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Abstract

The Fama-French three factor models are commonly used in the description of asset returns

in finance. Statistically speaking, the Fama-French three factor models imply that the return of

an asset can be accounted for directly by the Fama-French three factors, i.e. market, size and

value factor, through a linear function. A natural question is: would some kind of transformed

Fama-French three factors work better? If so, what kind of transformation should be imposed

on each factor in order to make the transformed three factors better account for asset returns?

In this paper, we are going to address these questions through nonparametric modelling. We

propose a data driven approach to construct the transformation for each factor concerned. A

generalised maximum likelihood ratio based hypothesis test is also proposed to test whether

transformations on the Fama-French three factors are needed for a given data set. Asymptotic

properties are established to justify the proposed methods. Extensive simulation studies are

conducted to show how the proposed methods perform with finite sample size. Finally, we

apply the proposed methods to a real data set, which leads to some interesting findings.

KEY WORDS: Backfitting, factor models, generalised maximum likelihood ratio test,

kernel smoothing, transformed factor.

SHORT TITLE: FM for Asset Returns.
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1 Introduction

1.1 Preamble

During the past two decades, much literature is devoted to explore the common factors in asset

returns, see Ang et al.(2006), Brennan et al.(1998), Davis et al.(2000), Fama (1998), Fama and

French (1993, 1996, 2010, 2015), Petkova (2006), Vassalou and Xing (2004), and the references

therein. Among the existing factor models, the Fama-French three factor models (FFTFM) are

arguably the most common choices. They play a very important role in asset pricing and portfolio

management. The application of the FFTFM may go beyond finance and economics. Fan et

al.(2008), for example, apply the FFTFM to introduce a structure for high dimensional covariance

matrices, which significantly improves the covariance estimation. Another example is related to

measuring conditional dependence, which is a critical issue in statistics with broad applications,

such as the graphical models. Based on the FFTFM, Fan et al.(2015) proposed a new conditional

dependence measure to address this problem.

1.2 Motivating questions

Statistically speaking, the FFTFM implies that the return of an asset can be accounted for directly

by the Fama-French three factors, commonly referred to as market (Rm-Rf), size (SMB) and value

factor (HML), through a linear function. Precisely, Rm-Rf is a measure of market risk, computed as

the difference between the return of the market portfolio and the risk-free return set; SMB stands

for small market capitalization minus big market capitalization and HML for high book-to-market

ratio minus low book-to-market ratio. These factors measure the historic excess returns of small

caps over big caps and of value stocks over growth stocks. They are calculated with combinations

of portfolios composed by ranked stocks and available historical market data. See Fama and French

(1993) for more details. Since FFTFM has a very simple linear form, a natural question is: would

some kind of transformed Fama-French three factors work better? If so, what kind of transformation

should be imposed on each factor in order to make the transformed three factors better account for

asset returns? We can go even further to question whether the linearity assumption in the FFTFM

always holds.

To provide a motivation for the models we are going to propose and investigate in this paper,

we first study a historical data set freely downloadable from Kenneth French’s website:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html

The original data set consists of the daily simple returns of n = 49 industry portfolios from 1927

to 2014. Let rtj be the daily return of the jth portfolio at time t, j = 1, · · · , 49, t = 1, · · · , T ,
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xt1 (Rm-Rf), xt2 (SMB), xt3 (HML) be, respectively, the observations of the Fama-French three

factors at time t. We note that the factors are all aggregated measures combining portfolios and

thus do not depend on j. For each given j, j = 1, · · · , 49, the FFTFM may be written as

rtj = αj +

3
∑

k=1

βjkxtk + ǫtj , t = 1, · · · , T. (1.1)

We fit this model to the downloaded data and compare with our proposed model in the real case

studies of this paper. The transformed factors, denoted as g1(xt1), g2(xt2) and g3(xt3), might

better account for asset returns than xt1, xt2 and xt3 do. In particular, the estimated function of

g3 shows a clear nonlinear form (Figure 3 in section 6). Furthermore, using our proposed model

yields more accurate numerical prediction for this data set than using the FFTFM, with more than

35% improvement in cross validation errors. It is thus worth considering such a transformation in

a practical financial data analysis.

Now, the first question is to determine the transformations g1(·), g2(·) and g3(·) from empirical

data.

1.3 The proposed models

In order to find the transformations needed for the Fama-French three factors, we are going to

propose a new factor model based on a mathematical transformation.

In general, suppose we have p factors, x1, · · · , xp. In particular for FFTFM, we have p = 3.

For t = 1, · · · , T , let xt1, · · · , xtp be the observations of the factors at time t, and rtj , the return

of the jth asset at time t, j = 1, · · · , n. We assume

rtj = αj +

p
∑

k=1

βjkgk(xtk) + ǫtj , t = 1, · · · , T ; j = 1, · · · , n, (1.2)

where αj, βjk, and gk(·), j = 1, · · · , n; k = 1, · · · , p, are unknown and need to be estimated, and

E(ǫtj |xt1, · · · , xtp) = 0, var(ǫtj |xt1, · · · , xtp) = σ2.

It is clear (1.2) is not identifiable. To make (1.2) identifiable, we assume

gk(x1k) = x1k and E{gk(xk)} = 0, k = 1, · · · , p. (1.3)

Model (1.2) together with the identification condition (1.3) is the model we are going to address

in the following. To connect the proposed model to the motivating questions, the gk(·) in (1.2) is

the transformation needed for the kth factor. In this paper we fix n and require T → ∞. This

sample size assumption is satisfied in financial studies where we usually investigate a fixed number
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of interesting items with a large number of repeated observations. We assume that the distribution

of the factors is not degenerate. The error distribution is left unspecified in this paper.

There is fundamental difference between the proposed model (1.2) and the additive models

for panel data, which is the model (1.2) with βjkgk(xtk) being replaced by a completely unknown

function Gjk(xtk). From statistical modelling point of view, the proposed model is more parsi-

monious, because there are only p unknown functions and (p + 1)n unknown parameters in the

proposed model, whilst there are (p+1)n unknown functions in the additive models for panel data.

Most importantly, the proposed model (1.2) is more meaningful, because from finance point of

view, gk(xtk), k = 1, · · · , p, in (1.2) act as common risk factors, whilst Gjk(xtk), j = 1, · · · , n,

k = 1, · · · , p, in the additive models depend on individual asset, therefore cannot be viewed as

common risk factors.

To estimate the unknown transformation, we will consider the familiar kernel smoothing ap-

proach. We notice that there exists a vast literature of using kernel methods for financial econo-

metrics data analysis where support vector machine methods are perhaps the most popular (eg.

Burges (1998), Ince and Trafalis (2006), Schebesch and stecking (2005) among others). Several

other kernel learning algorithms are also available. For example, Lanckriet et al. (2004) and Ong

et al. (2005) formulated kernel learning as semidefinite programming problems. Cristianini et al.

(2006) examined the alignment between a kernel and the data to adapt the kernel matrix.

The rest of the paper is organized as follows. We begin in Section 2 with a description of the

estimation procedure for the unknowns in (1.2). Hypothesis test about whether a transformation is

needed for each factor is discussed in Section 3. Section 4 is devoted to the asymptotic properties

of the proposed estimators and the hypothesis test. Simulation studies are conducted in Section 5

to show how accurate the proposed estimators are and how powerful the proposed hypothesis test

is when sample size is finite. In Section 6, we apply the proposed modelling, estimation procedure

and hypothesis test to the real data set mentioned in Section 1.2, and some interesting findings will

be presented. All the detailed proofs are relegated to the appendix.

2 Estimation procedure

In this section, we are going to construct the estimation procedure for the unknowns in (1.2).

We are going to address the estimation of gk(·)s first, then αjs and βjks. With a slight abuse of

notation, from now on, for any random error appears in a synthetic model in this section, we shall

denote it by etj to avoid repetition.
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2.1 Estimation of gk(·)

Let Gjk(xtk) = βjkgk(xtk), and re-write (1.2) as

rtj = αj +

p
∑

k=1

Gjk(xtk) + ǫtj , t = 1, · · · , T ; j = 1, · · · , n.

For each given j, j = 1, · · · , n, we apply the backfitting algorithm to estimate Gjk(xtk), which is

detailed as follows: Let

α̂j =
1

T

T
∑

t=1

rtj (2.1)

and iterate the following two steps until convergence

1. Given the current G̃jk(xtk), k = 1, · · · , p. For each l, l = 1, · · · , p, we run the following

synthetic univariate nonparametric regression

rtj − α̂j −

l−1
∑

k=1

Ĝjk(xtk)−

p
∑

k=l+1

G̃jk(xtk) = Gjl(xtl) + etj , t = 1, · · · , T

by the local linear modelling, which is detailed as follows. For any given u, by the Taylor’s

expansion, we have

Gjl(xtl) ≈ Gjl(u) + Ġjl(u)(xtl − u)

when xtl is in a small neighbourhood of u. This leads to the following objective function for

the local least squares estimation

T
∑

t=1

{

rtj − α̂j −
l−1
∑

k=1

Ĝjk(xtk)−

p
∑

k=l+1

G̃jk(xtk)− cjl − djl(xtl − u)

}2

Kh(xtl − u), (2.2)

where Kh(·) = K(·/h)/h, h is a bandwidth, K(·) is a kernel function, usually taken to be

Epanechnikov kernel. Minimise (2.2) with respect to (cjl, djl), and denote the minimiser as

(ĉjl, d̂jl). The local linear estimator of Gjl(u) is taken to be ĉjl, and denoted by Ǧjl(u). By

simple calculation, we have

Ǧjl(u) = (1, 0) (Ωl(u)
TWl,h(u)Ωl(u))

−1
Ωl(u)

TWl,h(u)ηjl,

where Wl,h(u) = diag (Kh(x1l − u), · · · , Kh(xT l − u)) ,

Ωl(u) =











1 x1l − u
...

...

1 xT l − u











, ηjl =

















r1j − α̂j −
l−1
∑

k=1

Ĝjk(x1k)−
p
∑

k=l+1

G̃jk(x1k)

...

rTj − α̂j −
l−1
∑

k=1

Ĝjk(xTk)−
p
∑

k=l+1

G̃jk(xTk)

















.
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For each xtl, the centralised Ǧjl(xtl), denoted by Ĝjl(xtl), is

Ĝjl(xtl) = Ǧjl(xtl)−
1

T

T
∑

t=1

Ǧjl(xtl).

2. Let G̃jk(xtk) be Ĝjl(xtk), and go to step 1.

The iteration can be started by setting

G̃jk(xtk) = 0, k = 1, · · · , p.

With the final backfitting estimators Ĝjl(.)s, we can construct the estimators of the functions gk(.)s

evaluated at the observation points as

ḡk(xtk) = x1k
1

n

n
∑

j=1

Ĝjk(xtk)/Ĝjk(x1k), k = 1, · · · , p, t = 1, · · · , T. (2.3)

For each k, k = 1, · · · , p, and any given u, viewing ḡk(xtk) as a response variable, xtk as a covariate,

we have the following synthetic univariate nonparametric regression model

ḡk(xtk) = gk(xtk) + etk, t = 1, · · · , T. (2.4)

Applying the local linear modelling to (2.4), similar to what we have done in step 1 in the backfitting

algorithm for estimating Gjk(xtk), we get an estimator of gk(u)

ĝk(u) = (1, 0)
(

Ωk(u)
TWk,h̃(u)Ωk(u)

)−1
Ωk(u)

TWk,h̃(u)ζk, ζk = (ḡk(x1k), · · · , ḡk(xTk)) ,

where h̃ is a bandwidth. ĝk(u) is our estimator of gk(u).

When implementing the proposed nonparametric estimation in the following numerical analysis,

we carry out the cross-validation (CV) method to select the tuning bandwidth. Since at each step

only univariate smoothing is needed the CV can be implemented efficiently for bandwidth selection.

Our numerical results suggest that the performance of this method is quite stable.

2.2 Estimation of βjk

Estimates α̂j , j = 1, · · · , n, from (2.1) and ḡk(xtk), t = 1, · · · , T , k = 1, · · · , p, from (2.3) are

plugged into (1.2) as substitutes for their corresponding true but unknown counterparts so that we

have the following synthetic linear model

rtj = α̂j +

p
∑

k=1

βjkḡk(xtk) + etj , t = 1, · · · , T. (2.5)
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Let βj = (βj1, · · · , βjp)
⊤. We use the least squares estimator β̂j of βj to estimate βj, which is

β̂j = (ḡTḡ)−1 ḡTRj, (2.6)

where

ḡ =











ḡ1(x11) · · · ḡp(x1p)
...

. . .
...

ḡ1(xT1) · · · ḡp(xTp)











and Rj = (r1j , · · · , rTj)
T.

3 Hypothesis test

In this section, we are going to address whether or not a transformation on each factor is significantly

needed for a given data set. We fomulate this question to a hypothesis test problem with null

hypothesis

H0 : g1(x) = · · · = gp(x) = x. (3.1)

and alternative hypothesis being that transformations on the factors are needed.

Our hypothesis test is based on the generalised maximum likelihood ratio test, see Fan et

al.(2001). To construct the hypothesis test statistic, we first compute the residual sum of squares

of the model (1.2) under null hypothesis (3.1). Under the null hypothesis (3.1), (1.2) becomes the

following linear model

rtj = αj +

p
∑

k=1

βjkxtk + ǫtj , t = 1, · · · , T ; j = 1, · · · , n. (3.2)

Let

X =











1 x11 · · · x1p
...

...
. . .

...

1 xT1 · · · xTp











By some simple calculations, we have the residual sum of squares of (3.2)

RSS0 =

n
∑

j=1

RT

j

{

IT −X(XTX)−1XT
}

Rj,

where IT is an identity matrix of size T .

On the other hand, the residual sum of squares of (1.2) is

RSS1 =

n
∑

j=1

T
∑

t=1

(

rtj − α̂j −

p
∑

k=1

β̂jkḡk(xtk)

)2

.
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Based on the idea in Fan et al.(2001), we propose the following test statistic for the null hypothesis

(3.1)

λ =
nT

2

RSS0 − RSS1
RSS1

.

We reject H0 when λ > c, where c is determined by

P (λ > c|H0) = α,

α is the significant level.

In the implementation of the proposed hypothesis test, the distribution of λ under null hypoth-

esis can be either estimated by bootstrap or approximated by its asymptotic distribution presented

in Section 4.

4 Asymptotic properties

For each k = 1, · · · , p, as far as the estimator of gk(u) is concerned, because the theoretical prop-

erties of ĝk(u) easily follow from those of ḡk(xtk) at the expense of further cumbersome notations,

we only present the asymptotic properties of ḡk(xtk).

For simplicity, we assume that observation points all lie in the interior of the support of x and

focus on local polynomial fittings of odd degrees, as the expressions become considerably more

complicated with boundary points or in the case of even degrees (Opsomer and Ruppert, 1997).

Write ǫj = (ǫ1j , · · · , ǫTj)
⊤, j = 1, · · · , n. Then regarding the estimates discussed in Section 2, we

have

Theorem 4.1 Under the Assumptions given in the Appendix,

(1) ḡk(xtk) = gk(xtk) + γ⊤tkSk
1
n

n
∑

j=1
β−1
jk ǫj + op(T

−1/2) uniformly with respect to t = 1, · · · , T and

k = 1, · · · , p.

(2)T 1/2(α̂j − αj)
D
−→ N(0, σ2)

(3)β̂j − βj = c0(K) 1
Tn

n
∑

j′=1

Aj′|jǫj′ + op(T
−1/2) uniformly over j = 1, · · · , n.

Definitions of T × 1 vector γtk, T × T matrix Sk, constant c0(K) and p× T matrix Aj′|j are given

in the Appendix. It easily follows that ĝk(.) converges at a nonparametric rate of (Thk)
−1/2.

Let R(K) =
∫

K2(u)du. For the testing statistic in Section 3, we have;

Theorem 4.2 Suppose conditions in Theorem 4.1 hold, and for ease of exposition, h1 = h2 =

· · · = hp = h. Then under the null hypothesis (3.1),

P{σ−1
T

[λ− npK(0)h−1] < t} −→ Φ(t), when T → ∞,
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where Φ(·) is the standard normal distribution function,

σ2
T = σ4R(K)h−1

{

∑

j,k

ck{4 +
∑

j′ 6=j

(βjk/βj′k)
2}+ n(n− 1)

p
∑

k=1

ck

}

.

Constant ck is to be defined in the Appendix.

Theorem 4.2 provides us the asymptotic distribution of the proposed test statistic for the null

hypothesis (3.1), which can be used to estimate the critical value of the proposed hypothesis test

in Section 3.

5 Simulation studies

In this section, we are going to use a simulated example to demonstrate how accurate the proposed

estimators are. We will also examine the power of the proposed hypothesis test for the null hy-

pothesis (3.1). As the asymptotic distribution of the test statistic involves unknown parameters

and some constants which are hard to calculate, we will use bootstrap approach to compute the

critical value for the test.

We generate data according to model (1.2). Specifically, each element of Xt = (xt1, · · · , xtp)
T

is independently generated from a uniform distribution over [−1, 1], and each random error ǫtj

is generated from an auto-regressive time series with auto-regressive coefficient r1 and a standard

Guassian error. We set p = 4 and

g1(x1) = sin(2.5πx1), g2(x2) = x32, g3(x3) = sin(0.5πx3),

g4(x4) = [1/ {1 + exp(−x4)} − 0.5] /
{

1/(1 + e−1)− 0.5
}

.

(5.1)

We will consider various n and T in our simulation study. For each n and T , the interecepts αjs

in the model (1.2) are independently generated from N(3, 0.5) and the slopes βjks are indepen-

dently generated from N(3.5, 0.5). Once these αjs and βjks are generated, we fix them across all

simulations for the given n and T .

Let MSE(α̂j) and MSE(β̂jk) be the mean squared errors of α̂j and β̂jk, respectively. We consider

ARMSEα and ARMSEβ, which are defined as

ARMSEα =
1

n

n
∑

j=1

{

α−2
j MSE(α̂j)

}

, ARMSEβ =
1

np

n
∑

j=1

p
∑

k=1

{

β−2
jk MSE(β̂jk)

}

,

to assess the accuracy of our estimation for the interecepts αjs and for the slopes βjks, respectively.

Let MISEk be the mean integrated squared error of ĝk(·). We use ARMISE, which is defined as

ARMISE =
1

p

p
∑

k=1

MISEk

{
∫

gk(u)
2du

}−2

9



to assess the accuracy of our estimation for the unknown functions gk(·)s.

We consider various n and T in the simulation. The ARMSEα and ARMSEβ obtained from

the 500 simulations are presented in Table 1, and the ARMISE obtained from the simulations

are reported in 2. Additional simulation results for point estimation bias and standard deviations

are available in the supplementary file of this paper. All the tabled simulation results show our

estimation procedure works very well.

To compare with linear approach and the SVD approach, we also reported the average R2

values which are the proportion of explained variation by the models. To implement the SVD

approach, we carry out a factor analysis (Bai and Ng (2002)) of the data matrix and select the

factors corresponding to the largest eigenvalues such that at least 80% variation is accounted. The

results are summarized in Table 1.

Table 1: Estimation Performance for Unknown Parameters and Comparison of R2 for

Four Approaches: R1 is for linear model (FFTFM); R2 is for our proposed nonpara-

metric model; R3 is the latent factor model with only top three factors; R4 is the latent

factor model where we choose the most important factors accounting for at least 80%

variation.

r1 = 0 r1 = 0.5

T = 500 T = 750 T = 1000 T = 500 T = 750 T = 1000

n = 50 ARMSEα .1801 .0994 .0517 .0095 .0463 .0120

ARMSEβ .2326 .1096 .0567 .1790 .0662 .0415

R1 .7363 .7688 .6797 .8683 .8244 .7913

R2 .9647 .9547 .9731 .9731 .9441 .9830

R3 .9670 .9657 .9724 .9754 .9456 .9821

R4 .9864 .9875 .9979 .9947 .9856 .9934

n = 100 ARMSEα .963 .366 .228 .969 .368 .224

ARMSEβ 2.64 1.61 1.05 2.14 1.24 1.01

R1 .8503 .8488 .8442 .8494 .8479 .8431

R2 .9901 .9941 .9942 .9889 .9902 .9935

R3 .9962 .0062 .9962 .9950 .9979 .9951

R4 .9982 .9982 .9981 .9980 .9979 .9978

We now examine how powerful the proposed hypothesis test is. To evaluate the performance

10



Table 2: The ARMISEs of Our Estimation for Unknown Functions

r1 = 0 r1 = 0.5

T = 500 T = 750 T = 1000 T = 500 T = 750 T = 1000

n = 50 .0139 .0126 .0038 .0426 .0163 .0050

n = 100 .170 .152 .126 .156 .144 .095

of the proposed hypothesis test, we use the same data generating setting as described earlier and

only modified the true functional forms of the factors to be

g = ρ (g1(x1), g2(x2), g3(x3), g4(x4))
T + (1− ρ)x, x = (x1, x2, x3, x4)

T

where each gk(·) was given as in (5.1). When ρ = 0, the null hypothesis (3.1) is true. When ρ is

away from zero, the true functional forms of the factors are not identity functions, and we should

reject the null hypothesis (3.1).

We set the significance level to be 0.05, and consider the power function of the proposed test

for various n = 50 and T = 500. We carry out 500 simulations for the serial dependence case

r1 = 0.5. In each simulation, we generate a data set and apply the proposed hypothesis test to

the generated data to test the null hypothesis (3.1). The critical value is computed through a

bootstrap sample, of size 1000, of the test statistic λ under null hypothesis. The value of the power

function at ρ is defined as the rejection rate of the test among the 500 simulations, and actual size

of the test is the value of the power function at ρ = 0. The obtained power function is reported in

Figure 1, and the actual size is reported to be 0.056. Taking the Monte Carlo error, which is of size

(0.05 × 0.95/500)1/2 ≈ 0.01, into account, we can safely conclude that the actual size of our test

is very close to the nominal level. Figure 1 shows the rejection rates approach one as ρ becomes

large, indicating that our test has high power to reject the null when it is false. Figure 2 displays

the histograms for typical bootstrap samples of the test statistics under the null (left, ρ = 0) and

the alternative (middle ρ = .02 and right ρ = .05), respectively.

6 Real data analysis

In this section, we apply the proposed methods to the data set mentioned in Section 1.2. We

will show the transformations on the Fama-French three factors are quite necessary for this data

set, and construct the transformation needed for each factor by the proposed estimation method.

We will also show how much improvement the proposed transformation can result in, in terms of
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Figure 1: The power function (left) and the average P-value (right) of the proposed test when

n = 50 and T = 500.
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Figure 2: The bootstrap distribution of the test statistic under the null (left) and the alternative

hypotheses (middle and right). The three panels correspond to ρ = 0, 0.02 and 0.05, respectively.

The vertical lines indicate the observed test values for a particular simulation set.

accounting for the return of an asset. We mainly compare our approach with FFTFM. There are

a few other ad hoc factor models but they are less commonly adopted in practice.

To investigate whether the FFTFM (1.1) is appropriate for this data set, we consider fitting

the proposed model (1.2) to the data set described earlier. We remove the first 3000 records since

these observations are from a long time ago and thus keep the most recent T = 892 observations

for analysis. Using the proposed methods, we obtained the estimated functions ĝk(·) for the three

factors and displayed them in Figure 3 along with 95% pointwise confidence intervals.

Figure 3 shows clearly ĝk(·), k = 1, 2, 3, differ from the identity functions (dotted lines), and

ĝ3(·) is not even a linear function. In particular, we observe that the estimated transformation

for Rm-Rf factors is decreasing while the estimated transformation for SMB factors is increasing.

However, this does not imply that Rm-Rf factors are negatively associated with the response and
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Figure 3: The solid lines are estimated functions while the dashed lines are the 95% pointwise

confidence intervales computed with the bootstrap resampling method. This dotted lines are identity

functions.

SMB factors are positively associated with the response, different from the interpretation for the

traditional nonparametric additive model. In fact, the estimated functions serve as a common

transformed factors for all the subjects. To obtain the effects on response we need to multiply the

estimated coefficients (see Figure 4) for the subjects as well. The effects of HML show a nonlinear

pattern, indicating a descending impact with low HML values and then an ascending impact with

high HML values. The results in Figure 3 thus suggest some transformation to the original factors

may be necessary. In practice, if the suggested transformation is close to a straight line, we may

simply employ an identity function for the variable.

We next apply the proposed bootstrap test to this data set to test the null hypothesis (3.1). In

this case we obtain a p-value of 0.0960, suggesting that there is weak evidence to reject the null

hypothesis of linear model. The p-value is computed through a bootstrap sample, of size 1000, of

the test statistic λ resampled under the null hypothesis. We therefore conclude that the FFTFM

may fit the return data quite satisfactorily at the significance leve 0.05. Our analysis provides some
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solid empirical support to the application of FFTFM in this case.

The estimated coefficients of the three transformed factors, gk(xk), k = 1, 2, 3, for all n = 49

portforlios are shown in Figure 4. The coefficients for the transformed Rm-Rf, g1(x1), were mostly

negative and very close to -0.05. The coefficients for the transformed SMB, g2(x2), are mostly

positive around 0.50 and much greater than those for the transformed Rm-Rf. The coefficients for

the transformed HML, g3(x3), are not so homogeneous and may be quite different for the individual

portforlios.
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Figure 4: Estimated coefficients for real data analysis.

Though FFTFM enjoys good internal validity for this particular data analysis, it is equally

important to examine the out-of-sample prediction performance. We now investigate how much

improvement the transformed common factors can make in terms of accounting for the predicted

return of an asset.

We consider FFTFM, our proposed model and latent factor model in the following. For a given

fitted model, let Eji = (rT−i,j− r̂T−i,j)
2 be the squared error of the prediction for the simple return

14



of the jth portfolio on the (T − i)th day in the sample, based on the fitted model using all the

observations before the (T − i)th day. We construct such a cross-validation sum for the model for

the last 30 days (i.e., i = 1, · · · , 30), and define the prediction error as

CV =
1

30× 49

30
∑

i=1

49
∑

j=1

Eji.

We compute, respectively, the CVs for the FFTFM and the proposed model (1.2), and find the

ratio of CV of the FFTFM to the CV of the proposed model is 1.3694. Similarly we fit the latent

factor model with factors selected to account for 80% sample variation. The ratio of CV of the

latent factor model to the CV of the proposed model is 1.3505. These results indicate the proposed

model can make more than 35% improvement in terms of accounting for the return of an asset. Our

model is certainly better than the FFTFM and the latent factor model in terms of out-of-sample

prediction. The FFTFM and the latent factor model, though performing very well for in-sample

prediction, may not perform as accurately as our method for future forecasting.

In addition to the prediction on the exact numerical values, we also report in Table 3 the

prediction accuracy on whether the next day return is increasing (up) or decreasing (down) from

the current day. The high true positive and negative rates resulted from our proposed model

confirm the superiority of our method. Since forecasting is a central issue for portfolio analysis,

our analysis demonstrates the practical importance of the proposed model.

Table 3: The Prediction Accuracy for Next Day Up-Down: Up means the price in-

creases and Down means the price decreases; True means the predicted direction

agrees with the actual direction and False means the two disagree.

Method True Up Ture Down False Up False Down

Our model 0.8525 0.7449 0.2551 0.1475

FFTFM 0.8127 0.6410 0.3590 0.1873

Latent factor model 0.7965 0.6815 0.3185 0.2035

7 Discussion

There are all kinds of advantages of using Famma-French factors. However, the model has very

restrictive parametric form and may not always hold in practice. When the data do not follow the

model the estimation and prediction performance may be less satisfactory. In order to improve the
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estimation and prediction performance we recommend to use our proposed flexible nonparametric

model with nonlinear transformation. Even though the nonparametric functions may not be easily

interpreted, they can be used to provide better numerical results, especially for forecasting.

We note that to introduce nonparametric structure to the FFTFM there could be many al-

ternative specifications other than what we choose in this paper. For example, one may consider

the self-modelling approach widely practiced for shape invariant models. Altman and Villarreal

(2004) considered such a nonlinear semiparametric regression approach and proposed an efficient

algorithm for parameter estimation. One computational advantage of this method is that one can

exploit off-the-shelf software for fitting the nonlinear mixed effects models (Lindstrom and Bates

(1990), Ke and Wang (2001)). The theoretical justification of this approach relies on the theory of

profile likelihood (Murphy and van der Vaart (2000)).

The nonparametric transformations for the three factors are combined linearly in the model and

thus resembles the basic structure of the FFTFM. The model interpretation may thus follow the

FFTFM after the transformation is applied. It would be interesting to consider a more sophisticated

nonlinear combination of all the factors. However, such a model might be even harder to interpret,

not to mention the computational difficulty. The current semiparametric model may strike a balance

between the parametric FFTFM and the fully nonparametric model.

We do not examine heterogeneity problem in this paper. In principle, we may also extend the

works by Guo, Box and Zhang (2016) using the methodology proposed in this paper. Further, we

do not discuss cluster effects in our modelling. A possible solution is to add a random-effects term

(Palta (2003), Demidenko (2004)) and then apply the likelihood estimation methods. It is also quite

interesting to extend our approaches to incorporate spatio-temporal modelling. In addition to local

polynomial fitting, one may carry out basis approximation such as spline basis or Fourier basis

(Xu et al. (2017)). We have implemented such estimation methods for a few numerical examples

and found quite similar performance. However, the theoretical justification for basis approximation

methods requires a non-trivial development. All these issues will be included in our future work.
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Appendix

It is clear from the estimation procedure as described in Section 2.1 that the statistical properties

of the estimated component functions gk(.) as well as those of α̂j , β̂jk could only be derived based

on the asymptotics concerning the backfitting estimators Ĝjk(.). To present the relevant results

on this aspect, we need to introduce more notations. Let f(.) be the joint density function of

(xt1, · · · , xtp), and fk(.), k = 1, · · · , p, the marginal density of the kth covariate xtk. Denote by

fl;k(., .), the joint density of xtk and x(t+l)k; fl;k,k′(u, u, v, v), the joint pdf of xtk, x(t+l)k , xtk′ , x(t+l)k′

evaluated at (u, u, v, v). For any l ≥ 1, k, k′ = 1, · · · , p, k 6= k′, define

al;k =

∫

fl;k(u, u)

f2
k (u)

du, bl;k,k′ =

∫

fl;k,k′(u, u, v, v)

fk(u)fk′(v)
dudv.

We assume that

ck := lim
T→∞

∣

∣

∣

1

T 2

T−1
∑

l=1

(T − l)ak,l

∣

∣

∣
< ∞, lim

T→∞
sup
k 6=k′

∣

∣

∣

1

T 2

T−1
∑

l=1

(T − l)bl;k,k′
∣

∣

∣
< ∞;
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The following conditions are assumed throughout of the paper. First of all, we assume that for

any given t, {ǫtj , j = 1, · · · , n} is independent of each other. Such requirement is quite common

in literature on panel data, since any correlation among the returns of different assets(stocks) are

captured through the presence of common factors. Write ǫt = (ǫt1, · · · , ǫtn)
⊤, xt = (xt1, · · · , xtp)

⊤.

[A1] {xt, ǫt} is strictly stationary and strongly mixing, i.e.

γ[ι] := sup
A∈F

0
−∞

B∈F∞
ι

|P [AB]− P [A]P [B]| → 0, as k → ∞,

where Fs2
s1 is the σ− algebra of events generated by {xt : s1 ≤ t ≤ s2} and γ[ι] is referred to as

the strong mixing coefficient. Moreover,
∞
∑

ι=1
ιaγ[ι]1−2/v < ∞ for some v > 2 and a > 1− 2/v.

[A2] The kernel function K(.) is bounded and continuous with a compact support; its first order

derivative has a finite number of sign changes over its support.

[A3] Both the joint f(.) and the marginal densities fk(.), k = 1, · · · , p are bounded and continuous

with compact support; their first order derivatives also have a finite number of sign changes

over their supports.

[A4] sup
u,u′

|fl;k(u, u
′)− fk(u)fk(u

′)| ≤ A1 < ∞ for all l ≥ 1.

[A5] As T → ∞, hk → 0, Thk/ log T → ∞, Thιk+2
k → 0 for all k = 1, · · · , p.

[A6] There exists a sequence vn of positive integers satisfying vT → ∞ and vT = o((nh)1/2) such

that (T/h)1/2γ[vT] → 0 as T → ∞.

Assumption [A1] is relevant since the backfitting estimator Ĝjk(.) is built on dependent observa-

tions, {rtj , t = 1, · · · , T}. Note that while Opsomer (2000) dealt with independent observations,

the results he obtained are valid for time series sequence as well, as long as the dependence decreases

quickly enough, such as described in [A1]. This has been made obvious by plenty of literature de-

voted to kernel smoothing for time series; e.g. Masry (1996a, 1996b), Kong et al. (2010). Strongly

mixing could be replaced by a weaker condition, such as β−mixing or even φ−mixing, but in that

case additional requirement on these alternative mixing coefficients will then be necessary; see e.g.

Masry (1996). [A2] could be relaxed to allows kernel functions of unbounded support provided that

uιk+1K(u) → 0 as u → ∞.

For l = 0, 1, · · · , write the lth moment of the kernel function K(.) as µl(K) :=
∫

ulK(u)du

and Rl =
∫

ulK2(u)du, and R(K) = R0. For k = 1, · · · , p, let g
(ι)
k (.) denote the ιth derivative of
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component function gk(.), and write

g
(ι)
k =











g
(ι)
k (x1k)

...

g
(ι)
k (xTk)











, E(g
(ι)
k |Xk) =











E(g
(ι)
k (xik)|x1k)

...

E(g
(ι)
k (xik)|xTk)











, k 6= k′.

The backfitting algorithm described in Section 2.1 is based on local linear smoothing. Here we

give a more general results on backfitting estimators based on local polynomial smoothing where

functions gk(.) are locally approximated by a polynomial of degree ιk, k = 1, · · · , p. Define the

following smoother matrix for the kth component function:

Sk = (Sk,x1k
, · · · ,Sk,xTk

)⊤, (A.1)

where Sk,u represents the transpose of the equivalent kernel for the kth covariate at the point u:

Sk,u = Kk(u)Xk(u)
[

Xk(u)
⊤Kk(u)Xk(u)

]−1
e⊤1k,

e1k is the (ιk + 1)× 1 vector with a one in the first position and zeros elsewhere,

Xk(u) =











1 x1k − u · · · (x1k − u)ιk

...
...

. . .
...

1 xTk − u · · · (xTk − u)ιk











, Kk(u) = diag (Kh(x1k − u), · · · , Kh(xTk − u)) .

Further define the centered smoothing matrix S∗
k = (I− 1T1

⊤
T
)Sk, W[−k], the smoother matrix for

the (p− 1)-variate function G
(−k)
j (.) =

∑p
l=1,l 6=k Gjl(.), and Gjk = (Gjk(x1k), · · · , Gjk(xTk))

⊤, the

vector of the kth component function evaluated at the observation points. Then regarding Ĝjk,

the backfitting estimator of Gjk, we have

Corollary 7.1 Given X, the conditional bias and variance of Ĝjk, j = 1, · · · , n, k = 1, · · · , p, are

respectively

E(Ĝjk −Gjk|X) = (I− S∗
kW[−k])

−1
[ 1

(ιk + 1)!
hιk+1µιk+1(K)βjk

(

g
(ιk+1)
k − E(g

(ιk+1)
k )

)

− S∗
kBj[−k]

]

+Op(T
−1/2) + op(h

ιk+1),

V ar(Ĝjk(xtk)|X) = {nhfk(xtk)}
−1RKσ2 + op((nh)

−1, )

where

Bj[−k] = E
(

W[−k](Rj −Gjk)|X
)

−

p
∑

l=1:l 6=k

Gjl.
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The bias expression in Corollary 7.1 is still a recursive formula, and as commented in Opsomer

(2000), a non-recursive asymptotic bias expression can be derived, but the expressions become very

complicated even for p = 3. Nevertheless, the order of the asymptotic bias could be easily decided

for any p:

E(Ĝjk −Gjk|X) = Op(

p
∑

k=1

hιk+1
k ).

Apparently, if gk(.), k = 1, · · · , p are all smooth enough, and with polynomial fitting of high enough

ιk degrees employed, this bias term could be made relatively negligible compared to asymptotic

stochastic error. We will make use of this fact in later sections in the asymptotic study of ĝk(.),

and β̂j.

We now move on to prove Theorem 4.1, starting with more notations. Let

c0(K) =

ιk
∑

ι=0

[N−1](ι+1)1µι(K),

whereN represents the (ιk+1)×(ιk+1) matrix, whose (i, j)th element is µi+j−2(K), and [N−1](ι+1)1

stands for the (ι+ 1, 1)th element of its inverse matrix. Define the T × 1 vectors

γtk = (−gk(xtk), 0, · · · , 0, 1, 0, · · · , 0)
⊤, t = 2, · · · , T

with 1 as the tth entry. For any given k, k′ = 1, · · · , p, define

ck,k′(u) = E[gk(xtk)|xtk′ = u], ck,k′ = [ck,k′(x1k′), · · · , ck,k′(xTk′)]
⊤,

Aj′|j = [a1j′|j, · · · ,apj′|j]
⊤, akj′|j =

p
∑

k′=1

βjk′

βj′k′
ck,k′, j, j′ = 1, · · · , n; k = 1, · · · , p.

Proof of Theorem 4.1 Similar computations as in the proof of the second assertion of Corollary

7.1 lead to

Ĝjk − EĜjk = Skǫj +Op(T
−1/2), j = 1, · · · , n, k = 1, · · · , p,

uniformly in over all elements of the matrices; see, also Opsomer (2000, pp. 178). For ease of

exposition, write the asymptotic bias and stochastic error of Ĝjk as

bjk = EĜjk −Gjk ≡ (bjk,1, · · · , bjk,T)
⊤, vjk = Skǫj ≡ (vjk,1, · · · , vjk,T)

⊤.

As a result, we have

Ĝjk(xtk)

Ĝjk(x1k)
=

βjkgk(xtk) + bjk,t + vjk,t
βjk + bjk,1 + vjk,1

= gk(xtk) +
bjk,t
βjk

+
vjk,t
βjk

−
gk(xtk)bjk,1

βjk
−

gk(xtk)vjk,1
βjk

+ op(h
ιk+1
k + T−1/2).

22



Since without loss of generality, we could always assume that x1k = 1 and whence for each t =

2, · · · , T,

ḡk(xtk) =
1

n

n
∑

j=1

Ĝjk(xtk)/Ĝjk(x1k)

= gk(xtk) +
1

n

n
∑

j=1

(bjk,t
βjk

−
gk(xtk)bjk,1

βjk

)

+
1

n

n
∑

j=1

(vjk,t
βjk

−
gk(xtk)vjk,1

βjk

)

+ op(h
ιk+1
k + T−1/2), (A.2)

again uniformly in t and k.

Since the second (bias) term on the RHS of (A.2) is of order o(T−1/2) if gk(.) is smooth enough

and a large enough ιk is used, we have

ḡk(xtk) = gk(xtk) + γ⊤tkSk
1

n

n
∑

j=1

β−1
jk ǫj + op(T

−1/2).

Since ǫj , j = 1, · · · , n are all iid errors with zero mean and variance-covariance matrix VT , the

asymptotic variance of ĝk(xtk) is such that

(

n−2
n
∑

j=1

β−2
jk

)

γ⊤tkSkVTS
⊤
k γtk. (A.3)

Using standard results in polynomial smoothing (Masry, 1996) together with the fact that

[Sk]ij = {fk(xik)}
−1 1

Thk

ιk
∑

ι=0

[N−1](ι+1)1

(xjk − xik
hk

)ι
K
(xjk − xik

hk

)

, (A.4)

we have

[SkVTS
⊤
k ]ii′ = {fk(xik)fk(xi′k)}

−1 σ2

Thk

ιk
∑

ι,ι′=0

[N−1](ι+1)1[N
−1](ι′+1)1R(i, i′; ι, ι′) +Op((Thk)

−3/2)

where

R(i, i′; ι, ι′) =

∫

(xik − xi′k
hk

+ t
)ι′

tιK(t)K(s+ t)dt.

Therefore,

γ⊤tkSk = ([Sk]tj − gk(xtk) ∗ [Sk]1j) = O((Thk)
−1)

γ⊤tkSkVTS
⊤
k γtk = {gk(xtk)}

2[SkS
⊤
k ]11 − 2[SkS

⊤
k ]1tgk(xtk) + [SkS

⊤
k ]tt

This together with (A.3) implies that the asymptotic variance of ĝk(xtk) is of order O((Thk)
−1).

As for the estimates of the parameters, first note that the results on α̂j easily follow from (1.2),

(1.3) and the strong mixing conditions [A1]. To examine the asymptotic properties of β̂jk, least
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square estimate (2.6) derived from model (2.5), first note that according to Theorem 4.1, we have

that

ḡ = g+Op((Thk)
−1/2), (

1

T
ḡ⊤ḡ)−1 = Σ−1

g +Op((Thk)
−1/2), (A.5)

uniformly in all elements of the matrix, where

g =

















g1(x11) · · · gp(x1p)

g1(x21) · · · gp(x2p)
...

...
...

g1(xT1) · · · gp(xTp)

















=

















1 · · · 1

g1(x21) · · · gp(x2p)
...

...
...

g1(xT1) · · · gp(xTp)

















,

since without loss of generality, we have assumed that x1k = 1 whence gk(x1k) = x1k = 1. These,

together with the decomposition Rj = α̂j1T + (αj − α̂j)1T + ĝβj + (g− ĝ)βj + ǫj and the root-T

consistency of α̂j, lead to

β̂j = (ḡ⊤ḡ)−1ḡ⊤(Rj − α̂j1T)

= βj + (ḡ⊤ĝ)−1ḡ⊤(αj − α̂j)1T + (ḡ⊤ĝ)−1ḡ⊤(g− ḡ)βj + (ḡ⊤ḡ)−1ḡ⊤(g− ĝ)ǫj

= βj + (g⊤g)−1g⊤(αj − α̂j)1T + (g⊤g)−1g⊤(g− ḡ)βj + op(T
−1/2)

= βj +Σ−1
g T−1g⊤(g− ḡ)βj +Σ−1

g T−1gǫj + op(T
−1/2)

where we’ve used the following facts:

T−1g⊤1T = Op(T
−1/2), T−1(g− ḡ)ǫj = Op(T

−1/2).

This means the error arisen from the pre-estimation of αj has been ‘averaged out’ and thus of no

impact. To show that β̂j is asymptotically normal, first note that the kth element of g⊤(g− ḡ)βj

is given by

1

n

n
∑

j′=1

p
∑

k′=1

βjk′

βj′k′

[

T
∑

t=2

gk(xtk)γtk′
]⊤

Sk′ǫj′ k = 1, · · · , p; with

T
∑

t=2

gk(xtk)γtk′ =
[

−
T
∑

t=2

gk(xtk)gk′(xtk′), gk(x2k), · · · , gk(xTk)
]⊤

.

Therefore,

[ T
∑

t=2
gk(xtk)γtk′

]⊤
Sk′ = c0(K)c⊤k,k′ +Op((Thk)

−1/2)

1
n

n
∑

j′=1

p
∑

k′=1

βjk′

βj′k′

[ T
∑

t=2
gk(xtk)γtk′

]⊤
Sk′ǫj′ = c0(K) 1n

n
∑

j′=1

[ p
∑

k′=1

βjk′

βj′k′
ck,k′

]⊤
ǫj′ + op(T

1/2).
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Since ǫj′, j
′ = 1, · · · , n are independent with zero mean and variance VT , the asymptotic normality

of T 1/2(β̂j − βj) thus follows with asymptotic variance given by

σ2c20(K)Σ−1
g n−2

(

n
∑

j′=1

T−1Aj′|jA
⊤
j′|j

)

Σ−1
g ,

which is finite. �

Proof of Theorem 4.2 Firstly, it is easy to see that RSS1/(nT ) → σ2 in probability as T → ∞.

So we just need to concern us with the numerator for which we have

RSS0 − RSS1 =
n
∑

j=1

{RSS0,j − RSS1,j},

where

RSS1,j = R⊤
j [IT − g̃(g̃⊤g̃)−1g̃⊤]R⊤

j ; g̃ =











1 ḡ1(x11) · · · ḡp(x1p)
...

...
. . .

...

1 ḡ1(xT1) · · · ḡp(xTp)











RSS0,j = R⊤
j [IT −X(X⊤X)−1X⊤]R⊤

j = ǫ⊤j [IT − X̄(X̄
⊤
X̄)−1X̄

⊤
]ǫ⊤j .

Note that the second identity follows from the fact that X(X⊤X)−1X⊤ is invariant if X is replaced

with X right-multiplied by a diagonal matrix and that

X̄ =

















1 1 · · · 1

1 g1(x21) · · · gp(x2p)
...

...
...

...

1 g1(xT1) · · · gp(xTp)

















= X

















1 x−1
11 0 · · · 0

0 0 x−1
12 0 0

...
...

...
...

...

0 0 · · · 0 x−1
1p

















.

With a slight abuse of notation, we revert to the old notation of g in place of X̄. Write g̃ = g+ δ,

∆ = g⊤δ + δ⊤g, Γ = (g⊤g)−1g⊤ so that

g̃⊤g̃ = g⊤g+ g⊤δ + δ⊤g+ δ⊤δ,

(g̃⊤g̃)−1 = (g⊤g)−1 − (g⊤g)−1∆(g⊤g)−1 +Op((Thk)
−1),

g̃(g̃⊤g̃)−1g̃⊤ = g(g⊤g)−1g⊤ + δΓ + Γ⊤δ⊤ + δ(g⊤g)−1δ⊤ − Γ⊤∆Γ

−δ(g⊤g)−1Γ(g⊤g)−1g⊤ − g(g⊤g)−1Γ(g⊤g)−1δ⊤ − δ(g⊤g)−1Γ(g⊤g)−1δ⊤ +Op((Thk)
−1).

Since Rj = gβj + ǫj , we have the following partition of the difference of the two Residual Sum of

Squares:

RSS0,j − RSS1,j = −2R⊤
j δΓRj +R⊤

j Γ
⊤∆ΓRj −R⊤

j δ(g
⊤g)−1δ⊤Rj

+2R⊤
j g(g

⊤g)−1∆(g⊤g)−1δ⊤Rj +R⊤
j δ(g

⊤g)−1∆(g⊤g)−1δ⊤Rj . (A.6)
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We start with the third term on the RHS of (A.6), and will show that

R⊤
j δ(g

⊤g)−1δ⊤Rj = op(h
−1), (A.7)

uniformly in j = 1, · · · , n. We will make use of the following results:

E[ǫ⊤j δ(g
⊤g)−1δ⊤ǫj ] =

1

T
E[ǫ⊤j δΣ

−1
g δ⊤ǫj](1 +Op(1)) ≤

C

T
E‖δ⊤ǫj‖

2 = o(h−1
k ), (A.8)

E‖δ⊤ǫj‖
2 ≤ pmax

k
E
(

T
∑

t=2

[γ⊤tkSk

n
∑

j=1

β−1
jk ǫj ]ǫtj

)2
,

E
(

T
∑

t=2

[γ⊤tkSk

n
∑

j=1

β−1
jk ǫj]ǫtj

)2
=

T
∑

t=2

E[γ⊤tkSk

n
∑

j=1

β−1
jk ǫj]

2ǫ2tj

+
∑

t6=t′

E
(

[γ⊤tkSk

n
∑

j=1

β−1
jk ǫj][γ

⊤
t′kSk

n
∑

j=1

β−1
jk ǫj ]ǫtjǫt′j

)

= O(h−2),

where the last equality follows from the fact that γ⊤tkSk = ([Sk]tj − gk(xtk) ∗ [Sk]1j) = O((Th)−1).

Apparently (A.7) follows from (A.8), if we could also show that β⊤
j g

⊤δ(g⊤g)−1δ⊤gβj =

O(T−1g⊤δΣ−1
g δ⊤g) = Op(1): this could be done in a manner similar to (A.8). Specifically, for

any l, k = 1, · · · , p, the (k, l)th element of δ⊤g is given by

T
∑

t=2

xtl
x1l

(

γ⊤tkSk
1

n

n
∑

j=1

β−1
jk ǫj

)

=

n
∑

j=1

β−1
jk ǫ⊤j S

⊤
k

(

T
∑

t=2

xtl
x1l

γtk

)

= Op(1),

where for the last equality we make use of the following facts:

T
∑

t=2

xtl
x1l

γtk =
[

−
T
∑

t=2

xklxtl
xklx1l

,
x2l
x1l

, · · · ,
xT l

x1l

]⊤
,

T
∑

t′=1

[Sk]t′j

(

T
∑

t=1

xtl
x1l

γtk

)

= O(1) +Op((Th)
−1/2).

Next, we will show that for the last term on the RHS of (A.6) the following holds:

R⊤
j δ(g

⊤g)−1∆(g⊤g)−1δ⊤Rj = Op((Th)
−1). (A.9)

This is based on the following identities:

(A) ǫ⊤j δ(g
⊤g)−1∆(g⊤g)−1δ⊤ǫj = Op((Th)

−1);

(B) β⊤
j g

⊤δ(g⊤g)−1g⊤δ(g⊤g)−1δ⊤gβj = Op(T
−2).
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To prove (A), first note that ǫ⊤j δ(g
⊤g)−1∆(g⊤g)−1δ⊤ǫj = 2ǫ⊤j δ(g

⊤g)−1g⊤δ(g⊤g)−1δ⊤ǫj , and the

kth (k = 1, · · · , p) element of ǫ⊤j δ is such that

n
∑

j′=1

β−1
j′k

(

ǫtjγ
⊤
tkSk

)

ǫj′ =

n
∑

j′=1

β−1
j′k

(

[−

T
∑

t=2

xtk
x1k

ǫtj , ǫ2j , · · · , ǫTj ]Sk

)

ǫj′

=

n
∑

j′=1

β−1
j′k

[

T
∑

t=2

ǫtj [Sk]t,t′ −

T
∑

t=2

xtk
x1k

ǫtj [Sk]1,t′ , t
′ = 1, · · · , T

]

ǫj′ .

Since
T
∑

t=2
ǫtj [Sk]t,t′ = Op((Th)

−1/2) and
T
∑

t=2

xtk

x1k
ǫtj = Op(T

−1/2), uniformly in t′ = 1, · · · , T, whence

ǫ⊤j δ = Op((T/h)
1/2). The proof of (B) is similar.

We now move on to the second term on the RHS of (A.6): R⊤
j Γ

⊤∆ΓRj, which again is bounded

by two times the following term:

ǫ⊤j g(g
⊤g)−1g⊤δ(g⊤g)−1g⊤ǫj + β⊤

j g
⊤g(g⊤g)−1g⊤δ(g⊤g)−1g⊤gβj = Op(1),

where for the last equality we used the fact that g⊤ǫj = Op(T
1/2).

Now the only term left to be dealt with is R⊤
j δΓRj , which equates to

R⊤
j δβj +R⊤

j δ(g
⊤g)−1g⊤ǫj = ǫ⊤j δβj + β⊤

j g
⊤δβj + β⊤

j g
⊤δ(g⊤g)−1g⊤ǫj

+ǫ⊤j δ(g
⊤g)−1g⊤ǫj ; (A.10)

where β⊤
j g

⊤δ(g⊤g)−1g⊤ǫj = Op(T
−1/2) and β⊤

j g
⊤δβj = Op(1). The kth element of ǫ⊤j δ:

n
∑

j′=1

β−1
j′k

(

T
∑

t=2

ǫtjγ
⊤
tk

)

Skǫj′ =
∑

j′ 6=j

β−1
j′k

(

T
∑

t,t′=2

ǫtjǫt′j′ [Sk]t,t′
)

+ β−1
jk

(

T
∑

t,t′=2

ǫtjǫt′j [Sk]t,t′
)

,

has a mean with the leading term given by

β−1
jk σ2

T
∑

t=2

[Sk]t,t = K(0)β−1
jk σ2h−1(1 + op(1)); (A.11)

and a second moment with leading term given by

σ4
∑

j′ 6=j

β−2
j′k

T
∑

t,t′=2

[Sk]
2
t,t′ + β−2

jk µ4

T
∑

t=2

[Sk]
2
t,t

+β−2
jk σ4

∑

t<t′

{[Sk]
2
t,t′ + [Sk]

2
t′,t + 2[Sk]t,t′ [Sk]t′,t + 2[Sk]t,t[Sk]t′,t′}

= σ4
∑

j′ 6=j

β−2
j′k

T
∑

t,t′=2

[Sk]
2
t,t′ + β−2

jk (µ4 − σ4)

T
∑

t=2

[Sk]
2
t,t

+β−2
jk σ4

∑

t<t′

{[Sk]
2
t,t′ + [Sk]

2
t′,t + 2[Sk]t,t′ [Sk]t′,t}+ β−2

jk σ4
(

T
∑

t=2

[Sk]t,t

)2
.
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Thus its variance is such that

(

4β−2
jk +

∑

j′ 6=j

β−2
j′k

)

σ4R(K)h−1T−2
T−1
∑

l=1

(T − l)al;k. (A.12)

From (A.11) and (A.12), we could deduce that ǫ⊤j δβj has mean of pK(0)σ2h−1 and variance

σ4R(K)h−1T−2
p
∑

k=1

{4 +
∑

j′ 6=j

(βjk/βj′k)
2}

T−1
∑

l=1

(T − l)ak,l

+σ4T−2
∑

k 6=k′

{4 +
∑

j′ 6=j

(βjk/βj′k)
2}

T−1
∑

l=1

(T − l)bl;k,k′.

Under assumption [A4], the variance of ǫ⊤j δβj could be further simplified as

σ4R(K)h−1
k

p
∑

k=1

ck{4 +
∑

j′ 6=j

(βjk/βj′k)
2}.

Now we deal with the fourth term in (A.10). As the kth element of ǫ⊤j δ given by

n
∑

j′=1

β−1
j′k

(

T
∑

t=2

ǫtjγ
⊤
tk

)

Skǫj′ =
∑

j′ 6=j

β−1
j′k

(

T
∑

t,t′=2

ǫtjǫt′j′ [Sk]t,t′
)

+ β−1
jk

(

T
∑

t,t′=2

ǫtjǫt′j [Sk]t,t′
)

,

and the k′th element of g⊤ǫj given by
T
∑

t=1

xtk′

x
1k′

ǫtj , we have

ǫ⊤j δ(g
⊤g)−1g⊤ǫj =

1

T

p
∑

k,k′=1

σk,k′β
−1
jk

(

T
∑

t=1

xtk′

x1k′
ǫtj

)(

T
∑

t,t′=2

ǫtjǫt′j[Sk]t,t′
)

+
1

T

p
∑

k,k′=1

σk,k′
(

T
∑

t=1

xtk′

x1k′
ǫtj

)

∑

j′ 6=j

β−1
j′k

(

T
∑

t,t′=2

ǫtjǫt′j′ [Sk]t,t′
)

,

which is of mean zero with its variance easily shown to be of order O((Th)−1).

The fact that ǫ⊤j δ is the dominating term in the partition (A.6) of RSS0,j−RSS1,j, applies to all

j = 1, . . . , n. To derive the asymptotics of λ(H0), we also need to consider the covariance between

RSS0,j−RSS1,j and RSS0,j′ −RSS1,j′ (j, j
′ = 1, · · · , n, j 6= j′). This in turn equals to that between

ǫ⊤j δβj and ǫ⊤j′δβj′ , the leading term of which is easily seen to be given by

h−1σ4R(K)T−2
p
∑

k=1

T−1
∑

l=1

(T − l)al;k.

The proof is thus complete. �

Proof of Corollary 7.1 For backfitting estimation of additive models, Opsomer (2000) studied

theoretical properties on general linear smoothers with independent observations. We now describe
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the extension of his results to our case, i.e. for any given j = 1, · · · , n, the estimation of {Gjk(.), k =

1, · · · , p} based on time series data {rtj , t = 1, · · · , T} .

With linear smoother matrices such as the T × T matrices Sk , k = 1, · · · , p of (A.1), the

backfitting estimates of the additive component functions evaluated at the observation points are

by definition the solution to the following system of equations for the unknown vectors of fits

Gj1, · · · ,Gjp:

















I S1 · · · S1

S2 I · · · S2

...
...

. . .
...

Sp Sp · · · I

































Gj1

Gj2

...

Gjp

















=

















S1

S2

...

Sp

















Rj . (A.13)

Conceptually the solution could be written as

















Ĝj1

Ĝj2

...

Ĝjp

















=

















I S1 · · · S1

S2 I · · · S2

...
...
. . .

...

Sp Sp · · · I

















−1 















S1

S2

...

Sp

















Rj ≡ M−1CRj , (A.14)

provided that M is invertible. Write

Wk = EkM
−1C,

where Ek is a partitioned matrix of dimension T × (T p) with an T × T identity matrix as the kth

block and zero matrices else where, so that Ĝjk = WkRj . According to Lemma 2.1 of Opsomer

(2000), equation (A.13) solved through backfitting algorithm will converge to a unique solution if

‖SkW[−k]‖ < 1 (A.15)

for some k ∈ {1, · · · , p} and any matrix norm ‖.‖, where recall that W[−k] has been defined

preceding Corollary 7.1. As pointed out in Buja et al. (1989) and Opsomer (2000), a necessary

condition for (A.15) to hold for any of the major smoothing techniques unless the smoother matrices

are centered, i.e. Sk replaced by its centered counterpart S∗
k. In that case, the additive smoother

with respect to the kth component function Gjk(.) is written as

Wk = I− (I− S∗
kW[−k])

−1(I − S∗
k) = (I− S∗

kW[−k])
−1S∗

k(I−W[−k]). (A.16)

The aymptotic bias and variance of Ĝjk, j = 1, · · · , T, k = 1, · · · , P is then derived from (A.16)

and that Ĝjk = WkRj ; see Theorem 3.1 in Opsomer (2000) in the case of iid observations. Here
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we need to generalize these results to dependent sequences. The key intermediary step is, as in

Opsomer and Ruppert (1997) and Opsomer (2000, pp. 178), to show that that

S∗
k = Sk − 1T1

⊤
T
/T + op(1T1

⊤
T
/T ),

(I− S∗
kW[−k])

−1 = I+Op(1T1
⊤
T
/T ),

uniformly over all elements of the matrices. This follows from results given in Yu (1994) on rates

of convergence for empirical processes of stationary mixing sequence. The rest of the proof are

identical to that of Theorem 3.1 of Opsomer (2000). �
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