1/f||EA — Ov n — 00.

@ Springer



Martingale solutions for the stochastic nonlinear...

By Assumption (2.4) [see (2.7)], we get

1F ) = FCON,ept ) = (1za@ien oy + 126 erian)*
lzn(s) — z() Il Lot (pr)

for s € [0, T']. Now, we apply Holder’s inequality in time with Ot;-l-l + %_H + ‘;%} =1

1F @) = F@ g 7.5 oy

1 a—1
< T o+1 (||Zn||La+1(O’T;L(1+1(M)) + ”Z”Loﬁl(O’T;LaJrl(M)))
”Zn - Z”LO"H(O,T;LD"H(M)) — O, n — o0.
This leads to the last claim. O

By the application of the Skorohod—Jakubowski Theorem, we have replaced the
Galerkin solutions u, by the processes v, on Q. Now, we want to transfer the
properties given by the Galerkin equation (5.5). Therefore, we define the process
Nn:§2 x [0,T] - H, by

t
Na(t) = —un(t) + Poo + / [—iAUn(s) — 1Py F (0 (5)) + ptn (un ()] ds
0

forn € Nandt € [0, T'] and in the following lemma, we prove its martingale property.
Note that in this section, we consider H as a real Hilbert space equipped with the real
scalar product Re (u, v) H for u, v € H in order to be consistent with the martingale
theory from [21] we use.

Lemma 6.3 For each n € N, the process N, is an H-valued continuous square inte-
grable martingale w.r.t the filtration F, ; := o (v,(s):s < t) . The quadratic variation
of Ny is given by

00 t
() = 3 [ 882 S,0005) Re (5,50 S50 5). )
m=1 0

forally € H.
Proof Fix n € N. We define M,,: Q2 x [0, T] — H,, by

t
M, (1) := —u,(t) + Pyug +/ [—1Au, (s) — 1Py F (1 (s)) + pn (U (s))]ds
0

for ¢+ € [0, T]. Since u, is a solution of the Galerkin equation (5.5), we obtain the
representation

t
My(t) = i / Sy B (Suttn () AW (s)
0

@ Springer



Z.Brzezniak et al.

P-a.s. for all ¢ € [0, T']. The estimate

00 T 00 T
E[Z /0 ||SanSnun(s)||%,ds}sZann%(H)JEUO ||un(s>||%,ds}
m=1 m=1

o0
ST Y I1Bull 7 lluollyy < oo

m=1

yields, that M, is a square integrable continuous martingale w.r.t. the filtration
(F1)tefo.17 - From the definition of M, we get, that for each ¢ € [0, T'], M, (¢) is
measurable w.r.t. the smaller o-field F,, ; := o (u,(s):s <1).

The adjoint of the operator @, (s) := iS5, B(S,u, (s)): Y — H for s € [0, T'] is given
by @*(s)¥ = Y Re (S, B Sutn (s), ¥) ;; fm for ¥ € H. Therefore

¢(S)‘P*(S)1ﬁ = Z Re (iSanSnun(s)v W)HiSanSnun(s)

m=1

foryr € H and s € [0, T']. Hence, M,, is a (]—'n,,)-martingale with quadratic variation

o t
(M =Y / i, By Spttn (5) Re (i, By Syitn (5). 1) s
m=1 0

for ¢ € H (see [21, Theorem 4.27]). This property can be rephrased as

E [Re (Mn(t) - Mn(S), lﬁ)Hh(“nHO,S])] =0

and
E[(Re (M (1), %)y Re (M, (1), @) ;; —Re (M (s), %) ; Re (M, (s). @)
o t
- Z/ Re (1S, By Suttn(s), ¥) ,; Re (isanSnun(s),go)Hds)h(un“O,ﬂ)} =0
m=1 0

for all ¥, ¢ € H and bounded, continuous functions 2 on C ([0, T'], H).
We use the identity of the laws of u,, and v, on C ([0, T'], H,) to obtain

E [Re (Ny(t) — Nu(s), ¥) i (nlio,s)] = 0

and
I~E|:<Re (N,,(t), w)H Re (N,,(t), go)H —Re (N,,(s), w)H Re (N,,(s), (p)H
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o t
_ Z / Re (iSn B Snvn(s), W)H Re (iSn B Snvn(s), <p)Hds)h(v,, |[0,s]):| =0
m=1 0

for all ¥, ¢ € H and bounded, continuous functions # on C([0, T'], H,). Hence, N,
is a continuous square integrable martingale w.r.t 7, ; := o (va(s):s <) and the
quadratic variation is given as claimed in the lemma. O

We define a process N on Q x [0, T'] by

t
N(t) == —v() + ug +/ [—iAv(s) — iF (v(s)) + u(v(s))]ds, € [0, T].
0

By Proposition 6.1, we infer that v € C([0, T], E’:‘) almost surely and

< o0 a.s.

| F)llzeor:E%) S ITFQ@) =

o
A LOO(O,T;LD‘T“(M)) ”v”L"O(O,T:L”“(M))

lAvliz,7;E%) < lVllLe©,1:E4) < 00 as.

Because of u € L(Ej:), we infer that u(v) € C([0, T, E’/';) almost surely. Hence, N
has E’-valued continuous paths.

Let:: E4 < H be the usual embedding, (*: H — E 4 its Hilbert-space-adjoint, i.e.
(. v) = (u, L*v)EA foru € E4 and v € H. Further, we set L := (*)': E}, > H
as the dual operator of «* with respect to the Gelfand triple E4 — H ~ H* < E7.

In the next Lemma, we use the martingale property of N, for n € N and a limiting
process based on Proposition 6.1 and Lemma 6.2. to conclude that LN is also an
H -valued martingale.

Lemma 6.4 The process L N is an H-valued continuous square integrable martingale

with respect to the filtration F = (.7:',) 011’ where F; = o (v(s):s <t). The
tel0,
quadratic variation is given by
0 t
(LN));¢ = Z/O iLByv(s) Re (iLByv(s), ) ,ds
m=1

forallt € H.

Proof Step 1 Lett € [0, T]. We will first show that [||N(t)||i_*] < 0. By Lemma
A

6.2, we have N, (1) — N(t) almost surely in £’} for n — oo. By the Davis inequality

for continuous martingales (see [49]), Lemma 6.3 and Proposition 6.1, we conclude

a+l
2

O AT
E[ sup ||Nn(r>||°;,“]§E (Z /0 ||SanSnvn<s>||%{ds>
m=1

t€l0,7T]

atl atl

o0 2 B T >
s(Z ||Bm||2£(,,)> E (/O ||vn(s)||%,ds)
m=1
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SE[/ ||vn(s)||°‘“ds}§lé[f o, ()15 ]
0 0

L"“H(M)
<7 sugE [||u,1||LOC,(0 . LW(M))] <TC. 6.2)
ne

Since & + 1 > 2, we deduce N (¢) € L%(Q, E* ’1) by the Vitali Theorem and N, (t) —
N(r) in L%(Q, E*, ) forn — oo.

Step 2 Let ¥, ¢ € E4 and h be a bounded continuous function on C ([0, T, E%)
For 0 <s <t < T, we define the random variables

Ja(t,s) :=Re (Nn(t) — Ny(s), 1ﬁ)[_[h(vn“(),s])y
f(t,8) :=Re(N () — N(s), ¥)h(v]o.s)-

The P-a.s.-convergence v, — v in Zr for n — oo yields by Lemma 6.2 f, (7, s) —
f(t,s)P-as.forall0 <s <t < T.Weuse (a +b)? <2~ (a? + bP) fora,b >0

and p > 1 and the estimate (6.2) for
BLfut, 91 < 24 IS 15 B [ INa 015 + INa )15
<2kl I g 2T C.

In view of the Vitali Theorem, we get

0= lim Ef,(r,s) =Ef(r,s), O0<s<t<T.
n—0o0

Step 3For0 <s <t < T, we define

g1a(t,) 1= (Re (Na0), ¥) y Re (Na (1), ¢) s = Re (Na9), ¥) s Re (Na(9), ) ) walio.s)

and

g1(t,5) = (Re(N (1), Y) Re(N (1), ¢) — Re(N(s), ¥) Re(N (s), ¢) )} (vlj0.5)

By Lemma 6.2, we obtain g1 ,(t, s) — g1(t, s) P-a.s. for all 0 <s <t < T.Inorder
to get uniform integrability, we set r := “T'H > 1 and estimate

Elgin(t, )" < 2RI E[|Re (Na(1), ¥) ; Re (Na(0), @) 1"
+|Re (N (s). ¥) ;; Re (Na (). ¢) ']

< 2 (Al I 11 el E [IIN ON5 + ||Nn(s)||(])f1+1] < 2hlls ¥ iy el 2T C
where we used (6.2) again. As above, Vitali’s Theorem yields
0= lim Egy ,(t,s) =Egi(t,s), O0<s<t<T.
n—oQ
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Step 4 For0 <s <t < T, we define
o0 t
Qan(t,5) = h(ualos) Y / Re (S0 BunSua(0), 1) 1 Re (S4B Syt (1), 9)
m=1 S
0 t
020.5) = hvlo) Y [ Re(Bu(@). 1) Re(Byo(o). o)
m=1"%
Because of h(v,lj0,s1)) — h(vl0,s]) P-a.s. and the continuity of the inner product

L2([s, t] x N), the convergence

Re (Sy B Suvn, ¥) ;; = Re(Byv, ¥)

P-a.s. in L2([s, t] x N) already implies g2 ,(f,s) — g2(t,s) P-a.s. Therefore, we
consider

IRe (Sn B Snvn, ¥) y — Re(Buv, ¥) [l 12 (15.01x1)
< IRe (BuSuvn, (Su = D W) yll 25,15t + IR (Vs (Su = 1) Bu¥r) 1l 125,11
+ [ Re(By (vn — ), ) L215.01x1)
< 1B Suvnll 22 ts.px,£5) I (S = D Wil £, + [1Re (vny (S = 1) Bu¥r) 1l 25,015

+ ||1//||EA | By (v — U)”Lz([s,t]xN,Ejg)
1

00 2 .
< (Z Il B ||%<EA)> T2 vallcqo. el (Po — D ¥llE,
m=1

+ IRe (vas (Su — 1) Bu¥r) | 12i5.1x10)

o b
+ <Z ||Bm||2£<EA>) T2 v, = vlleqo e 1V gy
m=1

The first and the third term tend to 0 as n — oo by Proposition 6.1 and for the second
one, this follows by the estimate

|Re (v (5). (Su = 1) Bur) y > < 4vn () 13 | Bu | 2 1V 1, € LM (L5, 1] x N)
and Lebesgue’s convergence Theorem. Hence, we conclude

[ Re (SanSnvna W)H — Re(Byv, w>||L2([s,z]><N) -0

P-a.s. as n — oo. Furthermore, we estimate

m=1

o] t T o]
> / |Re (S B Suvn (1), ¥) , [dT < /O lon (@1 del¥ 1z, D 1Bl e,
m=1"%
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a+

and continue with r := Tl > 1 and

Blgan(t, )" = B[ IRe(S, B Suvi ¥ 72 0,y

IR (S B Sivns @)y sy ol

T r ) r
<E |:</0 ”Un(f)“z;;d‘[) j| I g, el (Z ”BmHZL(EA)) A,
m=1

T
5 E |:/0 ”vn(T)”OElgldT] /S sugE I:”U””i;ﬂl(O,T;L““(M))] f CT

ne

Using Vitali’s Theorem, we obtain
lim E[gon(t.9)] =E[g(t. 9], 0<s<t=<T.
n— oo
Step 5 From step 2, we have
E[Re(N (1) = N(s), ¥)h(ulps)] =0 (6.3)

and step 3, step 4 and Lemma 6.3 yield
EKRG(N(D, V) Re(N (1), ¢) —Re(N(s), ¥) Re(N(s), ¢)

o t
+y / Re<Bmv(r),w>Re<Bmv<r>,<p>dr)h(v|[o,s])] =0.  (64)

m=1""%

Now, letn, ¢ € H.Then(*n, 1*¢ € E4 and forall z € E*, we have Re (Lz, n)H =
Re(z, t*n). By the first step, LN is a continuous, square integrable process in H and
the identities (6.3) and (6.4) imply

E[Re (LN(t) — LN(s), 1) ,h(uljo,s)] = 0

and
fE[(Re (LN(),n); Re (LN(1),¢),; —Re (LN(s),n), Re (LN(s).¢),,
+ 3, ff Re (LB, v(t). 1), Re (LB, v(7), C)Hd7>h(v|[0,51)] =0.

Hence, LN is a continuous, square integrable martingale in H with respect to the
Fup =0 (v(s):s < t)and quadratic variation

o t
(LN)):¢ = Z/O iLByyv(s)Re (ILByv(s). ¢),,ds

m=1
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forall¢ € H. O

Finally, we can prove our main result Theorem 1.1 using the Martingale Represen-
tation Theorem from [21, Theorem 8.2].

Proof of Theorem 1.1 We choose H = L2(M), Q = I and @(s) := iL B (v(s)) for all

s € [0, T]. The adjoint @ (s)* is given by @ (s)*¢ := Z;’le Re (iLBmv(s), {)Hfm
and hence,

o
k
(qb(s)Q%) (qb(s)Q%) (= @()P)*C = Y Re (iLBy(s). ) il Buv(s)
m=1
for ¢ € H. Clearly, v is continuous in E’ and adapted to the filtration F given by
f’, =0 (v(s):0 <s <t)fors € [0, T]. Hence, @ is continuous in H and adapted to
[ and therefore progressively measurable.

By an application of Theorem 8.2 in [21] to the process LN from Lemma 6.4, we
obtain a cylindrical Wiener process W on Y defined on a probability space

(@ 7 P)= (2= Fof PaP)
with
t t
LN(t):/ dﬁ(s)dW(s):/ iLB (v(s)) dW (s)
0 0

fort € [0, T]. The estimate

T ©© T ©©
1BV 720 1xamsr. 54y = B /0 Y 1Buv)lgds SE /0 > I1Buv(s)I1Z, ds
m=1

m=1
T

T o0
< IE/(; (Z ”BmHz,C(EA)) o)z, ds < E/o lo)I%, ds
m=1

< T3, TC

(Q.L®(0.T1Ep) =

yields that the stochastic integral fo B (v(s)) dW(s) is a continuous martingale in Ej‘1
and using the continuity of the operator L, we get

/l iLB (v(s))dW(s) = L </t iB (v(s))dW(s))
0 0

for all t € [0, T']. The definition of N and the injectivity of L yield the equality

' t
/ iBv(s)dW (s) = —v(t) + uo +/ [—1Av(s) —iF (v(s)) + n(v(s))]ds (6.5)
0 0
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in £ fort € [0, T]. The weak continuity of the paths of v in E4 and the estimates
for property (1.6) have already been shown in Proposition 6.1. Hence, the system

(fz, .7}, Iﬁ’, W, fF, v) is a martingale solution of equation (1.1). O

It remains to prove the mass conservation from Theorem 1.1. In Proposition 5.4,
we proved a similar result for the approximating equation. Since this property is not
invariant under the limiting procedure from above, we have to repeat the calculation

in infinite dimensions and justify it by a regularization procedure.

Proposition 6.5 Let (fl, .7:', Iﬁ’, W, fF, u) be a martingale solution of (1.1). Then, we
have |\u(t)||;2 = |luoll 2 almost surely for all t € [0, T].

Proof Step I Given A > 0, we define R; := A (A + A)~! . Using the series represen-
tation, one can verify

Rif—f in X, A—>o00, feX
IRillcxy =1 (6.6)

for X € {H, Eg4, E;kx} . Moreover, R; (E?) = E 4 and hence, the equation

t
Ryu(t) = Ryug +/ [—iR) Au(s) — iRy F(u(s)) + Rupu(u(s))]ds
0
t
—i/ R, Bu(s)dW (s) (6.7)
0

holds almost surely in E4 for all # € [0, T]. The function M: H — R defined by
M) = | v||%1 is twice continuously Fréchet-differentiable with

M'[vlhy =2Re (v, k1), M'[v][h1, ha] =2Re (b1, h2)
for v, h1, hy € H. Therefore, we get
t
||R)Lu(t)||%1 = ||R,\u0||%, + 2/0 Re (R,\u(s), —iR; Au(s)
— iR F(u(s)) + Rup(u(s))) ,ds

t o t
— 2/ Re (R;\u(s), iRABu(s)dW(s))H + Z / ||RkBmu(s)||%{ds (6.8)
0 m—=1 0

almost surely for all ¢ € [0, T].
Step 2 In the following, we deal with the behaviour of the terms in (6.8) for A — oo.
Since R; and A commute, we get

Re (Ryu(s), —inAu(s))H =Re (R)‘u(s), —iARAu(s))H =0, se€[0,T], »>0. (6.9
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For s € [0, T'], we have

Re (Ryu(s), —iR, F(u(s))) ; — Re(u(s), —iF (u(s))) = 0
Re (Ryu(s), Ryup(u(s))); — Re (u(s), w(u(s))),,  *— oo. (6.10)

by (6.6). In order to apply the dominated convergence Theorem by Lebesgue, we
estimate

| Re(Ryu(s), —iRyF (u(s)) + Ryt(u(s))) 1
< Nu( ey | =1F (u(s)) + () g

< u)lle, (nF(u(s))uLaaﬂ ont 2 ||Bm||%;(H)||u(s)||H)

m=1

S 1@y (186 Garn gy + N1

S a1 + w1z,

using (6.6) and the Sobolev embeddings Laail (M) — E% and Ep — Lt (M.
Since u € Cy ([0, T], E4) almost surely and Cy, ([0, T], E4) C L*(0,T; E4), we
obtain

t
| Re (R, =i P60+ Bagatutsn) s
t
— / Re (u(s), ;L(u(s)))Hds, A — 00,
0

almost surely for all # € [0, T]. Moreover, the pointwise convergence
IR, Bpu(s)llg = |Buu(s)|lg, meN, faa.sel0,T]
and the estimate
IR Bt ()13 < 1Bl Z gy llu() 17 € L0, T1x N)

lead to, by Lebesgue DCT,

o t 0 t
Z/ | Ry Bt (s)|| % ds — Zf | Bt (s)||%ds, A — 00 (6.11)
0 m=170

m=1

almost surely for all r € [0, T]. For the stochastic term, we fix K € N and define a
stopping time tg by

tg ;= inf {r € [0, T]: |u(®t)|lg > K}.
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Then, we infer that
Re (Rku(s), iR)LBmu(s))H — Re (u(s), iBu(s))H =0 as., meN,se[0,T]
and

10,2 1(5)| Re (Rou(s), iRy Bruta(5)) 1 < 10,01 () 1() 1311 B | 2 1)
< K*BullZy € L'(Q x [0, T]1 x N)

to get
o0 %
E Z / [Re (Ryu(s), iRy Buu(s)) ] ds - 0, A — oo,
by Lebesgue. The Itd isometry and the Doob inequality yield

E sup
IG[O, 74!

After passing to a subsequence, we get

t
/Re(RAu(s),iRABu(s)dW(s))H

2
:|—>O, A — 0.

t
/ Re (R)\u(s), iRABu(s)dW(s))H — 0, A— o0, (6.12)
0
almost surely in {r < tx}. By

U {t<tx}=10,T] a.s.,

KeN
we conclude that (6.12) holds almost surely on [0, T'].
Step 3 Using (6.9), (6.11) and (6.12) in (6.8), we obtain

t 0 t
eI, = ol +2/0 Re (u(s), (u(s))) ds + Z/O | Bte(5) 13 ds
m=1

almost surely for all ¢ € [0, T']. By the selfadjointness of B;,, m € N, we simplify

o
2Re (u(s), pw(u(s)) Z (u(s), Bpu(s)) Z 1Bute(s) 13-
Therefore, we have ||u(t)||%_1 = ||u0||%1 almost surely for all ¢ € [0, T']. O
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7 Regularity and uniqueness of solutions on 2d manifolds

In this section, we want to study pathwise uniqueness of solutions to (1.1) and we
consider the case of a 2-dimensional Riemannian manifold without boundary M. We
drop the assumption that M is compact and replace it by

M is complete, has a positive injectivity radius and a bounded geometry.  (7.1)

We refer to [53, chapter 7], for the definitions of the notions above and background
references on differential geometry. We equip M with the canonical volume & and
suppose that M satisfies the doubling property: for all x € M and r > 0, we have
w(B(x,r)) < oo and

w(B(x,2r)) S w(B(x,r)). (7.2)

We emphasize that (7.1) is satisfied by compact manifolds. Examples for manifolds
with the property (7.2) are given by compact manifolds and manifolds with non-
negative Ricci-curvature, see [16].

Let A = — A, be the Laplace—Beltrami operator ' = F, % be the model nonlinearity
from Sect. 3. The proof is based on an additional regularity of the solution, which we
obtain by applying the deterministic and the stochastic Strichartz estimates from [8,13].

In two dimensions, the mapping properties of the nonlinearity improve, as we will
see in the first Lemma.

Lemma7.1 Letd =2, a > 1,5 € (O‘a;l, 1Tands € (0,1 —a + sa] N (0, 1). Then,
we have Ff: HS(M) — HS(M) and

IFE@ s S ull%s,  ue HY(M).
Proof Step 1 First, we consider the case s = 1. Take ¢ € [2, 00) and r € (2, o0) with

2a—-1) 1 1 a-—1
q = 3 =-+ . (7.3)
-3 r q

Due to d = 2, we have H (M) < L4(M) and by [10, Lemma, III. 1.4.], we get
IFy @l S Ml e H' (M.

The condition (7.3) yields

and therefore, the assertion follows by applying the Sobolev embedding H Lr(M) —
H*(M).
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Step 2 Next, we consider s € ("‘ 1) Letr = o= S)(HS €(1,2)and g = ﬁ €

(2a, 00). Then, we have = % + &= Thus, we can apply [17, Proposition 3.1], and
obtain

s —1 s
NVEFL@Ir < Ml 1V Eull 2. (7.4)
Furthermore, we have
K
s—1=——, s—1l=———>——
q o ra ra

which implies
H*(R?) < L1(R?), H'R? < L*[R>).
Together with (7.4) and || FE ()l 1r = |u||%,« foru € L™ (R?), this implies
I @ llsr @) S Wl gey, w € H' (R, (75)

Since we have the Sobolev embedding H TR — H E(RZ) as a consequence of
0<§<1—a+sa <s, weobtain

1Fy @)l ey S Nullys goys  w € HY (M),

This completes the proof in the case M = R?. For a general manifold M, the estimate
follows by the definition of fractional Sobolev spaces via charts, see “Appendix B”. O

In the following Proposition, we reformulate problem (1.1) in a mild form and use
this to show additional regularity properties of solutions of (1.1). Let us therefore
recall the notation

1 o

2

n= 5 E B;,.
m=1

Proposition 7.2 Assume d = 2 and choose 2 < p, g < oo with

2 2
SiZon
p q
Lete € (0,1), > 1,5 € [1 + 1;‘8 — 2.1, 7 > land B := max{a,2}. Let

(Q, .7? Iﬁ’ W, I~F u) be a solution to (1.1) wzth F = F(;t and assume

ue L, LP0, T; H (M))). (7.6)
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Then, for each s € [lqi, 1 —a+sa]lN(0,1), we have

we L'(Q, 0, T1, H (M) N LI, T; H ™4 P (M))) (1.7)
and almost surely in HE(M) forallt € [0, T]
w(r) =ie "uy + /0 t e TDAREy(1))dT
+ fot e DA (u(r))dr + /Ot e DAB W (1))dW (7). (7.8)

Remark 7.3 Of course, (7.7) also holds for & > 1, but then u € L"(, L1(0, T;

o l4e 8 o e
H’~ "4 P (M))) would be trivial by the Sobolev embedding H* (M) < H’™ ¢ '’ (M).
Being able to choose ¢ € (0, 1) means a gain of regularity which will be used below

s lte
via H*™ ¢ "P(M) < L> (M) for an appropriate choice of the parameters.

Proof of Proposition 7.2 Step 1 First, we will show that it is possible to rewrite the
Eq. (2.19) from the definition of solutions for (1.1) in the mild form (7.8).
We note that for each so < 0 the semigroup (e_”A) >0 On L?(M) extends to a

semigroup (T, (1)), , With the generator A, that extends A to D(Ay,) = H 50+2 (M.
To keep the notation simple, we also call this semigroup (e_i' A) >0
We apply the It6 formula to @ € C12([0, 1] x H~2(M), H*~*(M)) defined by

D(1,x):=e DA 1 €[0,1], x € H 2(M)

and obtain

wu(t) = ie_itAuo + /

o ro
€_I(Z_T)AF;:(M('C))dT + / E_l(t_r)A,l,L(M(T))dT
0 0

t
+/ e DA (1))dW (1)
0

almost surely in HS~*(M) forallt € [0, T].

Step 2 Using the Strichartz estimates from Lemma B.4 we deal with the free term
and each convolution term on the right hand site to get (7.7) and the identity (7.8) in
H?*(M). For this purpose, we define

Yr = L90, T; H' =4 P (M)) 0 L0, T; HY (M)).
By (B.5) we obtain

—itA
le™ A uoll v @.yp) S N0l s S luollms < o0
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and by (B.6) and Lemma 7.1, we get

Integration over €2 and (7.6) yields

+
SIF, (u)”Ll((),T;HS') S ”u”(za(O,T;HS)'

t .
/ e DA RE (y(1))de

0

Yr

o Sl
L7 (.Y7)

t .
/O e TOARE y(1))dr

o
Lra(©,Le0.T:H%)) ~ O

To estimate the other convolutions, we need that p is bounded in H 5 (M) and B is
bounded from H* (M) toHS(Y, H*(M)). This can be deduced from the following esti-
mate, which follows from complex interpolation (see [39, Theorem 2.1.6]), Holder’s
inequality and Assumption 2.7:

o0 o0
2 25 2(1-5§
Y BulZ sy < D Bl E gy 1 BulF iy’
1-5

s(Z ||Bm||2£(Hl)> (Z ||Bm||2£(H)) <oco. (19
m=1 m=1

Therefore, by (B.6), (7.9) and (7.6)

SJ ”M(u)”L"(fZ,Ll(O,T;HE)) 5 ”u”L’(fZ,Ll(O,T;HE))

t
H /0 e DA (u(t))de

L7 (Q,Yr)

S ||M||Lr0t(§2,Lﬂ(0,T;HS) = o

The estimates (B.7), (7.9) and (7.6) imply

Hence, the mild Eq. (7.8) holds almost surely in H § (M) foreach ¢ € [0, T] and thus,
we get (7.7) by the pathwise continuity of deterministic and stochastic integrals. O

t
/e*i“*f)AB(u(z))dW(r)
0

_ SIB@WIr @ 20,7887, 1)
L7 (§.v7)

5 ”M”L’(Q,LZ(O,T;HE)) S_, ”u”L’a({Z,Lﬁ(O,T;H«‘)) < 0Q0.

As a preparation for the proof of pathwise uniqueness, we show a formula for the
L2-norm of the difference of two solutions of (1.1).

Lemma7.4 Let <§~2 f" Iﬁ’ w, IF‘ uj) , J = 1,2, be solutions of (1.1) with F = Fojt
fora > 1. Then,
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lur(t) — ua ()72 =2 fy Re (u1(r) — ua(r), —iFF Ui (1) +iFF ua(r))),.dt
(7.10)

almost surely for all t € [0, T].

Proof The proof is similar to Proposition 6.5. In fact, it is even simpler, since the
regularity of F- due to Lemma 7.1 simplifies the proof of the convergence for A — oo.
O

Finally, we are ready to prove the pathwise uniqueness of solutions to (1.1).

Theorem 7.5 Letd =2and F (u) = Ff(u) = +|u|* T uwitha € (1,00). Letr > a,
B > max{w, 2} and

Se{(l—ﬁ,l] fora e (1,3],

= a(a‘—_l) 11 fora>3.

Then, solutions of problem (1.1) are pathwise unique in L"(Q, LP(0, T; H*(M))),
i.e. given two solutions (fZ, .7-1, ]f”, W, IE‘, uj> with

uj € L'(Q, LP(0, T: H (M))),
for j = 1,2, we have uy(t) = uy(t) almost surely in L>(M) for all t € [0, T].

Proof Step 1 Take two solutions (Q, F, IF’ W, IF‘ uj> of (1.1) withu; € L’(fl, L*°(0,
T; HS(M))) for j = 1, 2, and define w := u| — u3. From Lemma 7.4, we conclude

t
lw()2, =2 /0 Re ((1). —iF(u1 (1)) + F(ua(1)))  od
almost surely for all # € [0, T']. The estimate
FE@) = FE@I S (Il + 12l )l — 2l 2,2€C
yields
t
||w<t>||§25f / (e, )2 [lun (2, 01 + uz(r, )"~ | dxde
0 JM
t
< /0 ||w(r>||iz[||u1(r>||‘z;l(M)+||uz(r>||z;l(M>]dr (7.11)

almost surely for all ¢ € [0, T'].
Step 2 First, we deal with the case o € (1,3].Bys > 1 — i, we can choose g > 2
and ¢ € (0, 1) with
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1 1 q—2+2e¢ 1 €
l-—<l-—4—=1-—4 — <.
200 20 2qa qo  qu

Hence, we have 1qi +1-— % < 1 — o + s and in particular, there is § € (lqi +1-—

%, 1 —a + sa). If we choose p > 2 according to % + % = 1, Proposition B.2 leads

5*Ij‘17 00
to H ¢ " (M) < L°°(M) because of

. l+e 2 . 14e 2 - 1+e 2
§ — ——=5- +-—=1=5- +1——)>0.
q p q q q q

§—1te
Moreover, we have u; € L9(0,T; H' ¢ '’(M)) almost surely for j = 1,2 by
Proposition 7.2. Hence, the process b defined by

b = [l @I + @I, elo.71, (7.12)

satisfies

-1
. §=

1ol Loy S N ll®
L4(0,T; H

~1
ezl e, <00 as,  (7.13)
77y La(0,T;H' ™ @ 7

where we used ¢ > 2 > o — 1 and the Holder inequality in time. Because of (7.11),
we can apply Gronwall’s Lemma to get

ui(t) = ur(t) as.in LZ(M) forall ¢ € [0, T].

Step 3 Now, let o > 3. Then, we set g := o — 1 and choose p > 2 with % —|—§ =1.

Usings > 1 — we fix ¢ € (0, 1) with

_1
a(a—1)"

As above, we can choose § € (1qi + 1 - %, I — o + sa). We therefore get
I+¢

= ~_ l+4e
H ¢ 'P(M) — L°%®°(M) and u;j € L10,T; Hs_%’p(M)) almost surely for
j = 1,2. We obtain b € L'(0, T) almost surely for b from (7.12) and Gronwall’s
Lemma implies

ui(t) = ur(t) as.in LZ(M) forall ¢ € [0, T].

m}

Remark 7.6 In [8], Brzezniak and Millet proved pathwise uniqueness of solutions in

1
the space L4(Q2, C([0, T, H'(M)) N L1([0, T], H' =47 (M))) with 3 + % = 1and
q > o + 1. Since they used the deterministic Strichartz estimates from [4] instead of
[13], their result is restricted to compact manifolds M. Comparing the result in [8]
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with Theorem 7.5 in the present article, we see that the assumptions of Theorem 7.5
are weaker with respect to space and time. On the other hand, the assumptions on the
required moments is slightly weaker in [8].

Remark 7.7 A similar Uniqueness-Theorem can also be proved on bounded domains
in R? using the Strichartz inequalities by Blair, Smith and Sogge from [14]. We also
want to mention the classical strategy by Vladimirov (see [15,43,45,56]) to prove
uniqueness of H '-solutions using Trudinger type inequalities which can be seen as
the limit case of Sobolev’s embedding, see also [2, Theorem 8.27]. Since this proof
only relies on the formula (7.10) and the property of solutions to be in H', it can
be directly transfered to the stochastic setting. This strategy does not use Strichartz
estimates, but it suffers from a restriction to « € (1, 3] and it cannot be transfered to
H® fors < 1.

Now, we give the definition of the concepts of strong solutions and uniqueness in
law used in Corollary 1.3.

Definition 7.8 (a) LetT > Oandug € Ex. Then, a strong solution of the Eq. (1.1)is a
continuous, [F-adapted process with values in E’; such thatu e L2(2x]0, T, E})
and almost all paths are in Cy, ([0, T], E 4) with

t '
u(t) = ug + / [—iAu(s) —iF (u(s)) + u(u(s))]dr — i/ Bu(s)dW(s)
0 0

almost surely in £ forall ¢ € [0, T'].

(b) The solutions of (1.7) are called unique in law, if for all martingale solutions
(R, Fj,P;, W;,Fj,uj) with uj(0) = ug, for j = 1,2, we have P}' = P5?
almost surely in C ([0, T'], L?>(M)).

We finish this section with the proof of Corollary 1.3.

Proof of Corollary 1.3 The existence of a martingale solution from Corollary 1.2 and
the pathwise uniqueness from Theorem 7.5 yield the assertion by [44, Theorem 2 and
12.1]. O

Acknowledgements We thank the anonymous referees for many valuable comments. Moreover, we thank
Peer Kunstmann and Dorothee Frey for their help in the context of analysis on manifolds. Finally, we thank
Nimit Rana for careful reading of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Auxiliary results from functional analysis

In this appendix, we collect some abstract notions and results needed in Sect. 4. For a
Banach space X and r > 0, we denote

Y= lue Xellullx < 7).
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The weak topology on B’ is metrizable if the dual X* is separable and a metric is
given by

o0
—k
q(xi,x) =y 2751 —x2,x0),  xi,xm€X,
k=1

for a dense sequence (x,f)keN € (B;(*)N, see [11], Theorem 3.29. If X is also
separable, then C([0, T],B’;) is a complete separable metric space with metric
p(u, v) := sup;epo, 714 (1), v(1)) foru, v e C([0, T], By ).

Definition A.1 We define

Cy(0, 7], X) := {u: [0, T] — X:[0, T3>t — {(u(t),x™)

e Cis cont. for all x* € X*}

and equip Cy, ([0, T], X) with the locally convex topology induced by the family P
of seminorms given by

Pi={pe:x* € X"}, pe(u):= sup [(u@),x*)|.
t€l0,T]

We continue with some auxiliary results.

LemmaA.2 Letr > 0 and uy,u € Cy([0, T1, X) with sup,cjo 1y lun(D)llx < r and
uy, — uin Cy ([0, T1, X). Then, we have u, — u in C([0, T], B').

Proof By Lebesgue’s Convergence Theorem,

o0
PGt u) <Y 275 sup [(un(t) —ut), x{)| - 0,  n— oo,
pr 1€[0,7]

where we used the definition of convergence in C,, ([0, T'], X) for fixed k € N and

sup [{un (1) — u(t), x) < ( sup lup(6)llx + sup ||M(f)||x> [l llx+ < 2r.
1€[0,T} 1€[0,T} 1€[0,T]

O

Lemma A.3 (Strauss) Let X, Y be Banach spaces with X < Y and T > 0. Then, we
have the inclusion

L*0,T; X)NCy([0,T],Y) C Cy(0, T], X).

Proof See [52, Chapter 3, Lemma 1.4]. O
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LemmaA.4 (Lions) Let X, Xo, X1 be Banach spaces with Xo — X — X where
the first embedding is compact. Assume furthermore that Xo, X1 are reflexive and
p € [1, 00). Then, for each ¢ > 0 there is C; > 0 with

p p p
Ixlly < elixlly, + Cellxlly,, x € Xo.

Proof See [37, p. 58]. O

Appendix B: Sobolev spaces on manifolds and Strichartz estimates

In the Sects. 3 and 7, we need some results about Sobolev spaces on manifolds and
their connection with the fractional domains of the Laplace—Beltrami operator. In
this appendix, we recall the basic definitions and Sobolev embeddings. Moreover, we
state the deterministic and stochastic Strichartz estimates for the Schrodinger group
(eltAg )teR :

Let (M, g) be a d-dimensional Riemannian manifold without boundary with

M is complete, has a positive injectivity radius and a bounded geometry.  (B.1)

We equip M with the canonical volume p and suppose that M satisfies the doubling
property: for all x € M and r > 0, we have w(B(x,r)) < oo and

w(B(x,2r)) < w(B(x,r)). (B.2)

DefinitionB.1 (a) Let s > 0, p € (1, 00), A := (Uj, kj);cs be an atlas of M and
(W;); < apartition of unity subordinate to .A. Then, we define the fractional Sobolev
spaces H*'? (M) by

iel

1
P
H*P(M) :={ f € LPOM): | fll ooy = (Z 10%: ) ox,-‘||§;.\.,,,<Rd)> < oo} :

where H-?(RY) is the Sobolev space on R?. For p = 2, we write H*(M) =
HS2(M).
(b) For p € [1, 00), we define W7 (M) as the completion of C2°(M) in the norm

I fllwrrony == 1 lLeany + IV flleny,  f € CZ(M).

Note that in (b), V f is an element of the tangential bundle of M. We refer to [35]
for further details. A useful characterization of fractional Sobolev spaces is in terms of
the fractional powers of the Laplace—Beltrami operator. By Strichartz [50, Theorem
3.5], the restriction of (e’ A«&') =0 1O LZ(M ) N LP (M) extends to a strongly continuous

semigroup on L (M). We fix p € (1, 00) and s > 0. The generator (A, ,, D(Ag p))
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is called the Laplace—Beltrami operator on L? (M). The negative fractional powers of
I — Ay , are defined by

D — Ag,p)™ ) :

o
{f € LP(M): / 12l ! Ber fdr exists}
0
1 o
(I —Ay ) f = —/ 1 le™le! Mer fdr
87 I'(@) Jo

for « > 0. Note that in the case p = 2 this coincides with the definition via the
functional calculus because of the identity ﬁ fooo 1% le=* fdt = A= for A > 0.
In the following Proposition, we list characterizations and embedding properties of
the Sobolev spaces from Definition B.1.

Proposition B.2 Let (M, g) be a d-dimensional Riemannian manifold that satisfies
(B.1). Let s > 0 and p € (1, 00).

(a) We have H> P (M) = R((I — Ag,p)’%) with || fllgse = ||vize for f = (I —
Ag,p)_%v.

Furthermore, we have H'P (M) = WP (M).

(b) Fors > %, we have HSP (M) < L°°(M).

(c) Lets > 0and p € (1, 00). Suppose p € [2, ﬁ) orp = % ifs < %
Then, the embedding H*(M) — LP (M) is continuous. If M is compact and we
have 0 < s < laswell as p € [1, ﬁ), the embedding H (M) — LP (M)
is compact.

(d) Fors,sg,s1 > 0and p, po, p1 € (1,00) and 6 € (0, 1) with

1 1-06 0
s = (1 —60)sg + 0sq, — = + —,
p Po D1

we have [H*PO (M), H"P\(M)], = H*P(M).

Proof (ad a) See [53, Theorem 7.4.5]. We remark that in the reference, H*? is defined
via the range identity from the Proposition and the identity from Definition B.1 is
proved.

(ad b) See [10, Theorem III.1.2. d1].

(ad c) For the first assertion, we refer to [10, Theorem III.1.2. d1]). If M is compact,
we can choose a finite collection of charts and a finite partition of unity. Hence

1

1
N 2 N 2
I 1Lz aay = (Z 1% ) ot ||i,S(Rd)) = (Z 1% ) o ;! ||i,S(O))

i=1 i=1

(B.3)

for a sufficiently large smooth bounded domain @ ¢ R?. By [19, Corollary 7.2 and
Theorem 8.2], the embedding H*(O) — LP(0O) is compact for s € (0, 1) with
s < % and p € [1, %). Note that in the reference, the result is proved in terms of
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the Slobodetski space W*2(0), but we can use the identity W*2(O0) = H*(0). The
embedding result combined with (B.3) yields the assertion.
(ad d) See [53, Section 7.4.5, Remark 2]. O

In the next Lemma, we recall the deterministic homogeneous Strichartz estimate
due to Bernicot and Samoyeau, see [13, Corollary 6.2].

LemmaB.3 Lete >0, T > 0and2 < p < 00,2 < q < cowith 2 + 4 = 4. Then,

. 1te
e x\lLao.r: Loy Stoe llXll 1ee . x e H ¢ (M). (B.4)
H 9 (M)

We remark that in the special case of compact M, Burq, Gérard and Tzvetkov
proved (B.4) even for ¢ = 0. But for our application in Sect. 7, this is not needed,
such that we can prove uniqueness on non-compact manifolds with d = 2 and (B.1).

From Lemma B.4, one can deduce the following Strichartz estimates for the stochas-
tic and deterministic convolutions in fractional Sobolev spaces. Note that we choose
the probability space €2 and the Y-valued Wiener process W as in Assumption 2.7.

Lemma B.4 In the situation of Lemma B.3, we take s € [lqi, 1landr € (1, 00).

(a) We have the homogeneous Strichartz estimate

lle A x| <r.e lIxllms o) (B.5)

Lo.7:H' TP (b

for x € H*(M) and the inhomogeneous Strichartz estimate

H/ T8 f(r)dr
0

lie Ste W Lo, me ) (B.6)
La(0.T:H*™ "7 (M)

for f € LY(0, T; HS(M)).
(b) We have the stochastic Strichartz estimate

“/?”ﬂ%Bumwu)
0

s Stoe 1Bl ;2. mmsr, ms oy (B7)
L7 (Q,L9(0,T;H ™4 "P(M)))

for all adapted processes in B € L (2; L*>(0, T; HS(Y, H*(M)).

Proof Proposition B.2(a) and Lemma B.3 yield

A - i_lj'A
e e x| R = Az Bexla.ri Ly

LaQ.T:H P
O, 7:H 1 '"(M)
— le"Be(1 — A T
= [le" ¢ (1 — Ayp) X|lLaco,T;Lr (M)
+e

s_ 1
Ste (L= A2 20 x|l 1ie = |xllasany. (B.8)
H 4 (M)
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From (B.8), we get

H / ¢ £ (1)dr L <re / e T8 f(7)dr
0 L4(0,T;:H'™ "7 P (M) 0 HS (M)

S W llevo, 7 ms ) (B.9)
and Theorem 3.10 in [8] implies
‘ / DR B(1)dW (1) Sr.e 1B Le

0 L7(Q,L9(0,T; LP(M))) L' (@:L2O.T:HS(Y.H 7 (M)
(B.10)

With the same procedure as in (B.8), one can deduce the estimate (B.7). O
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