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Summary. Network meta-analysis (NMA) pools evidence on multiple treatments to estimate
relative treatment effects. Included studies are typically assessed for risk of bias; however, this
provides no indication of the impact of potential bias on a decision based on the NMA. We
propose methods to derive bias adjustment thresholds which measure the smallest changes
to the data that result in a change of treatment decision. The methods use efficient matrix
operations and can be applied to explore the consequences of bias in individual studies or
aggregate treatment contrasts, in both fixed and random-effects NMA models. Complex models
with multiple types of data input are handled by using an approximation to the hypothetical
aggregate likelihood.The methods are illustrated with a simple NMA of thrombolytic treatments
and a more complex example comparing social anxiety interventions. An accompanying R
package is provided.
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1. Introduction

Network meta-analysis (NMA) compares the relative effectiveness of multiple treatments by

combining the evidence from randomized controlled trials (RCTs), each of which compares

only a subset of the treatments of interest (Lumley, 2002; Caldwell et al., 2005; Lu and Ades,

2006). NMA is increasingly being used by policy makers to inform treatment recommendations.

However, if some of the trials included are biased then there is a risk that results from the NMA

will also be biased, which could lead to suboptimal treatment recommendations.

There are numerous reasons why results from RCTs may be biased with respect to the tar-

get population for decision making, which are typically dichotomized into issues of ‘internal

validity’, including poor study design or conduct, e.g. inadequate randomization or blinding,

or loss to follow-up (Schulz et al., 1995; Savovic et al., 2012a,b), and issues of ‘external valid-

ity’, affecting generalization to or representativeness of the target population (Rothwell, 2005).
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The potential for bias in an individual study can be assessed qualitatively by using methods

such as the Cochrane risk-of-bias tool (Higgins et al., 2011). The ‘Grading of recommendations

assessment, development and evaluation’ (GRADE) framework (Guyatt et al., 2011) can also

be used to give an indication of the reliability of the evidence informing a pairwise meta-analysis.

Recently, two methods to extend the GRADE framework to NMA have been proposed (Puhan

et al., 2014; Salanti et al., 2014). Although such approaches can produce valuable and necessary

qualitative assessments, they cannot tell how deficiencies in internal or external validity might

affect the treatment recommendation. For example, studies that are rated at high risk of bias due

to issues with internal or external validity that have negligible influence on the treatment recom-

mendation should be of little concern, whereas if they have a larger influence on the treatment

recommendation then they should be scrutinized carefully.

Recently, Caldwell et al. (2016) proposed a method for assessing how adjustment for bias,

either in individual studies or in the combined evidence on treatment contrasts, would affect the

treatment recommendations from an NMA. As a form of ‘threshold analysis’, no assumptions

are made regarding the source or type of bias; nor is any bias to be estimated or adjusted for;

instead, thresholds are derived to show how large potential bias adjustments would need to be

before the base case treatment recommendation changes, and what the new recommendation

would be. The information that is provided by such a threshold analysis is therefore highly

relevant to decision makers and guideline developers. Caldwell et al. (2016) described an iterative

numerical method for obtaining bias adjustment thresholds based on a two-stage Bayesian

NMA; however, there are some limitations to this approach. Firstly, the two-stage NMA, where

pairwise meta-analysis is performed in a first step and then each of the pairwise estimates is

combined to give consistent NMA estimates, is only an approximation to the preferred one-stage

NMA where all studies on all comparisons are synthesized at once (Lu et al., 2011). Decision

makers such as the National Institute for Health and Care Excellence recommend the one-stage

method because of its accuracy and convenience when results are used in decision models (Dias

et al., 2013b; National Institute for Health and Care Excellence, 2013, 2014). Secondly, the

numerical method is limited in its flexibility, requires the original data and full model details

to be available to the analyst and can involve lengthy computation times. This paper presents

an approach to threshold analysis that can be readily used by decision makers and guideline

developers but avoids the limitations of the approach that was taken by Caldwell et al. (2016).

We take a Bayesian approach to NMA because it sits naturally within a decision framework,

easily extending to probabilistic cost-effectiveness analysis (CEA) (Dias et al., 2013b). However,

the methods apply naturally to frequentist approaches where the influence matrix is known, or

(at least approximately) by setting the prior precision matrix to 0.

The remainder of this paper is structured as follows. In Section 2 bias adjustment thresh-

olds are derived algebraically and decision invariant bias adjustment intervals are constructed,

which identify precisely how large a bias adjustment can be before the recommended treatment

changes. In Section 3 the method is illustrated with examples and applied to two published

NMAs. Finally, results are discussed and compared with other approaches. Additional mate-

rial, including detailed mathematical derivations and proofs, is provided in a Web appendix.

The programs that were used to analyse the data can be obtained from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Methods

2.1. Network meta-analysis

Suppose that we have data from n studies on K treatments. Without loss of generality, treatment
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1 is set as the reference against which other treatments are compared. Let Aj be the number

of arms in study j ∈ {1, : : : , n}, so study j contributes Aj − 1 relative effects measures (data

points) of the treatments in arms from 2 to Aj, compared with that in arm 1. There are therefore

N =Σ
n
j=1.Aj −1/ data points in total, which are contained in the data vector y = .y1, : : : , yN/T

where we assume that any multiple data entries from the same study are arranged contiguously

within y. Each element yi : i ∈ {1, : : : , N} is a relative effect that corresponds to a comparison

between treatment ti and comparator ci (also known).

We assume a multivariate normal likelihood for the data, so y∼N.δ, V/ with δ= .δ1, : : : , δN/T

where the covariance matrix V is assumed known. Studies are assumed independent so that

V=diag.V1, : : : , Vn/ is block diagonal, where Vj is the .Aj −1/× .Aj −1/ covariance matrix for

study j. If study j has only two treatments (so only one comparison is made between treatments)

then Vj is a single element giving the variance of the corresponding relative effect.

NMA estimates basic relative treatment effect parameters dk, k = 2, : : : , K, for treatment k

compared with the reference treatment 1, with d1 = 0. Contrasts between any two treatments

b and a can then be formed by using the consistency assumptions (Lu and Ades, 2004) as

dab := db − da. We take a Bayesian approach, specifying prior distributions for unknown pa-

rameters and drawing conclusions from the joint posterior distribution. However, all results

follow naturally for frequentist approaches, e.g. by setting the prior precision matrix Σ
−1
d equal

to 0 (see Section 4). Diffuse normal priors are usually given for the treatment effect parameters;

however, all results that are presented here hold for any multivariate normal prior distribution

d ∼N.d0,Σd/, where d = .d2, : : : , dK/T.

From here, we can proceed in two ways: a fixed effect (FE) model, where all studies on a

treatment contrast estimate the same treatment parameters, or a random-effect (RE) model,

where a degree of heterogeneity is allowed, and studies on a treatment contrast are assumed to

estimate similar treatment parameters from a common distribution. In an FE model, δi =dti −dci

for each i=1, : : : , N, which can be written concisely in matrix form as follows:

prior, d ∼N.d0,Σd/,

likelihood, y|d ∼N.δ, V/,

FE model, δ =Xd,

⎫
⎪⎬
⎪⎭

.1/

for an appropriate N × .K −1/ design matrix X which picks out the corresponding treatment

parameters for each study contrast; for example, a study contrast comparing treatments 2 and

4 in an NMA of five treatments would have corresponding row in X set to .−1, 0, 1, 0/.

For an RE model with two-arm trials, δi ∼N.dti −dci , τ
2/ for each i=1, : : : , N. For simplicity

of exposition, we assume that the between-study variance τ2 is homogeneous between all treat-

ment contrasts; however, the derivations are identical with distinct between-study variances for

each contrast. The FE model can be thought of as a special case of the RE model, where the

between-study variance τ2 is set to 0.

If there are trials with more than two arms, then a multivariate normal distribution is required

to capture the correlations between the estimated relative effects from the same RCT (Higgins

and Whitehead, 1996). In general, the RE model can be written as follows:

prior, d ∼N.d0,Σd/, τ ∼π,

likelihood, y|δ ∼N.δ, V/,

RE model, δ|d, τ2 ∼N.Xd,Στ2/,

⎫
⎪⎬
⎪⎭

.2/

with some prior π on τ (or τ2) such as τ ∼U.0, 10/, and where the between-studies covariance

matrix Στ2 is of the form Aτ2 where A is a block diagonal ‘design matrix’. Since here τ2 is
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assumed to be the same between all contrasts, the block of A corresponding to a study report-

ing relative effects with three or more arms will have 1s on the diagonal and 0.5s everywhere

else (Higgins and Whitehead, 1996). Note that the between-study variance is assumed homoge-

neous for simplicity only; the derivations proceed identically with a generic covariance matrix

Στ2 .

Although we have considered only data in relative effects form here, all results apply easily to

data in absolute effects (arm level) form (or even mixtures of the two) simply by modifying the

design and covariance matrices appropriately.

2.2. Decision rule

We assume that the decision is made on the basis of the estimated relative treatment effects

from the joint posterior distribution of d2, : : : , dK, and (without loss of generality) we assume

that a larger observed outcome (e.g. log-odds of success) is preferable. The optimal treatment

is chosen to be that which has the highest expected treatment effect, i.e. kÅ which satisfies

Ed|y.dkÆ/�Ed|y.dk/, ∀ k =1, : : : , K. For brevity, we write E.·/ in place of Ed|y.·/, so that

kÅ :=arg max
k=1,:::,K

E.dk/: .3/

Note that other decision rules could be considered, e.g. a rule based on a minimally important

difference, or maximizing the expected net benefit from an economic model (see Section 4).

2.3. Deriving bias adjustment thresholds at study level

We begin by considering bias adjustments to individual study estimates of treatment effect one

at a time, i.e. for each data point ym. The methods that are described in this section and Section

2.4 below are repeated for each m∈{1, : : : , N} separately. In Section 2.5 we extend the methods

to consider bias adjustments for multiple data points.

Suppose that some study data point ym, instead of estimating the true value of dtmcm , is biased

so that it estimates dtmcm − βm. We aim to find threshold values for βm at which the overall

decision based on equation (3) changes. For this we consider hypothetical data that have been

bias adjusted, ỹ, on which we could perform the NMA to obtain the ‘true’ treatment effect. We

define the bias-adjusted data as ỹ.βm/=y +βm, where the ith component of the vector βm is

[βm]i =

{
βm if i=m

0 if i �=m.
∀ i∈{1, : : : , N} .4/

We shall denote posterior expectation with respect to the bias-adjusted data by Ẽ.·/ :=Ed|ỹ.βm/.·/:

2.3.1. General form of bias adjustment thresholds

We wish to find the smallest positive and negative values of the bias adjustment such that

the optimal treatment kÅ given by equation (3) changes; we call these values bias adjustment

thresholds and denote them β+thresh
m and β−thresh

m respectively. At each threshold value there is a

new treatment k̃
Å

that achieves the maximum posterior expected treatment effect.

To find the threshold values, we consider a set of K −1 possible solutions {uakÆ,m : a∈{1, : : : ,

K}\kÅ}, where each uakÆ,m reflects the amount of bias adjustment to data point ym required

to change the sign of E.dakÆ/ and to make treatment a more efficacious in expectation than

the current optimal treatment kÅ. The threshold values β+thresh
m and β−thresh

m are simply the smal-

lest positive and negative solutions from this set:
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β+thresh
m =ubkÆ,m b= arg min

a∈{1,:::, K}\kÆ

{uakÆ,m : uakÆ,m > 0},

β−thresh
m =ubkÆ,m b= arg max

a∈{1,:::, K}\kÆ

{uakÆ,m : uakÆ,m < 0}:
.5/

The possible solutions uakÆ,m are determined by the expected difference in treatment effects,

−E.dakÆ/, divided by the amount of influence that ym has on the expected difference, given by a

linear combination of elements of the influence matrix H : for kÅ �=1

uakÆ,m =
−E.dakÆ/

[H]kÆ−1,m − [H]a−1,m
, for a∈{2, : : : , K}\kÅ,

u1kÆ,m =
−E.d1kÆ/

[H]kÆ−1,m
, for a=1; .6a/

for kÅ =1

u1a,m =
−E.d1a/

[H]a−1,m
, for a∈{2, : : : , K}: .6b/

[H]a−1,m is the entry in the .a−1/th row and mth column of H, the influence matrix that maps

the data y onto the posterior estimates of the basic treatment effect parameters d:

Ẽ.d/=E.d/+Hβ .7/

for any general vector β changing the observed data y to bias-adjusted data ỹ.β/=y +β. The

exact form of H will depend on the model and is described in the following sections for some

typical NMA models. The influence matrix is related to the hat matrix (Konig et al., 2013; Krahn

et al., 2013; Salanti et al., 2014); see Section 4.

The new optimal treatment at the thresholds could be found by using equation (3), which

requires re-evaluating the joint posterior mean and taking a maximum for each β+thresh
m and

β−thresh
m . However, lemma 1 (in on-line Appendix A.1) shows that a more efficient approach is

simply to note the new optimal treatment from the contrast whose posterior expectation changes

sign at the bias adjustment threshold—treatment b from equation (5).

From the positive and negative bias adjustment thresholds, it is intuitive to think of construct-

ing an interval .ym +β−thresh
m , ym +β+thresh

m / within which a bias-adjusted value of ỹm can lie

without changing the treatment decision. We refer to such an interval as the decision invariant

bias adjustment interval about ym and visualize this as shown in Fig. 1.

Thresholds and invariant intervals may be derived for more complex treatment decisions, as

well as the simple ‘maximal efficacy’ decisions that were described above. For example, decision

makers may be interested in the level of bias adjustment that would be required to make another

treatment significantly more effective than the base case optimal treatment, as judged by some

minimal clinically important difference ρ. In this case, the thresholds are found in the usual

Fig. 1. Example construction of a decision invariant bias adjustment interval ( ) for a data point ym, for
an NMA with five treatments and current optimal treatment k*= 4: the new treatment decision at the negative
and positive thresholds would be 2 and 3 respectively
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manner (equation (5)) from the set of possible solutions now given as follows: for kÅ �=1

uakÆ,m =
−E.dakÆ/−ρ

[H]kÆ−1,m − [H]a−1,m
, for a∈{2, : : : , K}\kÅ,

u1kÆ,m =
−E.d1kÆ/−ρ

[H]kÆ−1,m
, for a=1;

for kÅ =1

u1a,m =
−E.d1a/+ρ

[H]a−1,m
, for a∈{2, : : : , K}:

More complex threshold analyses, e.g. for specific biases, may be undertaken by examining the

set of uab,m values from equation (6) (for an example, see Section 3.2.2).

2.3.2. Bias adjustment thresholds for the fixed effect model

For the FE model with conjugate normal prior distribution for the treatment effect parameters

d (equation (1)), the on-line appendix A.2 (see also Gelman et al. (2013), page 71) shows that

the posterior distribution is

d|y ∼N{Σn.Σ−1
d d0 +XTV−1y/,Σn} .8/

where the posterior covariance matrix is Σn = .Σ−1
d +XTV−1X/−1.

The threshold values are found by using equations (5) and (6), where the influence matrix is

H =ΣnXTV−1 (on-line appendix A.3).

2.3.3. Bias adjustment thresholds for the random-effects model

The RE model (equation (2)) is typically specified with a prior distribution over the between-

studies standard deviation τ which, because of the hierarchical nature of the model, results in

a joint posterior distribution that generally has no closed form solution. One approach in this

situation would be to find bias adjustment thresholds numerically by iteratively changing the

data until the decision changes; this is likely to be very computationally expensive. However,

approximate algebraic bias adjustment thresholds can be obtained for the RE model by con-

sidering the between-studies variance to be known, fixed and unchanged after bias adjustment.

Sensitivity analyses may then be performed to assess how the thresholds change for various

values of τ2.

For the RE model given in equation (2) with τ2 assumed known and fixed, the on-line appendix

A.4 (see also Gelman et al. (2013), page 582) shows that the joint posterior distribution for

d and δ is
(

d

δ

)∣∣∣∣y, τ2 ∼N

{
Σn

(
Σ

−1
d d0

V−1y

)
,Σn

}
,

Σn =

(
XT

Σ
−1
τ2 X +Σ

−1
d −XT

Σ
−1
τ2

−Σ
−1
τ2 X V−1 +Σ

−1
τ2

)−1

=

(
AÅ BÅ
BT

Å CÅ

)
,

.9/

where the posterior covariance matrix Σn is partitioned according to the dimensions of d and

δ. Under bias-adjusted data, it can be shown (on-line appendix A.5) that the joint posterior

mean becomes Ẽ.d/=E.d/+BÅV−1βm. Following the same arguments as for the basic FE case

(on-line appendix A.3), the thresholds are given by equations (5) and (6) where the influence

matrix is now H =BÅV−1.

The posterior covariance matrix Σn is the inverse of a block matrix and so can be calculated

explicitly (see Bernstein (2005), page 45); it is, however, more likely that Σn will have been
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estimated by using Bayesian software such as WinBUGS (Lunn et al., 2000). We can then

simply partition the posterior covariance matrix as in equation (9) to obtain BÅ.

2.3.4. Extended models with additional parameters

We may wish to add additional parameters to the basic FE and RE models (Sections 2.3.2 and

2.3.3), e.g. to include data as absolute effect measures (i.e. as one observation per study arm)

where a nuisance study level baseline parameter for arm 1 is included (Lu and Ades, 2006). We

denote the additional parameters by µ and give them a normal prior distribution µ∼N.µ0, Σµ/.

The simplest way to achieve this for the FE model is to extend the parameter vector to

γ =
(

d
µ

)
. The design matrix X is also extended to describe the model. The on-line appendix A.6

shows that we obtain the threshold equations (5) and (6), where the influence matrix is now

H = [ΣnXTV−1]rows 1:K−1.

For the RE model, the additional parameters have an associated design matrix M, and we

impart further flexibility with a design matrix L for δ. The on-line appendix A.7 shows that the

thresholds are given by equations (5) and (6) with H = .BÅLT +DÅMT/V−1. Here, analogously

to equation (9), BÅ and DÅ are partitions of the posterior covariance matrix, corresponding to

the covariance of d with δ and of d with µ respectively.

2.3.5. Class effect random-effect model

Class effect models are often utilized in NMAs where treatment effects may be assumed ex-

changeable within discrete classes, e.g. based on common constituent compounds or modes

of action (Dominici et al., 1999; Mayo-Wilson et al., 2014). In such models, treatment effects

within the same class are assumed exchangeable and normally distributed as d|z ∼N.Zz, Σd/,

with class effect parameters z and class design matrix Z assigning a class to each treatment.

The class effect parameters are given a normal prior distribution. Σd is the between-treatment

covariance matrix, which may specify a common within-class variance or different within-class

variances for each class. If Σd is the zero matrix then the model is equivalent to fixed class effects.

To proceed analytically we assume that the between-studies variance τ2 is fixed, known and

invariant to bias adjustment (as with the RE model in Sections 2.3.3 and 2.3.4); we must also

make the same assumptions about the within-class variances (for the random class effect model).

In the on-line appendix A.8 we show that the influence matrix for an RE model including class

effects is identical to that in the extended RE case in Section 2.3.4; we may proceed exactly as

in the extended RE case despite the presence of class effects.

2.4. Bias adjustment thresholds at the contrast level

In clinical guideline development, assessment of the quality of evidence is often directed at the

entire body of evidence on a contrast rather than at individual studies. This is the method of

evidence classification that is used in, for example, extensions of GRADE to NMA (Puhan

et al., 2014; Salanti et al., 2014). We may therefore wish to examine the robustness of treatment

decisions to bias in the combined body of evidence at contrast level, rather than for individ-

ual studies. In some cases it may only be possible to obtain decision invariant thresholds at

the contrast level, i.e. when only the summary results (posterior means and covariance matrix

for all parameters) from an NMA are available. Alternatively the NMA may entail a complex,

hierarchical or otherwise analytically intractable model but where the joint posterior distri-

bution for the treatment effect parameters can be assumed to be approximately multivariate

normal.
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Our approach is to consider a hypothetical data set, consisting of a single independent data

point for each contrast where there is direct evidence, which when pooled by using an FE

NMA gives a posterior distribution that closely approximates the true posterior distribution as

reported by the original NMA. We are not suggesting independence of the original data, but

that the posterior distribution could have arisen (at least approximately) from an alternative set

of independent data points. Multiarm trials, REs and other features are therefore handled as

usual in the original NMA, and all correlations and uncertainty appropriately propagated into

the joint posterior distribution on which the contrast level threshold analysis is based. We show

that, to derive thresholds, we need only the covariance matrix of the hypothetical data, and not

the hypothetical data points themselves. We then proceed to derive thresholds as for the basic

FE model that was described in Section 2.3.2.

We consider a hypothetical data set consisting of single independent data points yab with

variances vab, representing the combined evidence on each contrast dab where there is direct

evidence, with multivariate normal likelihood y|d ∼ N.Xd, V/ where X is a design matrix and

V is diagonal with elements vab. We design the hypothetical data set so that pooling using an

FE NMA gives a posterior distribution N.η̂, Σ̂/ that closely approximates the true posterior

distribution N.η,Σ/ that is reported by the original NMA. Thresholds can then be derived as

for the basic FE model in Section 2.3.2.

A full derivation of the contrast level method is given in the on-line appendix A.9. We choose

V to solve Σ = Σ̂, where the covariance matrix of the reconstructed posterior distribution

is Σ̂ = .Σ−1
d + XTV−1X/−1 (see Section 2.3.2). When the evidence network is complete (i.e.

every treatment is joined to every other by direct evidence), there is a unique exact solution;

otherwise an approximate solution is found by using non-negative least squares (Lawson and

Hanson, 1995). In the latter case, the performance of the approximation may be assessed by

examining the Kullback–Leibler divergence (Kullback and Leibler, 1951) of the reconstructed

posterior distribution from the true posterior distribution. Interpreting the Kullback–Leibler

divergence as a log-Bayes-factor, values less than 1 indicate negligible differences between the

reconstructed posterior from the true posterior and a good approximation, whereas values

greater than 3 indicate considerable differences and a poor approximation (Kass and Raftery,

1995).

Once the hypothetical likelihood covariance matrix has been reconstructed, the thresholds are

then evaluated as before by using equations (5) and (6) with the influence matrix H =ΣXTV−1.

Note that it would not be possible to re-evaluate the posterior means under the bias-adjusted

data to obtain k̃
Å

as we do not have the hypothetical data, but we can use the result of lemma 1

(on-line appendix A.1) to obtain the new optimal treatment efficiently, as before.

2.5. Thresholds for bias in multiple studies or contrasts

Thus far we have been concerned with the effects of bias adjustment for a single data point

at a time. However, we may wish to consider the effect of bias adjustment in multiple studies

or contrasts simultaneously, e.g. all the relative effects estimates from a multiarm study, or

perhaps multiple studies that are of concern. Such analyses are possible at both study and

contrast level, though they are more likely to be motivated by knowledge of individual trials

and their characteristics. Equation (7) shows how a general bias adjustment β would change

the posterior mean of the treatment effect parameters. We extend the approach that is taken in

the on-line appendix A.3 to let two elements of β be non-zero in equation (4), allowing for bias

adjustment in two data points ym1
and ym2

simultaneously. We end up solving K −1 equations

in two unknowns:
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Fig. 2. Example of thresholds lines in two dimensions for an NMA of five treatments with k* D4 ( , invariant
region about the origin (no bias adjustment)): any simultaneous bias adjustment .βm1

,βm2
/ to data points ym1

and ym2
which remains within the invariant region does not change the optimal treatment; at the boundary

of the invariant region formed by thresholds line βthresh
akÆ the new optimal treatment is k̃* Da

0= Ẽ.dakÆ/=E.dakÆ/+ .[H]kÆ−1,m1
− [H]a−1,m1

/βm1
+ .[H]kÆ−1,m2

− [H]a−1,m2
/βm2

,

∀ a∈{1, : : : , K}\kÅ .10/

where m1 and m2 are the indices of the two data points to be bias adjusted. We see that,

instead of threshold points, we have K − 1 threshold lines in two dimensions. By rearrang-

ing equation (10) and using the definition of uakÆ,m from equation (6), we can use the set of

previously calculated uakÆ,m to arrive at the equation for each threshold line βthresh
akÆ : βm2

=

uakÆ,m2
− .uakÆ,m2

=uakÆ,m1
/βm1

. The intersection of these threshold lines creates a bias invariant

region, e.g. as portrayed in Fig. 2 for an NMA of five treatments where the current optimal

treatment is kÅ =4.

It is simple both mathematically and computationally to carry on extending such a technique

to higher dimensions: allowing r �N components of β to be non-zero results in r-dimensional

threshold hyperplanes βthresh
akÆ with equations βTwakÆ = 1 for a ∈ {1, : : : , K} \ kÆ, where the ith

component of wakÆ is

[wakÆ ]i =

{
u−1

akÆ,i if i∈{m1, : : : , mr}

0 otherwise.
∀ i∈{1, : : : , N}

However, beyond two (or possibly three) dimensions it becomes impossible to visualize and

analyse these threshold hyperplanes effectively and the resulting invariant hypervolume formed

by their intersection. As such, any analysis of simultaneous bias adjustment is probably best

approached in a targeted manner, identifying a small number of data points on which to focus

attention.

An alternative approach is to report the vectors βmin
akÆ = wakÆ=‖wakÆ‖2 for a ∈ {1, : : : , K} \ kÅ

giving the point on each threshold hyperplane βthresh
akÅ which lies closest to the origin and so
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minimizes the amount of overall bias adjustment required to change the optimal treatment

decision to k̃
Å

=a.

3. Examples

We apply the threshold method to two examples: firstly, an NMA of thrombolytic treatments

(Caldwell et al., 2005) to demonstrate study and contrast level analyses on a simple FE model,

along with simultaneous bias adjustment in two data points; secondly, a large class effects

RE NMA comparing treatments for social anxiety (National Collaborating Centre for Mental

Health, 2013; Mayo-Wilson et al., 2014) to demonstrate the power of a contrast level analysis

when applied to complex models. Notes on practical computation are included in the on-line

appendix A.10. Code is provided at http://wileyonlinelibrary.com/journal/

rss-datasets along with an R package implementing the threshold method for general

use in the on-line supplementary materials.

3.1. Example: thrombolytics

Fig. 3 shows the network of treatment comparisons for K = 6 thrombolytic treatments based

on n=14 studies, taken from two systematic reviews (Boland et al., 2003; Keeley et al., 2003).

Previous work has shown that an FE model is appropriate for the data (Caldwell et al., 2005;

Dias, Welton, Sutton, Caldwell, Lu and Ades, 2013). All studies have two arms apart from one

with three, so the number of data points (log-odds-ratios (ORs)) is N =15.

3.1.1. Study level fixed effects analysis

An FE model was fitted to the data by using WinBUGS 1.4.3 (Lunn et al., 2000) and code

from Dias, Welton, Sutton, Caldwell, Lu and Ades (2013). The treatment effect parameters dk

are interpreted as the log-OR of mortality between treatment k and the reference treatment

1, and d1 = 0. In this example the optimum treatment is the one which minimizes the log-OR

of mortality, here kÅ = arg mink=1,:::,6 E.dk/ = 3 (full results of the NMA are available in the

accompanying R package).

The results of each study and the study level threshold analysis are shown in Fig. 4: the table on

the left-hand side displays the estimated log-OR from each study comparison along with a 95%

confidence interval (CI), and a decision invariant bias adjustment interval about the estimate,

Fig. 3. Thrombolytics example network, showing how the six treatments are connected by study evidence:
nodes represent treatments and edges show comparisons made by studies; numbers inside the nodes are
the treatment codings; numbers on the edges give the number of studies making that comparison; the bold
triangle is the loop formed by the three-arm study
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Fig. 4. Study level forest plot, displaying invariant intervals for the thrombolytics example, sorted with smallest thresholds first (bold labels in the table
emphasize study estimates with short invariant intervals lying within the 95% CI; the optimal treatment without bias adjustment is k*D3): 
, log-OR; ,
95% CI; , invariant interval
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showing how far any bias adjustment can be made before the optimal treatment changes. The new

optimal treatments k̃
Å

are reported alongside either end of the invariant interval. The right-hand

side of Fig. 4 displays these graphically, with points and lines for estimated log-ORs and their CIs

and shaded bands for the invariant regions. Where a 95% CI extends beyond the invariant interval

the study label is bold, indicating that the treatment recommendation is sensitive to the level of

imprecision in this study estimate. In this example, the treatment recommendation is sensitive

to the level of imprecision in studies 11 and 35 (k̃
Å

= 5) and study 34 (k̃
Å

= 6). For example,

the estimated log-OR of 0.01 for treatment 6 versus 3 in study 34 has an invariant interval of

(−0:00, 18.51); a change to the log-OR of only −0:01 in favour of treatment 6 (either due to bias

adjustment, or simply random sampling error) is enough to change the optimal treatment from

kÅ =3 to k̃
Å

=6. Looking at the network of treatments (Fig. 3), this sensitivity is not surprising.

Treatment 6 is only compared directly with treatment 3, and only in study 34, which found

no evidence of a significant difference between the two treatments (the 95% CI for the log-OR

contains zero). Since kÅ =3, adjusting the log-OR to be in favour of treatment 6 means that the

network of evidence behind treatment 3 now points to k̃
Å

=6. Similarly, changes of −0:06 and

−0:14 to the treatments 5 versus 3 and 5 versus 1 comparisons of studies 35 and 11 respectively

both result in k̃
Å

= 5 becoming optimal. Other studies may be biased beyond the range of the

95% CI; our method highlights that the treatment recommendation may be sensitive to plausible

bias adjustments in studies 1, 5 and 6, each with thresholds less than 0.5 on the log-OR scale.

All studies with plausibly small thresholds should be assessed for risk of bias, e.g. by using

GRADE (Guyatt et al., 2011) or the Cochrane risk-of-bias tool (Higgins et al., 2011), and the

thresholds and invariant intervals interpreted in light of the expected magnitude and direction

of bias, e.g. novelty bias favouring a new treatment. The metaepidemiological literature on the

empirical evidence for bias is likely to help to determine plausible magnitudes for biases (Savovic

et al., 2012a). In the remaining studies, our method reveals that no changes—no matter how

large—can ever plausibly lead to changes in the treatment recommendation, particularly studies

2–4 and 7–10, since the bias adjustment thresholds are infeasibly large on the log-OR scale.

3.1.2. Contrast level analysis

We also perform a contrast level analysis to examine sensitivity to changes in the aggregate

bodies of evidence on each contrast. We do not need the original data to do this; we use only the

posterior means and covariance matrix from the joint posterior distribution of the treatment

effect parameters d = .d2, : : : , d6/T. We treat the posterior distribution as if it arose from an

NMA on seven independent data points y = .y12, y13, y14, y15, y34, y35, y36/T—the number of

direct comparisons in the treatment network (i.e. the edges in Fig. 3). Each data point yab

represents the combined direct study evidence on a treatment contrast dab.

Following the methods in Section 2.4, we construct an approximate hypothetical likelihood

by using non-negative least squares—see the on-line appendix A.11. The Kullback–Leibler

divergence of the reconstructed posterior distribution from the true posterior distribution is

very small at 6:76×10−5, indicating that the hypothetical data are a good approximation.

Fig. 5 presents results of the NMA and the contrast level analysis, which echoes the study level

analysis. Notably the thresholds for contrasts where there is a single two-arm study making the

comparison (treatments 6 versus 3 and 5 versus 1) match almost exactly with the thresholds for

the corresponding studies in the study level analysis (Section 3.1.1), as expected. Furthermore,

we clearly see the effects of bias adjustment on entire bodies of evidence in comparison with

the study level approach: individually, studies making the treatments 2 versus 1 comparison

have little influence on the treatment decision, shown by wide invariant intervals (Fig. 4); when
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Fig. 5. Contrast level forest plot, displaying invariant intervals for the thrombolytics example (bold labels in the table emphasize contrast estimates with
short invariant intervals lying within the 95% credible interval; the optimal treatment without bias adjustment is k* D 3): 
, log-OR; , 95% credible
interval; , invariant interval
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the evidence from these studies is considered collectively for bias adjustment, the combined

invariant interval becomes narrower. Indeed, a combined bias adjustment of −0:14 in favour

of treatment 2 may be plausible. Note here that the black lines in Fig. 5 correspond to the 95%

credible intervals for each contrast estimate resulting from the NMA, instead of CIs for each

study estimate as in the study level analysis (Fig. 4).

The threshold analysis gives very small thresholds for the combined evidence on treatment

contrasts 5 versus 3 and 6 versus 3, which is symptomatic of the lack of evidence for significant

differences between these treatments. A likely treatment decision in such a scenario (in the

absence of issues surrounding cost or adverse events) would therefore be to recommend any of

these three treatments.

3.1.3. Simultaneous bias adjustment in two data points

We shall now consider analysing bias adjustment in two data points simultaneously. Such an

analysis is possible at both study and contrast level, though it is more likely to be motivated by

knowledge of individual trials and their characteristics; thus we shall return to the study level

scenario for this example. In the thrombolytics data set, study 1 was a three-armed study com-

paring treatments 1, 3 and 4, resulting in two log-OR estimates against the reference treatment

1. The two log-ORs are not independent, and so if bias adjustment is required it is possible

that both estimates will need to be bias adjusted together—if the trial failed to blind patients,

for example. Fig. 6 presents the invariant region for simultaneous bias adjustments in the two

log-ORs estimated by study 1, formed by the polygon of intersecting threshold lines about the

origin, which can either be closed (threshold lines in every direction) or open (bias adjustment in

some direction will never cross a threshold line). In this example, three threshold lines form an

invariant region for bias adjustment, with new optimal treatments at the thresholds kÅ =4, 5, 6.

The points where the boundaries of the invariant region intersect the axes correspond to the

one-dimensional invariant intervals that were presented in Fig. 4, since setting one of the two

bias adjustments to 0 returns us to analysing a bias adjustment in one data point only. Of par-

ticular interest are the threshold lines for k̃
Å

= 4 and k̃
Å

= 5 which lie closest to the origin. In

the one-dimensional case we saw that, individually, bias adjustments of 0.12 in the log-OR of

treatment 3 versus 1 or −0:11 in the log-OR of treatment 4 versus 1 were needed to change the

optimal treatment to k̃
Å

=4, and a bias adjustment of 5.28 in the log-OR of treatment 4 versus

1 was needed to change the optimal treatment to k̃
Å

=5 (Fig. 4). Now, allowing both estimates to

be bias adjusted simultaneously, we see that it is possible to arrive at k̃
Å

=5 with much smaller

amounts of bias adjustment than this; for example with bias adjustments of just 0.14 to the

treatment 3 versus 1 log-OR and 0.02 to the treatment 4 versus 1 log-OR we cross the invariant

threshold and would recommend treatment 5.

3.2. Example: social anxiety

We now consider a more complex example where analysis is greatly simplified by using the

contrast level approach. Fig. 7 shows the network for an NMA of 41 interventions for social

anxiety from 100 studies (National Collaborating Centre for Mental Health, 2013; Mayo-Wilson

et al., 2014). The original analysis uses an RE model which includes class effects for 17 different

treatment classes and a secondary network of studies for a regression calibration on recovery.

No single common outcome measure was used across the studies included, so instead treatment

effects were transformed into standardized mean differences (SMDs) for NMA. Table A1 in the

on-line appendix A.12 lists the treatment codes and classes, and full results of the NMA are

available in the accompanying R package.



Sensitivity of Treatment Recommendations to Bias 857

k
~

* = 6

k
~

* = 5

k
~

* = 4

−2

0

2

4

6

8

10

12

14

−1.5 −1.0 −0.5 0.0 0.5

Adjustment in Study 1 LOR: 3 vs. 1

A
d
ju

s
tm

e
n
t 
in

 S
tu

d
y
 1

 L
O

R
: 
4
 v

s
. 
1

Fig. 6. Invariant region formed from threshold lines for bias adjustment to the two relative effect estimates
from study 1 ( , invariant region): the new optimal treatments on the boundary are indicated by k̃*; optimal
treatment without bias adjustment is k* D3

3.2.1. Contrast level analysis

Despite the complexity of the original analysis, a contrast level threshold analysis is straightfor-

ward. We consider the joint posterior distribution as if it arose from an NMA on 84 independent

data points, each representing the aggregate direct evidence that is available on a single treat-

ment contrast. Following the methods in Section 2.4, we construct an approximate hypothetical

likelihood by using non-negative least squares. The fitted hypothetical likelihood covariance

matrix includes a single infinite variance for one contrast (treatment 7 versus 1), meaning that

the direct evidence on this contrast is estimated to have no influence on the posterior distribu-

tion. The Kullback–Leibler divergence of the reconstructed posterior distribution from the true

posterior distribution is 1.55, indicating that the hypothetical data are a reasonable approxima-

tion (interpreted as a log-Bayes-factor, greater than 1 but less than 3).

Owing to the large number of contrasts, Fig. 8 shows only the results of the threshold analysis

for contrasts with thresholds of less than 2 SMDs. The optimal treatment under the original

analysis is kÅ = 41, group cognitive behavioural therapy with phenelzine. No contrasts have

invariant intervals which lie inside the 95% credible interval, meaning that the treatment recom-
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Fig. 7. Social anxiety treatment network: nodes represent treatments and edges show study comparisons;
numbers around the edge are the treatment codings; treatment classes are indicated by the braces (some
classes contain a single treatment only); treatment 1 is waitlist, treatment 2 is pill placebo and treatment 3 is
psychological placebo; Table A1 in the on-line appendix A.12 lists the treatment codes and classes

mendation is robust to the level of imprecision in the contrast level data. The smallest threshold

is a positive change of 0.46 in the estimate of −0:88 SMD for the treatment 41 versus 31 contrast

(the upper limit of the corresponding invariant interval is −0:88+0:46=−0:42), at which point

treatment 36 (cognitive therapy) becomes optimal. Cohen (1988) considered an SMD of more

than 0.8 to be large in the context of behavioural sciences; all except five thresholds are larger

than this, and for each of these the new optimal treatment is treatment 36. Note that some invari-

ant intervals are open on one side (indicated by ‘NT’) as there is no threshold in this direction;

for these contrasts, a bias adjustment in this direction will never change the treatment decision.

An important observation from this analysis is that the treatment recommendation is insensitive

to changes in the combined evidence on the large majority of contrasts. Rather than performing

a long and laborious qualitative assessment of all 84 contrasts and 100 studies, attention can be

focused on the smaller number of contrasts (e.g. the five studies with thresholds smaller than

0.8 SMD) where plausible adjustments to the data may cause a change in treatment recommen-

dation. Risk of bias assessments should be performed for these contrasts, and the thresholds

and invariant intervals interpreted in light of the magnitude and direction of any potential bias.

3.2.2. More complex analyses: pharmacological and psychological treatment bias

The methods that were described in Section 2 are easily extended to more complex decision

rules and bias adjustment scenarios, simply by manipulating the set of uakÆ,m values. Here,

we have considered the effects of adjusting for a potential common bias (at the contrast level)
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treatment without bias adjustment is k* D41

among all pharmacological treatments (including combination therapies) and similarly among

all psychological treatments. To do this, note that the influence of a common bias to a set of

data points {ym : m∈M} (e.g. the pharmacological treatment contrasts versus inactive) is equal

to the sum of the influences for each individual data point. Thus, the set of possible threshold

solutions for a common bias is {uakÆ,M : a∈{1, : : : , K}\kÅ}, where

uakÆ,M =
−E.dakÆ/∑

m∈M
.[H]kÆ−1,m − [H]a−1,m/

=

( ∑
m∈M

u−1
akÆ,m

)−1

:
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As before, the thresholds are then found by taking the smallest positive and negative solutions

from this set.

The results of these analyses are shown in Fig. 9. In each case, at the smallest threshold, treat-

ment 36 becomes optimal: with an adjustment of 0.67 SMD for all pharmacological treatments

compared with inactive control (i.e. reducing their efficacy), or with an adjustment of −0:66

SMD for all psychological treatments compared with an inactive control (i.e. increasing their

efficacy). The magnitude of these thresholds is large (Cohen, 1988)—probably much larger than

any plausible common bias. We might also consider the effects of adjusting for these common

biases simultaneously by examining the set of uakÆ,m values. The resulting two-dimensional in-

variant region is shown in Fig. 10. The size of the invariant region would probably reassure

decision makers that adjustment for common pharmacological and/or psychological treatment

effect biases (if they exist) would not affect the treatment recommendation.

4. Discussion

The threshold method that is presented in this paper enables researchers and decision makers to

quantify the robustness of their conclusions to potentially biased evidence. Like all sensitivity

analyses, it is useful for decision makers to know how robust their decision is to variations in

assumptions and in the evidence inputs, especially if decisions are likely to be controversial,

or when the quality of evidence is likely to be questioned. Current approaches based around

the GRADE framework (Puhan et al., 2014; Salanti et al., 2014) give a thorough qualitative

evaluation of the quality of evidence behind such decisions, but they fall short of describing the

influence on treatment recommendations of any bias in the evidence. Providing bias adjustment

thresholds and invariant regions can attest to the robustness of conclusions despite poor quality

evidence, or it can highlight areas where the evidence should be carefully assessed for bias

since bias adjustments of plausible magnitude could change the optimal treatment decision.

Although our method gives quantitative results, their interpretation still requires qualitative

judgements to determine which evidence might plausibly be biased and to what extent; the

metaepidemiological literature on the empirical evidence for bias is likely to be helpful once

potential biases have been identified in a risk of bias assessment (Savovic et al., 2012a). It is

important to note that, although we highlight where a decision is sensitive to imprecision in

the evidence when thresholds lie inside the CI or credible interval, it is entirely possible for

larger bias adjustments to be plausible; for example, large studies yielding precise estimates

may be biased beyond the range of their 95% CI. Although we have discussed only NMA of

RCTs, the threshold method applies equally to analyses incorporating observational evidence;

however, the potential for bias is much greater when including non-randomized evidence, and

the direction and magnitude of bias is difficult to predict.

It must be clear that threshold analyses do not seek to test for the presence or absence of bias;

nor do they make any assumptions about the source, type or expected magnitude or direction

of any bias. Rather, if any such bias was present, then subsequent adjustment would only alter

the treatment decision if it were larger than the given thresholds. Knowledge of the likely nature

of possible biases should be used in the planning and—most importantly—interpretation of

threshold analyses.

Threshold analysis has previously been proposed by Caldwell et al. (2016), using a numerical

method to derive thresholds based on a two-stage Bayesian NMA. A particular feature of the

method that is proposed in this paper is that it starts from the one-stage Bayesian posterior

distribution of relative treatment effects and manipulates it algebraically, rather than iteratively

modifying the data. Not only can algebraic solutions be reached almost instantaneously by using
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matrix operations rather than lengthy and computationally expensive numerical techniques, but

also this confers considerable flexibility; in practice, treatment recommendations are often based

on complex models with multiple types of data input which would be difficult to fit into the

two-stage framework. Furthermore, the original data are not required for the threshold analysis

to be performed, provided that posterior means and the covariance matrix of the parameters

are available. Although not frequently published at present, this level of summary data is likely

to be much easier to obtain on request than the full original data set; this significantly widens

the scope of threshold analysis, compared with numerical methods.

An extension of this work is to embed the threshold method into a probabilistic CEA (Doubilet

et al., 1985; Critchfield and Willard, 1986; Dias et al., 2013b), where the optimal treatment is

found not by maximizing the posterior expected treatment effect as in equation (3), but by

maximizing the posterior expected value of some net benefit function instead. A CEA seeks

to weigh up the improvements in quality of life and life expectancy against the total costs for

each treatment regimen, and this is achieved by the use of a net benefit function (Stinnett and

Mullahy, 1998). Such analyses are used extensively by reimbursement agencies and threshold

analysis would be useful to determine how bias adjustments can affect the outcome of a CEA.

When the net benefit function is linear in treatment efficacy (or can be approximated as such),

the threshold equations (6) can be easily transformed onto the net benefit scale. However,

CEA models can be complex and often involve net benefit functions that are non-linear; as

such it would be useful to extend the threshold methodology to deal with non-linear decision

functions.

Other decision rules besides maximum efficacy or net benefit may be considered, e.g. recom-

mending any active treatment if better than placebo, recommending a group of treatments whose

efficacies are clinically equivalent (e.g. within some minimum clinically important difference or

non-inferiority margin) or restricting a recommendation to currently available treatments. More

complex threshold analyses are also possible, e.g. to examine generic bias in a class of treatments

or studies sharing given characteristics. All of these analyses are possible directly by examining

the set of values uab,m (see equation (6)), giving the amount of adjustment to data point ym

which would see the posterior expectation of the contrast between treatments a and b change

sign (so treatment preference between a and b switches).

Derivation of algebraic thresholds for the RE model is hindered by the analytic intractability of

the joint posterior distribution when the between-studies variance is given a prior distribution;

instead we make the assumption that this variance is fixed and known so that conjugacy is

preserved. This assumption should be tested by sensitivity analyses substituting plausible values

of τ2, e.g. from the upper and lower limits of the 95% credible interval that is obtained from

the NMA or from predictive distributions that are derived from similar meta-analyses (Rhodes

et al., 2015; Turner et al., 2015). There is empirical evidence that heterogeneity is greater in

biased evidence bases (Savovic et al., 2012a,b), so it might be expected that τ2 would reduce

after adjusting for bias (possibly beyond the lower credible limit).

Further applications of the threshold method are to metaregression and bias adjustment

models (Dias et al., 2013b). The approach would follow from Section 2.3.4, where the additional

parameters are regression covariates. Particular care should be taken to define an appropriate

decision rule and in the interpretation of the treatment effect parameters since decisions can

be different at different covariate values. The interpretation of the thresholds in this case is in

terms of the adjustment for residual biases that are not accounted for in the model.

We have seen that the influence matrix H mapping the data y onto the posterior mean of

the treatment effect parameters E.d/ is central to the derivation of thresholds and describes

how changes in individual data points affect the posterior means of the basic treatment effect
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parameters. The role of a related quantity, the hat or contributions matrix, has been highlighted

by several researchers previously in the context of influence analysis (Konig et al., 2013; Krahn

et al., 2013; Salanti et al., 2014). The hat matrix describes how changes in individual data points

affect the predicted values (as opposed to the treatment parameters), and in the basic FE model

is derived from the design and influence matrices as XH. Krahn et al. (2013) and Konig et al.

(2013) used the hat matrix to visualize the ‘flow of evidence’ in an NMA and to analyse and

detect inconsistency, which Salanti et al. (2014) utilized within the context of GRADE applied

to NMA.

A key contribution of this paper has been the reconstruction of the influence matrix (and

therefore the hat matrix) from the Bayesian posterior distribution. This allows considerable

flexibility because, in practice, treatment recommendations may be based on complex models,

e.g. including class effects, and may incorporate several types of data. The social anxiety guideline

(National Collaborating Centre for Mental Health, 2013), for example, incorporates data on

both response and recovery rates, and synthesizes trials reporting either ORs or outcomes on

continuous scales. It is, of course, the need for flexible computation methods in the face of

irregular and complex data that has made Bayesian Markov chain Monte Carlo sampling the

method of choice in practical applications (Dias et al., 2013a).

Although we have derived results in a Bayesian context, the threshold method applies equally

to NMAs that are performed within a frequentist framework. The influence matrix H can be

written down for many frequentist estimation routines: for example, the maximum likelihood

estimate for the treatment parameters in an FE model is of the form d̂ = .XTV−1X/−1XTV−1y,

so the influence matrix is H = .XTV−1X/−1XTV−1, and we continue with equation (6) to derive

thresholds as usual. In this case the result can also be reached by considering the frequentist

framework as a special case of the Bayesian framework with the prior precision matrix Σ
−1
d

equal to 0; for other estimation routines the correspondence is not exact but may be a useful

approximation if the influence matrix has no closed form.

One practical limitation of the threshold method is that there is no satisfactory way to display

the results of simultaneous bias adjustments in more than three contrasts or data points. As

we have shown in Section 2.5 the problem lies not with deriving bias adjustment thresholds in

higher dimensions but in visualizing and interpreting them. We have given examples of how to

visualize invariant regions in two dimensions (e.g. Fig. 6 in Section 3.1.3), and a similar ap-

proach is possible in three dimensions. For more than three contrasts or data points, a graphical

representation of this kind is not possible, making interpretation difficult. However, in practice,

if bias adjustment is to be considered for a large number of studies, it may be preferable to esti-

mate the study level bias adjustment within the hierarchical NMA analysis, either by regression

(Dias et al., 2010; Salanti et al., 2010; Naci et al., 2014) or by giving bias terms informative

priors based on expert opinion (Turner et al., 2009; Welton et al., 2009; Dias et al., 2010). A

potential avenue for future research into the effects of multiple simultaneous bias adjustments

lies with the influence matrix. By examining this matrix it should be possible to identify whether

bias adjustment in a given combination of data points may lead to wider invariant intervals, due

to the influences of multiple data points partially cancelling out, or smaller invariant intervals,

due to the combined influence increasing additively.

Importantly, threshold analysis of complex, hierarchical or otherwise atypical NMA models

may always be performed at the contrast level, provided that the joint posterior distribution of

the treatment effect parameters is available (either first hand from an analysis, or sufficiently

reported in a published NMA), and that this joint posterior distribution is at least approximately

normal. Under such conditions we can apply the methods that were proposed in Section 2.4

to derive bias adjustment thresholds and invariant intervals, regardless of the manner in which
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the joint posterior distribution arose. As such, the threshold method proposed is applicable to

a wide range of situations that may be encountered by decision makers and has the potential

to focus discussion on the risk of bias in particular studies or comparisons to which the final

treatment recommendation is most sensitive.

5. Supplementary materials

5.1. Appendices

All appendices are contained in a separate on-line document providing technical derivations,

statements and proofs of theorems and lemmas, and notes on computation.

5.2. Computer code

An R package nmathresh is provided in the on-line material that implements the threshold

method, and the R code and data that were used to perform the example analyses are available

from

http://wileyonlinelibrary.com/journal/rss-datasets
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Weeks, L., Sterne, J. A. C., Cochrane Bias Methods Group and Cochrane Statistical Methods Group (2011)
The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. Br. Med. J., 343, article
d5928.

Higgins, J. P. T. and Whitehead, A. (1996) Borrowing strength from external trials in a meta-analysis. Statist.
Med., 15, 2733–2749.

Kass, R. E. and Raftery, A. E. (1995) Bayes Factors. J. Am. Statist. Ass., 90, 773–795.
Keeley, E. C., Boura, J. A. and Grines, C. L. (2003) Primary angioplasty versus intravenous thrombolytic therapy

for acute myocardial infarction: a quantitative review of 23 randomised trials. Lancet, 361, 13–20.
Konig, J., Krahn, U. and Binder, H. (2013) Visualizing the flow of evidence in network meta-analysis and char-

acterizing mixed treatment comparisons. Statist. Med., 32, 5414–5429.
Krahn, U., Binder, H. and Konig, J. (2013) A graphical tool for locating inconsistency in network meta-analyses.

BMC Med. Res. Methodol., 13, article 35.
Kullback, S. and Leibler, R. A. (1951) On information and sufficiency. Ann. Math. Statist., 22, 79–86.
Lawson, C. and Hanson, R. (1995) Solving Least Squares Problems. Philadelphia: Society for Industrial and

Applied Mathematics.
Lu, G. and Ades, A. (2004) Combination of direct and indirect evidence in mixed treatment comparisons. Statist.

Med., 23, 3105–3124.
Lu, G. and Ades, A. (2006) Assessing evidence consistency in mixed treatment comparisons. J. Am. Statist. Ass.,

101, 447–459.
Lu, G., Welton, N. J., Higgins, J. P., White, I. R. and Ades, A. E. (2011) Linear inference for mixed treatment

comparison meta-analysis: a two-stage approach. Res. Synth. Meth., 2, 43–60.
Lumley, T. (2002) Network meta-analysis for indirect treatment comparisons. Statist. Med., 21, 2313–2324.
Lunn, D. J., Thomas, A., Best, N. and Spiegelhalter, D. (2000) WinBUGS—a Bayesian modelling framework:

concepts, structure, and extensibility. Statist. Comput., 10, 325–337.
Mayo-Wilson, E., Dias, S., Mavranezouli, I., Kew, K., Clark, D. M., Ades, A. E. and Pilling, S. (2014) Psycholog-

ical and pharmacological interventions for social anxiety disorder in adults: a systematic review and network
meta-analysis. Lancet Psychiat., 1, 368–376.

Naci, H., Dias, S. and Ades, A. E. (2014) Industry sponsorship bias in research findings: a network meta-analysis
of LDL cholesterol reduction in randomised trials of statins. Br. Med. J., 349, article g7451.

National Collaborating Centre for Mental Health (2013) Social Anxiety Disorder: Recognition, Assessment and
Treatment. Leicester and London: British Psychological Society and Royal College of Psychiatrists.

National Institute for Health and Care Excellence (2013) Guide to the Methods of Technology Appraisal 2013.
London: National Institute for Health and Care Excellence.

National Institute for Health and Care Excellence (2014) Developing NICE Guidelines: the Manual. London:
National Institute for Health and Care Excellence.

Puhan, M. A., Schunemann, H. J., Murad, M. H., Li, T., Brignardello-Petersen, R., Singh, J. A., Kessels, A. G.,
Guyatt, G. H. and GRADE Working Group (2014) A GRADE Working Group approach for rating the quality
of treatment effect estimates from network meta-analysis. Br. Med. J., 349, article g5630.

Rhodes, K. M., Turner, R. M. and Higgins, J. P. T. (2015) Predictive distributions were developed for the extent
of heterogeneity in meta-analyses of continuous outcome data. J. Clin. Epidem., 68, 52–60.

Rothwell, P. M. (2005) External validity of randomised controlled trials: “To whom do the results of this trial
apply?”. Lancet, 365, 82–93.

Salanti, G., Del Giovane, C., Chaimani, A., Caldwell, D. M. and Higgins, J. P. (2014) Evaluating the quality of
evidence from a network meta-analysis. PLOS One, 9, article e99682.

Salanti, G., Dias, S., Welton, N. J., Ades, A. E., Golfinopoulos, V., Kyrgiou, M., Mauri, D. and Ioannidis, J. P. A.
(2010) Evaluating novel agent effects in multiple-treatments meta-regression. Statist. Med., 29, 2369–2383.
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