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Abstract. Machine Learning algorithms are becoming more prevalent
in critical systems where dynamic decision making and efficiency are the
goal. As is the case for complex and safety-critical systems, where cer-
tain failures can lead to harm, we must proactively consider the safety
assurance of such systems that use Machine Learning. In this paper we
explore the implications of the use of Reinforcement Learning in particu-
lar, considering the potential benefits that it could bring to safety-critical
systems, and our ability to provide assurances on the safety of systems
incorporating such technology. We propose a high-level argument that
could be used as the basis of a safety case for Reinforcement Learning
systems, where the selection of ‘reward’ and ‘cost’ mechanisms would
have a critical effect on the outcome of decisions made. We conclude
with fundamental challenges that will need to be addressed to give the
confidence necessary for deploying Reinforcement Learning within safety-
critical applications.

Keywords: Safety, Assurance, Artificial Intelligence, Machine Learn-
ing, Reinforcement Learning.

1 Introduction

Until recently, the safety assurance of software systems has been a reasonably
well-established activity where safety engineers are able to provide evidence and
confidence that the software will behave in a predictable way, for a given set
of inputs and defined operating environment. However, the increasing use of
Artificial Intelligence (AI) and Machine Learning (ML) has moved the goalposts;
we can no longer rely on the ‘traditional’ safety techniques that depend on the
‘deterministic’ nature of the software [1]. The program that runs tomorrow may
make different decisions and choices to the program that is executing today; it
will have ‘learned’ from its experience.

AT and ML systems are essentially software systems that learn and adapt,
based on experience and their environment [2]. Software is the primary vehicle for
the implementation of AT and ML. However, historically, industry has typically
shied away from putting safety-critical functionality into complex software that



implement ML, e.g. preferring hardware technologies as they are relatively easier
to provide assurance from a safety perspective. This position is not sustainable
for future robotics and autonomous systems that are expected to learn and adapt
yet maintain ‘safety’ [3]. Unfortunately, “safety engineering is lagging behind
emergent technologies.” [4] Although advances in safety analysis and assurance
are far behind, the safety community may be able to catch-up but realistically
may not be able to get ahead of the curve. The ML technology will almost always
outpace safety assurance. As such, if a solution cannot be shown to be safe it
may never become acceptable to deploy in safety-critical applications, despite
the benefits that it may bring.

In this paper we explore the implications of the use of ML in safety-critical
applications. We focus on Reinforcement Learning (RL), where the selection of
‘reward’ and ‘cost’ mechanisms would have a critical effect on the safety outcome
of the decisions made. We propose a high-level argument that could be used as
the basis of a safety case for RL systems and identify and analyse the technical
and socio-technical factors that affect the potential strength of the reasoning.
We conclude with fundamental challenges that will need to be addressed to give
the confidence necessary for deploying RL within safety-critical applications.

2 Machine Learning

ML is a technique that relies on algorithms to analyse huge datasets and allows
a machine (e.g. a computer) to perform predictive analysis, faster than any
human is able to do. ML works, not by programming the computer to undertake
a specific task, but by programming a computer with algorithms that provide it
with the ability to learn how to perform a task. Whilst the implementation of
ML does not in itself make a system an Al, it enables the system to perform the
following tasks:

— Adapt to new circumstances that the original developer or system designer
didn’t envision;

— Detect patterns in different types of data sources;

Create new behaviours based on recognised patterns; and

— Make decisions based on the success or failure of these behaviours.

The utilisation of ML is becoming more prevalent and is spreading to multiple
domains as it is a feasible and cost-effective solution for many tasks that would
be otherwise prohibitive to accomplish by any other means.

2.1 Reinforcement Learning

Figure 1 shows a model of how Reinforcement Learning (RL) works. An agent
will be in a given state, it will perform an action on its environment and some
time later will receive a response from that environment relating to the outcome
of that action. The agent will have ‘learnt’ something from that course of action
and may subsequently change state. The cycle then repeats.



Whilst this is a simplified view of how RL works, it still raises some interesting
issues:

1. Are we able to determine what the permissible actions are? If we do this, are
we going to unnecessarily constrain the agent in carrying out what might
actually be the correct (safe) course of action?

2. The agent is going to learn both ‘good’ and ‘bad’ as a result of its actions
(negative outcomes can be as good as positive ones from the learning per-
spective).

3. Should we monitor the system and ‘fail safe’ if there are indications that it
is moving towards an unsafe state? If so, to what extent can we understand
and explain the internal mechanisms by which decisions are made by the RL
System?

Should we limit the
actions that are
deemed to be
permissible?

How do we
determine what is
a good or bad
outcome?

Cost/

Reward Action

Fig. 1. A simple model of Reinforcement Learning

The concept of the reward mechanism is key to the way in which this type
of system will learn, with the potential for such systems to make ‘very bad’
decisions in terms of the resulting outcome; in the case of safety-related/critical
systems we are of course talking about the concept of ‘harm’.

3 Safety of Complex Engineering Systems

When considering the safety of a system we are fundamentally referring to haz-
ards, risks, and accidents. A hazard can be thought of as ‘a potential source of
harm’. This could be harm to people, assets or the environment in which the
system is operating. An accident is the harm that occurs due to a hazard not
being sufficiently controlled. A simple example of which would be the hazard
of high pressure gas being contained within a canister. An accident would be
violent rupture of the canister due to over-pressurisation. The risk that this ac-
cident occurs can be mitigated by manufacturing the canister from a material
strong enough to be able to deal with pressures in excess of the expected operat-
ing pressure. The risk can be further reduced by adding other mitigations, such
as a pressure release valve, that will activate before damage to the canister can
occur.



System safety is an attribute of the configuration of the System components
(i.e. sub-systems) the environment(s) within which the System exists or operates,
and the hazards and accident outcomes associated with the System. In order to
start to address System Safety it is necessary to understand how the function-
ality and the potential hazardous behaviours of the overall system, each System
component, the relationships and interactions between them and the influences
of the environment(s), are defined and studied.

3.1 Safety-I: The ‘Traditional’ Approach

A deterministic system (or perhaps more accurately a ‘predictable system’),
which is the focus of most safety standards, is one that will produce the same
output from a given set of input parameters, starting conditions, or initial state
[1]. The approach to safety in these systems is to construct an argument around
the assumptions made during the design phase and the safety constraints based
on those assumptions, that are subsequently placed upon it to ensure ‘safe’ oper-
ation. Accordingly, the predictions made about the behaviour of the system and
the interactions that the system will have with its environment (including other
systems, users and processes) will drive the safety argument structure. Evidence
provided in support of the safety case is gathered through the application of
analyses such as: Fault Tree Analysis (FTA), Failure Modes and Effects Analy-
sis (FMEA) and Software Hazard Analysis and Resolution in Design (SHARD)
[5].

As discussed by Hollnagel et al in [6] [7], historical approaches to safety pre-
sume “ ..things go wrong because of identifiable failures or malfunctions of spe-
cific components”. The safety of a system therefore depends on the enforcement
of constraints on the behaviour of the system features, including constraints on
their interactions, in order to avoid failure. The safety case presents a safety ar-
gument to this effect and evidence is provided to support it. This type of safety
reasoning is defined as Safety-I.

Whether the safety case for the system remains valid for the operational life
of the system depends upon whether those predictions continue to hold true. If
they do not, then the confidence in the safety argument can diminish and the
validity of the safety assurance case is then challenged. The safety argument
must then be re-visited.

3.2 The Limitations of Safety-I

For inherently complex systems, such as those using ML, the future state of the
system cannot be predicted. It is difficult to foresee all potential failure modes,
and thus the implementation of system constraints during system design are not
able to assure the through-life safety of the system. As stated in [8]:

“ ..the learning, emergent and adaptive behaviour and use of these sys-
tems pose a significant challenge to the assumptions and predictions
made in the safety case, regardless of whether the documentation of the



safety argument is explicit (i.e. in goal-based certification) or implicit
(i.e. in prescriptive certification).”

Thus, ‘traditional’” safety methods have limited use: firstly because any type
of ML must almost certainly be implemented within software and the ‘tradi-
tional’ methods are predominantly focused on hardware; secondly, these meth-
ods tend to be used pre-deployment and are not typically used post-deployment
to monitor safety functions.

3.3 Safety-II: The ‘Adaptive’ Approach to Safety

The introduction of the Safety-II approach brings a fundamental paradigm change
to system safety; moving from the Safety-I approach of ensuring that “as few
things as possible go wrong” to ensuring that “as many things as possible go
right.” [7] Safety-II relates to the system’s ability to adapt and succeed under
varying conditions. The safety of the system is therefore ensured, not through
the implementation of pre-defined constraints but through its ability to deal with
situations that cannot be predicted [7] and applying adjustments to the system
during its operational life. The safety analysis of the system would thus be pred-
icated on the ability of the system to avoid hazardous conditions or adapt and
deal with them should they occur.

RL Systems adapt their behaviour based on the decisions they have made and
the response they receive from their environment. This is similar to how a human
being deals with day-to-day situations, i.e. making adjustments and trade-offs
based on understanding their actual, and often dynamic, environment.

From a Safety-1I perspective, we need an approach that aligns itself with this
type of ‘dynamism’. In their paper [8], Denney et al identify three principles for
dynamic safety cases that have to:

1. Pro-actively compute the confidence in, and update the reasoning about, the
safety of ongoing operations;

2. Provide an increased level of formality in the safety infrastructure; and

3. Provide a mixed-automation framework.

The above safety assurance challenges, in particular with respects to RL
Systems, are explored and refined in the next section.

4 Reinforcement Learning and Safety

In Fig. 2 we propose a high-level safety argument for RL, represented using the
Goal Structuring Notation (GSN) [9]. GSN is a widely-used graphical language
for formulating the structure of a safety argument. It provides a concise way of
describing the claims of the argument (represented by goals drawn as rectangular
shapes), the context that is applicable to the claim being made (represented by
the rounded rectangle shapes), and the strategies that are used to explain the
link between a goal and one or more sub-goals (represented by the parallelogram
shapes). The diamond shapes represent an undeveloped entity, i.e. one where
further refinement will be required to substantiate the claim made.
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Fig. 2. A high-level safety argument structure for Reinforcement Learning systems

4.1 Argument Structure

The argument shown in Fig. 2 starts with a top-level goal, G1, that the RL
System is ‘acceptably safe’; this is a typical top-level claim when constructing a
safety argument [10]. This claim is linked to a number of nodes, which define the
context of the claim. The terms ‘acceptably safe’ and ‘system’ need to be defined,
but of particular interest to the argument is the ‘environment’. As previously
discussed, the environment is the main point of interaction for the RL System
and will define the the nature of the ‘Reward’ or ‘Cost’ that the system receives.

Our main strategy for arguing the safety of a RL System is to provide an
‘Argument based on system reconfiguration’ (node S1). That is, the system is
operating in a ‘safe’ configuration, in a ‘Fail Safe’ state, in a safe reconfiguration
or transition state, all of which should guarantee at least minimum safety, despite
a potential reduction in functionality or availability. This covers a number of
sub-claims (nodes G2 through to G5). Firstly we have a sub-claim (G2) that the
‘System is in a Safe configuration’, this is represented as an undeveloped goal
but is likely to be supported by verification and validation evidence that this is
the case (including run-time verification evidence). Node G3 represents the claim
that the RL System is able to perform a ‘Safe reconfiguration’, meaning that in
response to a reward or punishment as part of its learning cycle the system can



reconfigure its behaviour ‘safely’, i.e. it does not introduce any new hazardous
behaviour.

If a ‘safe’ reconfiguration is not possible, assurance is needed that the system
is instead able to transition ‘safely’ (node G4) into a ‘Fail Safe’ state (node
G5). The evidence to support nodes G3, G4 and G5 in terms of verification and
validation will be required (though this is beyond the scope of this paper, which
focuses on the argument).

Table 1. Challenges with Reinforcement Learning

Challenge Area Short Description

Societal Acceptance How do we choose which human and social values
to embody within the system? §4.2

Risk vs. Benefits Do the benefits of deploying a RL System outweigh
the safety risks? Is this a sufficient threshold? §4.3

Cost vs. Reward How does a RL System learn where a negative out-
come still needs to be ‘safe’? §4.4

Monitoring & Feedback ~ What mechanisms should be used for an RL System
to decide that it needs to reconfigure? §4.5

Learning Constraints Can safety only be achieved through constraining
the way in which a RL System learns? §4.6

Fail Safe How and when should RL Systems fail safe? §4.7

Intelligent Safety How can a RL System update its own safety case

and explain the choices it has made? §4.8

Table 1 captures a number of technical and socio-technical challenge areas
that we believe are key to the aim of assuring RL, and therefore in supporting
the argument presented. These areas are discussed in the next sections and are
linked to the nodes in the GSN argument.

4.2 Societal Acceptance

Ethics, safety and societal impact are three emotive topics that can be challeng-
ing enough in non-Al systems [11]. Factor in the current love/hate relationship
that the public has with ML, as well as the ‘unpredictable’ nature of Al sys-
tems, and these sensitivities become even more entrenched. These are areas that
Google’s DeepMind are looking to address, where DeepMind’s Mustafa Suley-
man believes that the ethics of ML must be central to its development [12].

In [13], Stuart Russell proposed “3 Principles for Safer Artificial Intelli-
gence”, which were:

Altruism: the robot’s only objective is to maximise the realisation of human
values;



Humility: the robot is initially uncertain about what those values are;
Observation of human choices: human behaviour profiles information about
human values.

However, Russell’s proposed principles raise their own questions. If the aim of
Al is to replace or augment human decision making and maximise the realisation
of human values, then we have to ask the question ‘whose human values do
we choose?’ Not everyone’s values are the same, especially in cases involving
trade-offs between different values including safety, privacy and liberty. We have
different belief systems, cultures, morals and ethics. How do we choose which
ones to embody within a system?

The study of machine ethics is important when considering safety (Bostrom
et al [14] and Dennis et al [15] are just two examples) but is the subject of
machine ethics a red herring? It could be. As stated in Yampolskiy in 2012
[16], we need to ensure that machines are inherently safe and law abiding. The
application of ethics to a machine is fraught with issues and could ultimately
cause dissension. So, should ML systems exploit their computational abilities
rather than emulate any such flawed human behaviour?

Considerations on the above topics would provide support for nodes C3 (Who
are our users and the wider stakeholders and what are their values?) and C1
(What is acceptable to them?) in Fig. 2. This is key in defining acceptable risks,
potential costs and intended benefits and a fair distribution of the risks, costs
and benefits between the system stakeholders.

4.3 Risk vs. Benefits

In Section 3 we discussed that engineering a safe system always comes with a
certain amount of risk [17] [18]. However, when we introduce a RL System the
challenge of managing uncertainty (and thus risk) can significantly increase given
that we are unable to ascertain, prior to deployment, that the RL algorithm will
make a ‘safe’ decision. The algorithm will make a decision based on a model
calculated from its input data and this therefore comes with a probability that
the decision made is a wrong one, especially during the early operation of the
system.

However, not all problems are safety-related, and a wrong decision may not
necessarily lead to harm. Even if, for example, the data that the RL System is
using is corrupted it is not a foregone conclusion that an accident is going to
occur. It may still be safe to deploy RL even in these error conditions (incorrect
outcomes are not always unsafe outcomes). Indeed, in relation to the previous
section where we discussed the impact on humans, we know from experience
and evidence that humans often struggle to make decisions about safety [19],
and therefore the distribution of risks and trade-offs with a RL System may well
be an improvement for the majority of situations. Additional benefit may come,
not only by ensuring that hazards are avoided, but in actually reducing the risk
beyond that which was previously envisioned because the system has ‘learnt’
how to do this, i.e. in ways that a human could not have predicted.



These trade-offs would need to be explicitly considered as part of the safety
argument and would largely contribute to nodes G2 and G3 in Fig. 2. That is,
to what extent can we trust the RL System to reconfigure and maintain, or even
improve, safety before forcing it to transition to a constrained ‘Safe state’?

In other words, under certain conditions, excessive safety constraints might
reduce rather than improve overall safety.

4.4 Cost vs. Reward

As we have discussed, RL is based on a cost/reward feedback mechanism. If the
system makes a decision that is good then it is rewarded, if the decision is bad
then there is a cost (or punishment) associated with that decision or action. The
challenge for safety-critical applications is to select a cost/reward mechanism
that is appropriate to the nature of the system, its objectives, and the safety
constraints that need to be adhered to [20]. This is also linked to the risks and
benefits discussed in Section 4.3, whereby choosing a cost/reward mechanism
that is ‘overly-protective’ could result in limited benefits of using RL in the first
place. Conversely, selecting a cost/reward mechanism that is too liberal could
result in a significant increase in risk.

Within the context of a Safety-II approach, ‘Cost’ and ‘Reward’ are closely
linked to risks and benefits. Therefore, considerations on cost (including in-
creased safety risk) and reward (including increased safety benefit) support the
claims being made in nodes G2 and G3 in Fig. 2. For example, a potential con-
figuration might increase the safety margin (i.e. reward) but might compromise
certain privacy aspects (i.e. cost). How could the RL System decide if the re-
ward would outweigh the cost in this configuration, if this would be an acceptable
trade-off by those affected by the decision and if, who, how and when to consult
human stakeholders?

4.5 Lagging and Leading Indicators

Lagging Indicators can be thought of as ‘traditional’ safety metrics on the out-
come of past accidents that have resulted from particular courses of action. This
of course is not ideal when we want to prevent an accident from occurring in the
first place. Any accident resulting from the deployment of a RL System would
adversely affect the acceptance of such systems within society.

In order for predictive hazard analysis to be undertaken during run-time,
monitoring and feedback must be designed into the system such that the sys-
tem can assess whether it is moving towards a hazardous condition and that a
reconfiguration of the system should be enacted in order to mitigate failure.

Thus, in order to effectively identify the potential for system failure, run-time
system monitoring needs to be introduced in order to detect ‘warning signs’ that
confidence in the enforcement of safety-related constraints of the system is erod-
ing and that the system is moving towards an unsafe state. Whilst historically
these ‘warning signs’ have, typically, only been apparent after failure has oc-
curred, as stated in [21] the aim of system monitoring is to put in place a means



of detecting the migration towards “a state of unacceptable risk before an acci-
dent occurs.”

Accordingly, Leading Indicators need to be identified such that potential
failures can be predicted and mitigating actions can be implemented in order
to re-establish confidence in the system. This concept supports the claims be-
ing made in nodes G3 and G4 of Fig. 2. However, defining Leading Indicators
depends on the ability to understand, explain and appropriately constrain the
behaviour of the RL System, which is a challenge we explore in the next sections.

4.6 Safe Constraints on Learning

Despite the increasing promise of capability that RL Systems might bring, such
systems will still need to comply with strict safety constraints in order to be
accepted and deployed. How do we effectively constrain a system that has a
seemingly boundless mechanisms to learn, reconfigure and adapt its behaviour?

If learning is limited in prescribed ways, some analysis might be possible,
depending on the precise details of the learning limitations. If these are analysed
prior to deployment to rule out certain behaviours, perhaps an analysis could
show that it would not behave ‘dangerously’ [22].

However, if we constrain the system’s ability to learn then we might also be
constraining its capacity to learn what is actually the safest course of action [23].
If we don’t allow the system to do something ‘wrong’ then it may not learn as
effectively [20], in the same way that a child learns not to touch a hot surface
if it has already endured some pain from a previous experience. If we constrain
the system’s ability to learn we may be preventing it from learning what ‘safe’
actually means and restrict the system to our own understanding of ‘safe’, which
in turn might be over-pessimistic.

What we should perhaps consider is exploring the concept of providing a ‘safe
learning environment’ for the RL System in which it can learn, where models of
other systems and the interactions with the environment are simulated so that
no harm can be caused to humans, assets, or the environment. This approach
would support nodes G2 and G3 in Fig. 2. However, this is often complicated by
issues around the gap between the simulated and actual environments, including
issues related to different societal/human values.

4.7 Fail Safe

To ‘fail safe’, in the context of a safety-critical system, usually means that the
system has determined that it is no longer able to safely provide its intended
functionality and that the only safe course of action is to move to a pre-defined
‘fail-safe’ state, with limited functionality, thus mitigating or preventing any
harm to humans, assets or the environment.

This of course is predicated on the RL System’s own ability to recognise that
it can no longer continue to operate in a ‘safe’ manner, which would require
knowledge and/or definition of ‘safe’ (node C1 of Fig. 2) along with feedback



from the environment (C3), potentially informed by Leading Indicators, and
knowledge of what it needs to do in order to transition to a ‘Fail Safe’ state
(nodes G4 and G5). The notions of cost and reward are still likely to be relevant
here, e.g. a RL System deciding not to handover control to a human driver until
the car speed or environmental conditions are within certain thresholds (i.e.
safety benefits of maintaining control outweigh handover safety risks).

4.8 Al-based Safety Assurance & Explainability

Considering we are dealing with systems that have in-built intelligence to adapt
their behaviour at run-time in order to meet their functional objective, it per-
haps becomes necessary for us to consider applying this same intelligence to the
safety assurance side as well. How, as humans, do we believe we are going to be
able to rationalise and explain the choices that a machine has made during its
course of operation and in meeting its fundamental objective? Considering the
DeepMind AlphGo as an example, the developers of the system were at a loss to
explain many of the moves that the AlphaGo engine was making in its run-up
to defeating the champion Lee Sedol. AlphaGo’s learning had moved beyond the
limits of what the developers were able to comprehend, which brings about an
interesting question when considering the safety assurance of RL Systems; do we
need to consider implementing ‘Intelligent Safety’ whereby the safety argument
and monitoring evolves alongside the system rather than the conventional use of
run-time monitoring based on predetermined Leading Indicators, e.g. a ‘Safety
Supervisor’ [24]?

The implementation of such a dynamic approach would affect the entire
argument framework in the proposed argument structure in Fig. 2 and would
offer an idealised, though highly contentious, realisation of the notion of Dynamic
Safety Cases [8], i.e. the RL System producing its own safety argument and
evidence.

5 Conclusions

ML, and more specifically RL, is a very powerful technique whose adoption
within a number of industries is increasingly growing. However, the ability to
justify the deployment of such technology into applications of a safety-critical
nature poses fundamental challenges. In this paper we have covered what it might
mean for a RL System to be considered ‘safe’ and covered both the ‘traditional’
(Safety-I) and new (Safety-II) approaches to assuring safety.

In addition, we have presented a high-level safety argument that could be
used as the basis of forming a safety case for RL Systems. We have also high-
lighted a number of key challenge areas that we believe need to be addressed in
support of a safety case.

We do however recognise the limitations of the proposed argument structure
and the discussion around the challenges. As such we have identified a number
of considerations for further work when considering the safety assurance of RL
Systems. These are:



1.

2.

3.

To what extent should RL algorithms be constrained in the way in which
they learn?

How would we implement ‘Intelligent/Dynamic Safety’, whereby the safety
monitoring evolves alongside the system?

To what extent should a RL System be allowed to create/update its own
safety case as it learns?

We hope that progress in answering these questions, in the context of the

challenges and argument presented, would be beneficial to the safe adoption of
RL Systems into critical applications.
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