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Abstract—Spiking Astrocyte-neuron Networks (SANNs) model the 

adaptive/repair feature of the human brain. They integrate 

astrocyte cells with spiking neurons to facilitate a distributed and 

fine-grained self-repair capability at the synapse level. SANNs are 

more complex with the addition of astrocyte cells and require 

longer simulation times, as they are dynamic over much longer 

time-scales than traditional neural networks. Therefore, dedicated 

FPGA accelerators offer reductions in simulation times. To 

support the acceleration of SANNs, the capability of fault injection 

to synapses and monitoring significant levels of neuron and 

astrocyte data for off-chip transmission to PC-based analysis, are 

required. This paper presents an FPGA-based monitoring 

platform (FMP) for injecting faults and capturing and analyzing 

data acquired from the SANN FPGA accelerator, Astrobyte. The 

FMP uses custom logic and a NIOS II based system to control fault 

injection and data monitoring on the FPGA. Results show accurate 

accelerated simulations of fault injection scenarios using FMP 

with speedups up to 65 times greater compared with equivalent 

Matlab implementations.   

Keywords—FPGA acceleration; Data Acquisition; Astrocytes; 

Spiking neural network ; Self repair; Fault injection 

I.  INTRODUCTION  

The human brain can carry out computations in a power-
efficient and massively parallel manner which has motivated 
the trend in Bio-inspired computing [1]. Spiking Neural 
Networks (SNNs) are a popular bio-inspired paradigm that have 
been used in many applications [2]. The self-repairing ability of 
the human brain is a key attractive feature that engineers are 
keen to implement in the next generation of computers. In this 
context, current research in self-repair has focused on 
astrocytes, a type of glial cell, which is the mechanism 
responsible for facilitating fine-grained self-repair. These new 
Spiking Astrocyte-neuron Networks (SANNs) modulate the 
synaptic activities between neurons via distributed astrocytes in 
the network. This concept was proven in previous work when 
an astrocyte was integrated with an SNN [3]. Due to the 
complex nature of the astrocyte model in previous work [3], 
simulating the SANN using tools such as Matlab required long 
times, in particular as the astrocyte is not event based like 
traditional SNNs and operates over longer biological timescales 
of hundreds of seconds. This motivated the provision of 
Astrobyte, an FPGA-based platform for accelerating 
simulations of SANNs through implementing dedicated 
astrocyte, neuron and synapse hardware models on FPGAs [4]. 

To facilitate experimentation, a framework is required to enable 
fault injection, spike/astrocyte data recording and visualization 
of FPGA-based SANNs.  Current mechanisms such as Altera 
SignalTap II Logic Analyzer is not adequate as its capacity is 
limited by the amount of memory provided by the FPGA on-
chip memory.  

 There are multiple FPGA-based acquisition platforms in the 
literature. One work has used an FPGA as a bridge between an 
Analogue to Digital Converter (ADC) and an off-chip DDR3 
SDRAM [5]. However, it is not clearly stated how the data 
stored in the DDR3 SDRAM will be analyzed as no method of 
transferring this data to a PC is mentioned. A different 
publication uses a Xilinx Spartan 6 FPGA for acquiring data 
from an ADC and sending it to a PC by using Ethernet for 
monitoring [6]. This is similar in concept to the work in the 
current paper but has been implemented using Xilinx FPGAs 
and tools. Also, the application proposed in [6] focusses on 
dedicated imagers in nuclear medicine as opposed to SANNs, 
the focus of the current paper. Another FPGA-based monitoring 
platform has included an FPGA for the purpose of signal 
processing and controlling multiple sensor channels in a 
machine condition monitoring system [7]. Here the FPGA 
doesn’t include any form of soft processor, but instead controls 
a number of monitoring channels while processing data at the 
same time. The processed data is then sent to a PowerPC based 
control system which in turn sends the data to a monitor. 

 Improving on the work reported in [4], the novelty of the 
work proposed in this paper resides in the provision of a 
framework that is able to inject faults into SANNs on FPGA 
hardware and acquire real-time network data from Astrobyte 
[4] by means of the FMP. The rest of the paper is organized as 
follows: Section II describes the architecture and operation of 
the FMP. In Section III experiments and results are presented 
and Section IV provides a conclusion along with discussing 
future works.  

II. ARCHITECTURE AND OPERATION 

A. Components 

 Fig. 1 shows the overall architecture of the platform reported 
in this paper. Except for the Astrobyte block, all other 
components are part of the FMP (FMP itself contains two main 
blocks, Astrobyte Interface and Nios II system). Besides the 
main blocks, the FMP also contains several off-chip components 



that are located outside the FPGA. A brief description of 
Astrobyte and the FMP blocks are given below.    

 The Astrobyte [4] is a custom FPGA design that accelerates 
the simulation of a self-repairing SANN based on neuron, 
astrocyte and synapse models reported in [3]. In these works [3], 
[4], an astrocyte is included in an SNN for regulating the 
synaptic activity of neurons at tripartite synapses. Each neuron 
is fed from ten synapses. Faults are injected at a specific time to 
a number of the synapses and the average output frequencies of 
the two neurons, N1 and N2 in Fig. 1, are monitored. It was 
verified that the network can recover from faults due to the 
astrocyte since it compensates for lack of activity at the synapses 
that suffered the fault. 

 The Astrobyte Interface contains several hardware sub-
blocks. The two Frequency Calculators (FC) calculate the 
average spiking frequencies of the neurons over a time interval. 
The two Address Generators (AG) are essentially counters with 
an enable signal and a parameterizable start value. This is 
necessary because the Nios II based system operates as a 
memory mapped system thus, at least one of the AGs has to start 
from a base value other than zero. The State Machine is 
responsible for controlling the operation of Astrobyte and 
Astrobyte Interface. It exchanges control and status signals with 
the Nios II based system. The state machine operation will be 
discussed in more detail in Section II.C. The DRAM BUS blocks 
are combinational blocks that combine addresses generated from 
AGs and data from FCs along with control signals from the state 
machine to form a complete bus that writes into the DRAM 
controllers. 

 The Nios II based system is a heavily modified version of the 
simple socket server design example provided by Terasic for use 
with DE4 boards. The Nios II based system has an Altera Nios 
II soft-core processor at its heart. The system also includes a 
Data and Program Memory which is an SRAM, an Altera 
Ethernet IP which is responsible for sending Ethernet packets to 
an off-chip PHY chip, and DRAM Controllers for 
communicating with off-chip DDR2 SDRAMs. Additionally, a 

JTAG IP that allows the system to be programmed from a PC 
using Eclipse environment, and a number of command and 
interfacing blocks are also included in the Nios II system. The 
command and interfacing blocks allow the Nios II processor to 
communicate with the Astrobyte Interface components for 
passing data, status, address and control signals. The command 
and interfacing blocks are Reset Controller, Nios Starter, 
Address range Interface, Fault Injection Interface, DDR Bus 
Interface and Operation Complete. The purpose of these blocks 
will become clear in Section II-C. 

 The architecture of Fig.1 allows for control over the start and 
end time of Astrobyte simulations besides fault injections and 
capturing simulation data - average output frequencies - and 
sending it to a PC. 

B. Datapath 

As per Fig. 1, the two outputs from the Astrobyte accelerator 
platform represent the synapses of the two neurons – N1 and N2. 
These outputs feed into the two FC blocks. Outputs from FCs 
will be combined with addresses generated by AGs and control 
signals from the state machine at the DRAM BUS blocks. Next, 
the DRAM BUS output has to go through the DDR BUS 
Interface block since an interface is required to transfer data to 
the Nios II system. Also, the outputs of DDR BUS Interfaces 
will become part of a unified Avalon (Altera standard interface) 
bus before entering the DRAM Controller. The DRAM 
Controller takes address, data and control signals and generates 
appropriate outputs so that data is transferred to and from the 
external DDR2 SDRAM. 

C. Operation 

 A flow chart is given in Fig. 2 explaining the operation of the 
FMP. The Nios II processor controls the operation of the custom 
hardware circuit by means of a set of parameters, control and 
reset signals which are passed during the reset state. One of these 
parameters is the fault ratio, which is the number of damaged 
synapses to the total number of synapses in Astrobyte. Another 
parameter is the time at which the faults acquire (through the 

                                                                                                              Fig 1: FMP Architecture and Astrobyte



Fault Injection Interface in Fig. 1). Moreover, the amount of data 
to be written into the DDR2 SDRAMs can also be passed to the 
Astrobyte Interface through the Address Range Interface. This 
value equals the number of cycles Astrobyte runs for. 
Furthermore, through the Nios starter block in Fig. 1, the Nios II 
processor sends a start signal to the state machine. Once this 
command is received, the state machine enables the FCs and 
AGs along with issuing write commands to the DRAM 
controllers. This commences writing of the average frequency 
data from the FCs into the external DDR2 SDRAMs at addresses 
generated by the AGs. This process continues until data is 
written into a range of addresses defined by the parameter passed 
from the Address Range Interface at the reset state. After this 
process, the state machine sends Nios II a signal through the 
Operation Complete block and the Nios II processor starts to 
send data from the external DDR2 SDRAMs to a PC through 
Ethernet. Fig. 3 shows a simplified sequence diagram for 
passing of commands and data between Matlab, Nios II and the 
Astrobyte hardware.  

III. EXPERIMENTATIONS AND RESULTS 

A. Assessing data integrity 

Several experiments were performed to ensure that data 
captured by using the FMP is accurate and remains undistorted 
while transferred from the Astrobyte to external memory, and 
then onto the PC via Ethernet. Matlab software was used to 
communicate with the Nios II soft processor which managed 
the fault injection, recording the data communication between 
the SANN and SDRAM. To validate the data management, the 
same experiment that was carried out in [4] and recorded using 
SignalTap II was repeated here using the FMP. Fig 4 show 
plotted data collected from Altera SignalTap II and the FMP. 
The x-axis is the number of clock cycles, or iterations, and the 
y-axis represents the average output frequency of Astrobyte. 
The simulations were initially run without injecting faults. 
Subsequently, faults were inserted, damaging 80% of synapses 
connected to N2. As the FMP had not been developed in 
previous work, Altera In-System Sources and Probes Editor had 
to be used to inject faults. The timing of these faults had to be 
decided before synthesizing the design from the HDL code. In 
the current work, the FMP allows for inserting faults at different 
ratios at a time chosen by the user. The faults are indicated by a 
black vertical line in Fig. 4 and Fig. 5. At first, neuron N2 will 
see a sharp decrease in average output frequency but then 
recovers because of the self-repair mechanism that is regulated 
by the astrocyte.  Since the fault ratio is very high, i.e. 80%, the 
average output frequency does not go back to its pre-fault 
levels. Data from this experiment was recorded after it was 
transferred to the PC side. Then it was plotted against data 
recorded by using SignalTap II in the original Astrobyte paper 
[4]. Fig. 4 shows data acquired using the FMP. As no loss of 
data happens when using the FMP, acquiring data using Altera 
SignalTap II yields a similar response. Fig.  5 shows results 
from the Matlab implementation of SANN. Clearly, Fig. 4 and 
Fig. 5 show the same astrocyte behavior, with the marginal 
difference in the trajectories of data presented in the figures due 

Fig 2: Algorithm outlining the FMP operation 

Fig. 4: Data collected using the FMP and SignalTap II 

Fig 3: Interactions between Matlab, Nios II and Astrobyte 



to the difference in implementations, i.e. the Matlab model uses 
double point floating-point precision and Astrobyte uses an area 
optimized 32-bit fixed-point hardware implementation [4]. 

B. Acceleration 

 Table. 1 presents a comparison between simulating a SANN 
using Matlab (software) and Astrobyte platform (dedicated 
FPGA hardware). The Biology column represents the actual 
biological time-scale of the simulations. Iterations is the 
number of times the equations representing the SANN must be 
calculated or the number of cycles Astrobyte needs to run to 
meet the set biological time-scale. This value is x1000 the 
biological time since a time step of 10-3 is selected [3] for the 
Euler method. Both Matlab and Astrobyte columns show how 
much time a Matlab software model [3] and an equivalent 
FPGA accelerator [4], respectively, take to run the simulation 
for the corresponding biological time-scale. The Matlab 
software runs on Windows 10 on a PC with 256 GB SSD, 16 
GB RAM and 3.40 GHz Intel Core i7-2600 CPU (Octa-Core).  
Also, the table shows the time it takes the FMP to transfer data 
generated by Astrobyte to a PC, shown under the FMP column. 
The column Astrobyte + FMP provides the total time from the 
start of running the design in Astrobyte to collecting the data on 
the PC side. The Speedup column shows the speedup gained by 
using Astrobyte and the FMP, in comparison to the Matlab 
software. The overall speedup is in the order of x50-65 
depending on the number of iterations the designs are run for. 
It is worth mentioning that the values under Matlab, FMP, 
Astrobyte + FMP and Speedup can vary from one PC to another 
and also from time to time as they are PC and Windows OS 
dependent. Studying Table. 1 shows that using the FMP to 
transfer simulation data from the FPGA to a PC will introduce 
a significant overhead to the Astrobyte time. However, up to 
x65 speedup rate is possible which is significant for a wide 
range of applications including the study of how astrocytes 
impact on other neurological conditions such as Alzheimer’s 
[8]. 

C. Reducing sampling rate 

When simulating biology, it is possible to drop the sampling 
rate to one sample per ten computations or one sample per 
hundred computations as the rate of change in biology is slow. 
For example, astrocyte dynamics operate in hundreds of 
seconds. That would allow simulating the SANN for longer 
periods while maintaining significant speedup since we would 
need to transfer less data to the PC side. Table. 2 shows the 

effect of under-sampling for biology time of 100,000 seconds. 
For example, if every one in ten samples are recorded, the 
overall simulation and acquisition time will be reduced from 
around 724 seconds to ~63 seconds. This provides a significant 
reduction in the time communicating data off-chip (FPGA) 
back to the PC. This feature allows the Astrobyte platform to 
vary the accuracy of simulations as required. In exploring the 
self-repair aspect for fault tolerant networks can require less 
samples such as discussed above, however, for simulating a 
neural experiment to study astrocyte dynamics between neurons 
for example, can require the higher data sampling rate. The 
under-sampling provides a trade-off between simulation 
accuracy and speedup capability.  

IV. CONCLUSIONS AND FUTURE WORKS 

In this paper, an FPGA – based Monitoring Platform (FMP) was 
presented which captures data from an FPGA accelerator 
platform, Astrobyte. Comparisons were made between SANNs 
implemented in Astrobyte FPGA and Matlab software, to assess 
the overall hardware speedup. Results demonstrated over x65 
speedup using Astrobyte with the FMP. Finally, using FMP, an 
analysis from the effects of under-sampling in Astrobyte were 
discussed which showed possible trade-offs between reduced 
simulation accuracy and increased speedup. Future work will 
include exploring methods for scaling the FMP and Astrobyte to 
partition across multiple FPGAs, investigating methods for 
speeding up acquisition and transformation of data, and adapting 
the FMP for other neural network models other than SANNs.   
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