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Graphical Abstract 

 

 

The periplasmic binding protein VctP of Vibrio cholerae, binds the Fe(III) complexes 

of a tetradentate salmochelin S1 mimic with higher affinity than does the periplasmic 

binding protein CeuE of Campylobacter jejuni. Both proteins select for Λ-configured 

Fe(III) complexes and display a preference for bis(catecholates) over the 

tris(catecholate) siderophore enterobactin.  

 

Highlights 

 Synthesis of a mimic of the tetradentate stealth siderophore salmochelin S1 

 The periplasmic binding protein of Vibrio cholerae (VctP) binds the mimic strongly   

 VctP selects for Λ-configured Fe(III) complexes of the mimic 

 VctP displays a preference for bis(catecholate) over tris(catecholate) 

siderophores  

 The role of salmochelin in iron uptake by pathogens merits further investigation 

Abstract 

A mimic of the tetradentate stealth siderophore salmochelin S1, was synthesised, 

characterised and shown to form Fe(III) complexes with ligand-to-metal ratios of 1:1 

and 3:2. Circular dichroism spectroscopy confirmed that the periplasmic binding 

proteins CeuE and VctP of Campylobacter jejuni and Vibrio cholerae, respectively, 

bind the Fe(III) complex of the salmochelin mimic by preferentially selecting Λ-

configured Fe(III) complexes. Intrinsic fluorescence quenching studies revealed that 
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VctP binds Fe(III) complexes of the mimic and structurally-related catecholate 

ligands, such as enterobactin, bis(2, 3-dihydroxybenzoyl-L-serine) and bis(2, 3-

dihydroxybenzoyl)-1, 5-pentanediamine with higher affinity than does CeuE. Both 

CeuE and VctP display a clear preference for the tetradentate bis(catecholates) over 

the tris(catecholate) siderophore enterobactin. These findings are consistent with 

reports that V. cholerae and C. jejuni utilise the enterobactin hydrolysis product bis(2, 

3-dihydroxybenzoyl)-O-seryl serine for the acquisition of Fe(III) and suggest that the 

role of salmochelin S1 in the iron uptake of enteric pathogens merits further 

investigation. 

Key words: Salmochelin, Stealth Siderophore Mimic, Iron Uptake, Vibrio cholerae, 

Periplasmic Binding Protein 

Introduction 

Iron is an essential element required for the survival and growth of bacteria within a 

host organism. Iron(II) is in scarce supply in aerobic environments, so iron(III) must 

be taken up, despite its poor aqueous solubility of 10-18-10-17 mol dm-3 at pH 7.1 

Requiring concentrations between 10-8 and 10-6 mol dm-3 for growth,2 complex 

strategies must be employed by bacteria for acquisition of sufficient iron for 

survival.1, 3 Siderophores are low molecular weight (<1500 Da) compounds with high 

affinity for iron(III) that are produced, secreted and employed by bacteria for iron(III) 

uptake. 2, 4 Vibrio cholerae acquires essential iron by producing the catecholate 

siderophore vibriobactin, and by poaching enterobactin and its linear hydrolysis 

products from competing bacteria in the surrounding environment ( 

 

Figure and scheme captions: 

Figure 1).5-8 

In response, some host organisms produce siderocalins which can bind a number of 

iron(III)-bound siderophores, including enterobactin and vibriobactin, with 

subnanomolar dissociation constants, and hinder bacterial iron(III)-siderophore 

uptake.9-15 However, due to the specificity of the siderocalin binding pocket, some 

functionalised enterobactin derivatives, and siderophores with structural differences 
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cannot be bound.9, 16, 17 Such stealth siderophores are therefore able to evade the 

host immunoprotein siderocalin, allowing for more effective iron acquisition.16-19 

Examples include the salmochelin siderophores, which are C5-glucosylated 

analogues of enterobactin, and its hydrolysis products, produced by pathogenic 

strains of Escherichia coli (Figure 2).20-23 They have high iron(III) affinity, but are 

more hydrophilic than enterobactin, with the glucose units providing steric bulk.24, 25 

These two properties allow the siderophores to avoid sequestration by siderocalin.26, 

27 

V. cholerae can colonise the mammalian gut, where enterobactin and vibriobactin 

are sequestered by siderocalins.15-18, 28 Due to the high pathogenicity of Vibrio 

cholerae, estimated to cause at least 120,000 global deaths per year,29, 30 we were 

particularly interested to investigate whether this species is capable of employing 

salmochelin-type stealth siderophores. 

While a number of previous studies on the use of iron(III)-enterobactin in V. cholerae 

did not consider the potential presence of enterobactin hydrolysis products, such as 

tris(2, 3-dihydroxybenzoyl-L-serine) (trisDHBS), bis(2, 3-dihydroxybenzoyl-L-serine) 

(bisDHBS) and 2, 3-dihydroxybenzoyl-L-serine (DHBS), recent studies give a more 

complete picture of enterobactin-derived iron(III) acquisition.7, 31-34 Whilst it remains 

unclear whether or not intact cyclic enterobactin can support growth of V. cholerae, it 

is now accepted that iron(III)-trisDHBS and iron(III)-bisDHBS provide efficient iron(III) 

delivery pathways.34, 35 TonB, a protein that enables the active transport of essential 

nutrients, is required for the transport of iron(III)-siderophore complexes across the 

outer membrane via the two outer membrane receptor proteins VctA and IrgA for 

linear enterobactin derivatives,36 and the receptor for vibriobactin ViuA (Figure 3).31, 

37, 38 Both periplasmic-binding protein dependent ABC transporters VctPDGC and 

ViuPDGC have been shown to transport iron(III)-vibriobactin and iron(III)-

enterobactin derivatives into the cytoplasm. Crystal structures have been reported 

for periplasmic binding proteins VctP and ViuP: VctP in the apo form (PDB ID: 

3TEF), and ViuP with vibriobactin bound (PDB ID:3R5T).39,4 

Our previous studies on the periplasmic binding protein CeuE from Campylobacter 

jejuni, which binds the tetradentate siderophore iron(III)-bisDHBS, revealed a strong 

similarity between CeuE and VctP.41, 42 VctP shares sequence similarities (25.3% 
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identical, 47.6% similar residues) and high structural similarities (r.m.s.d of 1.78 Å 

over 263 Cα positions, 100% match for secondary structure elements PDB ID: 

3ZKW, 3TEF) with CeuE. Both proteins contain conserved histidine and tyrosine 

residues that complete coordination of the iron(III) centre of tetradentate siderophore 

complexes in CeuE.41-43 It is proposed that VctP has an analogous function to CeuE, 

and is optimised for binding tetradentate iron(III)-siderophore complexes. We here 

proceed to establish the siderophore-binding properties of VctP, to further 

understand its exact role in iron-uptake in V. cholerae. A number of catecholate 

siderophores and siderophore mimic compounds were screened for their binding 

affinity with VctP. A tetradentate salmochelin mimic was synthesised, its iron-binding 

properties characterised, and its interaction with CeuE and VctP evaluated. This 

study aimed to reveal whether these periplasmic binding proteins could be involved 

in uptake of Fe(III)-salmochelin S1 (Figure 2). This is the first indication that V. 

cholerae may employ salmochelin-type siderophores as an iron-uptake strategy that 

evades host siderocalin. 

1 Materials and Methods 

1.1 Siderophores and siderophore mimics 

Enterobactin was obtained from EMC microcollections (Tübingen) and used as 

supplied after compound purity was confirmed by HPLC and extinction coefficient 

determination. Bis(2, 3-dihydroxybenzoyl-L-serine) (bisDHBS) and bis(2, 3-

dihydroxybenzoyl)-1, 5-pentanediamine (5-LICAM) were synthesised as previously 

reported.42, 43 

1.2  Instrumentation 

NMR spectra were recorded on Jeol EX and ES 400 MHz instruments.  1H 

experiments were run at 399.78 MHz. 13C experiments were run at 100.53 MHz and 

were proton decoupled.  Positive and negative ion electrospray ionisation mass 

spectrometry (ESI-MS) was performed on a Bruker microTOF electrospray mass 

spectrometer. Elemental analysis was performed on an Exeter CE-440 elemental 

analyser. Infrared (ATIR) spectra were recorded on a Perkin Elmer FT-IR spectrum 

two spectrophotometer at ambient temperature. Melting points were determined 

using a Stuart Scientific SMP3 melting point apparatus. Specific rotation was 
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recorded on a Jasco DIP-370 digital polarimeter. Fluorescence spectra were 

recorded on a Hitachi F-4500 fluorescence spectrophotometer at ambient 

temperature. Electronic absorption spectra were recorded on a Shimadzu UV-1800 

spectrophotometer at ambient temperature. Circular dichroism was performed on a 

Jasco J810 CD spectropolarimeter at 20 °C under a constant flow of nitrogen.  

1.3 Synthesis of salmochelin mimics 

Methoxy-5-aceto-β-ᴅ-glucosyl-3, 4-benzyloxysalicylate (5),44, 45 2, 3-

bis(benzyloxy)benzoic acid (9)46 and 2, 3-bis(benzyloxy)benzoic acid N-

hydroxysuccinimide ester (10)47 were prepared as documented in the literature. 

Compound structures with the atom numbering scheme used for the NMR 

assignments are available in the Supporting Information. 

1.3.1 Methyl-5-iodo-3-methoxysalicylate (2) 

Methyl-5-iodo-3-methoxysalicylate was prepared as in the literature, replacing the o-

vanillin substrate for 5.48 The crude product was recrystallised from a minimum 

amount of hot ethanol. (2.379 g, 7.72 mmol, 73%) Rf = 0.50 (1:4 ethyl acetate : 

petroleum ether 40-60°C) M.P = 109-111 °C. 1H NMR: (400 MHz, CDCl3) δ: 10.99 
(s, H9, 1H); 7.76 (d, J= 2.0 Hz, H4/6, 1H); 7.25 (d, J= 2.0 Hz, H4/6, 1H); 3.96 (s, 

H10, 3H); 3.89 (s, H8, 3H).13C NMR: (100 MHz, CDCl3) δ: 169.6 (C7); 152.0, 149.3, 

114.2 (C1, 2, 3); 129.5, 124.9 (C4,6); 56.4 (C8); 52.7 (C10). HRMS (ESI): Calcd. 

[M+H]+ (C9H9IO4) m/z = 308.9618; Obs. [M+H]+ m/z = 308.9629, Mean err 3.7 ppm. 

Calcd. [M+Na]+ (C9H9INaO4) m/z = 330.9438; Obs. [M+Na]+ m/z = 330.9446, Mean 

err 2.9 ppm. IR ATIR (cm-1): 3090 br w (C-H), 2943 w (C-H), 1674 m (C=O), 1607 m 

(C=C ar), 1471 s (C-H), 1343 m (O-H). 

1.3.2 Methyl-5-iodo-3-hydroxysalicylate (3) 

Methyl-5-iodo-3-hydroxysalicylate was prepared by adaptation of a literature 

protocol.49 Methyl-5-iodo-3-methoxysalicylate (2.000 g, 6.49 mmol) was dissolved in 

anhydrous dichloromethane (10 mL) and the mixture was stirred whilst the reaction 

flask was purged with N2. BBr3 (1 M in dichloromethane, 12 mL, 12.00 mmol) was 

added dropwise with vigorous stirring. The reaction flask was then purged again with 

N2 and the mixture stirred overnight at room temperature. The reaction mixture was 

opened to air, cold H2O (20 mL) was carefully added and the reaction mixture stirred 

for 1 hour. The resulting pale pink turbid mixture was dissolved in methanol (20 mL) 
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and the solvent removed in vacuo yielding a red residue. Methanol (10 mL × 3) was 

added to the residue, the residue dissolved, and the solvent removed in vacuo. The 

resulting peach coloured solid was redissolved in methanol (50 mL) and 

concentrated H2SO4 (2 mL) and heated under reflux overnight. The reaction mixture 

was cooled to room temperature and the solvent removed in vacuo, yielding a 

colourless oil and a white solid. The residue was dissolved in ethyl acetate (150 mL) 

and was washed with saturated NaHCO3 (3 x 90 mL) and brine (2 x 90 mL). The 

organic portion was dried over MgSO4, filtered and the solvent removed in vacuo 

yielding a white solid (1.710 g, 5.82 mmol, 89%) Rf = 0.47 (1:4 ethyl acetate : 

petroleum ether 40-60 °C) M.P = 136-138 °C (Lit. 133-134 °C). HRMS (ESI): Calcd. 

[M+Na]+ (C9H9INaO4) m/z = 316.9281; Obs. [M+Na]+ m/z = 316.9282, Mean err 0.5 

ppm. Calcd. [M+2Na]+ (C9H9INa2O4) m/z = 338.9101; Obs. [M+2Na]+ m/z = 

338.9099, Mean err 0.2 ppm. 1H NMR, 13C NMR, HRMS (ESI): consistent with 

literature data.44 

1.3.3 Methyl-5-iodo-3, 4-benzyloxysalicylate (4) 

Methoxy-5-benzyloxy-5-iodo-3, 4-benzyloxysalicylate was prepared based on a 

literature protocol.44,45 The residue was dissolved in 1:1 chloroform : ethyl acetate 

(10 mL) and purified by flash column chromatography (1:9 ethyl acetate : petroleum 

ether 40-60°C) followed by recrystallisation in a minimum amount of chloroform and 

an excess of petroleum ether 40-60°C. The white needle crystals were collected and 

dried in vacuo (1.613 g, 3.40 mmol, 78%) Rf = 0.37 (1:9 ethyl acetate : petroleum 

ether 40-60 °C) M.P = 103-105 °C (Lit. 105-106 °C). HRMS (ESI): [M+K]+ 

(C9H9INKO4) m/z = 512.9960; Obs. [M+K]+ m/z = 512.9957, Mean err 0.1 ppm. 1H 

NMR, 13C NMR, HRMS (ESI): consistent with literature data.44 

1.3.4 Methoxy-5-benzyloxy-β-ᴅ-glucosyl-3, 4-benzyloxysalicylate (6) 

Methoxy-5-benzyloxy-β-ᴅ-glucosyl-3, 4-benzyloxysalicylate was prepared based on 

a literature protocol.44, 45 Methoxy-5-aceto-β-ᴅ-glucosyl-3, 4-benzyloxysalicylate 

(1.314 g, 1.94 mmol) was dissolved in dry methanol (100 mL) and Na2CO3 (1.026 g, 

9.68 mmol) was added. The resulting suspension was stirred under reflux at 65°C 

overnight, then reduced in vacuo to a pale brown solid. The solid was transferred to 

a Schlenk tube, and NaH (533 mg, 60% in mineral oil, 13.3 mmol) was added. The 

solids were dried in vacuo for two hours, before the addition of DMF (25 mL) and 

cooling of the solution to 0 °C. Bu4NI was dried in vacuo for 15 minutes, to which, 
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benzyl bromide (3.00 mL, 4.320 g, 25.26 mmol) and DMF (5 mL) were added. The 

solution was cooled to 0 °C for 5 minutes, and was then added dropwise to the 

methyl-5-aceto-β-ᴅ-glucosyl-3,4-benzyloxysalicylate solution over 5 minutes at 0 °C. 

After 5 minutes of stirring at 0 °C, the pale brown reaction mixture was stirred at RT 

under N2 overnight. The reaction mixture was opened to air, and deionised water (40 

mL) carefully added. The resulting solution was extracted with ethyl acetate (3 × 50 

mL). The organic portions were combined and dried over MgSO4, filtered and solvent 

removed in vacuo to yield a white solid. The solid was purified by column 

chromatography 20% ethyl acetate in petroleum ether 40-60°C yielding the product 

as a white solid (0.719 g, 0.82 mmol, 42%) Rf = 0.20 (20% ethyl acetate in petroleum 

ether 40-60°C) M.P = 84-86 °C. HRMS (ESI): Calcd. [M+Na]+ (C56H54NaO9) m/z = 

893.3660; Obs. [M+Na]+ m/z = 893.3655, Mean err 0.6 ppm. 1H NMR, 13C NMR, 

HRMS (ESI): consistent with literature data.44 

1.3.5 Benzyloxy-5-benzyloxy-β-ᴅ-glucosyl-3, 4-benzyloxysalicylate (7) 

Benzyloxy-5-benzyloxy-β-ᴅ-glucosyl-3, 4-benzyloxysalicylate was prepared by the 

same method as methyl-5-benzyloxy-β-ᴅ-glucosyl-3,4-benzyloxysalicylate. The 

compounds were then separated by column chromatography yielding the product as 

a white solid. (0.381 g, 0.40 mmol, 21%) Rf = 0.26 (1:4 ethyl acetate : petroleum 

ether 40-60°C) M.P = 104-106 °C. 1H NMR: (400 MHz, CDCl3) δ: 7.52 (d, H6, J = 1.7 

Hz, 1H) 7.40-7.28 (m, H10, H15, H26-28, H31-33, H36-38, H41-43, H46-48, 29H); 

7.26-7.21 (m, H4, H11, H16, 5H) 6.94-6.92 (m, H12, H17, 2H) 5.34 (d, H44, J = 12.4 

Hz, 2H); 5.07 (d, H8, J = 10.1 Hz, 2H); 4.98 (d, H13, J = 2.2 Hz, 2H); 4.97-4.87 (m, 

H24/29, H39, 3H) 4.66-4.57 (m, H24/29/H23, 3H); 4.43 (d, H23, J = 10.1 Hz 1H); 

4.21 (d, H18, J = 9.5 Hz, 1H); 3.82-3.76 (m, H20/21/24/29, H34, 5H); 3.61-3.59 (m, 

H22, 1H); 3.44 (t, H19, J = 9.0 Hz, 1H). 13C NMR: (100 MHz, CDCl3) δ: 165.9 (C7); 

152.5 (C3); 148.0 (C2); 138.6 (C25); 138.2, 138.1, 137.4, 137.2, 136.3, 135.9, 

(C1/10/15/30/35/41/45); 128.6, 128.5, 128.4, 128.4, 128.4, 128.3, 128.2, 128.2, 

128.1, 128.1, 128.0, 127.9, 127.9, 127.9, 127.8, 127.8, 127.7, 127.7, 127.6, 127.6, 

127.6, 126.4 (C5/10-12/15-17/26-28/31-33/36-38/42-44/46-48); 122.0 (C6); 116.5 

(C4); 86.6 (C20/21); 83.9 (C19); 80.9 (C18); 79.3 (C22); 78.2 (C20/21); 75.6 (C8); 

75.1 (C24/29/34); 73.2 (C23); 70.9 (C39); 68.9 (C24/29/34); 68.1 (C13); 66.9 (C44). 

HRMS (ESI): Calcd. [M+Na]+ (C62H58NaO9) m/z = 969.3973; Obs. [M+Na]+ m/z = 

969.3982, Mean err 1.3 ppm.  
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1.3.6 1-Amino-5-(2,3-dibenzyloxybenzamide) pentane (11) 

1, 5-Diaminopentane (1.427 g, 14.00 mmol) and triethylamine (1.396 g, 13.80 mmol) 

were dissolved in THF (120 mL). A solution of 2, 3-bis(benzyloxy)benzoic acid N-

hydroxysuccinimide ester (3.008 g, 6.97 mmol) in THF (60 mL) was added dropwise 

over 2 hours and the mixture was left to stir overnight. The solvent was removed in 

vacuo yielding an off-white solid which was taken up in chloroform (120 mL) and 

washed with NaHCO3 (100 mL), brine (100 mL) and 2.25:1 1M HCl: brine (130 mL). 

The organic layer was dried over MgSO4, filtered and the solvent removed in vacuo. 

The residue was purified via silica column chromatography (90:10:1 CHCl3: MeOH: 

NH3(aq)). (1.859 g, 59 %) Rf = 0.18 (90:10:1 CHCl3: MeOH: NH3(aq)) M.P = 133-134 

°C. 1H NMR: (400 MHz, CDCl3) δ: 7.99 (t, J = 5.5 Hz, H8, 1H); 7.73-7.71 (m, H6/4, 

1H); 7.49-7.35 (m, H11-13, H16-18, 10H); 7.16 (d, J= 2.3 Hz, H6/4, 2H); 7.14 (t, J= 

4.6 Hz, H5, 1H); 5.16 (s, H9/14, 2H); 5.08 (s, H9/14, 2H); 3.27 (dd/q, J= 6.0 Hz J = 

13.3 Hz, H19,  2H); 2.77 (t, J= 6.6 Hz, H23, 2H); 1.48 (dt , J= 7.3 Hz, H20, 2H); 1.37-

1.20 (m, H21, H22, 4H). 13C NMR: (100 MHz, CDCl3) δ: 165.0 (C7); 151.7, 146.7, 

136.4, 128.7, 128.6, 128.6, 127.7 (C1-3/10-13/15-18); 124.4 (C4/6); 123.3 (C4/6); 

116.7 (C5);76.3, 71.2 (C9,14); 42.0 (C23); 39.6 (C19); 33.3, 29.1, (C20/22); 24.2 

(C21). HRMS (ESI): Calcd. [M+H]+ (C25H29N2O3) m/z = 405.2173; Obs. [M+H]+ m/z = 

405.2168, Mean err 3.5 ppm. IR ATIR (cm-1): 3365 m (N-H), 307b m br (N-H), 2803 

m br (C-H), 1641 m (C=O), 1571 m (C=C ar). 

1.3.7 Benzyloxy-β-ᴅ-glucosyl-3, 4-benzyloxysalicylate (12) 

5-Benzyloxy-β-ᴅ-glucosyl-3,4-benzyloxysalicylate was prepared as in the literature.44, 

45  Purification involved the addition of petroleum ether 40-60 °C (3 × 10 mL) and 

removal in vacuo to yield an off white solid residue. The residue was purified by 

column chromatography (1:4 methanol : chloroform) yielding a white solid product 

(0.359 g, 0.42 mmol, 87%) Rf = 0.56 (1:9 methanol : chloroform) M.P = 97-99 °C. 

HRMS (ESI): Calcd. [M+Na]+ (C55H52NaO9) m/z = 879.3504; Obs. [M+Na]+ m/z = 

879.3522, Mean err 2.4 ppm. 1H NMR, 13C NMR, HRMS (ESI): consistent with 

literature data.44 

1.3.8 5-Benzyloxy-β-ᴅ-glucosyl-bis(3, 4-benzyloxy)-5-LICAM (13) 

5-Benzyloxy-β-ᴅ-glucosyl-3, 4-benzyloxysalicylate (0.252 g, 0.29 mmol) was 

dissolved in DMF (10 mL) to which 1-[Bis(dimethylamino)methylene]-1H-1,2,3-

triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) (0.268 g, 0.70 mmol) 
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was added. The solution was stirred for one hour before the addition of N,N-

diisopropylethylamine (DIPEA) (184 µL, 0.137 g, 1.06 mmol) and 1-amino, 5-(2, 3-

dibenzyloxybenzamide) pentane (0.160 g, 0.35 mmol) and the mixture stirred 

overnight. The resulting brown solution was reduced in vacuo to a brown residue. 

The residue was purified twice by column chromatography (1:2 ethyl acetate : 

chloroform) (1:4 ethyl acetate : chloroform) yielding a white solid product (0.204 g, 

0.16 mmol, 55 %) Rf = 0.36 (1:4 ethyl acetate : chloroform) M.P = 96-98 °C. 1H NMR: 

(400 MHz, CDCl3) δ: 7.93 (d, H6, J = 1.8 Hz, 1H); 7.90 (m, H18/24,1H); 7.87 (t, 

H18/24, J = 5.5 Hz, 1H); 7.76 (dd, H29/31, J = 6.4 Hz, J = 3.2 Hz, 1H); 7.50-7.14 (m, 

H4/30/9-11/14-16/34-36/39-41/50-52/55-57/60-62/65-67, 42H); 6.98 (m, H29/31, 

2H); 5.17 (s, H12, 2H); 5.11-5.01 (m, H32/37, 2H); 5.08 (s, H32/37, 2H); 4.98 (br s, 

H7, 2H); 4.95-4.86 (m, H48/53, 3H); 4.67-4.56 (m, H53/64, 3H); 4.45 (d, H47, J = 

10.5 Hz, 1H); 4.26 (d, H42, J = 9.6 Hz, 1H); 3.86-3.73 (m, H47/44/58/46, 5H); 3.63 

(dt, H45, J = 9.2 Hz, J = 3.2 Hz, 1H); 3.52 (t, H43, J = 9.2 Hz, 1H); 3.25-3.18 (m, 

H19, H23, 4H); 1.30-1.23 (m, H20, H22, 4H); 1.16-1.10 (m, H21, 2H). 13C NMR: (100 

MHz, CDCl3) δ: 164.9 (C17/25); 164.7 (C17/25); 151.7 (C3/28); 151.4 (C3/28); 146.7 

(C2/27); 146.3 (C2/27); 138.7, 138.3, 137.7, 136.4, 136.3, 136.3, 136.3, 135.5 

(C8/13/33/38/49/54/59/64); 128.8, 128.7, 128.7, 128.6, 128.4, 128.4, 128.2, 128.2, 

128.2, 128.0, 127.8, 127.7, 127.6, 127.6, 127.5, 127.5, 127.4, 127.2 (C9-11/14-

16/34-36/39-41/50-52/55-57/60-62/65-67); 124.4 (C4/29/30/31); 123.3 

(C4/29/30/31); 122.2 (C4/29/30/31); 116.8(C29/31); 115.8 (C6); 86.7 (C44/46); 84.0 

(C43); 81.1 (C42); 79.3 (C45); 78.3 (C44/46); 76.4 (C32/37); 75.6 (C32/37); 75.1 

(C48/53); 74.9 (C47); 73.4 (C53/63); 71.2 (C32/37); 71.0 (C48/53); 69.1 (C58); 39.6 

(C19/23); 39.5 (C19/23); 28.9 (C20/22), 28.9 (C20/22), 24.5 (C21). HRMS (ESI): 

Calcd. [M+H]+ (C81H80N2Na1O11) m/z = 1279.5654; Obs. [M+Na]+ m/z = 1279.5606, 

Mean err 1.9 ppm. IR ATIR (cm-1): 3384 w br (N-H), 3287 w br (N-H), 3063 w (C-H), 

3030 w (C-H), 2920, 2859 w br (C-H), 1638 m (C=O), 1605 w (C=O), 1577 m (C=C 

ar). 

1.3.9 5-β-ᴅ-glucosyl-5-LICAM (14) 

5-β-ᴅ-Glucosyl-5-LICAM was prepared based on a literature protocol.44, 45 5-

Benzyloxy-β-ᴅ-glucosyl-3, 4-benzyloxy-4-LICAM (0.200 g, 0.1590 mmol) was 

dissolved in toluene (1 mL) and ethanol added (30 mL) followed by 3 spatula tips of 

Pd(OH)2 20% on carbon. The system was purged with nitrogen before purging with 
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hydrogen for 30 minutes. The reaction mixture was stirred under balloon pressure of 

hydrogen for 18 hours, and purged with nitrogen before opening to air. The catalyst 

was removed by filtration, and the solvent removed in vacuo to yield a pale 

colourless oil. The solid off white product was obtained by cooling the obtained oil in 

liquid nitrogen and removing all residual solvent in vacuo (0.086 g, 0.16 mmol, 90 

%). M.P = 180-182 °C. 1H NMR: (400 MHz, MeOD) δ: 7.31 (s, H4/6, 1H); 7.20 (d, 

H20/22, J= 8.2 Hz 1H); 7.01 (s, H4/6, 1H); 6.91 (d, H20/22, J= 7.8 Hz, 1H); 6.70 (t, 

H21, J = 7.8 Hz, 1H); 4.02 (d, H26, J = 9.2 Hz, 1H); 3.87 (d, H34, J= 10.5 Hz, 1H); 

3.72 (dd, H34, 2JH34a/H34b = 11.9 Hz, 3JH34/H30 = 5.0 Hz, 1H); 3.46-3.35 (m, H11/15/27-

30, 8H); 1.72-1.64 (m, H12/14, 4H); 1.50-1.44 (m, H13, 2H). 13C NMR: (100 MHz, 

MeOD) δ: 171.6 (C9/17); 171.6 (C9/17); 150.4 (C3/19); 150.3 (C3/19); 147.5 

(C2/18); 147.1 (C2/18); 131.3 (C1/23); 119.7 (C21/20/22); 119.4 (C21/20/22); 118.8 

(C4/6); 118.1 (C20/22); 116.9 (C4/6); 116.2 (C5); 83.3 (C26); 82.1 (C27/28/29/30); 

79.8 (C27/28/29/30); 76.5 (C27/28/29/30); 71.8 (C27/28/29/30); 63.0 (C34); 40.5 

(C11/15); 40.5 (C11/15); 30.3 (C12/14); 30.3 (C12/14), 25.6 (C13). HRMS (ESI): 

Calcd. [M+H]+ (C25H32N2O11) m/z = 535.1933; Obs. [M+H]+ m/z = 535.1912, Mean 

err 3.5 ppm. IR ATIR (cm-1): 3288 s br (O-H), 2930 m br (C-H), 1641 m (C=O), 1589 

m (C=C ar). Elemental Analysis: Calcd. for [C25H32N2O11.0.9EtOH.1.2H2O]: %C 

53.68, %H 6.70, %N 4.66; Measured for [C25H32N2O11.0.9EtOH.1.2H2O]: %C 53.76, 

%H 6.47, %N 4.52. Specific Rotation: [α]D (Methanol, conc. 0.311 g/100 mL) + 5.7 

1.4 Jobs Plot 

The iron-binding properties of 5-β-ᴅ-glucosyl-n-LICAM (n = 4, 5) were investigated 

via a Job plot method.42 5-β-ᴅ-glucosyl-n-LICAM (n = 4, 5) was combined with 

varying concentrations of iron(III) to establish preferred metal to ligand binding ratios. 

The ratios spanned 100% ligand to 100% iron(III), with 5% intervals. Between 60:40 

and 50:50 ligand to iron(III) ratios, 2% intervals were used. This protocol resulted in 

24 samples over the full range. Stock solutions of 10 mM Fe(III)-nitrilotriacetate 

(NTA) in H2O and 10 mM 5-β-ᴅ-glucosyl-n-LICAM (n = 4, 5) in DMSO were used in 

the necessary ratios totalling 200 µL to make up a 2 mL solution of each ratio in 

1800 µL 0.11M Tris-HCl pH 7.5, 150 mM NaCl, resulting in an overall iron(III)-ligand 

concentration of 400 nM. DMSO was kept at 5% v/v for all final solutions. A UV/Vis 

spectrum from 400 nm to 700 nm was run for each solution after 1 hour of 

equilibration. The spectra were rerun after 7 days of equilibration. λmax values were 
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monitored at 495 nm and 555 nm and plotted against ligand to protein ratio, and the 

maximum absorbance for each wavelength recorded at the relevant ligand:protein 

ratio. 

1.5 Cloning, expression and purification  

CeuE was prepared as previously described.41, 43 The VctP gene for truncated VctP 

(residues 51-333), with signal peptide removed, was amplified by PCR from the 

synthetic DNA purchased from ThermoFisher scientific. Primers used were of the 

following sequence: FWD_51 

TCCAGGGACCAGCAGAGACAGTAACGATTGAACATCGCTTG, REV_333 

TGAGGAGAAGGCGCGTTACTGCATACCAACTGACGCTTTCATG. The gene 

product was directionally cloned into a Lic-adapted pET 28a vector (YSBLic3C), 

containing a 3C protease cleavable N-terminal hexa-histidine tag, by the In-Fusion 

method (Clontech). Protein was expressed in E .coli strain BL21(DE3). Cells were 

grown with shaking at 37 in Luria-Bertani broth media containing 30 g mL-1 

kanamycin and induced with 1 mM isopropyl -d-thiogalactopyranoside at an OD600 

of 0.6-0.8. The cells were harvested by centrifugation 4 hours after induction and 

resuspended in buffer A (50 mM Tris-HCl, pH 7.8, 500 mM NaCl, 10 mM imidazole) 

in the presence of protease inhibitor cocktail and lysed by sonication on ice. The 

soluble crude extract was collected by centrifugation at 19,900 rpm. The standard 3-

step procedure was used for VctP purification. Initially a 5 mL His-Trap chelating 

column (Amersham Pharmacia) was charged with nickel and equilibrated with buffer 

A. Fractions containing VctP were eluted with buffer B (50 mM Tris-HCl, pH 7.8, 500 

mM NaCl, 500 mM imidazole). 3C protease for removal of the histidine tag was 

added in a 1:50 ratio to an overnight dialysis against buffer C (50 mM Tris-HCl, pH 

7.5, 150 mM NaCl). The cleaved sample was loaded in buffer C onto a second His-

Trap chelating column, and eluted with buffer B. Non-tagged protein was eluted in 

the flow-through (FT) fractions which were combined, concentrated by centrifugal 

ultrafiltration (Amicon Ultra) and purified by gel filtration on a Superdex S200 column 

in buffer D (50 mM Tris-HCl, pH 8.0; 150 mM NaCl). The final pure sample was 

concentrated to 90 mg mL-1. The molecular mass of the protein was confirmed by 

electro-spray mass spectrometry.  
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1.6 Fluorescence quenching titrations 

Intrinsic fluorescence quenching titrations were carried out as previously described.  

Spectra were recorded with an excitation of 280 nm, emission range of 295-410 nm, 

10 nm excitation slit width, 10 nm emission slit width, 60 nm/min scanning speed, 

automatic response, corrected spectra and 700 V detector voltage using a Hitachi F-

4500 fluorescence spectrophotometer.42, 43 

1.7 Circular Dichroism Spectroscopy 

Spectra were recorded in accordance with a published procedure,43 between 300 nm 

and 700 nm with data pitch 0.5 mm in continuous scanning mode with speed of 100 

nm min-1 and response of 2 seconds. The bandwidth was set to 2 nm, with a path 

length of 1 cm. Spectra were recorded five times and averaged. 

Solutions of CeuE and VctP were diluted to 2.5 × 10-3 M in 0.11 M Tris-HCl pH 7.5, 

150 mM NaCl buffer. A Fe(III)-ligand stock solution containing equimolar NTA was 

made at a concentration of 5 × 10-4 M, by adding 10 µL of both 10 mM ligand in 

DMSO and 10 µL 10mM Fe(III)-NTA in H2O to 180 µL 0.11 M Tris-HCl pH 7.5, 150 

mM NaCl buffer.  

Spectra were recorded of solutions containing 880 µL 0.11 M Tris-HCl pH 7.5, 150 

mM NaCl buffer, 100 µL (Fe(III)-ligand NTA stock solution and 20 µL 2.5 × 10-3 M 

CeuE, resulting in a 1:1 ratio of ligand to protein at 5 × 10-5 M. The spectrum of buffer 

was subtracted from all spectra including the spectra for free ligand and apo protein. 

 

2 Results and Discussion 

2.1 Salmochelin mimic synthesis 

A salmochelin mimic, Sal-5-LICAM (14), was designed based on a previously 

studied tetradentate siderophore mimic, 5-LICAM,43 and synthesised as shown in 

Scheme 1. The synthesis of aryl C-glycosides, such as (12), via metal-catalysed 

cross coupling reactions has previously been described.44, 45, 50, 51 

To obtain the iodinated intermediate (4) for the cross coupliing coupling step, 

commercially available (1) was selectively iodinated in the C5 position using iodine 

monochloride, silver nitrate and pyridine to yield (2),48 then demethylated via BBr3 
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deprotection (3), followed by benzyl ether protection of both phenolic hydroxyl 

groups to generate (4) in 51% yield. The acetate protected β-ᴅ-glucose unit was then 

installed at the C5 position via Negishi coupling of (4) with acetobromo-α-ᴅ-glucose, 

using a nickel catalyst and conditions adapted from a literature procedure.44 The 

activation of (4) using zinc, lithium and iodine in DMF reached completion within an 

hour and if the reaction mixture was left for 12 hours, as recommended in the 

literature,44 decomposition occured. By performing the subsequent Negishi coupling 

in a glovebox to avoid exposure to the atmosphere, a yield of 66% of (5) was 

obtained. 44, 45 The acetate protecting groups on the glucose unit were replaced with 

benzyl groups, yielding two products (6 and 7), which were combined and exposed 

to sodium hydroxide to afford (12) in 87% yield. Further details and reaction 

conditions are provided in the experimental section.    

In addition, compound 11 was synthesised, to allow for the selective generation of a 

mono-glucosylated salmochelin mimic. (8) was transformed into (9) via standard 

oxidation and benzyloxy protection reactions. 46 The carboxylic acid of (9) was 

activated via production of the N-hydroxysuccinimide ester (10), 47 which was then 

coupled with 1, 5-diaminopentane to produce amide bonded (11). The required 

second amide bond was formed between compounds (11) and (12) via a standard 

HATU coupling reaction yielding (13). Global deprotection of benzyl groups via 

standard hydrogenolysis afforded the target salmochelin-inspired siderophore mimic 

Sal-5-LICAM (14). 

2.2 Iron binding by Method of Continuous Variation 

Sal-5-LICAM (14) was complexed with iron(III) in varying ligand: iron(III) ratios, and 

the absorbance spectra recorded (Figure 4A). The λmax was observed to shift from 

around 495 nm to around 555 nm as the Fe(III) to ligand ratio was increased. 

Plotting the absorbance at 555 nm and 495 nm for each spectrum over the range of 

ratios, gave the Job plot shown in Figure 4B. The  absorbance at 555 nm peaked at  

a 50:50 ratio, whilst the absorbance at 495 nm peaked at a 60:40 ratio. This 

indicated that a mixture of 1:1 species and a 3:2 species was present in solution, as 

represented by the schematic diagram in Figure 4D. After 7 days, the spectra were 

repeated, to establish whether further equilibration had been taken place. For both 

wavelengths, the maximum absorbance was achieved at a 60:40 ratio of Sal-5-

LICAM : Fe(III) (Figure 4C), which indicated that the 3:2 species is 
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thermodynamically more stable and predominates over time. Salmochelin 

siderophores are known to have a reduced membrane partition coefficient when 

compared to their enterobactin equivalents. 25 It may therefore be that the hydrophilic 

nature of the glucose moieties and their disposition to hydrogen bond in aqueous 

solution allows the ligands to assemble and form a 3:2 species with solvent exposed 

sugars shielding the hydrophobic backbones.53-54 However, considering the 

restricted iron levels within the host organism combined with the need for fast 

bacterial iron uptake, the kinetic 1:1 species is probably biologically more relevant. 

2.3 Binding of the salmochelin mimic to CeuE 

The interactions of the Fe(III) complex of the salmochelin mimic with CeuE were 

studied by circular dichroism (CD) spectroscopy (Figure 5A). In the absence of 

protein, no significant signal was observed in the wavelength range of the ligand-to-

metal charge transfer band, indicating that a racemic mixture of Λ- and Δ-configured 

Fe(III) centres was present in solution. However, the CD spectrum obtained in the 

presence of  CeuE shows clear negative bands between 310 and 540 nm and a 

weak positive band above 550 nm. These bands are indicative of Fe(III)-

catecholamide complexes that adopt the Λ-configuration. A similar chiral preference 

was previously reported for similar bis(catecholate) siderophores and mimics41-43 and 

shown by X-ray crystallography to originate from H-bonding and electrostatic 

interactions with the chiral binding pocket of CeuE and the direct coordination of two 

amino acid side chains, Tyr288 and His227, to the Fe(III) centre. Hence, the CD 

spectra confirmed  that CeuE is able to bind the Fe(III) complex of the salmochelin 

S1 mimic and that CeuE shows a preference for Λ-configured coordination centres. 

A subsequent fluorescence quenching titration of CeuE with Fe(III)-Sal-5-LICAM 

(Figure 5B), gave a dissociation constant of 511 ± 76 nM, around 50 times larger 

than that for the binding of Fe(III)-5-LICAM or the natural siderophore Fe(III)-

bisDHBS with CeuE.42, 43 This suggests that although CeuE is able to bind Fe(III)-

Sal-5-LICAM, it appears better suited to the binding of Fe(III)-bisDHBS than 

salmochelin S1. 
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2.4 Binding of the salmochelin-inspired iron(III)-siderophore 

mimic to VctP 

The CD spectra obtained upon addition of Fe(III)-Sal-5-LICAM to VctP also showed 

an induced Λ-configuration (Figure 6A). As VctP contains conserved histidine and 

tyrosine residues, it is likely that the Λ-configured binding mode between Fe(III)-

bound tetradentate siderophores is similar in VctP and CeuE. VctP was titrated with 

Fe(III)-Sal-5-LICAM in triplicate giving a dissociation constant of 9.4 ± 3.0 nM (Figure 

6B). Thus VctP binds salmochelin S1 with high affinity, which suggests that V. 

cholerae is able to use the salmochelin stealth siderophores for Fe(III)-uptake via the 

VctPDGC system.  

 

2.5 Comparison of the iron(III)-siderophore binding properties of 

VctP with those of CeuE 

Dissociation constants were measured for VctP titrated with Fe(III)-enterobactin, 

Fe(III)-bisDHBS, Fe(III)-5-LICAM and compared with those obtained for CeuE ( 

Table 1). VctP bound Fe(III)-enterobactin with a dissociation constant of 369 ± 25 

nM, and with Λ-configured complexes dominating in solution. This affinity was 

around ten times stronger than that estimated for the binding of CeuE to Fe(III)-

enterobactin. The binding of VctP to both Fe(III)-bisDHBS and Fe(III)-5-LICAM was 

too strong to be quantified via fluorescence quenching titrations, due to reaching the 

limits of detection, and were both estimated to be in the sub-nanomolar range. These 

results suggest that VctP is able to bind tetradentate catecholate siderophores with 

very high affinity, including the salmochelin S1 mimic Sal-5-LICAM, but may also be 

able to use enterobactin for iron uptake in V. cholerae. The ability to use both 

tetradentate and hexadentate catecholate siderophores, as well as stealth 

siderophores, may contribute to the virulence of V. cholerae. 

3 Summary and conclusions 

The salmochelin S1 mimic Sal-5-LICAM was synthesised, characterised and shown 

to form both 1:1 and 3:2 complexes if equilibrated for one hour ([L] + [M] = 0.4 mM). 

Similar iron(III)-binding stoichiometries of 1:1 and 3:2 were observed previously with 

other bis(catecholates), such as 4-LICAM and bisDHBS.41, 42  Only after a further 
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equilibration period of seven days was the thermodynamically more stable 3:2 

complex seen to predominate. Initial protein-binding studies with diastereoisomeric 

mixtures of the Fe(III) complexes were carried out by CD spectroscopy and showed 

that both periplasmic binding proteins, CeuE of C. jejuni and VctP of V. cholerae, 

preferentially select for Λ-configured Fe(III) complexes of the salmochelin S1 mimic, 

as seen previously upon binding of bis(catecholates) to CeuE.41-43 

Subsequent intrinsic fluorescence quenching titrations revealed that VctP binds the 

Fe(III) complexes of all catecholate siderophores tested (enterobactin, bisDHBS, 5-

LICAM and Sal-5-LICAM) with higher affinity than does CeuE. In addition, both CeuE 

and VctP display a clear preference for tetradentate bis(catecholates), such as 

bisDHBS, 5-LICAM and Sal-5-LICAM, over the tris(catecholate) enterobactin. In 

case of CeuE, the structural basis for this preference for tetradentate siderophores 

originates from two protein side chains (Tyr288 and His227) that coordinate directly 

to the Fe(III) centre,41-43 whilst the coordination of these side chains to Fe(III) 

enterobactin is not possible, due to a lack of available coordination sites. The 

observed preference of tetradentate siderophores is also consistent with the report 

that V. cholerae utilises the enterobactin hydrolysis product bisDHBS for the 

acquisition of Fe(III), but not intact enterobactin.34 and the finding that bisDHBS is a 

functional Fe(III) uptake mediator in C. jejuni.55 

Our results suggest that the role of the tetradentate stealth siderophore salmochelin 

S1 in the iron uptake of enteric pathogens merits further investigation as it may be of 

importance in iron cross-feeding within environments that are shared with 

salmochelin-producing E. coli strains, for example inflamed mammalian small 

intestines.56 Salmochelin S1 utilisation may provide scavenging pathogenic species 

with a competitive advantage in microbiota where the Fe(III) complexes of 

enterobactin and vibriobactin are being removed by the innate defence protein 

siderocalin, whilst glucosylated stealth siderophore, such as salmochelin S1, evade 

capture.15-18, 28  
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Table 1: Dissociation constants for CeuE and VctP with a selection of Fe(III)-

siderophores and Fe(III)-siderophore mimics, as determined by fluorescence 

quenching titrations. 

Fe(III)-Ligand CeuE Kd /nM VctP Kd /nM 

Enterobactin 3500 ± 300 369 ± 25 

bisDHBS 10.1 ± 3.8 (lit.42) <1 

5-LICAM <10 (lit.43) <1 

Sal-5-LICAM 511 ± 76 9.4 ± 3.0 

40 mM Tris-HCl buffer, pH 7.5, 150 mM NaCl, titrations were 

performed as independent triplicates, with the uncertainty in 

the average shown. 

 

 

Figure and scheme captions: 

Figure 1: Catecholate siderophores used by Vibrio cholerae for iron(III)-uptake.7 

Figure 2: Salmochelin siderophores.24 

Figure 3: Known functions of proteins involved in Fe(III) catecholate siderophore 

uptake in V. cholerae. Uptake through the outer membrane is mediated by the outer 

membrane receptors VctA, IrgA and ViuA, which are energised by the TonB-ExbB-

ExbD complex. Periplasmic binding proteins (VctP, ViuP) capture the Fe(III) 

siderophore complexes in the periplasm for subsequent uptake through the inner 

membrane transporters VctDG, VctC, ViuDG and ViuC. In the cytoplasm, ViuB 

facilitates the release of the iron form its siderophore complex via reduction of Fe(III) 
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to Fe(II).  Ent = enterobactin, Vib = vibriobactin, trisDHBS = tris(2, 3-

dihydroxybenzoyl-L-serine), bisDHBS = bis(2, 3-dihydroxybenzoyl-L-serine). 

Figure 4: Selected electronic absorbance spectra obtained at the indicated metal-to-

ligand ratios; [M]+[L] = 0.4 mM; 0.1 M Tris-HCl; 150 mM NaCl; 5% v/v DMSO; pH 7.5 

(A), Job plots (B: 1 hour C: 7 days) for the reaction of Sal-5-LICAM with iron(III), and 

schematic representation of a 1:1 and 3:2 tetradentate ligand : iron complex (D) 

(solvent molecules are depicted as Sol). 

Figure 5: A: CD spectra for Fe(III)-Sal-5-LICAM, showing some induced Λ-

configuration upon complexation with CeuE. B:  Fluorescence quenching titration 

curves (in triplicate) obtained with CeuE and Fe(III)-Sal-5-LICAM. 

Figure 6: A: CD spectra for Fe(III)-Sal-5-LICAM, showing Λ-configuration upon 

binding to VctP. B: Triplicate binding curves for fluorescence quenching titration of 

VctP with Fe(III)-Sal-5-LICAM. 

Scheme 1: Synthesis of Sal-5-LICAM (14) a: AgNO3, ICl, Pyridine, CHCl3 b: 1) BBr3, 

DCM 2) H2SO4, MeOH, 75 ºC c: BnBr, NaI, DMF d: 1-Bromo-α-D-glucose 

tetraacetate, Zn, LiCl, Ni(COD)2, tBuTerpy, DMF e: 1) Na2CO3, MeOH 2) BnBr, NaH, 

Bu4NI, DMF f: NaOH, THF, MeOH g: 1) BnCl, K2CO3, EtOH 2) H3NSO3, NaClO3, 

Acetone, H2O h: N-hydroxysuccinimide, DCC, Dioxane i:1,5-diaminopentane, Et3N, 

THF j: HATU, Et3N, DMF k: H2, Pd(OH)2/C 10%, EtOH/Toluene. 

Figures and schemes: 
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