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Abstract We present a first version of the Svalbard ice-free topography (SVIFT1.0) using a mass

conserving approach for mapping glacier ice thickness. SVIFT1.0 is informed by more than 1 million

point measurements, totalling more than 8,700 km of thickness profiles. SVIFT1.0 is publicly available and

represents the geometric state around the year 2010. Our estimate for the total ice volume is 6,199 km3,

equivalent to 1.5-cm sea level rise. The thickness map suggests that 13% of the glacierized area is grounded

below sea level. A complementary map of error estimates comprises uncertainties in the thickness surveys

as well as in other input variables. Aggregated error estimates are used to define a likely ice-volume range

of 5,200–7,300 km3. The ice front thickness of marine-terminating glaciers is a key quantity for ice loss

attribution because it controls the potential ice discharge by iceberg calving into the ocean. We find a mean

ice front thickness of 135 m for the archipelago (likely range 123–158 m).

Plain Language Summary Svalbard is an archipelago in the Arctic, north of Norway, which is

comparable in size to the New York metropolitan area. Roughly half of it is covered by glacier ice. Yet to this

day, the ice volume stored in the many glaciers on Svalbard is not well known. Many attempts have been

made to infer a total volume estimate, but results differ substantially. This surprises because of the long

research activity in this area. A large record of more than 1 million thickness measurements exists, making

Svalbard an ideal study area for the application of a state-of-the-art mapping approach for glacier ice

thickness. The mapping approach computes an ice volume that will raise global sea level by more than half

an inch if instantaneously melted. If spread over the metropolitan area, New York would be buried beneath

a 100-m ice cover. The asset of this approach is that it provides not only a thickness map for each glacier on

the archipelago but also an error map that defines the likely local thickness range. Finally, we provide the

first well-informed estimate of the ice front thickness of all marine-terminating glaciers that loose icebergs

to the ocean. The archipelago-wide mean ice front cliff is 135 m.
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1. Introduction

Apart from themany glaciers that drain the two large ice sheets on Antarctica and Greenland, there are more

than 200,000 other glaciers and ice caps (henceforth glaciers) worldwide (RGI6.0; RGI Consortium, 2017). For

the large majority of these glaciers, no thickness measurements are available (Gärtner-Roer et al., 1981). In

light of a warming climate and the associated glacier demise (Vaughan et al., 2013), a well-constrained quan-

tification of the available ice volume is indispensable for reliable projections of the future glacier sea level

contribution. A standing problem in glaciology is therefore to derive glacier ice volumes from other accessi-

ble surface information. A simple and robust approach is volume-area scaling (VAS), first introduced by Erasov

(1968), substantiated by theoretic arguments (Bahr et al., 1997), and continuously refined further (Adhikari

& Marshall, 2012; Bahr et al., 2015; Grinsted, 2013). VAS is thus a standard method to get a first estimate of

regional-scale glacier ice volume. Yet two recent applications report a global glacier and ice cap volume of

139,510 and209,973 km3 (Grinsted, 2013; Radić et al., 2014),which translate to 0.35 and0.52msea level equiv-

alent, respectively. The large difference is emblematic and reflects the generally poor knowledge of glacier

ice thickness.

For Svalbard, ice thickness is relatively well known because of the long research activity comprising

deep ice coring (overview in Kotlyakov et al., 2004), airborne radio-echo soundings (RESs; Dowdeswell &

Bamber, 1995; Dowdeswell & Drewry, 1984; Dowdeswell et al., 1986;Macheret & Zhuravlev, 1982), and numer-

ous ground-penetrating radar surveys (overview in ; Martín-Español et al., 2013). These records allowed a first

tuning of VAS approaches against thicknessmeasurements and their archipelago-wide application. Macheret

et al. (1984) inferred a total ice volume of 7,567 km3. A series of updated VAS estimates followed: 6,988 km3

(H93, Hagen et al., 1993); 4,000 km3 (Ohmura, 2004); 10,260 km3 (RH10, Radić & Hock, 2010); 5,350 km3

(Grinsted, 2013); 9,089 km3 (Radić et al., 2014); and 6,746 km3 Martín-Español et al. (2015). The large spread is

explained by the global scope of most of these studies. H93 andME15 did focus only on Svalbard, and similar

values are reported. Considering the elapsed time and current volume loss rates (Moholdt et al., 2010a; Nuth

et al., 2010), the two estimates become almost identical.

A spatially resolved thickness field is necessary to attribute recent surface elevation changes either to surface

mass balance (SMB) variations or to ice dynamic effects (Nuth et al., 2010).Moreover, the glacier thickness field

is required to partition and attribute the annual ice loss of ∼11 km3/year (Moholdt et al., 2010b; Nuth et al.,

2010; Wouters et al., 2008) into its two main components, that is, ice discharge at the marine margins by ice-

berg calving and SMB changes. The last archipelago-wide ice discharge estimate of ∼7 km3/year (Błaszczyk

et al., 2009) suffers from sparse thickness observations near the often inaccessible ice fronts, and it had to

rely on the historic 100-m estimate of the mean frontal thickness, forwarded in Hagen et al. (2003). A great

leap forwardwas the reconstruction approach by Farinotti et al. (2009), which forms the basis for a first world-

wide reconstruction (HF12, Huss & Farinotti, 2012) providing thicknessmaps for all glaciers. On Svalbard, HF12

reports a total ice volume of 9,685 km3. After updating to RGI6.0, the HF12 approach gives a mean ice front

thickness of 214m, twice as large as the historic value. HF12was calibratedwith observations from31 glaciers

on Svalbard. The primary intention of their calibration was to provide a best volume estimate and not the

reproduction of individual measurements.

Until now, themany ice thickness records on Svalbard have not been compiled into a single database. Herewe

aim at assimilating this exceptional record and produce a Svalbard map of glacier ice thickness. For this pur-

pose, we apply an existing mass conservation approach (Fürst et al., 2017) to all glacierized areas accounting

for surface velocities, SMB, glacier hypsometry, and changes therein.

2. Methods

Details of the two-step thickness reconstruction method employed here are presented in Fürst et al. (2017).

Some further method adaptations are presented in the Text S1 in the supporting information (Carrivick et al.,

2016; Lapazaran et al., 2016; Noël et al., 2016; Norwegian Polar Institute, 2014; Pinglot et al., 2001; Pinglot et al.,

1999; Schutz et al., 2005; Wingham et al., 2006). The approach is primarily based on mass conservation and

requires prior knowledge of source and sink terms in the glacier mass budget. Assuming incompressibility,

the mass conservation is reformulated in terms of glacier ice thickness H.

𝜕tH + 𝛁 ⋅

(

uH
)

= ḃs (1)
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Here 𝜕t and 𝛁⋅ denote the partial time derivative and the 2-D horizontal divergence operator, respectively. u

is the vertically averaged, horizontal velocity vector. The SMB ḃs comprises mass gain and loss terms at the

upper glacier surface. The difference ḃs − 𝜕tH is referred to as the apparent mass balance.

In this formulation, we deliberately neglect any influence from internal and basal mass balance processes.

To solve equation (1), we use the Elmer finite-element software developed at the Center for Science in Fin-

landhttp://www.csc.fi/elmer/CSC-IT(CSC-IT) andmore specifically themass conservation solver implemented

in its glaciological extension Elmer/Ice (Gagliardini & Zwinger, 2008; Gagliardini et al., 2013; Gillet-Chaulet

et al., 2012). For the modeling domain, a 2-D triangular-element mesh is generated using the open-source

http://gmsh.info/ Gmsh software (Geuzaine & Remacle, 2009). To avoid internal boundaries, the reconstruc-

tion is performed for glacier compounds bymerging adjacent glacier outlines. Dependent on the compound

area, the nominal resolution ranges from 25 to 300 m (Table S1).

A two-step approach is necessary because surface velocity measurements from satellite remote sensing are

often not available over the entire glacierized area. Therefore, the first step requires no velocity information.

Equation (1) is solved for the unknown ice flux F = uH. Subsequently, F is converted into ice thickness val-

ues assuming the shallow ice approximation (Hutter, 1983; Morland, 1986). The conversion comprises the free

viscosity parameter (as defined in equation 7 in; Fürst et al., 2017), which is calibrated with thickness mea-

surements (Table S1). In subregions where flow speeds exceed 100 m/year the thickness field is updated in a

second step, accounting for the observed flow routing. For this step, we assume equality between surface and

vertical mean velocities. In these subregions, the thickness update is laterally constrained by first-step thick-

ness values. In both steps, marine ice fronts are treated as free boundaries. Moreover, equation (1) is cast as a

minimization problem using a cost function that penalizes negative solutions, high spatial variability, and the

mismatch to observations.

The inferred thickness field is provided together with an error estimate map, based on a formal propagation

of input uncertainties (Morlighemet al., 2011). In Fürst et al. (2017), uncertainty values of input fields are given

as well as details of the error propagation for both steps. An assessment of the error estimates on several

test geometries from Svalbard showed that in a median sense, error estimates tend to overestimate actual

mismatch values between modeled and withheld thickness measurements (Fürst et al., 2017).

3. Input Data

In the following, we present a brief overview of the input fields. A more comprehensive description is pro-

vided in Text S2. (Ai et al., 2014; Bamber & Dowdeswell, 1990; Bjørnsson et al., 1996; Dowdeswell et al.,

1984; Drewry & Liestøl, 1985; Fujii et al., 1990; Grabiec et al., 2012; Jania et al., 1996; Kotlyakov, 1985;

Lindbäck et al., 2018; Melvold & Schuler, 2008; Melvold et al., 2003; Navarro et al., 2005, 2014, 2015; Saintenoy

et al., 2013; Schuler et al., 2005; van Pelt et al., 2013; Vasilenko et al., 2009; Zagorodnov & Arkhipov, 1990;

Zagorodnov & Samoilov, 1982; Zagorodnov & Zotikov, 1981). The glacier surface geometry is based on

an archipelago-wide reference digital elevation model (DEM), which was primarily inferred from airborne

stereo-imagery collected between 2008 and 2012. The center of this time period 2010 defines the time

stamp of the thickness map product. Elevation changes are calculated by differencing the reference DEM

with another composite DEM based on photogrammetric information from the 1990s and processed satel-

lite imagery (Moholdt & Kääb, 2012; Nuth et al., 2010). The glacier outlines are taken from Nuth et al.

(2013), representing the period 2002–2010. These outlines also entered the RGI. Despite the ice geome-

try and changes therein, the reconstruction requires information on the SMB. An archipelago-wide prod-

uct was computed for the period 1979–2013 with the regional climate model Modèle Atmopshérique

Régional (Lang et al., 2015). The original setup was recently rerun at 3.75-km resolution, and results were

subsequently downscaled spatially and averaged for the period 1990–2010 (Franco et al., 2012). The down-

scaling is necessary to obtain distributed SMB information over all glaciers also for smaller geometries.

Surface velocities (Figure S1) were determined by intensity offset tracking using consecutive image pairs

of Sentinel 1 acquired in the period January 2015 and September 2016 (Seehaus et al., 2016; Strozzi

et al., 2002).

In this study, we considered 1,002,684 individual RES measurements from airborne and ground-based cam-

paigns (overview in Figure S2 and Table S2). These campaigns add up to a total RES profile length of 8,737 km.

The RES measurements are completed by information from 13 deep ice cores and 112 boreholes (Table S3).
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On account of the targetmap resolution of 100m and the spatial correlation characteristics of thicknessmea-

surements, the data were subsampled to 50 m. Since thickness measurements were collected between 1980

and 2016, a prior homogenization is required, correcting the values by elevation changes since acquisition

with respect to the reference DEM.

4. Results

The reconstructed fields for ice thickness represent the state around 2010 (Figure 1a). Together with the basal

topography (Figure S3), the thickness field is analyzed on a regular raster with 100-m spacing in accordance

with the downsampled reference DEM. Covering all of the 1,668 glacier units on the archipelago, we find a

total ice volume of 6,199 km3 (Table 1), equal to 1.5-cm sea level equivalent. Half of the volume is stored in the

two ice caps on Nordaustlandet (Austfonna: 2,658 km3; Vestfonna: 513 km3). The many glaciers on Spitsber-

gen comprise a slightly smaller volume of 2,532 km3. The thickness map is provided together with an error

estimate field (Figure S4 and section 2), which indicates spatial differences in the reliability of the reconstruc-

tion. Error values are systematically larger over the ice caps on Nordaustlandet, Edgeøya, Barentsøya, and

Kvitøya as compared to the ice fields on Spitsbergen. There are three reasons for this difference. First, a mul-

titude of nunataks (or elongated crests) protrudes through the ice cover on Spitsbergen, and error estimates

naturally decrease in their vicinity. For the ice caps, only a few nunataks exist. Second, large portions of these

ice caps were only surveyed in the 1980s by airborne RES campaigns with large measurement errors mainly

stemming from pre-GPS navigation. Third, in the absence of measurements, the method has difficulties to

efficiently constrain errors over the flat topography over the interior of ice caps (Fürst et al., 2017).

In Fürst et al. (2017), it has been shown that median error values from all measurement locations exceed

the median of the actual mismatch to the observed ice thickness. We assume that this aggregate overesti-

mation can be transferred to unsurveyed terrain. Normalizing the glacier-wide median error estimates with

respect to mean glacier thicknesses, we find that for more than 50% of the glacierized area, the uncer-

tainty in mean glacier thickness falls below 11% (Figure 1b). For 90% of the glacier area, this uncertainty is

smaller than 29%. These numbers increase to 12% and 52%, if we use arithmetic means instead of medi-

ans. In terms of mean values, large error values get higher weights, and more conservative error intervals are

found. Henceforth, aggregate error intervals are defined in the arithmetic mean sense and used as likely error

ranges for ice-volume and average ice thickness values. For the ice volume on Svalbard, the likely range is

5,210–7,309 km3.

The ice front thickness of marine-terminating glaciers is of high interest in terms of possible implications

for sea level change, as it sets a natural limit on annual ice loss rates by iceberg calving. We find an

archipelago-wide frontal thickness average of 135mwith a likely range of 123 to 158m (Table 1). For glaciers

with a dense measurement network, frontal thickness values can be well constrained. This is the case for Kro-

nebreen, Tunabreen, and Basin 3 of Austfonna, where maximum error bounds lie within 10% of the mean

value. For Hansbreen and Paierlbreen, frontal areas are densely surveyed, and we attain accuracies of the

mean value of 4 and 8m, respectively. For glaciers with limited, or no ground truth, such asMonacobreen and

Nathorstbreen, the likely range exceeds 100 m.

On Spitsbergen the inferred bedrock topography is a complex system of interconnected valleys (Figure S3).

On Nordaustlandet, there is not such a clear partitioning of the landscape into well-imprinted valley systems

either in the ice-free areas or beneath the ice caps. For the whole of Svalbard, we find that 13% of the glacier-

ized area is grounded below sea level. Our results support the speculation that Sørkapp is a potential island

separated by an ocean channel beneath Hornbreen and Hambergbreen (Grabiec et al., 2018). At present, the

shallowest portion is covered by 180-m-thick ice. Error magnitudes (Figure S4) are well constrained by nearby

measurements, and they compare to the inferred bathymetric depth of 3–20 m in this area.

5. Discussion

Our total volume estimate of 6,199 km3 is bracketed by previous estimates ranging from 4,000 to 10,000 km3

(see section 1). However, many of these estimates do not fall into the likely range (∼5,300–7,300 km3; Table 1)

that is determined by the aggregated errors. Even within these bounds, differences are still important, con-

sidering current loss rates on Spitsbergen of ∼100 km3 per decade (Moholdt et al., 2010a; Nuth et al., 2010).

In fact, only the two VAS approaches with exclusive focus on Svalbard (H93 andME15) report comparable ice

volumes. In terms of the regional volume distribution, it was often speculated thatmost ice resides within the
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Figure 1. (a) Svalbard ice thickness map. More than 1 million individual measurements were considered in the
underlying reconstruction approach (Fürst et al., 2017). Island names of the archipelago are given in bold. Regular font is
used for region names and prominent glaciers (numbered list). Inset (b) shows the cumulative area fraction in ascending
order of the aggregate error estimate per glacier unit. The inset histogram (c) shows the distribution of the mean glacier
thickness in 5-m bins. Mean thickness values for H93 (Hagen et al., 1993) and ME15 (Martín-Español et al., 2015) were
updated with the 2002–2010 inventory (Nuth et al., 2013) using the VAS formulas in the respective publications. H93
uses a minimum mean thickness of 25m for glaciers smaller than 1 km2 . HF17refers to a recent update of HF12 (Huss &
Farinotti, 2012) relying on the RGI6.0 (see map in Figure S5).
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Table 1

Characteristic Quantities of SVIFT1.0

Regional breakdown H93 ME15 HF17 SVIFT 1.0

Ice volume (km3)

Svalbard 6,649 (6,988) 6,849 (6,746) 8,123 6,199 (7,309)
(5,210)

By region

Spitsbergen 3,444 (3,899) 3,377 (—) 4,057 2,532 (29,121)
(2,184)

Nordaustlandet 2,654 (2,444) 3,001 (3,001) 3,465 3,221 (3,743)
(2,742)

Edgeøya 309, (376) 271 (—) 347 236 (357)
(139)

Barentsøya 93 (98) 69 (—) 106 58 (75)
(41)

Kvitøya 124 (170) 130 (—) 148 153 (213)
(104)

Area grounded below sea level (km2)

Svalbard — — 7,391 4,275 (6,291)
(2,818)

Mean ice thickness (m)

Svalbard 197 (191) 203 (200) 240 184 (216)
(154)

Mean calving front thickness (m)

Svalbard — — 214 135 (158)
(123)

By glacier

Monacobreen — — 331 97 (466)
(50)

Kronebreen and Kongsvegen — — 157 124 (137)
(112)

Hinlopenbreen and Oslobreen — — 103 121 (133)
110)

Tunabreen — — 208 120 (126)
114)

Paulabreen — — 129 117 (150)
(84)

Nathorstbreen and Polakkbreen — — 104 116 (164)
(72)

Hansbreen — — 142 108 (112)
104)

Paierlbreen — — 140 86 (94)
(80)

Franklinbreen — — 175 141 (173)
(125)

Bodleybreen — — 100 110 (145)
(74)

Etonbreen — — 240 157 (182)
(132)

Basin 3, Austfonna — — 329 147 (171)
(122)

Note. Values are compared to volume-area scaling (VAS) results from Hagen et al. (1993; H93) and Martín-Español et al.
(2015; ME15) as well as the updated HF17map of distributed thickness values fromHuss and Farinotti (2012). VAS values
are recomputed for the Nuth et al. (2013) inventory (for H93 andME15, values in parentheses are from the original study).
Calving front thicknesses are averaged within a 1-km band along themarine glacier margin. Themarine margin adds up
to 1,541 km on the archipelago. Bold numbers highlight values that exceed the error range from this study (subscript
and superscript values in parentheses). Error ranges are asymmetric because thickness values cannot be negative.

glaciers of Spitsbergen. This speculationwas substantiated by the recent distributed ice thickness reconstruc-

tion (HF12; Huss & Farinotti, 2012). Together with ME15, we find a more balanced situation with a tendency

for more ice on Nordaustlandet. For the ice cap on Kvitøya, a good volume agreement is achieved (Table 1).

Previous ice-volume estimates for Barentsøya and Edgeøya need downward correction because, there, our

reconstruction is informed by early airborne campaigns (Table S2).

The HF12 approach was rerun for the RGI6.0 (referred to as HF17), and the total ice volume was updated to

8,123 km3. This updated value remains somewhat larger than our estimate and exceeds the inferred error

bounds (Table 1). In general, glaciers tend to be thicker in HF17 (Figures 1c and S5). For Vestfonna, Alde-

gondabreen, andAustre Lovénbreen,we consider the same thicknessmeasurements as HF12 (and thusHF17)

FÜRST ET AL. 6
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in their global calibration. For the latter two glaciers, we find mean thickness values of 60 and 78 m, respec-

tively. This is in reasonable agreement with the 69 and 68 m in HF17. Ice cap thickness distributions are more

challenging to infer because of gentle surface slopes over most of the ice-covered area. Consequently, the

mismatch on Vestfonna is higher with 275 m as compared to our 227 m. Our estimate is well constrained by

measurements (Figure S2).

In 1983, a large airborne RES campaign targeted the two ice caps on Nordaustlandet (Dowdeswell, 1986).

Data gaps along the Vestfonna ice divide were filled by additional GPR measurements in 2008–2009

(Pettersson et al., 2011). The good spatial coverage of these data sets justified a direct interpolation, and

an average thickness value of 309 m was reported for Austfonna (Dowdeswell et al., 2008) and 186 m for

Vestfonna (Pettersson et al., 2011). Here we largely rely on the same measurements, and we find somewhat

higher values of 329 and 227 m, respectively. On Austfonna, about 4 m of this difference is explained by the

widespread positive surface elevation changes between 1996 and 2011. On Vestfonna, however, elevation

changes indicate mass loss in the same period. There, we infer a thicker ice cover in unsurveyed areas around

the land-terminating margin and along a few outlet glaciers (also see Fürst et al., 2017). Moreover, Pettersson

et al. (2011) reported that 5% of the Vestfonna bed lies below present sea level. This value is incompatible

with our estimate of 13%, considering the likely range of 6% to 31%. The upper bound of the area fraction

grounded below sea level for Vestfonna matches the 30% from the updated HF17 reconstruction. For Aust-

fonna, HF17 finds that 36% of the bed lie below sea level, exceeding the upper bound of 32% found for the

likely range (central estimate 24%).

A glacier classification by area allows a direct comparison of mean thicknesses with earlier VAS approaches

(Figure 1c). The distribution, we find, agrees well with the H93 estimates. The match is more moderate in the

thickness range of 125–175 m, where H93 reported more glaciers. H93 employed a lower bound of 25 m.

In the range between 25 and 75 m, ME15 and HF17 show a different distribution with almost twice as many

glaciers with respect to our distribution. In terms of the H93 formulation, this range comprises glaciers up

to ∼5 km2. In our reconstruction, most of these glaciers are larger than 1km2, for which our reconstruction

is constrained by measurements (Table S1). In contrast to all previous approaches, we find a large number

of glaciers with thickness values below 15 m. We feel not very confident about these small values, because

theymostly appear on glaciers smaller than 1km2. In this area class, direct measurements were only available

on one land-terminating glacier (Table S1). Moreover, the SMB downscaling reaches its limits for these small

geometries. After subtracting 𝜕tH, the resultant apparent mass balance often gives not much rise to glacier

motion, and inferred thickness values remain small. If we use 25 m as a lower limit on glacier mean thickness

(affecting a 2.1% area fraction), the total volume estimate increases by 6km3 or 0.1%.

From the 1668 glacier units on Svalbard, 197 are marine terminating. These few glaciers drain 69% of the

glacierized area and thereby access 80% (4,977 km3) of the stored ice volume. Though volume magnitudes

differ, HF17 confirms a 79% fraction. In terms of sea level relevant ice discharge, the main unknown is the ice

front thickness of marine-terminating glaciers. This thickness value is a key characteristic of mass conserving

reconstruction approaches, because it comprises and reflects the cumulative effect of all input uncertainties.

HF17presents anarchipelago-meanestimateof 214m,well beyondour likely range (Table 1). A reason is again

the global scope of HF17, which could only consider marine termination as a region-specific perturbation on

the equilibrium line altitude (Huss & Farinotti, 2012). The historic estimate of the archipelago-wide ice front

thickness is 100 m (Hagen et al., 1993). This estimate was not intended to precisely pin down the exact value,

but it gives a valuable orientation. As this value was used for the last Svalbard-wide ice discharge estimate

of 7 km3/year (Błaszczyk et al., 2009), we expect a nonnegligible upward correction. On a glacier-to-glacier

basis, mean ice front thickness values in HF17 often exceed the upper error bound. For Basin 3 on Austfonna,

which is well surveyed, HF17 finds a more than twice as thick mean ice front. On Monacobreen in northern

Spitsbergen, a factor 3 is reached, still within the error range. The HF17 reconstruction also suggests that

22% of the glacierized area is grounded below sea level. We can only confirm 13% with an upper bound of

21%. Again, these differences are partly explained by the ad hoc perturbation strategy formarine-terminating

glacier in HF12.

6. Conclusions

Despite other existing ice-volume estimates on Svalbard (see section 1) and available glacier thickness maps

(Huss & Farinotti, 2012), the presentedmap of the Svalbard ice-free topography version 1.0 (SVIFT1.0) is novel
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in two aspects. First, an abundant record of more than 1million individual thicknessmeasurements was com-

piled, and observations are imprinted in the thicknessmap. In this way, the reliability is increased, making the

map a valuable and long-anticipated product required for ice flowmodel application on Svalbard. Second, an

associated map of error estimates is provided, which informs on spatial differences in reliability. Aggregated

error values are further used to define likely ranges for mean glacier thickness, for calving front thickness as

well as for glacier volumes.

Our volume estimate is expedient, given the good agreement with two independent estimates from region-

ally calibrated VAS approaches (Hagen et al., 1993; Martín-Español et al., 2015). Relative differences of less

than 10% are rather precise, considering the large range of existing VAS estimates (4,000 to 10,000 km3). The

consistency also indicates that VAS approaches clearly benefit from ground-truth data. However, the thick-

ness distributions reveal clear differences in certain glacier area classes. These discrepancies require further

investigation and might help to refine the methodology.

The large record of thickness measurements, which entered SVIFT1.0, enables a first well-informed estimate

of the calving front thickness of marine-terminating glaciers. The existing HF17 map is of inferior quality in

this aspect because significantly less thicknessmeasurementswere used and because an ad hoc perturbation

strategy was applied to generate nonzero calving fluxes (Huss & Farinotti, 2012). The knowledge of the ice

front thickness is key for a reliable quantification of the sea level relevant ice discharge and thus total mass

loss attribution.
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