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Abstract

In this work we study a stochastic three-dimensional Landau-Lifshitz-Gilbert equation with non-
zero anisotropy energy, which is drive by pure jump noise. We show existence of weak martingale
solutions taking values in a two-dimensional sphere S2. The construction of the solution is based on
the classical Faedo-Galerkin approximation, the compactness method and the Jakubowski version
of the Skorokhod Theorem for nonmetric spaces.
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1. Introduction

In this work we consider the following stochastic Landau-Lifshitz-Gilbert equation (LLGE)
with non-zero anisotropy energy and driven by pure jump noise in “Marcus" canonical sense











du(t) = (λ1u(t)× (∆u(t)−∇φ(u(t)))− λ2u(t)× (u(t)× (∆u(t)−∇φ(u(t))))) dt

+ u(t)×
(

∑N
i=1 ei ⋄ dLi(t)

)

,
∂u
∂n (t, x) = 0, on (0,∞)× ∂D, u(0, x) = u0(x), on D, |u0(x)| = 1 for all x ∈ D,

(1.1)

where L(t) := (L1(t), · · · , LN (t)) is a R
N− valued Lévy process with pure jump, with the jump

intensity measure ν, see e.g. [22], is such that supp ν ⊂ B, where B is the closed unit ball in R
N ,

i.e.

L(t) =

∫ t

0

∫

B

l η̃(ds, dl). (1.2)

Precise definition of ⋄ will be stated later. For each i = 1, 2, . . . N , let ei : D → R
3 be such that

ei ∈ L
∞ ∩W

1,3. We assume that the domain D ⊂ R
3 is bounded with C1 boundary ∂D. Here we

have considered that the total energy E of the LLGE consists of both the exchange and anisotropy
energies, i.e.

E(u) = Ean(u) + Eex(u) =

∫

D

(

φ(u(x)) +
1

2
|∇u(x)|2

)

dx.

Here Ean(u) :=
∫

D
φ(u(x)) dx stands for the anisotropy energy, and this models the existence

of preferred directions for the magnetization (the so-called easy axes), which usually depend on
the crystallographic structure of the material. We assume that the anisotropy energy density
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φ ∈ C2
b (R

3;R+). Eex(u) := 1
2

∫

D
|∇u(x)|2 dx stands for the exchange energy which penalizes

spatial variations of u. Thus the effective field, denoted by Heff , which is the negative of the
gradient (with respect to u) of the total magnetic energy functional E , takes the form ∆u−∇φ(u),
which is present in the first two terms of the right hand side of the equation (1.1).

Let us briefly mention here some physical motivations behind this work. Recall that the
stationary solutions of the deterministic version of the equation (1.1) correspond to the equilibrium
states of the ferromagnet and are not unique in general. An important problem in the theory of
ferromagnetism is to describe phase transitions between different equilibrium states induced by
thermal fluctuations of the field Heff . Therefore, the deterministic LLGE needs to be modified in
order to incorporate random fluctuations of the field Heff into the dynamics of the magnetization u
and to describe noise-induced transitions between equilibrium states of the ferromagnet. A simple
way to incorporate the noise into the deterministic LLGE is to perturb the effective field by a Lévy
noise in the so called "Marcus" form. It is worth to mention here that the program to analyze
noise induced transitions was initiated by Néel [21] and further developed in [3], [14] and others,
and most recently by the first named author, Goldys and Jegaraj in [4] and [5], and by both the
authors in [9].

Another motivation arises from the mechanism called “Barkhausen effect" (see Chapter 6.7.5
in [2]), which is observed as a series of random discontinuous changes in the size and orientation of
ferromagnetic domains during the process of magnetization or demagnetization of a ferromagnetic
material. Recently, condensed matter physicists (e.g. Mayergoyz et al. [17], [18]) considered jump-
noise process in magnetization dynamics equations to account for thermal bath effects. See also
Fruchart et al. [11] for a different physical motivation. We hope that our detailed mathematical
study might contribute in understanding these effects.

In this work, the main technical issue lies in the fact that the noise must preserve the invariance
property under coordinate transformation and this plays an important role in preserving the
constraint condition. In other words, one needs to find an analogue of Stratonovich integral in the
case of stochastic integral with respect to compensated Poisson Random Measure. The work of
Marcus [16], developed later by Applebaum and Kunita, (see e.g. Section 6.10 of Applebaum [1]
and Kunita [15]) provides a framework to resolve this technical issue. However, to the best of our
knowledge, there is no concrete work on stochastic partial differential equations driven by Lévy
noise in the “Marcus" canonical form. Our recent work [9] and the current paper are motivated by
this question and we believe similar questions are yet unanswered for many other constrained PDEs
(e.g. harmonic map flow, nonlinear Schrödinger equation on a compact Riemannian manifold,
nematic liquid crystal model etc.) driven by jump noise or Lévy noise. We hope this work
will contribute to the understanding of these questions, and open up directions for theoretical
and (possibly) numerical study of various constrained PDEs perturbed by jump or Lévy noise.
Also, there are some very recent work, see e.g. Chevyrev and Friz [10], where rough differential
equations are studied in the spirit of Marcus canonical stochastic differential equations by dropping
the assumption of continuity prevalent in the rough path literature. Therefore we hope that
rough path theory may be integrated with our approach to gain newer insight into the analysis of
constrained SPDEs.

Brzeźniak et al. [4] considered the above equation when φ = 0 and is perturbed by a Gaussian
noise in the Stratonovich sense, and proved existence of weak martingale solutions taking values
in a sphere S

2. In a later paper Brzeźniak and Li [8], the result was generalised in the presence
of anisotropy energy. In a very recent work [9], we have addressed existence of weak martingale
solution of the stochastic LLGE in the absence of anisotropy energy. In this work we extend this
result for a more general LLGE. The presence of anisotropy energy creates additional technical
difficulty at various levels as compared to [9], e.g. in order to prove existence of solution we
need to consider a special approximation involving projection πn applied to ∇φ, see approximate
equation (4.12). Also passage to the limit to prove the existence of the martingale solution (see
Step 3 of Theorem 4.3; in particular Lemma 4.7 and Lemma 4.10) becomes technically hard. The
motivation for generalising our previous work stems from the problem related to magnetisation
reversal and as an immediate future direction we would like to study large deviation principles
(LDP) for stochastic LLGE with anisotropy energy. We will then apply this LDP to show that
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small noise can cause magnetisation reversal.

2. The Marcus Mapping

We omit the general discussion on the Marcus canonical stochastic differential equations. We
refer interested readers to the work of Marcus [16], Section 6.10 of Applebaum [1] and Kunita [15].

Before we define the Marcus mapping, let us consider that
(

Ω,F ,F,P
)

is a filtered probability

space, where F =
(

Ft)t>0 is the filtration, and this probability space satisfies the so called usual
conditions. As specified earlier, we further assume that the jump intensity measure ν of the
associated Lévy process L = (L(t)), t > 0, is such that supp ν ⊂ B, where B is the closed unit
ball in R

N . We also denote by η the time-homogenous Poissson random measure associated to L.
It is known that the intensity measure of η is equal to Leb⊗ν. We denote by η̃ := η−Leb⊗ν the
corresponding compensated time-homogeneous Poisson random measure.

Define a bounded linear map

gi : H
1 ∋ u 7→ u× ei ∈ H

1. (2.1)

The map gi is indeed bounded due to the Sobolev emebdding H
1 →֒ L

6 and ei ∈ L
∞ ∩W

1,3. Let
us define a generalized Marcus mapping

Φ : R+ × R
N ×H

1 → H
1

such that for each fixed l ∈ R
N , u0 ∈ H

1, the function t 7→ Φ(t, l, u0) is the continuously differen-
tiable solution of the ordinary differential equation

du

dt
(t) =

N
∑

i=1

ligi(u(t)), t > 0, (2.2)

with u(0) = u0 ∈ H
1, and l = (l1, l2, . . . , lN ) ∈ R

N . Let us observe that since ei ∈ L
∞, the

maps gi are also bounded linear from L
2 to L

2. Hence also the map Φ is well defined as a map
Φ : R+ × R

N × L
2 → L

2.
Notation: We fix t = 1 now onward in this paper and consider Φ as the function of last variable
for fixed t and l. Denote Φ(l, ·) := Φ(1, l, ·).

Equation (1.1) with notation ⋄ is defined in the integral form as following

u(t) = u0 +

∫ t

0

(λ1u(s)× (∆u(s)−∇φ(u(s)))− λ2u(s)× (u(s)× (∆u(t)−∇φ(u(t))))) ds

+

∫ t

0

∫

B

[Φ(l, u(s))− u(s)] η̃(ds, dl) +

∫ t

0

∫

B

{

Φ(l, u(s))− u(s)−
N
∑

i=1

ligi(u(s))

}

ν(dl)ds.

(2.3)

For z ∈ H
1, we denote

G(l, z) := Φ(l, z)− z, H(l, z) := Φ(l, z)− z −

N
∑

i=1

ligi(z),

b(z) :=

∫

B

[

Φ(l, z)− z −

N
∑

i=1

ligi(z)

]

ν(dl) =

∫

B

H(l, z) ν(dl).

With the above notation, equation (2.3) becomes

u(t) = u0 +

∫ t

0

(λ1u(s)× (∆u(s)−∇φ(u(s)))− λ2u(s)× (u(s)× (∆u(t)−∇φ(u(t))))) ds

+

∫ t

0

∫

B

G(l, u(s)) η̃(ds, dl) +

∫ t

0

b(u(s)) ds, (2.4)

with the same initial, boundary and initial saturation conditions as in (1.1).
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3. The Operator A

Denote by A the −Laplacian with the Neumann boundary conditions acting on R
3-valued

functions, i.e.
{

D(A) := {u ∈ H
2 : ∂u

∂n = 0 on ∂D},
Au := −∆u, u ∈ D(A),

(3.1)

where n = (n1, n2, n3) is the unit outward normal vector field on ∂D and ∂u
∂n is the directional

derivative of u in the direction n.
It is well known that A is a self-adjoint operator in L

2 and that (I+A)−1 is compact. Hence there
exists an orthonormal basis {ẽn}

∞

n=1 of L2 consisting of eigenvectors of A. Define A1 := I + A.
It is also known that

D(A
1/2
1 ) = H

1. (3.2)

We will often denote the space D(A
1/2
1 ) by V. Note that V is a dense subspace of L2 and V is

imbedded in L
2 continuously. Identifying L

2 with its dual and denoting by V′ the dual of V we
have

V →֒ L
2 →֒ V′. (3.3)

Thus (V,L2,V′) is a Gelfand triple.

Definition 3.1 (Fractional power spaces of A1 = I +A). For any non-negative real number β we

define the Hilbert space Xβ := D(Aβ
1 ), which is the domain of the fractional power operator Aβ

1

with the norm | · |Xβ := |Aβ
1 · |L2 . The space X0 = L

2 is identified with its dual. For positive real

β, the dual of Xβ is denoted by X−β and the norm | · |X−β of X−β satisfies |x|X−β = |A−β
1 x|L2

when x is in L
2.

4. Statement of the Main Result

Now we are ready to formulate the definition of a weak martingale solution to problem (2.4).
Let us note that our solution is weak in both probabilistic and stochastic senses.

Definition 4.1. Given T ∈ (0,∞), u0 ∈ H
1 and a Borel non-negative measure ν on R

N such that

supp ν ⊂ B and

∫

B

|l|2 ν(dl) <∞, (4.1)

where B is the unit ball in R
N , a weak martingale solution to equation (2.4) is a system

(

Ω̄, F̄ , F̄, P̄, ū, η̄
)

, such that:

(a)
(

Ω̄, F̄ , F̄, P̄
)

is a filtered probability space with a filtration F̄ := (F̄t)t>0;

(b) η̄ is a time homogeneous Poisson random measure on the measurable space (B,B(B)) over
(

Ω̄, F̄ , F̄, P̄
)

with the intensity measure Leb⊗ν;

(c) ū : [0, T ]× Ω̄ → H
1 is an F̄-progressively measurable weakly càdlàg process, and

(c1) for β =
1

2
, P̄-a.e. ω ∈ Ω̄,

ū(·, ω) ∈ D
(

[0, T ];X−β
)

, (4.2)

where D
(

[0, T ];X−β
)

denotes the Skorokhod space;

(c2) for every p > 1,

Ē

[

sup
t∈[0,T ]

{

|∇ū(t)|2
L2 +

∫

D

φ(ū(t, x))dx

}p
]

< ∞, (4.3)

Ē

[(

∫ T

0

|ū(t)× (∆ū(t)−∇φ(ū(t))) |2
L2 dt

)p]

< ∞; (4.4)
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(d) the constraint condition is satisfied, i.e.,

|ū(t, x)|R3 = 1, for Lebesgue a.e. x ∈ D for all t ∈ [0, T ], P̄ a.s.; (4.5)

(e) for each ϕ ∈ L4(Ω̄;Xβ), we have:

〈ū(t), ϕ〉L2 = 〈u0, ϕ〉L2 − λ1

∫ t

0

∑

i

∫

D

〈

∂ū

∂xi
(s, x),

∂ϕ

∂xi
(x)× ū(s, x)

〉

L2

dx ds

−λ2

∫ t

0

∑

i

∫

D

〈

∂ū

∂xi
(s, x),

∂(ū× ϕ)

∂xi
(s, x)× ū(s, x)

〉

L2

dx ds

−λ1

∫ t

0

〈ū(s)×∇φ(ū(s)), ϕ〉
L2 ds+ λ2

∫ t

0

〈ū(s)× (ū(s)×∇φ(ū(s))) , ϕ〉
L2 ds

+

∫ t

0

∫

B

〈G(l, ū(s)), ϕ〉L2 ˜̄η(ds, dl) +

∫ t

0

〈b(ū(s)), ϕ〉L2ds, (4.6)

for all t ∈ [0, T ], P̄ almost everywhere.

Remark 4.2. We wish to use the notation u ×∆u for our weak martingale solution u even when
we do not know that u has weak second order derivatives. First of all let us recall (see Appendix
A in [8]) that for u ∈ H

1 we say u×∆u ∈ L
2 iff there exists B ∈ L

2 such that for all ψ ∈ W
1,3,

〈B,ψ〉L2 =

3
∑

i=1

〈

∂u

∂xi
, u×

∂ψ

∂xi

〉

L2

. (4.7)

In such a case we put u×∆u := B. Note that if u ∈ H
1 and u×∆u ∈ L

2 then

〈u×∆u, ψ〉L2 =
3
∑

i=1

〈

∂u

∂xi
, u×

∂ψ

∂xi

〉

L2

, ψ ∈ W
1,3. (4.8)

Note that we use the space W
1,3 so that the RHS of (4.7) makes sense for u ∈ H

1. However, if
additionally u ∈ L

∞, then the RHS of (4.7) makes sense for all ψ ∈ W
1,2 = H

1. Hence, because
W

1,3 is dense in W
1,2, we deduce that if u ∈ H

1 ∩ L
∞ and u ×∆u ∈ L

2 then (4.8) holds for all
ψ ∈ H

1.
Note that if ψ and u, v ∈ H

1 are such that u×∆u ∈ L
2 and v×ψ ∈ W

1,3, then, as 〈a× b, c〉 =
〈b, c× a〉, for all a, b, c ∈ R

3, we infer that from (4.8) that

〈v × (u×∆u), ψ〉L2 = −〈u×∆u, v × ψ〉L2 = −

3
∑

i=1

〈

∂u

∂xi
, u×

∂(v × ψ)

∂xi

〉

L2

=
3
∑

i=1

〈

∂u

∂xi
,
∂(v × ψ)

∂xi
× u

〉

L2

.

Suppose now that u, v ∈ H
1 such that u×∆u ∈ L

2. Then by the Sobolev embedding H
1 →֒ L

6

and the Hölder inequality, v × (u × ∆u) ∈ L
3

2 . Moreover, by approximating v by more regular
functions and using the previous equality one can prove that for any ψ ∈ W

1,2 = H
1,

〈v × (u×∆u), ψ〉L2 = =

3
∑

i=1

〈

∂u

∂xi
,
∂(v × ψ)

∂xi
× u

〉

L2

. (4.9)

We now state the main result of this paper.
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Theorem 4.3. For every T > 0, u0 ∈ H
1 and every Borel non-negative measure ν on R

N

satisfying condition (4.1), there exists a weak martingale solution to the problem (2.4).
Moreover, the solution satisfies the following inequality

Ē





(

∫ T

0

|ū(t)× (ū(t)× (∆ū(t)−∇φ(ū(t)))) |2
L2 dt

)

p

2



 < ∞. (4.10)

as well as the following equality holds in L
2, for all t ∈ [0, T ], P̄-a.s.

ū(t) = u0 + λ1

∫ t

0

ū(s)× (∆ū(s)−∇φ(ū(s))) ds

−λ2

∫ t

0

ū(s)×
(

ū(s)× (∆ū(s)−∇φ(ū(s)))
)

ds

+

∫ t

0

∫

B

G(l, ū(s)) ˜̄η(ds, dl) +

∫ t

0

b(ū(s))ds. (4.11)

Proof. Let us first briefly explain how one can deduce the second part of the Theorem. The
inequality (4.10) follows from inequality (4.4) and the constraint condition (4.5). The form (4.11)
of the stochastic LLGE follows from its weak form (4.6) because the set of testing elements
L4(Ω̄;Xβ), for β = 1

2 is separable and the following four inequalities hold:

Ē

∫ T

0

|ū(t)× (∆ū(t)−∇φ(ū(t))) |2V′ dt <∞; Ē

∫ T

0

|ū(t)×
(

ū(t)× (∆ū(t)−∇φ(ū(t)))
)

|2V′ dt <∞;

Ē

∫ T

0

∫

B

|G(l, ū(t))|2
L2 ν(dl)dt <∞; Ē

∫ T

0

|b(ū(t))|2V′ dt <∞.

The first inequality is a special case of (4.4) due to the embedding L
2 →֒ V′ = X−

1

2 . The second

inequality is a special case of inequality (4.10) due to the embedding L
3

2 →֒ V′. Using the linear
growth and Lipschitz properties of G and b the last two inequalities can be proved.
Let us now give an outline of the proof of the first part of the theorem. We will do it in a few
steps.
Step - 1 (Faedo-Galerkin Approximation and A-Priori Estimates) Let us fix u0 ∈ H

1 and
a Borel non-negative measure ν on R

N satisfying condition (4.1). Then, see e.g. [13] and/or [22],
there exists a filtered probability space

(

Ω,F ,F,P
)

, where F =
(

Ft)t>0, satisfying the so called
usual conditions and there exists a Lévy process L = (L(t)), t > 0, whose jump intensity measure
is equal to ν. We also denote by η the time-homogenous Poissson random measure associated to
L. It is known that the intensity measure of η is equal to Leb⊗ν. We denote by η̃ := η − Leb⊗ν
the corresponding compensated time-homogeneous Poisson random measure.

Let πn denote the orthogonal projection from L
2 onto Hn := linspan{ẽ1, · · · , ẽn}, where

{ẽk}
∞

k=1 is an orthonormal basis of L
2, consisting of eigenvectors of A. Consider the following

approximate equation in Hn:























dun(t) = πn

{

λ1un(t)×
[

∆un(t)− πn∇φ(un(t))
]

−λ2un(t)×
(

un(t)×
[

∆un(t)− πn∇φ(un(t))
]

)}

dt+
∑N

i=1 πn (un(t)× ei) ⋄ dLi(t).

un(0) = πnu0.

(4.12)
Let us define the following maps

F 1
n : Hn ∋ u 7→ πn

(

u×
[

∆u− πn∇φ(u)
]

)

∈ Hn

F 2
n : Hn ∋ u 7→ πn

[

u×
(

u×
[

∆u− πn∇φ(u)
]

)]

∈ Hn
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gni : Hn ∋ u 7→ πn(u× ei) ∈ Hn.

Let Φn(t, l, un(0)) be a flow on Hn corresponding to
∑N

i=1 lig
n
i , i.e.











dΦn

dt
(t, l, un(0)) =

∑N
i=1 lig

n
i (Φn(t, l, un(0))), t > 0,

Φn(0, l, un(0)) = un(0) ∈ Hn.

For un ∈ Hn, we denote

Gn(l, un) := Φn(l, un)− un, Hn(l, un) := Φn(l, un)− un −

N
∑

i=1

lig
n
i (un),

bn(un) :=

∫

B

[

Φn(l, un)− un −

N
∑

i=1

lig
n
i (un)

]

ν(dl) =

∫

B

Hn(l, un) ν(dl).

Hence the problem (4.12) can be written in the following integral form:

un(t) = un(0) +

∫ t

0

(

λ1F
1
n(un(s))− λ2F

2
n(un(s))

)

ds

+

∫ t

0

∫

B

Gn(l, un(s)) η̃(ds, dl) +

∫ t

0

bn(un(s)) ds, t > 0. (4.13)

The following result plays an important role in order to prove the existence of a unique solution
of the approximated equation (4.13).

Lemma 4.4. The maps F 1
n and F 2

n are Lipschitz on balls, i.e., for every R > 0 there exists a
constant Kj = Kj(n,R), j = 1, 2 such that whenever u, v ∈ Hn with |u|, |v| 6 R, we have

|F j
n(u)− F j

n(v)|Hn
6 Kj |u− v|Hn

, j = 1, 2.

Furthermore, there exist constants R1, R2 > 0 such that for any u, u1, u2 ∈ Hn,

|bn(u2)− bn(u1)|
2
Hn

+

∫

B

|Gn(l, u2)−Gn(l, u1)|
2
Hn
ν(dl) 6 R1|u2 − u1|

2
Hn
, (4.14)

|bn(u)|
2
Hn

+

∫

B

|Gn(l, u)|
2
Hn
ν(dl) 6 R2|u|

2
Hn
. (4.15)

Hence the equation (4.13) has a unique global strong solution in Hn (see [9] and [8] for more
details). Moreover, we have the following a-priori estimates for all n ∈ N.

Lemma 4.5. Assume that ei ∈ L
∞ ∩ W

1,3 and T ∈ (0,∞). Let 2 6 p < ∞ and β > 1
4 . Then

there exists a constant C, which does not depend on n but may depend on un(0), ei, T , p and β
such that

|un(t)|
2
L2 = |un(0)|

2
L2 P a.s., (4.16)

Ē

[

sup
t∈[0,T ]

{

|∇un(t)|
2
L2 +

∫

D

φ(un(t, x))dx

}p
]

6 C, (4.17)

E

[(

∫ T

0

|un(t)× (∆un(t)− πn∇φ(un(t))) |
2
L2 dt

)p]

6 C, (4.18)

E





(

∫ T

0

|un(t)× (un(t)× (∆un(t)− πn∇φ(un(t))))|
2

L
3

2

dt

)

p

2



 6 C, (4.19)

E

[

∫ T

0

|πn[un(t)× (un(t)× (∆un(t)− πn∇φ(un(t))))]|
2
X−β dt

]

6 C. (4.20)
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Step - 2 (Tightness) Let us fix p ∈ [2,∞), q ∈ [2, 6) and β >
1

4
, and denote

ZT := L2
w(0, T ;H

1) ∩ Lp(0, T ;Lq) ∩ D([0, T ];X−β) ∩ D([0, T ];H1
w),

and T as the supremum of all the four topologies. We first prove that

Lemma 4.6. The set of measures {L(un), n ∈ N} is tight on (ZT , σ(T )).

This result can be proved using the fact that (un)n∈N is a sequence of càdlàg F-adapted X−β-

valued process satisfying sup
n∈N

E

[

|un|
2
L∞(0,T ;H1)

]

< ∞, and the Aldous condition in X−β , i.e. for

every sequence (τn)n∈N of F-stopping times with τn + θ 6 T and for every n ∈ N and θ > 0,

E [|un(τn + θ)− un(τn)|
α
X−β ] 6 Cθγ (4.21)

for some α, γ > 0 and some constant C > 0. Tightness in a space similar to ZT , with the
càdlàg functions replaced by continuous ones, has been used in a recent paper [7] on the stochastic
Schrödinger equation.

By (4.13), we have

un(t) = un(0) + λ1

∫ t

0

F 1
n(un(s)) ds− λ2

∫ t

0

F 2
n(un(s)) ds

+

∫ t

0

∫

B

Gn(l, un(s)) η̃(ds, dl) +

∫ t

0

bn(un(s)) ds,

:=
4
∑

i=0

J i
n(t), in Hn P− a.s. for all t ∈ [0, T ]. (4.22)

Let θ > 0. To prove un satisfies the condition (4.21), it is sufficient to check that each term
J i
n, i = 1, 2, 3, 4 satisfies the same.

For the term J0
n, condition (4.21) is trivially true.

Using the continuous embedding L
2 →֒ X−β , Hölder’s inequality and a priori estimate (4.18), we

have

E
[

|J1
n(τn + θ)− J1

n(τn)|X−β

]

= λ1E

[

|

∫ τn+θ

τn

F 1
n(un(s))ds|X−β

]

6 cλ1E

[

∫ τn+θ

τn

|πn
(

un(s)× (∆un(s)− πn∇φ(un(s)))
)

|L2ds

]

6 cλ1E

[

∫ τn+θ

τn

|un(s)× (∆un(s)− πn∇φ(un(s)))|L2ds

]

6 cλ1θ
1/2

E

[

∫ τn+θ

τn

|un(s)× (∆un(s)− πn∇φ(un(s)))|
2
L2ds

]1/2

6 cλ1θ
1/2

E

[

∫ T

0

|un(s)× (∆un(s)− πn∇φ(un(s)))|
2
L2ds

]1/2

6 c1θ
1/2.

Thus J1
n satisfies condition (4.21) with α = 1 and γ =

1

2
.

For J2
n, we proceed similarly using the continuous embedding L

3/2 →֒ X−β , Hölder’s inequality

and a priori estimate (4.19) and find that J2
n satisfies condition (4.21) with α = 1 and γ =

1

2
.

Now let us observe that in view of the a priori estimate (4.16), for each p ∈ [2,∞), we have

sup
n∈N

E

[

sup
t∈[0,T ]

|un(t)|
p
L2

]

<∞. (4.23)
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Therefore using Itô-Lévy isometry, (4.15), Hölder’s inequality and (4.23), we infer

E
[

|J3
n(τn + θ)− J3

n(τn)|
2
X−β

]

= E





∣

∣

∣

∣

∣

∫ τn+θ

τn

∫

B

Gn(l, un(s))η̃(ds, dl)

∣

∣

∣

∣

∣

2

X−β





6 cE





∣

∣

∣

∣

∣

∫ τn+θ

τn

∫

B

Gn(l, un(s))η̃(ds, dl)

∣

∣

∣

∣

∣

2

L2



 = cE

[

∫ τn+θ

τn

∫

B

|Gn(l, un(s))|
2
L2 ν(dl) ds

]

6 cR2E

[

∫ τn+θ

τn

|un(s)|
2
L2ds

]

6 cR2θE

[

sup
t∈[0,T ]

|un(t)|
2
L2

]

6 c3θ.

So J3
n satisfies condition (4.21) with α = 2 and γ = 1.

Using the similar argument we observe that J4
n satisfies condition (4.21) with α = 1 and γ = 1

2 .

This completes the proof of the Lemma.

Step - 3 (Existence of Martingale Solution) Let us fix p ∈ [2,∞), q ∈ [2, 6) and β >
1

4
.

In view of the above lemma, the set of measures {L(un), n ∈ N} is tight on the space ZT , the
set {L(un, ηn), n ∈ N} is tight on the space ZT ×MN̄([0, T ] × B), where MN̄(S) denotes the set
of all N ∪ {∞} valued measures on the measurable space (S,S ). Therefore, by the generalised
Jakubowski-Skorokhod embedding theorem from Brzeźniak et al. [6], there exists a subsequence
(nk)k∈N, a probability space

(

Ω̄, F̄ , (F̄t)t>0, P̄
)

and, on this space, ZT × MN̄([0, T ] × B)-valued
random variables (u⋆, η⋆), (ūk, η̄k), k ∈ N, such that

(1) L
(

(ūk, η̄k)
)

= L
(

(unk
, ηnk

)
)

for all k ∈ N,

(2) (ūk, η̄k) → (u⋆, η⋆) in ZT ×MN̄([0, T ]×B), and

(3) η̄k(ω̄) = η⋆(ω̄), for all ω̄ ∈ Ω̄.

We will denote these sequences again by
(

(un, ηn)
)

n∈N
and

(

(ūn, η̄n)
)

n∈N
, respectively. By the

definition of the space ZT , we have

ūn → u⋆ in L2
w(0, T ;H

1) ∩ Lp(0, T ;Lq) ∩ D([0, T ];X−β) ∩ D([0, T ];H1
w) P̄− a.s.. (4.24)

For the end of the proof we take special values of the parameters: p = 4, q = 4 and β =
1

2
. Now,

due to Kuratowski theorem, Borel subsets of D([0, T ];Hn) are Borel subsets of L2
w(0, T ;H

1) ∩

L4(0, T ;L4)∩D([0, T ];X−
1

2 )∩D([0, T ];H1
w), and P{un ∈ D([0, T ];Hn)} = 1. Hence, we may assume

that ūn takes values in Hn and that the laws on D([0, T ];Hn) of un and ūn are equal. Therefore,
ūn satisfies the a-priori estimates given in Lemma 4.5, and hence there exist measurable processes
Y and Z on [0, T ]× Ω̄, such that Y ∈ L2r(Ω̄; L2(0, T ;L2)), for r > 1, and Z ∈ L2(Ω̄; L2(0, T ;L

3

2 ))
and

ūn × (∆ūn − πn∇φ(ūn)) → Y weakly in L2r(Ω̄;L2(0, T ;L2)), (4.25)

ūn ×
(

ūn × (∆ūn − πn∇φ(ūn))
)

→ Z weakly in L2(Ω̄;L2(0, T ;L
3

2 )) and (4.26)

πn(ūn × (ūn × (∆ūn − πn∇φ(ūn)))) → Z weakly in L2(Ω̄;L2(0, T ;X−β)). (4.27)

The following results provide important characterisation of the processes Y and Z. We omit here
the proof of the first part and refer the reader to [8, 9] for detailed discussion.

Lemma 4.7. For any measurable process ϕ ∈ L4(Ω̄;L4(0, T ;W1,4)), we have the equalities

lim
n→∞

Ē

∫ T

0

〈ūn(s)×∆ūn(s), ϕ(s)〉L2 ds = Ē

∫ T

0

3
∑

i=1

〈

∂u⋆(s)

∂xi
, u⋆(s)×

∂ϕ(s)

∂xi

〉

L2

ds, (4.28)

lim
n→∞

Ē

∫ T

0

〈ūn(s)× πn∇φ(ūn(s)), ϕ(s)〉L2 ds = Ē

∫ T

0

〈u⋆(s)×∇φ(u⋆(s)), ϕ(s)〉L2 ds. (4.29)
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Proof. In order to prove (4.29), we first write

ūn × πn∇φ(ūn)− u⋆ ×∇φ(u⋆) =
(

ūn − u⋆
)

× πn∇φ(ūn) + u⋆ ×
(

(πn − I)∇φ(u⋆)
)

+ u⋆ ×
(

πn(∇φ(ūn)−∇φ(u⋆))
)

.
(4.30)

We deal with the first sequence on the RHS of (4.30) by applying the Vitali Convergence Theorem,
because (i) it is bounded in L2(Ω̄; L2(0, T ;L2)) by estimate (4.16) from Lemma 4.5 (satisfies, as
observed above, also by the sequence (ūn)) and hence uniformly integrable and (ii) it is a.s,
convergent to 0 on Ω̄× (0, T )× L

2. We deal with the second term, because ∇φ(u⋆) ∈ L
2 a.s. on

Ω̄× (0, T ) again by applying the Vitali Convergence Theorem. Finally, we deal with the last term
by observing that in view of the Lipschitz property of ∇φ and (4.24) we have, P̄− a.s.,

∇φ(ūn) → ∇φ(u⋆) in L2(0, T ;L2).

The proof is thus complete.

Remark 4.8. As a consequence of the above Lemma, for any measurable process ϕ ∈ L4(Ω̄;L4(0, T ;W1,4)),
we have the following result

lim
n→∞

Ē

∫ T

0

〈ūn(t)× (∆ūn(t)− πn∇φ(ūn(t))) , ϕ(t)〉L2 dt

= Ē

∫ T

0

〈Y (t), ϕ(t)〉L2 dt

= Ē

∫ T

0

3
∑

i=1

〈

∂u⋆(t)

∂xi
, u⋆(t)×

∂ϕ(t)

∂xi

〉

L2

dt− Ē

∫ T

0

〈u⋆(t)×∇φ(u⋆(t)), ϕ(t)〉L2 dt.

Remark 4.9. It follows by considering processes of the form ϕ(t, ω) := χS(t, ω)ψ, where χS is the
indicator of a measurable subset S of [0, T ] × Ω̄ and ψ is a fixed element of W1,4, that for each
ψ ∈ W

1,4

〈Y (t, ω), ψ〉L2 =

3
∑

i=1

〈

∂u⋆(t, ω)

∂xi
, u⋆(t, ω)×

∂ψ

∂xi

〉

L2

− 〈u⋆(t, ω)×∇φ(u⋆(t, ω)), ψ〉L2 (4.31)

for almost every (t, ω) ∈ [0, T ] × Ω̄. Since W
1,4 is separable, for (t, ω) outside a set of measure

zero, equality (4.31) holds for all ψ ∈ W
1,4.

Lemma 4.10. For any process ψ ∈ L4(Ω̄;L4(0, T ;L4)) we have

lim
n→∞

Ē

∫ T

0

〈ūn(s)×
(

ūn(s)× (∆ūn(s)− πn∇φ(ūn(s)))
)

, ψ(s)〉L2 ds

= Ē

∫ T

0
L

3

2

〈Z(s), ψ(s)〉L3 ds (4.32)

= Ē

∫ T

0
L

3

2

〈u⋆(s)× Y (s), ψ(s)〉L3 ds. (4.33)

Remark 4.11. Since L4(Ω̄;L4(0, T ;L4)) is dense in L2(Ω̄;L2(0, T ;L3)), we may conclude that

Z = u⋆ × Y as elements of L2(Ω̄;L2(0, T ;L
3

2 )).

Now for t ∈ [0, T ] and v ∈ L4(Ω̄;Xβ), we denote

Mn(ūn, η̄n, v)(t) : = X−β〈ūn(0), v〉Xβ + λ1

∫ t

0

〈ūn(s)× (∆ūn(s)− πn∇φ(ūn(s))) , v〉L2ds

− λ2

∫ t

0
X−β〈ūn(s)× (ūn(s)× (∆ūn(s)− πn∇φ(ūn(s)))), v〉Xβ ds
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+

∫ t

0

∫

B

〈Gn(l, ūn(s)), v〉L2 ˜̄ηn(ds, dl) +

∫ t

0

〈bn(ūn(s)), v〉L2 ds,

M(u⋆, η⋆, v)(t) : = X−β〈u⋆(0), v〉Xβ + λ1

∫ t

0

〈u⋆(s)× (∆u⋆(s)− πn∇φ(u⋆(s))) , v〉L2ds

− λ2

∫ t

0
X−β〈u⋆(s)× (u⋆(s)× (∆u⋆(s)− πn∇φ(u⋆(s)))), v〉Xβ ds

+

∫ t

0

∫

B

〈G(l, u⋆(s)), v〉L2 η̃⋆(ds, dl) +

∫ t

0

〈b(u⋆(s)), v〉L2 ds.

We can show that

Lemma 4.12. For all v ∈ L4(Ω̄;Xβ),

(a) lim
n→∞

Ē

[

∫ T

0

|〈ūn(t)− u⋆(t), v〉L2 |2dt

]

= 0, (4.34)

(b) lim
n→∞

Ē

[

∫ T

0

|Mn(ūn, η̄n, v)(t)−M(u⋆, η⋆, v)(t)|
2dt

]

= 0. (4.35)

The proof of this Lemma relies on the term by term estimates, the above weak convergences
and the characterisation of the processes Y and Z from Lemma 4.7 and Lemma 4.10 and the
followup discussions in Remarks 4.8, 4.9, and 4.11.

Finally, putting ū := u⋆, and η̄ := η⋆, we conclude that the system (Ω̄, F̄ , F̄t, P̄, ū, η̄) is a
martingale solution of the equation (2.4).
Step - 4 (Verification of the Saturation Constraint Condition)

Proposition 4.13. The process ū satisfies

|ū(t, x)|R3 = 1, for Lebesgue a.e. x ∈ D for all t ∈ [0, T ], P̄ a.s. (4.36)

In particular, ū is càdlàg in L
2.

The proof relies on verification of the conditions of Gyöngy-Krylov [12] Itô lemma and its
application. Similar arguments have been provided at the beginning of the proof of this Theorem
4.3. For similar ideas see [4].
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