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Abstract

We present a simple method to incorporate nonlocal effects on the Nernst advection of magnetic
fields down steep temperature gradients, and demonstrate its effectiveness in a number of inertial
fusion scenarios. This is based on assuming that the relationship between the Nernst velocity and
the heat flow velocity is unaffected by nonlocality. The validity of this assumption is confirmed
over a wide range of plasma conditions by comparing Vlasov–Fokker–Planck and flux-limited
classical transport simulations. Additionally, we observe that the Righi–Leduc heat flow is more
severely affected by nonlocality due to its dependence on high velocity moments of the electron
distribution function, but are unable to suggest a reliable method of accounting for this in fluid
simulations.

Keywords: Nernst, transport, nonlocal

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent advances in indirect-drive laser fusion at the National
Ignition Facility using high-density carbon ablators and low
gas-fill [1] have now led to neutron yields in excess of 1016

[2]. However, the ignition frontier of net energy gain (with
respect to the total laser energy) remains elusive. One part-
icular challenge, is that there are significant discrepancies
between experimental results and models [3], which have,
until very recently, required ad hoc multipliers on the radia-
tion drive to avoid overestimating it by up to 30% [4]. This

recent elimination of drive multipliers would not have been
possible were it not for large reduction of another tunable
parameter—the flux-limiter—which is used to approximate
reductions in the electron heat flux from nonlocal effects, self-
generated magnetic fields and plasma instabilities. Our paper
aims to address the crossover between the first two areas
through detailed comparisons with fully-kinetic Vlasov–
Fokker–Planck (VFP) simulations, while also considering
accurate and efficient ways to account for nonlocal mod-
ifications to the ‘Nernst’ advection of magnetic fields down
temperature gradients.

Developments in proton radiography [5, 6] and
magnetohydrodynamic modelling capabilities [7, 8] have
encouraged a resurgence of interest in the role of magnetic
fields in inertial confinement fusion (ICF). Self-generated
fields in the megagauss ( 100~ tesla) range have been
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observed to occur near laser hotspots on direct-drive capsule
shells [9, 10], and hohlraum walls [11]. These fields have the
ability to inhibit thermal transport and raise plasma tem-
peratures [8, 12]. Furthermore, the potential of an externally
imposed field to improve performance and potentially cross
the ignition barrier has been demonstrated in magnetised liner
inertial fusion [13–16], plasma-liner-driven magneto-inertial
fusion [17–19], direct-drive ICF [20–22] and indirect-drive
ICF [23–25].

Critical to understanding magnetic field dynamics in
laser-plasmas is the Nernst effect. Classical (Braginskii [26])
plasma transport theory shows that this advects magnetic
field down temperature gradients at the Nernst velocity
v T eBN eb= -  ^( ) , where b is a component of the ther-
moelectric tensor as defined by Epperlein and Haines [27],

Te


^ is the electron temperature gradient perpendicular to the
magnetic field, e is the magnitude of the electron charge and B
is the magnitude of the magnetic field. Note that in this paper,
the electron temperature is always taken to be in energy units
(i.e. Boltzmann’s constant is taken to be 1). Typically, vN lies
between the ion sound speed and the electron thermal velocity
[28], leading to the build-up of magnetic field at the foot of
the temperature gradient, a process known as convective
amplification [29]. The consequent cavitation of the magnetic
field in hot regions of the plasma degrades its desirable
insulating properties [30]; and recent indirect-drive simula-
tions have demonstrated that neglecting the effect of Nernst
advection on self-generated fields can lead to a 1.5 KeV
overestimation of the plasma temperature [8].

However, Davies et al have found that corrections to the
classical Nernst velocity (through a flux-limiter) are necessary
for matching simulated yield and ion temperature to a direct-
drive experiment with an externally imposed field [7]. This is
likely due to nonlocal effects arising near the shock front
where the mean free path (mfp) of suprathermal conduction
electrons, travelling around four times the thermal velocity
(v T mT e e= where me is the electron mass) can exceed the
temperature gradient scalelength L T TT e e» ∣ ∣. The ability
of suprathermals to escape steep gradients leads to non-
Maxwellian features in the high-energy tail of the electron
distribution function (EDF) which provides a dominant
contribution to both thermal conduction and the Nernst effect
[31, 32]. This explanation is supported in a recent work by
Hill and Kingham [33], where a significant reduction of the
peak Nernst velocity compared to the Braginskii prediction is
observed in a 2D VFP simulation of a non-uniformly irra-
diated CH-foil. Additionally, the authors observed an
enhancement of the Nernst velocity inside the foil where the
temperature gradient is relatively flat. Similar to the phe-
nomena of nonlocal preheat which is important in directly-
driven ICF capsules, such an effect could not be captured by
flux-limiters.

As an alternative to flux-limitation, a number of more
advanced models have been suggested to account for nonlocal
thermal transport. These models are often based on

simplifications of the VFP equation
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for the evolution of the distribution function fe, where v is
the electron velocity and C is the operator representing col-
lisions of electrons with themselves and other species.
Examples of nonlocal models include the commonly used
Schurtz et al (SNB) model [34] (which we have shown agrees
well with kinetic simulations [35, 36]), the M1 model [37]
and many others [38–50]. While the majority of these models
are limited to purely unmagnetised regimes, magnetised
extensions have been put forward for both the SNB [51] and
the M1 model [52]. However, the accuracy of these has not
yet been verified against fully-kinetic simulations. Further-
more, the magnetised SNB multigroup diffusion model does
not prescribe any method for calculating nonlocal corrections
to the Nernst velocity. One possible method (described in
section 2) for obtaining an approximation of nonlocal Nernst
with nonlocal models designed only for thermal transport has
been explored by Lancia et al [53] and is used as an
inspiration for the direction of this paper. Application of this
technique to a nonlocal model very similar to the SNB [54, 55]
was able to reduce discrepancies between modelling and
experiments of a planar laser-solid interaction [53, 56].

The role of nonlocality in magnetised transport is not a new
idea and has been previously explored in a number of papers
published over 30 years ago. Brackbill and Goldman [57] were
the first to demonstrate that the flux-limiting of all transport
coefficients more accurately captured features predicted by a
collisionless PIC code (VENUS [58]). Subsequently, Kho and
Haines [59], used fully-kinetic VFP simulations to demonstrate
that Nernst advection and thermal conduction tend to be flux-
limited to a similar degree while the Righi–Leduc heat flow,
which provides a bending around field lines, should be limited
more strongly. However, they only considered a plasma of
moderate and uniform ionisation (Z = 10) and neglected ani-
sotropic electron–electron collisions, which can have a sig-
nificant effect on the Nernst velocity for low-Z plasmas, such as
present in the hohlraum gas-fill (see section 2). Furthermore,
they did not compare the time-integrated effect of using a flux-
limited hydrodynamic model against VFP simulations on plasma
profiles. Haines [32] supported this work with a proof that if the
electron–ion collision frequency νei is assumed to vary artifi-
cially as 1/v2 (while in reality it varies as v vlog ei

3L ( ) ) and
electron–electron collisions are ignored then the ratio between
the Nernst velocity and the perpendicular heat flow is unaffected
by nonlocal modifications to the distribution function. Finally,
Luciani et al [60], developed a convolution model for the Nernst
velocity and Righi–Leduc heat flow based on simplifications to
the quasistatic VFP equation. Again, this was not tested against a
full VFP code.

In this work, we aim to bring together and expand upon
the existing research on nonlocal Nernst effects by comparing
VFP and flux-limited transport approaches at high and low
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ionisations. A theoretical overview will first be presented in
section 2 to discuss the dominant terms governing the evol-
ution of temperature and magnetic field profiles in the fol-
lowing simulations as well as the implications of common
approximations for the Nernst velocity. We consider a wide
range of one-dimensional test problems including relaxation
of a temperature ramp with an initially uniform imposed
magnetic field in section 3, laser-heating of nitrogen in
section 4 and a lineout from an indirect-drive HYDRA simu-
lation in section 5. The main observation is that while both
thermal conduction and Nernst advection can be strongly
affected by nonlocality, their ratio is not. This allows for a
simple method of extending a nonlocal thermal transport
model (in this case the SNB model [34], which we have
explored previously in unmagnetised plasmas [35, 36]) to
approximate the Nernst velocity.

2. Theoretical background

For simplicity in this paper, we restrict ourselves to spatial
variation in one direction (x) only. In particular, this avoids
the possibility of self-generated fields due to the Biermann
battery or other anisotropic effects. For a magnetic field
pointing solely in the z-direction, the evolution of the
magnetic field and temperature profile are determined by
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where Ey is the electric field in the y-direction and Qx is the heat
flow parallel to the temperature gradient. The final term is the
Joule heating term, E j

 
· , where the electric current j


has

been substituted with B 0m


´


using Ampere’s law with the
displacement current neglected. In the VFP simulations presented

in this paper the magnetic field gradients are not very steep,
meaning that this term is not as important as the divergence of
the heat flow in determining the plasma temperature.

Both temperature and magnetic field gradients contribute
to their own and each other’s evolution. This leads to a
number of effects, only four of which contribute in our 1D
geometry:
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where μ0 is the permeability of free space, κ⊥ is the
perpendicular thermal conductivity, α⊥ is the perpendicular
resistivity and ne is the electron density. Again, the weak
magnetic field gradients present mean that the Ettingshausen
effect and resistive diffusion are small corrections to the
Nernst and thermal conduction terms, and are therefore not
discussed in detail here. Additionally, the heat flow
perpendicular to both the magnetic field and temperature
profile, is given by
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where k and b̂ are elements of the thermal conductivity and
thermoelectric tensors respectively. As above only the first
term is usually dominant in the cases studied here.

In the local limit, rational polynomial fits for the transport
coefficients as a function of magnetisation or Hall parameter
χ have been calculated by both Braginskii [26] and more
accurately by Epperlein and Haines [27] for varying degrees
of ionisation by assuming that the isotropic part of the EDF is
Maxwellian. The magnetisation χ = ωcτB is calculated as the
product of the electron cyclotron frequency ωc = e B/me and
the collision time
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where ò0 is the permittivity of free space and log eiL is the
Coulomb logarithm. From this the electron–ion mfp can be
calculated as vei T Bl t= .

A commonly used interpolation formula over ionisations
for κ⊥is to multiply its value in the Z = ¥ (Lorentz) limit
(128 3p) by a factor Z Z0.24 4.2x = + +( ) ( ) [61]. This
approach is also popular as a method to approximate the
effect of anisotropic electron–electron collisions in some VFP

codes (such as SPARK [61], IMPACT [62], ALADIN [54],
IMPACTA [63] and a previous version of K2 [36]) by boosting
the electron–ion collision frequency by 1/ξ. While giving
the correct Z-dependence for the perpendicular thermal

Figure 1. The local prediction due to Epperlein and Haines [27] (see
equation 7) for the dimensionless quantity P eBey b k=  ^ in the
limit of zero and infinite magnetisation. Dashed lines show the
values obtained using the anisotropic collision fix ξ = (Z+0.24)/
(Z+4.2) [61], which turn out to be independent of ionisation.
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conductivity at low magnetisation, this approach can lead to a
large overestimate (up to a factor of 2–3) of other transport
coefficients such as β∧which determines the Nernst velocity.

The error induced in the local Nernst velocity by using
the collision fix in VFP codes instead of the full anisotropic
electron–electron collision operator can be inferred from
figure 1. This depicts the Z-variation of the dimensionless
quantity P eBey b k=  ^, where Pe = neTe is the electron
pressure, in the limit of zero and infinite magnetisation. The
parameter ψ quantifies the ratio between vN and the heat flow
velocity v Q PQ eµ ^ and can be calculated using the poly-
nomial coefficients calculated by Epperlein and Haines
(appearing in table III and IV of their paper [27]) as

lim , lim
1.5

. 7
0

0

0

1

1

y
b
g

y
b

g
= =

 =
¢c c



¥
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If the collision fix is used as an alternative to fully accounting for
electron–electron collisions (dashed lines) then the value of ψ in
the zero and infinite magnetisation limits becomes independent of
ionisation and equal to their Lorentz limit values (0.46 and 0.73
respectively). This is due to cancellation of ξ in the two places it
appears: in the τB-dependence of k̂ and the χ-dependence of b.
Consequently, the local Nernst velocity can be greatly over-
estimated by this approach at low ionisations (by a factor greater
than two in for a low magnetisation hydrogen plasma).

Two simple, constant approximations for ψ have been
previously suggested and used: Nishiguchi et al [29] first
suggested that ψ≈2/3, which obtains the low magnetisation
limit to within 10% for Z>12 but overestimates the Nernst
velocity at high magnetisation by 40% or more. This was first
used by Kho and Haines [59] to demonstrate that the link
between Nernst advection and perpendicular heat flow was
not greatly affected by nonlocality, and more recently by
Lancia et al [53, 54] who used reduced nonlocal heat flow
model to provide a nonlocal prediction of the Nernst velocity
as v Q P2 3N e» ^ . Alternatively, Haines [32] proved analy-
tically that if the collision frequency is incorrectly assumed to
vary as 1/v2 then ψ = 2/5 even if the isotropic part of the
distribution function is far from Maxwellian. This is the
approach employed by Davies et al [7] in calculating the flux-
limited Nernst velocity and works very well for values of Z
between 2 and 3, but provides an underestimate of ~ 15%–

80% at higher ionisations and low magnetisations. Due to the
potential for large errors arising when treating ψ as a constant
we therefore recommend using a fully ionisation- and
magnetisation-dependent approach based on the Epperlein
and Haines coefficients in both local and reduced nonlocal
models.

3. Temperature ramp relaxation

3.1. Methodology

We have investigated the relaxation of a temperature ramp in
the presence of an initially uniform magnetic field and neglect
ion hydrodynamics. Fully-ionised helium (Z = 2) and zirco-
nium (Z = 40) plasmas were studied to cover the range of

ionisations that are typical in hohlraum gas-fill and gold
bubble ablation, both with fixed and uniform electron den-
sities of 5 × 1020 cm−3. The Coulomb logarithm was taken to
be constant at 7.09 in both cases. The initial temperature
profile connecting to the two regions of 1 keV and 150 eV
respectively and is given by

T x LeV 575 425 tanh , 8e = - ( ) ( )

where the initial scalelength L was 50 μm for the helium
simulations and 17.3 μm for the zirconium in order to impose
a similar degree of nonlocality. The simulation domains
extended L7 , and reflective boundary conditions were used,
restricting heat flow and electric field values to be zero at the
boundaries. A range of initial magnetic fields were con-
sidered. For convenience, we provide a formula to calculate
the magnetisation in the hottest and coldest regions of the
plasma:

B Z0.54 tesla , 9z
1keVc = ´ ( ) ( )( )

B Z0.031 tesla . 10z
150eVc = ´ ( ) ( )( )

The helium simulations were performed using two VFP

codes—K2 [36] and OSHUN [64–66]—both based on the
KALOS formalism [67]. This formalism expands the dis-
tribution function in spherical harmonics and uses a mixture
of implicit and explicit time differencing through operator
splitting. Both codes use the full anisotropic electron–electron
collision operator, as is necessary to achieve acceptable
values of b at low ionisations, even in the local limit.
Typically, the K2 simulations used spherical harmonics up to
order 1, and the OSHUN simulations up to order 2. The codes
showed reasonable agreement with each other and slight
discrepancies were attributable to the number of harmonics
used and exact implementation of boundary conditions. K2
solves for the magnetic and electric fields explicitly using
Faraday’s law and the Ampere–Maxwell law with an artificial
multiplier of 100 on the permittivity. This effectively reduces
the plasma frequency allowing for larger timesteps of 0.5 fs.
The simulation domain extended from −350 to 350 μm over
100 cells (7 μm in width) and the uniform velocity grid
consisted of 240 cells peaking at 9.4 × 106m s−1

(25 keV).
For the zirconium simulations we instead used the fully-

implicit code IMPACT [62], which does not include the full
collision operator for the angular scattering of electrons with
themselves in the equation for the first anisotropic part of the

EDF f1

. As a substitute, the electron–ion collision frequency

is increased by dividing it by the aforementioned (see
section 2) collision fix ξ. At such high ionisations, the
percentage error on the Nernst coefficient b due to using this
approximation is below 10%. The advantage of using the
collision fix here was the absence of transport coefficients for
Z = 40 in the literature [27] to compare with the classical
transport simulations (although these could be derived). In
addition to the EDF both the electric and magnetic fields were
treated implicity; this involved neglecting the displacement
current in the Ampere–Maxwell law (see [62] for more

details). The electron inertia term ( f t1¶


¶ ) was retained. The
simulation parameters used were a spatial domain extending
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Figure 2. Perpendicular and Righi–Leduc heat flows Qx (top), Qy

(middle) and the Nernst-dominated out-of-plane electric field Ey

(bottom) after 15 ps K2 VFP helium simulation with an initial
magnetic field of 0.1 tesla. Local, flux-limited and SNB profiles were
postprocessed using the K2 temperature and magnetisation profiles.
SNB Ey and Qy are calculated by multiplying the (unmagnetised) SNB
Qx profile by the corresponding ratio in the local limit (Ey/Qx,
Qy/Qx).

Figure 3. Perpendicular heat flow Qx (top), Qy (middle) and the
Nernst-dominated out-of-plane electric field Ey (bottom) after 12 ps
K2 VFP helium simulation with an initial magnetic field of 2 tesla.
Local and flux-limited profiles were postprocessed using the K2
temperature and magnetisation profiles.
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Figure 4. Perpendicular and Righi–Leduc heat flows Qx (top), Qy

(middle) and the Nernst-dominated out-of-plane electric field Ey

(bottom) after 4 ps IMPACTVFP zirconium simulation with an initial
magnetic field of 1 tesla. Local, flux-limited and SNB profiles were
postprocessed using the IMPACT temperature and magnetisation
profiles. SNB Ey and Qy are calculated by multiplying the
(unmagnetised) SNB Qx profile by the corresponding ratio in the
local limit (Ey/Qx, Qy/Qx).

Figure 5. Perpendicular and Righi–Leduc heat flows Qx (top), Qy

(middle) and the Nernst-dominated out-of-plane electric field Ey

(bottom) after 4 ps IMPACT VFP zirconium simulation with an initial
magnetic field of 10 tesla. Local and flux-limited profiles were
postprocessed using the IMPACT temperature and magnetisation
profiles.
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from L9- to L7 over 800 cells (each with a width of
3.46 μm), a uniform velocity grid extending up to
1.8×107m s−1

(94 keV) and a timestep of 3.35 fs.
The distribution functions for the VFP simulations were

initialised as isotropic Maxwellians, with the anisotropic part
(and thereby the heat flow) and electric field initially growing
from zero. Initial transient effects damped within 12 ps in the
helium and 2 ps in the zirconium simulations (about 4 cor-
rected collision times, ξτB, of suprathermal 3–4 keV elec-
trons); this was determined by both Qx and Ey reaching a
maximum. We observed that the electric field takes longer to
reach its peak than the heat flow, most likely due to the Nernst
coefficient b depending on higher moments of the EDF than
k̂ (see the appendix), making it more sensitive to the
dynamics of less collisional high-energy electrons. The
magnetic field and temperature profiles at this point of the
simulations (12 ps for helium 2 ps for zirconium) were then
used to initialise classical transport simulations with various
combinations of Nernst and thermal flux-limiters.

Our Classical Transport Code (CTC) [68] provides a
fully-implicit solution for the coupled evolution of magnetic
field and temperature profiles using the Epperlein and Haines
polynomial fits for the transport coefficients [27]. For the
zirconium simulation we used the Lorentz limit (Z = ¥)

transport coefficients but multiplied the average collision time
τB by the collision fix ξ. The code also has the potential to
deal with hydrodynamics and super-Gaussian transport
coefficients arising from inverse bremsstrahlung absorption of
laser energy [69, 70], neither of which are used here. Inde-
pendent Nernst and thermal flux-limiters ( fN and fQ respec-
tively) are available and calculated by multiplying the
appropriate transport coefficients (b and k̂ ) by a spatially-
dependent flux-limiting factor θ (e.g. ,Q

FL Localk q k=^ ^
( ) ( )

,FL
N

Localb q b= 
( ) ( ) ) which always depends on the ratio of

perpendicular local thermal conduction to the free-streaming
limit Qfs = vT Pe (where v T mT e e= ):

f Q

T

x
1 , 11
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e
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q
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= +
¶
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^
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⎝
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⎞
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where α = N or Q [71]. We believe this definition of f to be
consistent with that used by popular ICF hydro codes (e.g.
HYDRA, LASNEX [72], LILAC and DRACO [7]), but these
codes typically limit the heat flow to the minimum of Qfs and
Q^ rather than half their harmonic average as presented here.
We also present results for the flux-limited Righi–Leduc heat
flow which are obtained in the same way, i.e. by multiplying
k by θRL using an independent Righi–Leduc flux-limiter fRL.

3.2. Results

Instantaneous snapshots of perpendicular heat flow (Qx),
Righi–Leduc heat flow (Qy) and the Nernst-relevant out-of-
plane electric field (Ey) at the end of the initial transient
periods are respectively presented in the top, middle and
bottom panels of figures 2–5 for selected simulations: low and
high magnetisation helium runs are presented in figures 2 and
3 corresponding to initial magnetic fields of 0.1 tesla and 2

tesla respectively. For the zirconium runs presented in
figures 4 and 5 we provide profiles resulting from initial
magnetic fields of 1 tesla and 10 tesla respectively. As results
from the various simulations are qualitatively similar we shall
discuss them all simultaneously. We shall first compare these
profiles to what would be predicted using the Epperlein and
Haines transport theory before considering the instantaneous
and time-integrated effects of using flux-limiters. Finally, in
section 3.3, we shall outline and examine the possibility of
using a more sophisticated reduced model such as SNB.

With respect to the local predictions it is clear that there
are both flux reduction and preheat effects in the Qx and Qy

heat flow profiles, but these nonlocal effects are more pro-
nounced for the Righi–Leduc heat flow due to its dependence
on higher moments of the distribution function (see
appendix). On the other hand, the electric field mainly
experiences a shift in the peak toward the cooler region of the
plasma with little reduction in its actual value and in fact an
increase of the value of the electric field in the colder region
of the plasma where the temperature gradient is relatively flat,
which we shall here refer to as ‘pre-Nernst.’ These observa-
tions are qualitatively similar to those previously seen by both
Kho and Haines [59] and Hill and Kingham [33].

It may seem surprising that, despite the similar degrees of
nonlocality and relative flux-limitation of the helium and
zirconium simulations, the actual values of flux-limiters
deemed optimal (by eye) for Qx turn out to be quite different
(0.5 for helium and 0.15 for zirconium). However, this is
simply due to differences in the Z-dependence of the
perpendicular thermal conductivity Zk xµ^ and the non-
locality parameter Z Zeix l xµ . (The appearance of the
multiplier Z in the nonlocality parameter dates back at least
as far as seminal work by Luciani et al [41], and the later
incorporation of the collision fix can be traced back to
Epperlein and Short [61]. We additionally refer the reader to
section IV A of our recent paper [35], which expands upon
original linearised analysis by Bychenkov et al [73], for
further discussion.) In our simulations, we arranged for the
maximum nonlocality parameter to be approximately equal to
0.1 for both the helium and zirconium simulations by using
different length scales L Zxµ . Therefore, in order to
obtain equivalent flux-limiting factors θ (see equation 11), the
flux-limiters f need to make up a further factor Zx to fully
compensate the ionisation-scaling of the thermal conductivity,
explaining the discrepancy in their optimal values:
40 40 0.15 2 2 0.5x x»( ) ( ) . If we had not used different

values for L the values of the flux-limiters would have indeed
been similar to each other, but the resulting flux-limitation
factors θ would be closer to unity for zirconium than helium.
These observations suggest that it is worth carefully con-
sidering whether the value of flux-limiter used in laser-plasma
codes should be material dependent perhaps through an inline
calculation of the nonlocality parameter at each point in
space.

As magnetic fields should in theory relocalise the trans-
port it may seem surprising that the optimal flux-limiter value
does not appear to depend greatly on magnetisation.
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Nevertheless, the heat flow does indeed approach its local
value as higher magnetisations are reached. This is possible
because of the reduction of the local heat flow in the presence
of strong magnetic fields to well below the free-streaming
limit.

Looking at the Ey profiles which determine the evolution
of the magnetic field due to Nernst advection, we see that
using the same flux-limiter as for Qx gets the profile about
right in the hot region of the plasma. However, doing so
grossly underestimates the peak electric field and the flux-
limiter approach inherently fails to capture any of the pro-
minent pre-Nernst observed. The former observation in
particular suggests that perhaps it would be desirable to use a
larger Nernst flux-limiter in order to match the peak. Con-
trastingly, it is clear that a lower flux-limiter is necessary on
the Righi–Leduc heat flow to capture its higher degree of flux
suppression due to nonlocality.

The results shown in figures 2–5 are sufficiently early in
the simulations that the magnetic field profile has not evolved
significantly. The top panel of figure 6 shows the magnetic
field profiles predicted by K2 and CTC with varying combi-
nations of flux-limiters at 200 ps for a helium simulation with
an initial magnetic field of 2 T (recall that the classical
transport simulation was started 12 ps in) and a similar
comparison between IMPACT and CTC for the 10 T zirconium
at 50 ps (with CTC starting at 2 ps) in the bottom panel. It is
observed that when using only a thermal flux-limiter (orange
dashed–dotted), as is traditional, the relative amplification of
the magnetic field is overestimated, by over 30% for the case
of the zirconium simulation. Additionally, the degree of
magnetic cavitation is also slightly overestimated by the tra-
ditional approach. Incorporating a Nernst limiter noticeably
improves agreement with VFP but does not account for the
smearing and shifting of the peak beyond the foot of the
temperature gradient. Despite these noticeable differences in
the final magnetic field profiles these were not sufficient to
cause distinguishable modifications on the final temperature
profiles.

Although Nernst advection in the zirconium simulation
might be considered slightly over-constrained by a limiter of
0.15, we still suggest that the most sensible method of lim-
iting Nernst advection is to always use fN = fQ as other
choices are ad hoc and cannot be justified physically. This
also conveniently prevents the undesirable introduction of an
additional tunable parameter. Also note that when instead
dispensing with flux-limiters completely in these simulations
(i.e. f fQ N= = ¥) we achieve the best agreement with the
VFP magnetic field profiles as cold plasma is allowed to heat
up quicker, thereby enhancing the spread of magnetic field.
However, it would indeed be preferable to go beyond flux-
limiters to a more predictive approach, such as a reduced
nonlocal model, that could account for the prominent
smearing and delocalisation effects of pre-Nernst observed.

3.3. Potential of the SNB model

SNB multigroup diffusion model for nonlocal electron heat
transport [34] has proven to be the most successful attempt to

efficiently capture nonlocality in hydrodynamic simulations
of ICF simulations. This model calculates the contribution of
separate energy groups of electrons to the nonlocal heat flow
by solving a set of independent inhomogeneous Helmholtz-
like equations [34, 35] and is able to capture both flux
reduction and preheat effects but traditionally gives no pre-
scription for nonlocal modifications to Nernst advection. It
has been implemented in a number of radiation-hydro-
dynamics codes used by national labs including HYDRA [72],
CHIC [74] and DRACO [75].

By comparing the model’s equation set to a simplified
VFP approach, the authors were able to suggest a relation

Figure 6. Comparison of magnetic field profiles predicted by the
Classical Transport Code CTC with different combinations of
thermal and Nernst flux-limiters fQ, fN respectively. Helium profiles
(top) were evolved independently for a further 188 ps starting from
the K2 Te and Bz profiles at 12 ps, while the zirconium profiles
(bottom) were simulated independently for a further 48 ps from the
IMPACT profiles at 2 ps.
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between the energy group contribution Hg and the nonlocal
perturbation to the isotropic part of the EDF δf0. If this rela-
tionship were accurate, it would provide a simple method of
calculating corrections to the Nernst coefficient b by taking
moments of the distribution function (see, for example,
appendix). However, we have recently shown that such a
reconstruction of the EDF from the SNB model does not agree
well with VFP predictions [36]. Particularly, the SNB model
appears not to account for the enhanced return current pre-
dicted by VFP codes in regions where there is considerable
preheat. In retrospect, this is not surprising due to the
approximate treatment of the electric field in the SNB model.
Therefore, it would be desirable to come up with a more
reliable method of using the SNB model to account for non-
local Nernst advection. One such approach is to use the
observation that the ratio between the Nernst and heat flow
velocities does not depend greatly on nonlocality [32, 59].

Specifically, if a good approximation for the nonlocal
heat flow can be obtained (such as from the SNB model) then
we should be able to estimate the nonlocal electric field by
simply multiplying the former by the ratio expected in the
local limit: e B PLocal Local Local

eb k yº ^
( ) ( ) ( ) . That is,

E B P Qy x
Nonlocal Local

e
Nonlocaly» ( )( ) ( ) ( ). The wide range of pro-

blems investigated here provide a perfect opportunity to
thoroughly test whether this approximation is indeed accurate
and reliable.

While a magnetised extension of the SNB model has been
developed and is implemented in the CHIC code [51], this has
not yet been extensively tested against VFP simulations. We
do not attempt to do this here. Instead, we simply apply the
unmagnetised model to simulations with low magnetisations
(χ<0.03) so that the heat flow and degree of nonlocality are
not strongly affected by the presence of a magnetic field. The
specific SNB implementation used here corresponds with the
optimal one identified in [35]; this consists of (i) imposing a
scaling factor on the Krook electron–electron collision fre-
quency of r = 2, (ii) separating the electron–electron and
electron–ion mfp’s, and (iii) multiplying the electron–ion mfp
by the collision fix ξ.

The bottom panels of figures 2–5 present the results of
using this approximation for the helium 0.1 tesla and zirco-
nium 1 tesla simulations. Temperature and magnetic field
profiles at 15 ps and 4 ps respectively were used to calculate
the SNB heat flow before converting this to an estimate for Ey.
We observe that this method for obtaining the SNB electric
field exhibits remarkable agreement with VFP, closely
matching both the degree of flux reduction and the preheat at
very little additional computational cost.

At higher magnetisations, we were still able to test the
claim that nonlocality does not affect the link between ther-
mal conduction and Nernst advection by instead multiplying
the VFP heat flow by the ratio Bψ(Local)/Pe. This is depicted
for the 2 tesla helium and the 10 tesla zirconium runs in the
bottom panels of figures 3 and 4 respectively. Again, the ratio
method provides a good approximation for Ey, with the main
discrepancy being a slight underestimate of the pre-Nernst on
the right-hand side. This discrepancy arises due to the

dependence of b on higher-velocity moments of the EDF than
k̂ (see appendix), making it more sensitive to nonlocal
effects.

Our findings are summarised in figure 7 which presents
the nonlocal VFP prediction for the dimensionless ratio

P E BQy x
VFP

e
VFP VFPy =( ) ( ) ( ) as a function of magnetisation for

all temperature ramp relaxation simulations. Profiles were
extracted at 25 ps for the helium simulation and 5 ps for the
zirconium. It is shown that ψ approximately follows the local
prediction indicated by the dashed lines, clearly exhibiting a
strong ionisation dependence that would not be captured by
constant ratio approximations suggested by other authors
[7, 32, 53]. The prominent flick-ups seen at the low
magnetisation end (left-hand side) of this figure correspond to
increased reach of pre-Nernst as compared to preheat arising
from the dependence of b on higher-velocity moments of
the EDF.

We also investigated the effectiveness of using a similar
process to estimate the Righi–Leduc heat flow as
Q Q Q Qy y x x

Nonlocal Local Local Nonlocal» ( )( ) ( ) ( ) ( ) in the middle panel
of figures 2–5. However, this approach underestimates the
degree of flux-limitation and does not capture the high degree
of preheat arising from the higher-velocity moments used in
calculating the Righi–Leduc heat flow. Nevertheless, it is still
a definite improvement on both the local Braginskii and flux-
limiter approaches at lower magnetisations.

Figure 7. Solid coloured lines show the variation of ψ = PeEy/BQx

(proportional to the ratio of nonlocal Nernst and heat flow velocities)
with magnetisation χ after 25 ps VFP simulation for the helium runs
(bottom) and 5 ps for the zirconium (top). Colours differentiate
between values of the initial magnetic field, which are labelled in
units of tesla. Dashed lines show the prediction for ψ in the local
limit. The proximity of the centre of the coloured lines to the dashed
shows that the ratio between the peak magnetic and electric field is
not strongly affected by nonlocality (and is in fact more affected by
ionisation). The 50% overestimate of the local prediction at low
magnetisations shows that the pre-Nernst advecting magnetic field
beyond the temperature gradient is more pronounced than preheat.
At higher magnetisations, nonlocality is unimportant at such early
times and the observed dip in the value of ψ for the 7.5 T run at low
temperatures is simply a numerical feature due to the small values of
Ey and Qx in these regions.
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4. Laser spot heating

As the degree of nonlocality for the temperature ramp
relaxation problem at high magnetisations was not sufficient
to cause observable differences in the final temperature pro-
files, even after tens of collision times, we also looked at a
laser-heating problem where the degree of nonlocality con-
tinually increases with time. This included a fully-ionised
nitrogen plasma (Z = 7) of uniform electron density
1.5×1019 cm−3 and an assumed constant Coulomb loga-
rithm of 7.5 being heated by a continuous 6.3 × 1013 Wcm−2

laser (no time envelope was applied in our treatment). The
intensity profile was essentially uniform in the y and z

directions and Gaussian in the x-direction with a full width at
half maximum of 150 μm. Again ion motion was neglected.
This setup is based on an experiment performed by Froula
et al [76] that has previously been simulated with IMPACT by
Ridgers et al [30]. Here we use the K2 code to correctly
account for the effect of electron–electron collisions on the
anisotropic part of the distribution function but restrict our-
selves to a one-dimensional treatment for the sake of keeping
runtimes short. (Thus, the beam profile is planar rather than
cylindrical.) Furthermore, the plasma had an initially uniform
temperature of 50 eV which was slightly higher than the
20 eV previously simulated by Ridgers et al to reduce the
number of velocity cells required. A total of 250 velocity cells
were used extending up to v v25 50 eVmax T= ( ), corresp-
onding to electrons with an energy of 15.6 keV. The spatial
domain, consisting of 100 cells, extended to 500 μm from the
centre of the pulse and again we used reflective boundary
conditions. Initially uniform magnetic fields of 4 tesla were
imposed. A timestep of 2 fs was used.

Due to the initially uniform temperature profile, non-
locality did not begin to emerge until at least 50 ps. This
meant that the CTC simulations could also be started from
t = 0. Despite nonlocality continually increasing, a flux-
limiter of 0.15 was found be a good match for the heat flow
profile throughout most of the simulation. However, even at
the end of the 600 ps simulation the nonlocal reduction of the
heat flow down the temperature gradient was only about 10%
as shown in the top panel figure 8. While the electric field in
the bottom panel experiences a similar reduction near the
position of maximum heat flow, its peak is actually increased.
This may seem surprising but is explained by its occurrence
in a region where preheat naturally occurs (near the foot of the
temperature gradient at 400 μm), thus enhancing the Nernst
velocity due to a surplus of suprathermal electrons coming
from the centre of the hot spot.

Comparing to the CTC simulations we again find that
applying only a thermal flux-limiter leads to an over-
amplification of the peak magnetic field (figure 9 top panel) at
the end of the simulation by over 3 tesla (nearly 50%). In
contrast, including a Nernst limiter reduces this error to less
than 10%. However, we note that there is still a nearly 50 μm

Figure 8. Perpendicular and Righi–Leduc heat flows Qx (top), Qy

(middle) and the Nernst-dominated out-of-plane electric field Ey

(bottom) after 600 ps K2 VFP simulation for the Froula-type heating
problem with an initial magnetic field of 4 tesla. Local and flux-
limited profiles were postprocessed using the K2 temperature and
magnetisation profiles.
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discrepancy in the location of the magnetic field crest due to
the inability of the flux-limiter approach to incorporate the
effect of pre-Nernst. For this problem, there is a small but
observable difference between the effect of the different
approaches in the final temperature profiles shown in the
bottom panel of figure 9; while inclusion of a Nernst limiter
slightly increases the peak temperature it noticeably improves
the prediction at 200–250 μm. Again the Righi–Leduc heat
flow was found to experience a much more severe flux-lim-
itation (the peak flux was reduced by a factor of 50%~ ).

5. Lineout from HYDRA simulation with self-

generated fields

The effectiveness of linking Nernst advection to thermal
conduction in a more realistic scenario was confirmed by
analysing a recent NIF viewfactor shot [77] that employed a
Mn/Co microdot [78] on the capsule surface for diagnostic

purposes. Radial lineouts were taken from a 5 ns HYDRA

simulation that used a thermal flux-limiter of fQ = 0.15 (see
figure 3 and the bottom panel of figure 9 in [79]), this
employed the newly implemented MHD suite (including
Nernst) outlined in [8]. These lineouts were located 3 mm
from the centre of the capsule, starting in the low-density gas-
fill at r = 0 and ending just inside the partially heated hohl-
raum wall at r = 2.76 mm, and used to initialise a 100 ps VFP
relaxation simulation using 1D planar geometry. Again, only
temperature and magnetic profiles were allowed to evolve
while the density profile was fixed by neglecting ion hydro-
dynamics and using the zero current constraint. In order to
maintain consistency with the rest of this paper and to rein-
force the fact that planar geometry was used we will from this
point on use the Cartesian coordinates x, y, z in place of their
cylindrical counterparts r, z, (−)f. The initial and final
ionisation, electron density, temperature and magnetic field
profiles are illustrated in figure 10.

Figure 9. Comparison of magnetic field and temperature profiles for the
nitrogen heating problem predicted by K2 and Classical Transport Code
CTC with different combinations of thermal and Nernst flux-limiters fQ,
fN respectively. All profiles were evolved independently from an initial
temperature of 50 eV and magnetic field of 4 T for 600 ps.

Figure 10. Spatial profiles of plasma temperature, electron density,
ionisation, magnetic field, (top) and magnetisation (bottom) profiles
based on a lineout after from a 5 ns HYDRA+100 ps IMPACT
simulation. The initial temperature and magnetic field profile input to
IMPACT are shown in grey.
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For this problem we used the IMPACT code to simplify
treatment of the spatially-varying ionisation profile. When
calculating the local/flux-limited heat flow and Nernst pro-
files this enabled us to use the Lorentz limit (Z = ¥) trans-
port coefficients with a multiplier of ξ on all appearances of
the collision time τB instead of trying to interpolate between
transport coefficients at other ionisations. Note that there is a
loss of accuracy incurred by making this simplification, par-
ticularly at low ionisations; this error is worst around
x = 1 mm where the ionisation is low and the magnetisation is
not too high leading to an underestimate of the Nernst velo-
city by a factor of approximately two (see figure 1). The
simulation setup included a spatial cell width of 13.8 μm and
a geometric velocity grid where the width in velocity-space of
the highest energy cell (located at 225 keV) was 30 times
larger than the lowest energy cell. We used a timestep of 25 fs
and took the Coulomb logarithm to be constant at 4.1.

The magnitude of the magnetisation is illustrated in the
bottom panel of figure 10, but note that this conceals the
reversal of the magnetic field at about 1.45 mm. It is shown
that, despite the magnetic field reaching megagauss levels in
the hohlraum wall, the degree of magnetisation is actually
quite low due to the very high collisionality in this region.
Conversely, the highest levels of magnetisation (exceeding
unity) are reached near the centre (x = 0) of the lineout, deep
in the hot gas-fill. Therefore, instead of plotting the axial
electric field Ey, which increases almost linearly with magn-
etic field and would be largest in the hohlraum wall where
magnetisation effects are unimportant, we instead consider
the Nernst velocity vN = Ey/B itself in the bottom panel of
figure 11. Note that the magnetisation profile does not change
noticeably over the 100 ps simulation as it is highest in a
region of relatively homogeneous temperature.

Reduction of the Nernst velocity relative to the local
prediction between x = 1.6 and 2.5 mm shows that magnetic
field is advected into the hohlraum wall at a slower rate than
expected, reducing the amplification of the magnetic field in a
similar manner to the previous test problems. Relocalisation
due to the high magnetic field means that there is a very low
degree of preheat into the hohlraum beyond x = 2.5 mm.
Closer to the centre we see a reversal of the Nernst velocity
compared to the local prediction, meaning that the magnetic
field is allowed to climb up the temperature gradient. This is
again another effect that could not be captured by a flux-
limiter (red dotted). Here a Nernst flux-limiter of 0.15 (as
calculated by postprocessing the 100 ps profiles with CTC)

seems slightly conservative, and a lower value would be
necessary to capture the high degree of flux reduction
between 1.5 and 2 mm, but is nevertheless an improvement
on the pure Braginskii approach. Using the new method of
multiplying the local Nernst term by the ratio between the
nonlocal VFP and local Braginskii heat flows is highly accu-
rate within a radius of approximately 2.61 mm, at which point
resistive diffusion becomes more important. For the case of
the heat flow shown in the top panel of figure 11 a flux-limiter
of 0.15 gets the peak about right, but again misses the

nonlocal flux reversal observed and overestimates the heat
flow near to x = 2 mm.

6. Discussion

The findings in this paper confirm, generalise and extend a
number of previous observations [7, 31, 32, 53, 80, 81] about
the effect of nonlocality on Nernst advection. Nonlocal lim-
itation of the Nernst velocity reduces both the rate at which
the magnetic field cavitates from hot regions of the plasma
and the associated convective amplification of the magnetic
field at the foot of the temperature gradient. It is the latter
effect that is especially affected by nonlocality due to the
additional effect of suprathermal electrons allowing the
magnetic field to spread out further than would be expected
from a local prediction; a phenomenon that could never be
replicated by a flux-limiter approach.

Figure 11. The heat flow (top) and Nernst velocity (bottom) for the
HYDRA lineout after 100 ps IMPACT simulation.
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By studying a wide range of problems and ionisations,
we fully confirm the claim made by Haines [32] that the
relationship between thermal conduction and Nernst
advection should not be greatly affected by nonlocality.
This allows for a simple method of using the prediction
from a nonlocal heat flow model (such as the SNB)

to calculate the Nernst velocity vN≈ψ((Local)) Qx/Pe,
where P eBLocal

e
Local Localy b k=  ^

( ) ( ) ( ) is calculated using the
Epperlein and Haines coefficients [27]. Crucially, this
differs from previous suggestions that treat ψ as a constant
(either 2/5 [7, 30, 32, 80] or 2/3 [53]) potentially resulting
in errors of up to 80% (see figure 1).

Our analysis on the effects of using different combina-
tions of flux-limiters, suggests that if a more sophisticated
approach is not available then it is safest to use identical flux-
limiters on heat flow and Nernst advection thus avoiding the
introduction of an additional tunable parameter. Specifically,
this should be applied in such a way that relative reductions in
Qx and Ey are equivalent.

While it may seem comforting that nonlocal modifica-
tions to the Nernst velocity do not seem to have significant
knock-on effects (such as on the evolution of temperature
profiles) in the problems studied, this may not be universally
true. Firstly, the keV-scale reductions in plasma temperature
associated with including Nernst advection in indirect-drive
HYDRA simulations observed by Farmer et al [8] suggest that
limiting Nernst should increase the final temperature by a
non-negligible amount if applied throughout the entire
simulation (as opposed to the rather limited 100 ps considered
in section 5). These increases in the plasma temperature due
to Nernst limitation could reduce the absorption of laser
energy due to inverse bremsstrahlung, if such temperature
rises were concentrated in the gold bubble the resulting ability
of the inner beams to deposit their energy nearer the hohlraum
midplane could lead to a more prolate implosion et al [8].
However, the MHD simulations performed by Farmer et al [8]
with the Nernst term disabled essentially put a bound on the
degree to which Nernst limitation could affect the x-ray drive,
meaning that nonlocal effects are unlikely to fully explain the
drive deficit. Nevertheless, nonlocality of Nernst advection
could be more important for experiments involving externally
imposed fields, as was the case for the direct-drive shot stu-
died by Davies et al [7] where modifying the Nernst limiter
led to discernible differences in the neutron yield and ion
temperature. Finally, the reversal of Nernst advection
observed in section 5 may have unexpected effects such as
pinning the magnetic field to the hohlraum wall, and some-
what reducing the thermal insulation in the interior of the
corona.

One omission that was made in all VFP simulations
presented in this paper was the neglection of ion hydro-
dynamics. This was to simplify the analysis by focussing only
on heat and magnetic field transport. Such an assumption is
unlikely to greatly affect the resulting physics over the
timescales studied here. For example, rerunning the flux-
limited CTC simulations with ion motion included for the
helium temperature ramp relaxation problem revealed that the
resulting change in the electron density over 300 ps would not

exceed 5%. While this has slight knock-on effects for the
evolution of the magnetic field, decreasing the degree of
amplification and cavitation by up to 5%, the consequence for
the temperature profile is negligible.

It is worth pausing to consider the potential importance
of nonlocal effects on other transport phenomena in the
magnetised regime. Perhaps the strongest candidate for fur-
ther investigation is the Righi–Leduc heat flow due to its
dependence on very high velocity moments of the EDF (e.g.
V12á ñ, as elucidated in appendix). Severe flux-limitation of the
Righi–Leduc heat flow, as observed here, could potentially
alleviate some of the hot spot cooling recently observed in
simulations by Walsh et al in the stagnation phase of indirect-
drive implosions [82] (although the degree of nonlocality in
their simulations may not have been sufficiently high enough
for a significant alleviation). Also, the field compressing
magneto-thermal instability involves the coupling of Righi–
Leduc heat flow with Nernst advection [68] and the work here
could help achieve a better understanding of how it behaves
under nonlocal conditions without performing expensive VFP

calculations. However, the absence of an obvious link with
the perpendicular heat flux means that there is no simple way
of accounting for nonlocal effects on the Righi–Leduc heat
flow without having to resort to the addition of a new inde-

pendent flux-limiter or a more sophisticated reduced nonlocal
model capable with stronger links to the EDF itself (such as as
the M1 model [37, 52] including B-fields; whose accuracy has
yet to be fully established).

Less affected by nonlocality is the usually negligible
effect of resistive diffusion which relaxes steep magnetic field
gradients. This is due to the relevant transport coefficient â
only depending on the fifth velocity moment V 5á ñ of the
distribution function [83] (see appendix).

One phenomena not investigated here is the the self-
generation of magnetic fields by the Biermann battery effect
that occurs in presence of transverse density and temperature
gradients. And Kingham and Bell [84] have shown that
nonlocality can lead to analogous magnetic field generation
even in the complete absence of density gradients. Further
work is therefore required to consider the importance of and
develop models for these nonlocally generated fields.

7. Conclusions

In this paper we find that the advection of magnetic fields
down steep temperature gradients due to the Nernst effect
experiences both a nonlocal flux reduction as well as a sig-
nificant degree of ‘pre-Nernst’, which transports magnetic
field beyond the temperature gradient. Our simulations show
both these effects working together to reduce the build-up of
magnetic field and smearing it out into colder regions. If these
effects are not taken into account it is possible that over-
amplification of the magnetic field could lead to unphysical
thermal transport barriers. A simple but effective method of
obtaining a reliable nonlocal prediction for the Nernst ther-
moelectric coefficient from a nonlocal heat flow model, one
that does not require developing a new highly sophisticated
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model capable of accurately approximating the entire EDF,
is Nonlocal Nonlocal Local Localb k b k= ^  ^

( ) ( ) ( ) ( ).
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Appendix. Integral form for transport coefficients

In the low magnetisation 0c  and Lorentz (Z = ¥) limits
the integral form given by Epperlein [83] for the normalised
transport coefficients discussed in the paper take the follow-
ing form:
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