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Stabilising the tetrahedral defect configuration in nematic shells 

Monte Carlo simulations are used to investigate the director configurations and 

the arrangements of the disclination lines that form in nematic shells surrounding 

interior spherical and polyhedral particles. For nematic shells formed around an 

interior spherical particle, a tetrahedral arrangement of the disclination lines is 

observed but this arrangement is lost if the interior sphere is shifted from the 

centre. The simulations indicate that a narrower angular distribution is observed 

for interior tetrahedral particles and, for non-centrosymmetric shells, the 

distribution is significantly less broadened compared to similar spherical 

inclusions. Other shape polyhedral particles are shown to give disclination 

geometries of different symmetries. 

Keywords: Monte Carlo; nematic shells; disclination lines; defects 

Introduction 

Nematic shells are a layer of liquid crystal enclosing a central core [1-8]. In its simplest 

form, a nematic shell can be prepared as a water-in-oil-in-water double emulsion 

droplet, in which a spherical water droplet is confined inside a spherical nematic droplet 

suspended in water [3,9]. However, the inner and/or outer surfaces do not necessarily 

need to be liquid-liquid interfaces and similar topologies would be formed for (hard) 

colloidal particles trapped inside nematic droplets, for example. Indeed although early 

experiments were based on liquid inclusions, nematic shells formed around non-liquid 

inclusions have recently been prepared experimentally [10]. The interest that nematic 

shells have attracted in the soft matter community originates in the frustration in the 

director field imposed by the confinement and alignment at the two surfaces, which 

inevitably leads to the presence of defects in the nematic region. If the alignment at both 

the inner and outer surface is planar, then the Poincaré-Hopf constraint [1,11] requires 

that the total defect charge on each surface must equal +2.  While this can be achieved 

in many ways, the lowest energy state for this to occur for ‘thin’ shells (ones in which 



 

 

3D escaped defects do not occur) results in four +1/2 disclination lines that repel 

equally and thus form at the vertices of a tetrahedron (see, for example, [8]); here the 

charge +1/2 corresponds to a rotation in the director field of 180° on a path encircling 

the defect. Previous Monte Carlo simulations [4] have shown that the tetrahedral 

disclination line structure is indeed stable for sphere-in-sphere type geometries and that 

the disclination geometry can be varied by the applying an aligning field to change the 

internal ordering of the nematic inside the shell. Since the disclinations are locally 

disordered and thus high energy regions of these colloidal objects, it has been 

speculated that they could potentially be chemically attacked and ‘ligands’ attached in a 

tetrahedral arrangement which could lead to objects capable of forming self-assembling 

complex architectures [2].  However, experiments on double emulsion droplets 

highlight a significant problem, in that if the central spherical droplet is not concentric 

with the outer surface then the total elastic energy can be minimised by the disclination 

lines locating in the thinner regions of the shell. Thus for non-concentric spherical 

inclusions, the tetrahedral geometry is not favoured; this has also been confirmed by 

previous simulations [7].  

Since most experimental studies to date have been concentrated on double 

emulsion droplets, most theoretical and simulation work has also concentrated on 

sphere-in-sphere type shells. Non-spherical (ellipsoidal) particles have previously been 

considered using simulations [6] and more recently experimentally using polystyrene 

particles [10], albeit here with a radial director field due to homeotropic anchoring at the 

surfaces. In this paper, given the recent advances in trapping ‘hard’ non-spherical 

particles inside droplets to form nematic shells, we use Monte Carlo (MC) simulations 

of a liquid crystal model to investigate whether using polyhedral colloidal particles, in 

particular tetrahedral ones, inside nematic droplets can stabilise the tetrahedral 



 

 

configuration for the disclination lines, for both centrosymmetric and non-

centrosymmetric shells. We also extend the simulations to other polyhedral particles 

with a larger number of vertices to investigate the influence of the particle shape on the 

possible configurations adopted by the disclinations. 

Model 

We have used the well-known Lebwohl-Lasher (LL) model for nematics [12,13], which 

has been used extensively for the study of both bulk [13] and especially confined liquid 

crystals [4,6-8,14] where large length-scales are required. In this model, simple headless 

rotors interact with their neighbours on a cubic lattice through the potential – 𝜀𝑖𝑗 (32 (𝒖𝑖 ·  𝒖𝑗)2 − 12) where 𝒖𝑖 is a unit vector representing the orientation of rotor i, and 

the energy parameter 𝜀𝑖𝑗 = 𝜀 (𝜀 > 0) for nearest neighbours and zero otherwise. This choice 

of potential favours the parallel alignment of two neighbouring rotors and thus can lead to an 

orientationally ordered nematic liquid crystalline phase at low enough temperature; the 

transition from the isotropic to the nematic phase occurs at 𝑇𝑁𝐼∗ = 1.1232 (see below) [13]. 

As for previous simulations of nematic shells [4,6-8], ghost particles are used to define the 

anchoring at the surfaces. These extra sites are fixed in orientation, such that they are 

perpendicular to the surface and interact with the neighbouring spins inside the nematic shell 

via the LL potential with the energy parameter 𝜀𝑖𝑗 = −𝜀. This choice of energy parameter 

favours perpendicular alignment between a rotor representing the nematic liquid crystal and 

a neighbouring ghost site, thus forcing planar anchoring at the surface. In principle, the 

anchoring strength can be varied by varying this parameter. However, varying the strength 

does not change the generic behaviour of the results and so only results with this particular 

choice will be presented here. 



 

 

All simulations were run for a system based on an outer spherical surface of 

radius 40a, where a is the lattice spacing of the model. Dimensions of the interior 

inclusions will be given in the relevant sections and all are in terms of the lattice 

spacing a. For small interior inclusions, ‘thick’ nematic shell behaviour was observed 

(see, for example, Ref. [8] and Figure 1(d)); thus 3D escaped defects occured, where the 

director field becomes parallel to the surface normal within the nematic region. In this 

paper, only the larger inclusions for which ‘thin’ shell behaviour is observed (see 

Figures 1(a) to (c)) will be discussed. It should be pointed out that comparisons of the 

dimensions at which the cross-over from ‘thick’ to ‘thin’ behaviour occurs for the 

model with those of existing experimental systems is somewhat difficult to make since, 

even though the model is relatively simple, the typical system sizes in simulations are 

rather small in comparison. For example, if we assume that each lattice site is an 

orientationally ordered fluid region of roughly 100 molecules, within which the director 

is relatively well defined and constant, then the dimension a turns out to be roughly 40Å 

for typical rod-like mesogens; hence, the diameter of the simulation droplet is of the 

order of a few hundred nanometers. This is about three orders of magnitude smaller than 

experimental droplets, where the diameters are typically of the order of a few hundred 

microns. The actual thickness of the nematic shell is likely to have some bearing on the 

stability of the different configurations, and especially the transitions between them, and 

so it is important not to just focus on the relative ratio of inner to outer diameters. Thus, 

whilst it might be tempting to make comparisons between simulation and experiment 

for the relative ratio at which ‘thick’ or ‘thin’ behaviour should occur, some care needs 

to be taken here; we might expect (and indeed we observe) ‘thin’ behaviour in relatively 

thick shells in simulations partly as the nematic layers are actually thin in absolute 

terms. However, that said, the interactions between the disclinations in a particular type 



 

 

of configuration are likely to be very similar. That is, for example, all (homeogenous) 

‘thin’ shells with four +1/2 disclinations should have similar tetrahedral arrangements, 

whatever their absolute size; however, the ratio at which they become ‘thin’ will vary 

depending on the absolute size. 

The simulations were started from an isotropic configuration generated by 

randomising the orientation of each nematic rotor. The temperature (dimensionless, 

defined as 𝑇∗
 =  𝑘𝐵𝑇 / 𝜀) was then slowly reduced from just above 𝑇𝑁𝐼∗  to 𝑇∗ =1.0 over 500,000 MC cycles, where one cycle corresponds to, on average, one rotational 

trial per nematic rotor. The simulations were then extended by a further 250,000 cycles 

during which the locations of the disclinations and the director configurations were 

determined. Once the defect lines have formed, their motion is typically very slow and 

so, in order to ensure that we are probing the possible configurations effectively, the 

simulations were each run multiple times using different initial random number seeds 

each time both to generate the starting configurations and in the subsequent MC trials; 

concentric spherical systems were run 100 times, non-concentric spherical systems 250 

times, all tetrahedral systems 1000 times and all other polyhedral systems 400 times. 

The disclination lines were identified using the algorithm of Callan-Jones et al. [15], in 

which a local ordering matrix is diagonalised to yield both the local director and a 

metric that can identify the extent of local order or, more usefully here, disorder; for full 

details of the implementation to similar lattice based systems, see Refs. [4,6]. To 

identify the locations of the disclinations at the surfaces, we define a surface region as 

all points within 2a of the surface of interest. Then, all points within that region with a 

metric below the threshold for identifying disorder were clustered and the centres of 

these clusters were used to define where the disclinations touch the surface; we use 𝑐𝑙 <  0.30 (see [4,6] for definition) as the threshold value, although the results are not 



 

 

sensitive to this. In order to quantify the arrangement of the disclination lines, an 

angular probability distribution is defined, where the angle of interest is the central 

angle formed between a pair of defects and the centre of the nematic droplet. For each 

system type (that is, all simulations for a fixed inclusion shape, size, shift), this 

distribution is averaged over all discrete pairs of angles, every 1000th cycle and over all 

repeat simulations. For a perfect tetrahedral arrangement, each pair of defects should 

have a central angle of 109.47°, independent of the actual orientation of the tetrahedron, 

and thus this pairwise angular probability distribution can be used to monitor the mutual 

arrangement of the disclination lines and to what extent disclinations form a tetrahedral 

geometry or deviate from it.  

Results and discussion 

Central and shifted spherical inclusions 

Nematic shells based on centrosymmetric spherical inclusions have previously been 

studied [4]. However, to aid comparison with non-centrosymmetric spheres and 

tetrahedral inclusions, we have run a number of different sized inclusions to determine 

the angular probability distributions. As shown in Figures 1(a) and (b), thin shell 

behaviour is observed for large enough inclusions, in that four +1/2 disclination lines 

are observed and the director field is essentially perpendicular to the surface normal 

throughout the volume. We note that two different types of director configurations are 

observed with roughly equal frequency. In Figure 1(a) the director is parallel to the 

shortest path between linked pairs of defects, whereas in 1(b) it is perpendicular; these 

are the equivalents of the ‘baseball’ and ‘cricket ball’ seam models of Vitelli and 

Nelson [16]. On shifting the spherical inclusion away from the centre, it is clear that the 

disclination lines are also shifted, as shown in Figure 1(c), and so the locations where 



 

 

these touch the outer surface no longer form the vertices of a tetrahedron [3,7]. This 

deviation from tetrahedral geometry can be quantified through the angular probability 

distribution, as shown in Figure 2. In Figure 2(a), the distribution is shown for 

centrosymmetric spheres of radius 15a and 25a. Clearly the distributions are peaked 

around the tetrahedral angle and the size of the inclusion has little effect on the positions 

of the defects at the outer surface; the larger sphere (or thinner shell) has a slightly 

narrower distribution. It is also clear that the geometry at the interior surface (shown 

only for 15a for clarity) is essentially equivalent to that for the exterior surface, in the 

case of centrosymmetric spheres. We note here that the distribution becomes narrower 

for lower temperatures and somewhat broader for higher temperatures. Figures 2(b)-(d) 

show how the angular probability distribution varies on slowing shifting the inclusion 

away from the centre, at fixed distances. For small deviations (d = 5a), the distribution 

starts to broaden with a shoulder appearing at larger angles and, for larger deviations 

(d = 10a and 15a) and thus more extreme non-centrosymmetric inclusions, the 

distribution can be resolved into multiple separate peaks. As shown in Figure 1(c), there 

are essentially two types of disclination line for non-centrosymmetric spheres; a pair of 

shorter ones which are mutually close together (low angle) and a pair of longer ones 

mutually further apart (high angle). Thus we should expect three peaks to be observed, 

the third peak at an intermediate angle between a short and a long disclination. The 

intensities of these are expected in the ratio 1:1:4, respectively. The distribution can be 

fit using a sum of Gaussian functions of the form 

𝑓(𝜃) = ∑ 𝐴 𝐼𝑖𝜎𝑖 𝑒−(𝜃−𝜃𝑖)22𝜎𝑖23
𝑖=1  



 

 

where A is a normalisation factor, 𝜃𝑖 and 𝜎𝑖 are the position and standard deviation of 

the ith peak and 𝐼𝑖 is the relative expected intensity as noted above. 𝜃𝑖 and 𝜎𝑖 can then 

be used to compare distributions as a function of deviation or shape. 

 It is interesting to note that the total (elastic) energy of the system hardly 

changes when shifting the inclusion towards the edge of the nematic volume; the total 

average energy is essentially constant for each deviation. Thus, if there were no other 

contributions to the potential energy of the system (such as those arising from 

buoyancy) and simulations were run in which the shift distance was not fixed but 

variable then the inclusion could freely move around the volume with essentially no 

change in energy. This would mean that the resultant probability distribution function 

would be averaged over all shifts and, since the volume of a spherical shell increases 

with its radius, the relative contribution to the average distribution would be larger for 

large shifts; thus we would expect the distribution for a freely moving particle using this 

particular model would be rather broad ranging from about 40° to 180°. This clearly 

deviates from the tetrahedral geometry and so we should not expect to obtain a 

tetrahedral pattern for the defect points on the outer surface. It is useful, therefore, to see 

if the tetrahedral pattern can be stabilised for non-centrosymmetric shells. 

Central tetrahedral inclusions 

We start by examining centrosymmetric polyhedral particles, in particular tetrahedrons, 

since they have the correct symmetry to stabilise four disclinations. It is reasonable to 

assume that the disclinations in the interior of the shell would locate near the vertices of 

the polyhedral particle, since this would minimise the length of the disclination lines 

between the inclusion and the outer spherical surface. 

Central tetrahedral inclusions are modelled using a particle with vertices (t, t, t), 



 

 

(-t, -t, t), (-t, t, -t) and (t, -t, -t). Snapshots of configurations for t = 15a are shown in 

Figures 3(a) and (b) and, as for spherical inclusions, two types of configurations are 

observed in which the director field is either parallel or perpendicular to the shortest 

path between defects; again, these occur with roughly equal frequency. As shown in 

Figure 3(c), the probability distribution function calculated at the outer surface is 

peaked at the tetrahedral angle and we again observe a slight narrowing of the 

distribution for larger particles. However, it is also clear that the distribution calculated 

for the inner surface is significantly narrower than for the outer surface. It is clear that 

the inner surface is pinning the disclinations at the vertices of a tetrahedron and, as 

shown in Figure 3(a) and (b), that these points are actually the vertices of the tetrahedral 

inclusion, as we might expect. Thus the director field is planar to the sides of the 

tetrahedron and the disclinations are essentially pinned at the vertices of the inclusion. 

Since the angular probability distribution for the inner surface is narrower than that for 

the outer surface, it must be that the disclinations are not perfectly radial and instead 

they deviate from this slightly. If the temperature is decreased (or increased), the 

distribution for the outer surface is observed to narrow (or broaden) whilst that for the 

internal surface remains essentially unchanged. 

Shifted tetrahedral inclusions 

We now examine the effect of the position of the tetrahedral inclusion on the 

arrangement of the disclinations. Due to the anisotropic shape of the particle, the shift 

from the centre cannot be described by distance alone, as it was for spherical inclusions. 

Therefore, we shift the tetrahedron along three directions, namely {1, 0, 0}, {1, 1, 0}, 

{1, 1, 1}, with both positive and negative shifts for the latter. In reality, a shift could be 

in any direction, but we limit ourselves to these four for simplicity since they cover 

important orientations, such as when one, two or three vertices approach the outer 



 

 

surface. Typical snapshots and the angular probability distributions are shown in 

Figure 4 when the internal tetrahedron is shifted by d = 15a; note that at this value, 

shifting in the {1, 1, 1} direction actually leads to the tetrahedron just breaking the outer 

spherical boundary although the disorder in this region can still be analysed and the 

disclination found. Shifting along the {1, 0, 0} direction, as shown in Figures 4(a) 

and (e), breaks the tetrahedral symmetry observed for the central particle, with its four 

equivalent vertices, into two pairs of vertices differing in their distance from the outer 

surface and these pairs give rise to three peaks in the angular probability distribution. 

Both positive and negative shifts along {1, 1, 1} give rise to three equivalent vertices 

and a single unique one, leading to two distinct angles. The {1, 1, 0} shift gives rise to 

one pair and two single unique vertices, which in principle should lead to four different 

peaks in the angular probability distribution although clearly these overlap significantly. 

In each case, it is clear that there is deviation from the single peak at the tetrahedral 

angle. To investigate the influence of the shift distance on this deviation, and to 

compare to the spherical inclusion, we have fitted multiple Gaussian distributions to the 

angular probability distribution as before to determine both the location and the width of 

each peak, taking into account the number of expected peaks and their relative 

intensities in each case. The total spread of the angular distribution can then be 

summarised as a function of shift distance, by plotting the peak position plus and minus 

two standard deviations (the “95% rule”), as shown in Figure 5. It is clear that the more 

the spherical inclusion deviates from the centre of the droplet, the larger the deviation 

from the perfect tetrahedral geometry; the three peaks observed diverge in location, 

broadening the entire distribution. A similar observation is made for the tetrahedral 

inclusion, although here multiple sets of peaks are observed at different angles due to 

the different orientations. However, the broadening for the tetrahedral particle is 



 

 

significantly less than that observed for the spherical inclusion. Not only are the peak 

widths less broad, the spread of the peak locations is also less for the tetrahedral 

inclusion. As already noted for the spherical inclusions, we would expect the true 

distribution for a freely moving tetrahedral inclusion to be averaged over all orientations 

and deviations from the centre. It appears, therefore, that whilst using a free tetrahedral 

inclusion would not stabilise a perfect tetrahedral geometry for the defect locations at 

the outer surface of the droplet, the deviation from the perfect geometry is expect to be 

significantly less than when a spherical inclusion is used. 

Our primary focus in this paper is on tetrahedral inclusions since this shape is 

clearly most likely to both help induce a four disclination line configuration and 

stabilise the tetrahedral arrangement of the defects at the exterior surface of the nematic 

shell. However, it is possible that other polyhedral inclusions may also form interesting 

defect patterns at the outer surface and to finish we briefly examine the configurations 

observed for central octahedral and cubic inclusions. 

Octahedral inclusions 

Octahedral inclusions are modelled using a particle with vertices (±o,0,0) and similar 

pairs of coordinates along the y and z axes. Results are shown only for dimensions 

o = 26a, for which the vertices are at the same distance from the centre of the inclusion 

as for a tetrahedron with t = 15a; we note that similar results are observed for other 

dimensions.  

According to the Poincaré-Hopf constraint, we should expect to see a total 

defect charge of +2 on both the inner and outer surfaces. Since there are six vertices on 

the inner particle, the disclinations must clearly either deviate from tetrahedral 

symmetry, at least around the interior particle, or deviate from the vertices, or six 

disclinations could form but one of these must have a -1/2 charge, where the director 



 

 

rotates by -180°. As shown in Figure 6, we observe configurations containing four +1/2 

disclination lines for octahedral inclusions, and the disclinations again emerge at the 

vertices of the interior polyhedron. Clearly adding two further disclinations of +1/2 and 

-1/2 charges adds to the elastic energy and so this is not favoured. Similarly, deviating 

from the vertices is not favoured either. Concentrating on just the disclinations, two 

types of configuration are observed, as shown in Figure 6 (a) and (b). One (O1) has four 

disclinations emerging in a single plane around an equator with two bare vertices 

similar to poles on opposite sides, whereas the other (O2) has the disclinations emerging 

from all four vertices of two triangular faces that share a common edge with the two 

bare vertices at the ends of a single edge, forming a sawhorse type configuration. If the 

disclinations were to emerge from vertices at random, with the only restriction being a 

maximum of one disclination from each vertex, then we would expect to observe 𝐶46  = 15 different configurations, three of these being of type O1 and the other twelve 

of type O2; thus we would expect to observe the O2 configuration four times more often 

than O1 if the energies of these two configurations were equal. The relative occurrence 

can easily be monitored through the angular distribution function. This is because the 

relative intensities of the 90˚ and 180˚ peaks will have the ratios 4:2 and 5:1 for the O1 

and O2 configurations, respectively. Thus the areas of the peaks should occur in the 

ratio 72:18 (or 4:1) if the disclination locations are completely random. However, the 

observed ratio is 2.65:1, indicating that O1 occurs more frequently than it should 

compared to the random case. This peak ratio corresponds to a ratio of approximately 

7:4 for the observation of configuration type O1 compared to O2. Thus O1 must clearly 

be more stable than O2 for it to occur more frequently than the expected 1:4 for the 

random case. This can indeed be confirmed in that the energy of the configuration is 

lower. This is also supported by the observation that if the system is rapidly quenched 



 

 

into the nematic from the isotropic phase (so no slow cooling equilibration period), then 

O2 is observed significantly more frequently since the defects are essentially pinned to 

the vertices once they form and thermal energy is not enough to overcome the barrier of 

the disclination sliding from one vertex to a neighbouring one. 

Cubic inclusions 

Cubic inclusions are modelled using a particle with vertices (±c, ±c, ±c). As before, 

results are shown only for dimensions c = 15a and we again note that similar results are 

observed for other dimensions. 

As for the other polyhedra, configurations containing four +1/2 disclination lines 

emerging from vertices of the interior polyhedron are again observed for cubic 

inclusions, as shown in Figure 7. Based on the symmetry of the cube, it is possible for 

the disclinations to form a tetrahedral geometry if they emerge from four vertices that 

are all on mutual face diagonals and we can speculate that this would be the lowest 

energy state since the disclinations emerge from the central cube from vertices in which 

the distances between all pairs are maximised. However, four different defect 

configurations (C1-4) were observed in total on slow cooling, as shown in Figure 7, 

although in principle another two (C5 and C6) could exist. If we again assume that the 

disclinations were to emerge from vertices at random, then we would expect to observe 𝐶48  = 70 different configurations and these break down into: C1, 6 configurations; 

C2, 2; C3, 24; C4, 24; C5, 8; C6, 6. Thus, if the configurations were all of equal energy 

and had equal probability of occurring then we would expect to see these in the ratio 

8.57% : 2.86% : 34.29% : 34.29 % : 11.43 % : 8.57%. The observed probabilities 

(determined from the angular probability distribution) are 37.3% : 32.4% : 18.8% : 

11.5% : 0% : 0%, indicating that C1 and C2 occur more frequently than random 

whereas the others occur less frequently (if at all). The measured energies of the 



 

 

configurations follow the trend C2<C1<C3<C4, which is easily understood considering 

the distance between the locations at which the defects emerge. It is understandable why 

C5 and C6 are not observed for central cubic particles, given the very close proximities 

of the disclinations in these configurations. Thus the main point of interest here is why 

C1 is observed more than C2 despite being higher in energy and this is clearly down to 

the higher degeneracy of C1 compared to C2. We note here that if the simulations are 

rapidly quenched from the isotropic phase deep into the nematic region, then the 

probabilities of the different configurations occurring are much closer to the expected 

values for random locations although a number of configurations with either one or two 

escaped defects are also observed. Thus it appears that once the disclinations or 3D 

escaped defects form at low temperature, the barrier to them either converting from 

escaped defects to disclinations or for disclinations to slide along a cube edge is 

relatively high and this process is essentially forbidden. It may be that slowing the 

cooling rate during the equilibration period, or using an annealing process remaining 

below the nematic to isotropic transition temperature, could lead to the systematic 

generation of lowest energy state, thus the tetrahedral pattern for cubes; similarly it may 

be possible to produce only the four defects in a ring structure for octahedral particles.  

Preliminary simulations for non-centrosymmetric octahedrons and cubes were 

also run, although not in large enough quantity to provide statistically relevant 

probability distribution functions. However, the results are as we might expect based on 

the frustration between minimising the total length of the disclination lines and the 

increased elastic energy forcing the disclinations towards the same volume of space. For 

example, if the cubic inclusion is moved along an axis then the configuration with 

disclinations emerging from the vertices on a single side (C6) can be observed, albeit 

still relatively rarely. 



 

 

Conclusions 

Nematic shells have attracted considerable attention in recent years due to the 

interesting aspects of frustration in ordering arising from the confinement, the alignment 

at the surfaces and the total curvature in these systems. One of the key driving 

requirements for these systems to be useful as ‘decorated’ colloidal particles is the 

ability to routinely direct the locations of the defects at the outer spherical surface in a 

consistent way. A major problem with sphere in sphere shells is that the defects do not 

form in a tetrahedral pattern if the shells are not concentric. Our simulation results have 

shown that using solid tetrahedral inclusions, rather than the necessarily spherical liquid 

ones that have been studied extensively, can lead to a significantly narrower angular 

distribution function for centralised particles and thus leads to defects on the outer 

surface that are closer, on average, to being in a tetrahedral arrangement. If the 

constraint that the particle is fixed at the centre, which is unrealistic for nematic shells, 

is lifted then the angular distribution is broadened, as it is for spherical inclusions. 

However, because the disclinations emerge from the interior polyhedral particle 

vertices, they remain in a configuration that is closer to the tetrahedral pattern than that 

observed for non-centrosymmetric spheres. Since experimental methods now exist for 

preparing nematic shells with solid particle interiors, it would be interesting to 

determine if using polyhedral interiors can help stabilise the tetrahedral defect 

configuration with respect to both non-tetrahedral defect configurations in non-

homogeneous / non-centrosymmetric ‘thin’ shells and the two escaped +1 defects in 

‘thick’ shells in real systems. The particles studied here have an edge dimension 

roughly equal to the radius of the droplet and the circumsphere radius is about 2/3 of the 

outer sphere radius. Larger tetrahedral particles could have been introduced and these 

would be expected to have a defect arrangement on the outer surface even closer to a 



 

 

tetrahedron. If it is experimentally possible to introduce similar relatively large particles 

into nematic shells, then polyhedral particles could be one way of stabilising the 

tetrahedral defect pattern. Similarly, alternative interior polyhedral particles may prove 

useful for generating other arrangements of defects at the outer surface.   
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Figure 1. Snapshots of the disclination lines and director configurations in ‘thin’ 

nematic shells with a spherical inclusion (R = 40a, r = 15a). (a) A concentric shell (d = 

0a) in which the director field is parallel to the shortest path between a pair of 

disclinations. (b) A similar shell with the director field perpendicular to this direction. 

(c) A non-concentric shell ( d = 15a ) in which the disclinations tend to locate in the 

thinner region near the top of the shell. (d) A ‘thick’ shell (R = 40a, r = 10a) in which 

two escaped +1 defects are observed. In these and all subsequent snapshots, the director 

field is shown as black streamlines and the disclination lines are shown in blue. Red 

arrows indicate the distance, d, and direction of any shift of the inclusion.  

 

  



 

 

Figure 2. The probability, f(θ), of finding a pair of disclination lines at a central angle θ 

for spherical inclusions as a function of the shift for R = 40a: (a) d = 0a, (b) 5a, (c) 10a 

and (d) 15a. The solid points are for smaller inclusions ( r = 15a ) and open points are 

for larger inclusions ( r = 25a ) with the angle calculated between the centre and the 

points where the disclinations touch the exterior surface. The grey points in (a) are 

defined similarly but for the interior surface and for the smaller inclusion only. The 

lines are best fits using multiple Gaussian distributions (see text). 

 

  



 

 

Figure 3. Snapshots of the disclination lines and director configurations in nematic 

shells with a central tetrahedral inclusion (R = 40a, t = 15a). In (a) the director field is 

parallel to the shortest path between the disclination pairs and in (b) it is perpendicular. 

(c) The angular probability distribution. Solid points are for smaller tetrahedrons 

( t = 15a ), open points for larger ( t = 25a ); grey points are the angles at the interior 

surface for the smaller inclusion only.  

 

  



 

 

Figure 4. Snapshots of nematic shells ( R = 40a, t = 15a ) with shifted tetrahedral 

inclusions, for a shift of d = 15a along the (a) {1,0,0}, (b) {1,1,0}, (c) {1,1,1} and  

(d) {-1,-1,-1} directions. (e) - (h) The angular probability distributions (at the exterior 

surface) for the same shifts. 

 



 

 

Figure 5. The angular probability distribution at the exterior surface as a function of 

shift. The peak locations are indicated by solid points for spherical ( r  = 15a ) 

inclusions and open points for tetrahedral ( t = 15a ) inclusions. The multiple points 

shown for tetrahedrons correspond to shifts along the {1,0,0}, {1,1,0}, {1,1,1} and  

{-1,-1,-1} directions; the points in the plot are shifted laterally for clarity. The vertical 

lines have a half-length equal to twice the standard deviation of the Gaussian 

distributions used to fit the peaks. The dark and light shaded regions represent the 

approximate spread of the distribution as a function of shift for spherical and tetrahedral 

inclusions, respectively. 

 

  



 

 

Figure 6. Snapshots and the angular probability distribution for central octahedral 

inclusions (dimensions o = 26a ). (a) O1 (63.7%) and (b) O2 (36.3%). Solid points are 

for the exterior surface, grey points for the interior surface. 

 



 

 

Figure 7. Snapshots and the angular probability distribution for central cubic inclusions  

(dimensions c = 15a ). (a) C1 (37.3%), (b) C2 (32.4%), (c) C3 (18.8%), (d) C4 (11.5%), 

(e) C5 and (f) C6. Solid points are for the exterior surface, grey points for the interior 

surface. 

 

 


