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Abstract

Environmental risk assessment of pharmaceuticals requires the determination of their
environmental exposure concentrations. Existing exposure modelling approaches are often
computationally demanding, require extensive data collection and processing efforts, have a
limited spatial resolution, and have undergone limited evaluation against monitoring data.
Here, we present ePiE (exposure to Pharmaceuticals in the Environment), a spatially explicit
model calculating concentrations of active pharmaceutical ingredients (APIs) in surface
waters across Europe at ~1 km resolution. ePiE strikes a balance between generating data on
exposure at high spatial resolution while having limited computational and data
requirements. Comparison of model predictions with measured concentrations of a diverse
set of 35 APIs in the river Ouse (UK) and Rhine basins (North West Europe), showed around
95% were within an order of magnitude. Improved predictions were obtained for the river
Ouse basin (95% within a factor of 6; 55% within a factor of 2), where reliable consumption
data were available and the monitoring study design was coherent with the model outputs.
Application of ePiE in a prioritisation exercise for the Ouse basin identified metformin,
gabapentin, and acetaminophen as priority when based on predicted exposure
concentrations. After incorporation of toxic potency, this changed to desvenlafaxine,

loratadine and hydrocodone.
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Introduction

Over the past decades, human consumption of pharmaceuticals has steadily increased. 2 In
combination with continuing improvements in our analytical capabilities,® 4 this has led to the
detection of many active pharmaceutical ingredients (APIs) in surface waters worldwide.> ®
The environmental presence of 631 different pharmaceuticals has been reported in 71
countries covering all continents,> but the actual number of APIs present in surface waters is

likely higher due to the self-fulfilling selection bias of many monitoring campaigns.’

A crucial step in the environmental risk assessment of chemicals is the determination of their
environmental exposure potential. Since there are currently at least 1500 distinct APIs in
use,® ° monitoring all of them everywhere and continuously is practically impossible.
Moreover, APls under development will not be present in the environment so monitoring will
provide no information on exposure of these molecules. There is therefore a need for
exposure modelling approaches that can help us prioritize our monitoring efforts, support
more robust environmental risk assessment of new APls, and that can be used to take
targeted measures.'® These should preferably be spatially explicit, acknowledging that
geographical variability can lead to substantial differences in the concentrations of APIs across
and within regions.'* 2 For example, rankings of APIs established at the continental European
level may lead to misguided allocation of resources when adopted at a regional level.'? Such
mismatches between EU-level and regional level prioritization of APIs might, for example, be
the result of geographical variation in APl consumption, a heterogeneous distribution of
emission sources, or spatially varying environmental conditions driving the fate of APIs after

emission.
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The environmental exposure potential of chemicals is reflected by the measured (MEC) or
predicted (PEC) environmental concentrations at which they occur in the environmental
compartment of interest. PECs can be derived using multimedia fate models, such as the
EUSES model*? and our previously developed prioritization tool for APIs.!! These are based
on mass-balance equations for interconnected compartments that represent the relevant
environmental media (e.g., fresh and salt waters, air, urban and agricultural soils, et cetera),
and are therefore especially useful for larger scale (regional, continental) assessments where
multiple media might be relevant. However, they are less suitable for answering locally
specific questions (e.g., hotspot identification, scenario analyses for optimal mitigation
measures), because they assume a homogenous distribution of chemicals within their
compartments and do not account for any spatial variation at that scale.!* ¥ This also

inherently limits the options for model corroboration with local measurement data.

APIs tend to largely remain in the compartment where they are emitted,® implying that the
use of single-media models is also an option. Examples of geographically-based single-media
models for down-the-drain chemicals are GREAT-ER,'” PhATE,'® GWAVA,*® LF2000-WQX,?°
iSTREEM, %! and the recent unnamed model by Grill et al.1> Combined, these models have been
applied to assess the distribution of APIs in many river basins worldwide. Invariably, they
integrate information on APl consumption, human metabolism, removal in wastewater
treatment plants (WWTPs), and dilution and dissipation in receiving surface waters, to
estimate PECs throughout river basins. The characterization of hydrology is broadly done in
one of two ways: via gridded approaches incorporating extensive process-based hydrological
models,’> 1° or via segmentation of the river network into discrete river segments with

calibration against measured hydrology and extrapolation to ungauged sites.!’ & 20. 21 Both
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approaches have their own drawbacks, related to the computational demands of large scale
hydrological models, the extensive data collection and processing efforts required for the
parameterization of river basins, and the limited spatial resolution determined by the grid-

cell size or the length of individual river segments.

Here, we present ePiE (exposure to Pharmaceuticals in the Environment), a new spatially
explicit model, developed in the frame of the Innovative Medicines Initiative iPiE project, that
can calculate concentrations of APIs in surface waters throughout river basins in Europe. It is
designed to strike a balance between generating data on exposure at high spatial resolution
while having limited computational and data requirements. It does so by employing FLO1K
for the underlying hydrology, a global geographic dataset with annual predictions of
streamflow metrics (annual mean flow, highest and lowest monthly mean flow) spatially
distributed at 30 arc seconds (~1 km).?? This is a resolution ten times higher than the most
detailed global hydrological models or land surface models currently available.?® 24 In ePiE,
river networks are represented as collections of interconnected nodes describing emission
points, river junctions, river mouths and inlets and outlets of lakes and reservoirs. It thus
provides a modelling architecture supporting linkage and integration of geographic
information in vector format, i.e., the nodes of the river networks, and rasterized information
on climatic, hydrological, and geochemical conditions.?> We developed a custom routing
scheme to follow APIs through the river network, along the way accounting for dissipation
from the water via the processes of biodegradation, photolysis, hydrolysis, volatilization and

sedimentation.

In this article, we present the structure of ePiE and evaluate its performance against

measured concentration data from the open literature for a combined total of 35 APIs in two
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European river basins. Finally, to illustrate the utility of the model, we apply ePiE to rank APIs
in the river Ouse basin (UK), based on predicted concentrations in surface waters and

predicted risks to fish.

Methods

Model structure

Central to ePiE are a set of network nodes derived from the global databases HydroSHEDS?®
and HydrolLAKES,?” and agglomerations and WWTPs from the UWWTD-Waterbase.?® This
latter database contains information on the location and characteristics (i.e., generated load,
design capacity and level of treatment) of 30,043 European urban WWTPs and 27,695
agglomerations with generated wastewater loads above 2,000 population equivalents (p.e.).
After curation of the UWWTD-Waterbase (see Supporting Information S1), agglomerations
and WWTPs were incorporated into the river network based on their proximity to the nearest
water body. Direct emissions into the sea were excluded from the model. Finally, gridded
information on air temperature, wind speed, slope, and streamflow was extracted to all nodes
in the network. To optimize its flexibility and accessibility, ePiE is entirely constructed in the
open-source software environment R,%° and a description of the model construction can be

found in Supporting Information S2.

The ePiE model has a modular structure based on the georeferenced river basins provided by
the global HydroBASINS database?®> which includes basins below of 60 2N. Depending on the
river basin of interest, a subset of the total network of nodes is geographically selected. As a
starting point, ePiE then requires yearly consumption data for the API of interest (kg/year) for
all countries the river basin covers. When the API of interest is formed as a metabolite from

another API, i.e. its prodrug, consumption data for that prodrug are also needed. Yearly
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emissions into the river network from WWTPs (E,, ,u¢,; kg/year) and from agglomerations

with incomplete WWTP connectivity (E,, kg/year) are calculated via Equation 1 and

agg’
Equation 2, respectively. The country-specific yearly consumption data (M) include the
prescription of pharmaceuticals in hospitals. This means that hospital emissions are not

included as location-specific point sources, but spatially distributed according to the

wastewater loads per agglomeration (i.e., a proxy for population density).

> (v . " . ]
Ew,wwtp = (M ) fpc + MPd ) fmet) - 1(Vwwagy ) connagg Fwwipaga)) * (1 — frem) Equation 1

wa,cnt

Where M and My, are the yearly consumption of the API of interest and its prodrug in the relevant country (kg/year); fy is
the fraction of the administered parent compound excreted/egested unchanged or as reversible conjugates via urine and
faeces (-); finer is the fraction of prodrug metabolized to the API of interest, and subsequently excreted/egested via urine
and faeces (-); n is the number of agglomerations j connected to the WWTP (-); feonn,agg,j is the level of WWTP connectivity
per agglomeration j; fywip,agg,j is the fraction of agglomeration j connected to the WWTP; f...,, is the APl-specific removal
efficiency per WWTP (-); and V. agg,; @nd Vi, cn¢ are the wastewater loads generated per agglomeration j and the total in

the relevant country, respectively (p.e.).

wa,a '(1_fconn,a ) .
Ew,agg = (M ’ fpc + Mpd : fmet) ) 24 = Equation 2

wa,cnt

The SimpleTreat 4.0 model®® was incorporated into ePiE to estimate the removal efficiency
during wastewater treatment (f;..,,)- It requires basic physicochemical properties as input, as
well as solids-water partitioning coefficients for primary sewage (Kp,; L/kg) and activated
sludge (Kpgs; L/kg), and (pseudo-)first order biodegradation rate constants (kpo wwep; S7)-
Removal efficiencies were assigned to individual WWTPs depending on their associated level
of treatment, using either the full SimpleTreat 4.0 model for those employing consecutive

primary and secondary treatment, or the module for primary treatment only.
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After their emission, APl residues are followed through the river network using a routing
procedure ordered from the most upstream to the most downstream nodes. As such, the
contribution of all upstream emissions to local concentrations is considered. Along the way,
ePiE accounts for dilution in the water column and five (pseudo-)first order loss processes,
three being degradation processes, i.e. biodegradation, photolysis and hydrolysis, and two
being intermedia transport processes, i.e. sedimentation and volatilization. Equation 3
calculates concentration C; (ug/L) at any node i in the river network; Equation 4 calculates
concentrations in lakes and reservoirs, following an approach similar to Grill et al.*> in which

they are modelled as single completely stirred tank reactors.

d]—l

vdj—i

5
n —[Zmzlkm,dj_i]'
Eyi+Xj=q| Ew,je

C; = Equation 3
Qi

Where E,,; and E,, ; are the emissions into the river network at node / and at node j upstream from node i, respectively

(mg/s); n is the total number of nodes upstream from node i (-); d;_; is the distance over the river network between node j

and node i (m); km,dj_i is the average (pseudo-) first order rate constant for loss process m over d;_; (s); Vg, is the average

river flow velocity over d;_; (m/s); and Q; is the total river flow at node i (m?/s), including any discharges.

o Zg:l(Eer)
L (Vi/HRTi)+275n=1(km.i)'Vi

Equation 4

Where E,, ,, is the emission into lake or reservoir i coming from node p (mg/s), which can either be a direct emission source
(i.e., a WWTP or an agglomeration), or an inlet point carrying APl residues from upstream the river network; n is the total
number of nodes emitting into lake or reservoir i (-); HRT; is the hydraulic retention time of lake or reservoir i (s); V; is the
volume in lake or reservoir i (m?); and k,, ; is the (pseudo-) first order rate constant for loss process m in lake or reservoir i

(s).

Individual loss rate constants are extrapolated from test to field conditions by accounting for

temperature differences, sorption to suspended solids and dissolved organic carbon,3? and
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reduced light intensity.3® Local sedimentation and volatilization rate constants are
implemented via mass transport velocities between media.?* Detailed information on the

extrapolation to field conditions can be found in Supporting Information S3.

For characterization of annual mean flow, and highest and lowest monthly mean flow, the
recent global FLO1K dataset was implemented in ePiE.?? FLO1K is based on an ensemble of
artificial neural networks regressions, with upstream-catchment physiography (area, slope,
elevation) and vyear-specific climatic variables (precipitation, temperature, potential
evapotranspiration, aridity index and seasonality indices) as covariates. It provides
estimations of flow at a spatial resolution of 30 arc seconds (~1 km) for the years 1960-2015,
which are in good agreement with independent data (global R? of single-year metrics up to
0.91). An additional comparison with independent data obtained from 1,007 European
monitoring stations for the period 2010-2015,3> showed that year-specific annual mean flow,
and highest and lowest mean monthly flow in European rivers are predicted well, with R?

values of 0.97, 0.95 and 0.91, respectively (Figure 1).

Additional hydrological parameters flow velocity v; (m/s) and river depth h,,; (m), were
calculated via the Manning’s equation for open channel flow, rewritten under the assumption
of a wide rectangular river cross section as proposed by Pistocchi and Pennington.?® In this
approach, river width was related to river flow using their power law equation for European

rivers (R? of 0.87).3¢
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Figure 1. Validation results for year-specific annual mean flow (A), highest monthly mean flow (B) and lowest monthly mean
flow (C). Independent validation dataset consisted of yearly measurements (2010-2015) from 1,007 GRDC European stations.

The solid line represents perfect model fit (1:1 line) and the dashed lines represent a difference of one order of magnitude.

Model evaluation

We performed a model evaluation exercise with measured concentrations for 35 APIs
consumed in Europe and covering a wide range of pharmaceutical classes. Excretion, sorption
and degradation data were extracted from open literature by cross-referencing a set of
reviews on human metabolism, sludge sorption, sediment sorption, biodegradation and
photolysis. The data obtained were supplemented with additional API-specific searches. The
resulting dataset was extensive, containing a total of 430 sorption coefficients and 342
degradation rate constants, but not homogeneously distributed over the 35 APIs. Complete
experimental datasets were available for 13 APIs, while 12 were missing data on at least one
sorption process and 11 on at least one degradation process. No experimental sorption or
degradation data were found for sitagliptin and triamterene. Missing sorption coefficients
were substituted by combining default mass fractions of organic carbon for sludge® or
sediments®’ with QSAR predictions of organic carbon-water partition coefficients.3® 39
Moreover, if only ready biodegradability screening test data were available, APIs were
assigned a biodegradation rate constant as proposed by Jager et al.*® When experimental

degradation rate constants were lacking altogether, no degradation was assumed. Table S4.1

10
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and Table S4.2 show the physicochemical and environmental fate properties of the 35 APIs,

respectively.

Predicted environmental concentrations were compared with measured concentrations
extracted from a database compiled by the German national environmental protection
agency,’ and a limited number of more recent literature studies. Individual studies were
included in the model evaluation if 1) measurements were performed after 2010, 2)
measurement locations were provided, 3) at least 10 of our APIs were measured above their
limit of detection at least 10% of the time, and 4) multiple consecutive measurements were
performed over time. These criteria resulted in the selection of three literature studies, being
those by Burns et al.,** who measured APIs in the river Ouse basin in the United Kingdom, and
by Ruff et al.*> and Munz et al.,*®* who both measured APIs in the river Rhine basin in North-
western Europe (Figure 2). Burns et al.*! included a total of 30 of our preselected APIs in a
monthly grab-sampling campaign throughout 2016. They reported the coordinates of their
11 sampling locations, of which six were located along the river Ouse and five along its
tributary, the river Foss, and we integrated these as such into ePiE. The yearly average of the
Burns et al. %! dataset was compared to the PEC obtained under annual mean flow conditions
for 2015. Ruff et al.*?> measured a total of 23 of our preselected APIs in a weekly flow-
proportional composite sampling campaign during “a remarkably dry period with constant
low flow conditions” in the early spring of 2011. To reflect these low flow conditions, we used
PECs derived under lowest monthly mean flow for 2011 in the quantitative evaluation of
model performance. Out of their 16 sampling locations, ten were sampling stations along the
river Rhine, but their coordinates were not reported. We georeferenced these sampling

locations based on the proximity of the cities mentioned by the authors to sampling stations

11
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in the GRDC Station Catalogue.?> In addition, they sampled six tributaries of the river Rhine.
We assumed these were sampled directly before their confluence with the main river. Finally,
Munz et al.®® included a total of 11 of our preselected APIs in two distinct grab-sampling
campaigns in 2013 and 2014. Their 24 sampling locations were split evenly over these two
campaigns and were all located directly downstream of WWTPs in Switzerland. Two sampling
locations outside the river Rhine basin were excluded from our model evaluation. Similar to
Ruff et al.*2, Munz et al.*3 explicitly chose their sampling times to capture low flow conditions.
Therefore, we used PECs derived under lowest monthly mean flow conditions for 2013 (site

1-12) and 2014 (site 13-24).

For estimations in the river Ouse basin, we used consumption data for 2016 from the
Prescription Cost Analysis.** For the river Rhine basin, consumption data for the Netherlands
were obtained from the Dutch National Health Care Institute.*> German, French and Swiss
consumptions during the years of interest were mostly extrapolated from per capita
consumption in other years.* Consumption data were not available for 5 APIs in France, 1
APl in Switzerland, and all APIs in Austria, Belgium and Luxembourg. In these cases, we
averaged the per capita consumption from the basin’s other countries. All consumption data

are presented in Supporting Information S5.

To assess the predictive accuracy of ePiE, we computed the median symmetric accuracy & per
study included in the evaluation exercise (Equation 5).*” This metric reflects the typical
percentage error of the predictions compared to the measurements. For example, a £of 100%
indicates that predicted concentrations will typically be within a factor of 2 of the
measurements. Contrary to metrics based on scale-dependent errors (e.g., root-mean-square

error RMSE), &assigns equal importance to deviations of the same order rather than the same

12
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magnitude. This is especially relevant for our data where concentrations ranged from low
ng/L to ug/L levels. In other words, a situation where the PEC is 1 ng/L and the MEC is 10 ng/L
(absolute error 9 ng/L) receives an equal penalty to that where the PEC is 100 ng/L and the
MEC is 1 ug/L (absolute error 900 ng/L). Moreover, since & bases on the median of the
accuracy ratios of individual pairs of predictions and measurements, it penalizes under- and
overpredictions equally. This is an advantage over the often-applied mean absolute

percentage error MAPE, which penalizes overpredictions more heavily.%’
& =100 (eMUn(PEC/MECHD] _ 1) Equation 5

Additionally, we assessed the prediction bias of ePiE by computing the symmetric signed
percentage bias (SSPB) (Equation 6), which is closely related to the median symmetric
accuracy &4 The SSPB can be interpreted similarly to a mean percentage error, but is not

affected by the likely asymmetry in the distribution of percentage error.
SSPB = 100 - sgn(M(In(PEC;/MEC;))) - (elMn(PEC/MEC)I] — 1) Equation 6

Model application

To illustrate the utility of the model, we applied ePiE to prioritise APIs in the Ouse river basin,
the basin with the best model performance and most APIs included. Additional nodes were
integrated into the network at evenly spaced one-kilometre distances, enabling a basin-wide
prioritisation using geographically homogeneous aggregate statistics. In addition to a ranking
based on concentrations, we ranked the APIs based on their potential risks to fish. For this we
followed a similar method as Burns et al.,*® based on the fish plasma model approach.*® >°
We extrapolated concentrations in surface water to concentrations in fish plasma using

bioconcentration factors computed according to Fitzsimmons et al.>! for neutral compounds,

13
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and Fu et al.>? for ionizing compounds. The latter were derived assuming a surface water pH
of 7.4.73 Risk quotients (RQ) for fish were then calculated as the ratio of concentrations in fish
plasma over therapeutic concentrations in human plasma, which we obtained from the
MaPPFAST database.>* A risk quotient exceeding 1 thus indicates that the concentration of
an API in surface water is expected to cause a pharmacological effect in fish, assuming
equivalent pharmacological activity as in humans.>® Finally, to enable exploration of local
concentration and risk patterns, model results were geographically visualized as interactive

html-maps, using the leaflet package “leafletR” in the R environment.>®
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Results and discussion

Out of the 940 predicted values used for model evaluation, 36% were qualified as non-detects
in the measurement campaign. We qualified a substance as a non-detect in case it was below
the limit of detection (LOD) in at least 40% of the samples taken at that location. Such non-
detects are less suitable for a quantitative evaluation of model performance. We did,
however, include them in a binary comparison between predicted min-max concentration
ranges, resulting from the temporal variation in flow conditions, and measurements in
relation to their LOD (Figure 3). Assigning comparisons to one of 4 bins (detected,
predicted<LOD; not detected, predicted>LOD; detected, predicted>LOD; not detected,
predicted<LOD), there was 94%, 88% and 90% coherence of predictions and measurements

for the Burns et al.,*! Ruff et al.,*> and Munz et al.*3 studies, respectively (green bars in Figure

=111
i%%%%%ﬁmﬁ

Figure 3. Binary comparison of measurements and min-max range of predictions, relative to their limit of detection (LOD).

All combinations of location and APl from Burns et al.*! (A), Ruff et al.*? (B), Munz et al.*3 (C), and all studies combined (D).

For a quantitative assessment of model performance, we included all detects at locations
downstream of a WWTP, i.e., for which PEC>0. In case measured values were below the LOD

(i.e. always less than 40%), these measurements were replaced by %\/7 - LOD.*® The resulting

comparison of predicted versus measured values (Figure 4) revealed a substantial variation
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between the three studies. Model accuracy was best for predictions in the Ouse river basin,
with a typical percentage error of 86% (Figure 4A; Burns et al.*!). Predictions in the river Rhine
basin had typical percentage errors of 143% (Figure 4B; Ruff et al.*?) and 158% (Figure 4C;
Munz et al.*®). Model performance was similar if data points were included for which
PEC>LOD and for which more than 40% of the measurements were below the LOD (Figure

$6.1).

The worse performance of ePiE in the river Rhine basin might relate to the quality of the
consumption data used in the calculations. Firstly, Swiss and German consumption data were
often reported as “greater-than” values instead of exact amounts.*® Secondly, we
extrapolated the consumption in 2009 to that in the actual years of sampling (2011-2014),
based on changing demographics and the assumption of a constant per capita consumption
over the years (Table S5.1). However, actual per capita consumption has increased
significantly for at least some pharmaceuticals, e.g., antidiabetics like sitagliptin®’ or
antidepressants like venlafaxine.>® These were therefore underestimated by ePiE due to the
temporal extrapolation. In addition, errors might have been introduced when sampling sites
from Ruff et al.*? were allocated to the river network, because limited geographical detail was
available on their specific locations. Inaccuracies may also be due to the fact that HydroSHEDS
does not provide the real geometry of a river network in a basin, but most likely flow paths
between individual cells according to flow accumulation. Similarly, errors might have been
introduced during the allocation to the river network of the WWTPs sampled by Munz et al.*3
These were all located at smaller streams in the upper Swiss catchment of the Rhine river
basin, without other upstream emission sources. In such smaller upstream catchments,

proximity-based allocation is more prone to errors because the main stream within the
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floodplain is less easily identified. Nevertheless, the & values and the scatterplots in Figure 4
indicate that concentrations were typically predicted within a factor of 2-3, with

approximately 95% of predictions within a factor of 10.

Concentrations measured by Burns et al.*! were typically underestimated by ePiE, with a
symmetric signed percentage bias (SSPB) of -44% (Figure 4A). From the scatterplot in Figure
4A, underestimations seem to be more prominent at lower concentrations. This can at least
partly be explained by the fact that measured concentrations have a lower bound in the form
of their LOD, while model predictions do not. As a consequence, underestimations are more
likely than overestimations in the vicinity of that LOD, since non-detects are excluded from
the comparison. Indeed, model performance slightly improved if data points were included
for which PEC>LOD, and which had more than 40% of the measurements below the LOD

which were replaced by %\/E-LOD (Figure S6.1). Additionally, the reliability of measured

concentrations decreases closer to the LOD. This complicates the evaluation of model
performance, because any difference between predicted and measured concentrations might
then be attributed to errors in either of them. Finally, inputs from tourism, specific point
sources (e.g., hospitals), operation of combined sewer overflows at selected times of the year
and use of over the counter medicines may also explain the slight mismatch between

measurements and predictions in the river Ouse basin.
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Figure 4. Predicted concentrations (i.e., >0) versus detects (i.e., <40% of the measurements below LOD), separately for data
from Burns et al.*! (purple; A), Ruff et al.*?> (golden; B), Munz et al.*® (green; C), and for all studies combined (black; D).
Concentrations predicted under annual mean flow conditions (A) or lowest monthly mean flow conditions (B and C). Solid
line represents 1:1 relationship; dashed lines represent 1:10 and 10:1 relationships. & median symmetric accuracy; SSPB:

symmetric signed percentage bias.

In contrast to the river Ouse basin, concentrations measured in the river Rhine basin were
typically slightly overestimated, with SSPB values of 30% and 5% (Figures 4B and 4C). When
we ran ePiE under annual mean flow settings, these values dropped considerably to -70% and
-313%, respectively. This indicates that actual streamflow during sampling was probably

somewhere between lowest monthly mean flow and annual mean flow conditions.

Ratios of predicted over measured concentrations (PEC/MEC ratios) provide further insights
into the performance of ePiE (Figure 5). PEC/MEC ratios are grouped according to study and
sampling location, numbered as in Figure 2. Similar graphs grouped according to APl are
included in the Supporting Information (Figure S6.2). Figure 5A shows that the spread around

predictions in the river Ouse (locations 1-6) is smaller than around those in its tributary river
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Foss (locations 7-11). This indicates that ePiE predicts concentrations in larger rivers better
than in smaller ones. While concentrations in larger rivers reflect an accumulation of APIs
over a larger upstream catchment area, concentrations in smaller rivers and streams are more
directly influenced by specific local conditions, i.e. water extraction and retention or small
scale discharges. Indeed, comparison of predicted and measured mean annual flow at two
gauging stations, i.e. one in the river Ouse and one in the river Foss (Table S6.1), shows that
our flow prediction is less accurate for the smaller river Foss. The impact of local conditions
can furthermore be observed at the most upstream location on the river Foss (location 7),
where multiple APIs were detected but ePiE predicted zero concentrations for all of them.
This deviation was likely due to the presence of a small upstream WWTP not included in the
UWWTD-Waterbase because its size was below the reporting threshold of 2,000 p.e. National
consumption data and default WWTP characteristics might thus not always suffice to
estimate concentrations in locally influenced rivers. The same likely holds for the tributaries
of the river Rhine sampled by Ruff et al.*? (locations 11-16) and by Munz et al.** However, the
pattern is less obvious here, probably due to errors introduced by the aforementioned
incoherent flow conditions, consumption data, and geographical detail on sampling locations
and emission sources. One option to improve predictions in upstream tributaries is to extend

the UWWTD-Waterbase with WWTPs smaller than 2,000 p.e.
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Figure 5. Ratios of predicted over measured concentrations (PEC/MEC), reported by Burns et al.,*! (A), Ruff et al.,*? (B) and
Munz et al.** (C). Coloured dots are individual combinations of APl and location, measured above the LOD; black bars
represent 95™ percentile and median over all measurements per location (numbered as in Figure 2). Concentrations
predicted under annual mean flow conditions (A) or lowest monthly mean flow conditions (B and C). * = The PEC/MEC ratio

of location 7 in panel A equals zero.

Figure 6A shows that predicted concentrations in the river Ouse basin were highest for
metformin, gabapentin and acetaminophen, mainly resulting from their large consumption
volumes, high excretion fractions and/or relatively poor degradation (Supporting Information
S4.2 & S5). The prioritisation of APIs shifts when based on potential risks to fish instead of
concentrations (Figure 6B). Metformin, gabapentin and acetaminophen drop down the list
and are replaced by other more pharmacologically active APls. Desvenlafaxine, loratadine and
hydrocodone (highlighted in Figure 6A) then become APIs of particular interest. Their risk
guotients for fish were larger than 0.1 in one or more locations in the river basin, with risk
guotients for desvenlafaxine and loratadine even exceeding 1 in ~26% and ~10% of the river
length, respectively. Interestingly, desvenlafaxine is formed as a metabolite of its prodrug
venlafaxine but is not administered as a separate medication in the United Kingdom. This
provides a strong argument for more focus on active metabolites in the environmental risk

assessment of pharmaceuticals. Finally, Figure 7 shows that higher risks are mainly found in
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more densely populated areas, e.g., around the city of Leeds. The geographical distribution
of surface water concentrations and risk quotients for all APIs is visualised in interactive html-

maps in Supporting Information S7.

Our model evaluation showed that ePiE generally predicts concentrations in surface waters
within one order of magnitude of measured concentrations for a wide range of
pharmaceutical classes. While other models have been shown to predict PECs of APIs to
within a factor 2-15 of measured concentrations,® none of these models have been evaluated
using such an extensive dataset on a diverse range of APIs. To further strengthen confidence
in the model, future model development and evaluation should extend towards additional,
more hydrologically and climatically diverse river basins. As part of the IMI funded project
iPiE, we are currently monitoring additional river basins in Denmark, Germany, Spain and the
UK to develop a broader dataset against which to evaluate the model. Because of its flexible
set-up and the use of global high-resolution gridded streamflow,?? ePiE can be extended to
new basins worldwide in a relatively straightforward way. Our model results also showed that
a proper assessment of model performance requires measured concentrations derived under
the same conditions as those modelled. This means that further model development should
ideally be supported by long-term annual sampling efforts. In addition, incorporation of local
consumption patterns, point sources (e.g., hospitals and pharmaceutical production plants),
WWTP characteristics, and environmental conditions, would be especially relevant for

adequate estimation of concentrations in smaller river stretches.
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Figure 6. Ranking of all APIs modelled with ePiE in the Ouse river basin, based on concentrations (A) and risk quotients for

fish (B) predicted throughout the river basin, excluding zero concentrations. Boxes indicate interquartile range including

median; whiskers indicate 1%-99t" percentile range for the total river length. Red boxes: RQ exceeds 1 at least somewhere in

the river network; amber boxes: RQ exceeds 0.1 at least somewhere in the river network; green boxes: RQ below 0.1

throughout the river network.
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