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The importance of ​kyphoscoliosis peptidase ​(KY) in skeletal muscle physiology has recently            

been emphasised by the identification of novel human myopathies associated with KY            

deficiency. Neither the pathogenic mechanism of KY deficiency nor a specific role for KY in               

muscle function have been established. However, aberrant localisation of FLNC in muscle            

fibers has been shown in humans and mice with loss of function mutations in the ​KY gene.                 

FLNC turnover has been proposed to be controlled by Chaperone Assisted Selective            

Autophagy (CASA), a client-specific and tension-induced pathway that is required for muscle            

maintenance. Here, we have generated new C2C12 myoblast and zebrafish models of            

KY-deficiency by CRISPR/Cas9 mutagenesis. To obtain insights into the pathogenic          

mechanism caused by KY deficiency, expression of the co-chaperone BAG3 and other            

CASA factors was analyzed in the cellular, zebrafish and ​ky/ky ​mouse models.  

 

Ky-​deficient C2C12 derived clones show ​trends of higher transcription of CASA factors in             

differentiated myotubes. The ​ky-​deficient zebrafish model ( ​ky​yo1​/ky​yo1​) lacks overt signs of           

pathology but shows ​significantly increased ​bag3 ​and ​flnca/b ​expression in embryos and            

adult muscle. Additionally, ​ky​yo1​/ky​yo1 embryos challenged by swimming in viscous media           

show an inability to further increase expression of these factors in contrast to WT controls.               

The ​ky/ky ​mouse shows elevated expression of ​Bag3 ​in the non-pathological EDL and             

evidence of impaired BAG3 turnover in the pathological soleus. Thus, upregulation of CASA             

factors appears to be an early and primary molecular hallmark of KY deficiency.  

 

INTRODUCTION 

The first model of KY-deficiency was the ​ky/ky ​mouse, which emerged spontaneously as a              

model of recessive, hereditary kyphoscoliosis in an inbred mouse strain over 40 years ago              

(Dickinson and Meikle, 1973; Mason and Palfrey, 1984) ​. Subsequent extensive          

histopathological analyses showed that postural, tonically active muscles undergo a cycle of            

https://paperpile.com/c/Ix6t5r/1xM0X+HzNsS


degeneration and regeneration whereas fast-twitch muscles remain relatively unaffected         

(Bridges et al., 1992) ​. Postural muscles show ultrastructural evidence of sarcomeric           

damage, including Z-disc thickening and elevated levels of autophagic vacuoles ​(Bridges et            

al., 1992)​. The ​ky ​mutation is a GC deletion near the beginning of the coding sequence that                 

results in a premature STOP codon ​(Blanco et al., 2001) ​; thus, ​ky/ky ​mice lack any KY                

protein (Baker et al., 2010). Yeast 2-hybrid/biochemical interactions and co-localization          

studies in adult fibres led to the proposal of a Z-disc network involving KY, FLNC, ZAK and                 

other proteins ​(Baker et al., 2010; Beatham et al., 2004) ​. Crucially, the ​ky/ky ​soleus shows               

aberrant localisation of the cytoskeletal crosslinkers FLNC ​(Beatham et al., 2004) and XIN             

(Beatham et al., 2006) ​, which suggests a failure of muscle to maintain its structural integrity               

under consistent high tension in the absence of KY. Additionally, the muscles of ​ky/ky ​mice               

do not undergo compensatory hypertrophy in response to muscle overloading via surgical            

ablation ​(Blanco et al., 2001) ​, indicating that KY is necessary to translate increased             

mechanical tension into muscle growth. 

 

The ​ky gene encodes a transglutaminase-like protein located at the Z-disc of skeletal muscle              

(Baker et al., 2010) ​. KY is highly conserved across vertebrates and shares a near identical               

protein sequence among mammals. Though the putative catalytic residues are conserved, to            

date no direct evidence of enzymatic activity over any endogenous substrate has been             

found. Moreover, alternative alignments suggest that this domain has been co-opted for            

protein-protein interactions ​(Anantharaman et al., 2001)​.  
 

Mutations in the ​ky gene associated with myopathy have been recently reported in human              

patients ​(Hedberg-Oldfors et al., 2016; Straussberg et al., 2016; Yogev et al., 2017) ​.             

Common pathological hallmarks in mice and humans include muscle atrophy of the soleus             

and the presence of FLNC aggregates. Deficient turnover of FLNC may thus be core to the                
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“​ky​” pathogenic mechanism in humans and mice. FLNC has been established as a client of               

the Chaperone Assisted Selective Autophagy (CASA) pathway ​(Ulbricht et al., 2013b) ​.           

CASA is a recently proposed tension-induced autophagy mechanism ​(Arndt et al., 2010) that             

is reliant on the Z-disc co-chaperone BAG3. BAG3 ​binds to chaperones HSC70 and HSPB8              

and facilitates solubilisation of ​damaged FLNC from the cytoskeleton. FLNC is then            

ubiquitinated by the E3 ubiquitin ligase CHIP/STUB1 and further complexed with tethering            

factors for autolysosomal degradation. In addition to mediating the degradation of FLNC,            

under mechanical tension ​BAG3 interacts with components of the Hippo signalling network            

to induce ​Flnc transcription. Thus, BAG3 interacts with inhibitors of the YAP/TAZ            

transcription factors. Once released of its inhibitors, YAP/TAZ translocate to the nucleus and             

upregulate the synthesis of native FLNC ​(Ulbricht et al., 2013a) ​. Hence, BAG3 facilitates             

degradation and synthesis of FLNC, leading to the suggestion that tension bearing cells             

adapt FLNC turnover rates to the level of tension ​(Ulbricht et al., 2013a) ​. 
 

Given that FLNC is a known KY interaction partner ​(Beatham et al., 2004) it is plausible that                 

its abnormal distribution in KY-deficient mice and humans reflects an alteration of the CASA              

pathway. Here, we investigate factors involved in CASA in newly generated myotube            

(C2C12) and zebrafish models of KY-deficiency and in ​ky/ky mice. Our results indicate that              

changes in transcriptional activation of CASA components are an early hallmark of KY             

deficiency in these models. 

 

Results 

Elevated expression of CASA components in C2C12 derived Ky-knockout myotubes 

Bag3 and filamin expression positively correlates with increasing tension in smooth muscle            

cells ​(Ulbricht et al., 2013a) ​. To test whether KY is involved in a similar pathway in skeletal                 

muscle cells, we ​used CRISPR/Cas9 technology to generate C2C12 derived clones with            
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disruptive mutations in ​Ky ​(Fig S1, see Materials and Methods for details). Quantitative             

RT-PCR assays showed a significant reduction of ​ky transcript in clones D, I, K after               

differentiation into myotubes using either ​Hprt ​(housekeeping gene) ​or ​Myh7 ​(differentiation           

marker; see Fig S2) as controls for normalisation, showing that these differences cannot be              

accounted for by any varying levels of differentiation between WT and mutant clones (Fig              

S1E). This is consistent with previous evidence of non-sense mediated decay for this             

transcript found in the mouse ​ky mutant ​(Blanco et al., 2001) ​. These ​Ky​-deficient clones              

were then selected for further analyses. 

Given that ​Flnc is only expressed in differentiated cells ​(Dalkilic et al., 2006) ​and ​ky is also                 

highly expressed in these conditions ​(Baker et al., 2010) analyses of CASA factors was              

focused on myotubes. We tested the expression of ​Bag3, Hspb8, Chip and the main CASA               

client ​Flnc​. For qRT-PCR assays, genes that are consistently expressed throughout           

differentiation were normalised to ​Hprt​. However, differentiation in culture, particularly the           

length of time required for myotube formation, is influenced by a number of factors (e.g.,               

number of passages, flask size, coating). To minimize the effect of the differentiation level as               

a confounding factor in our measurements of target genes relative expression, we used an              

indicator of the state of differentiation, ​Myh7, as internal normalization marker for ​Flnc​.             

qRT-PCR results revealed a consistent trend towards elevated expression of CASA           

components, ​with all mutant lines showing higher means for all components, reaching            

significance for ​Flnc ​(clone D)​, Hspb8 ​(clone D) and ​Bag3 (clone I) (Fig 1). However, the                

inconsistency of the significance of these trends between clones prevents these           

observations from being conclusive.  

 

Mutagenesis of ky in zebrafish via CRISPR/Cas9 genome editing 
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A zebrafish ortholog of ​ky (Ensembl ENSDARG00000074036) is located on chromosome           

13. A tBLASTn query of the zebrafish nucleotide database with the mouse KY protein              

retrieved only the annotated zebrafish ​ky​, indicating that no other putative ortholog exists in              

the zebrafish genome. Consistent with this, our results using HMMER ​(Finn et al., 2011)​, a               

homology search software designed to detect remote homologs, to query the mouse            

genome with the putative zebrafish ​ky sequence returned murine KY as the top result in the                

mouse protein database. Expression of the ​ky ortholog in zebrafish was analysed in the              

embryo and adult tissues by endpoint RT-PCR. Expression was detected in adult skeletal             

muscle, but not in other adult tissues or early embryonic stages ( ​Fig 2A​). qRT-PCR detected               

expression of ​ky from 3dpf and higher levels of expression in adult skeletal muscle ( ​Fig 2B)​.                

These results are consistent with the muscle specific expression previously reported for the             

mouse ​ky​ gene ​(Blanco et al., 2001)​.  
Gene targeting of zebrafish ​ky ​was carried out using a gRNA directed against exon 2 ( ​Fig                

2C​) that was generated by an annealed-extended oligo template method ​(Nakayama et al.,             

2013)​. The gRNA was co-injected with purified Cas9 protein into fertilised embryos at the 1-8               

cell stages. The efficiency of gene targeting was assayed at 24hpf using heteroduplex             

analyses of PCR amplicons from individual embryos, confirming the presence of sequence            

variants. Chimeric F0 zebrafish were outcrossed to wild type fish to produce F1 offspring              

carrying defined heterozygous mutations in ​ky. ​Heterozygous fish carrying specific mutations           

were selected for incrosses to produce homozygous mutant fish. A disruptive mutation (5bp             

deletion) and a non disruptive one (3bp deletion), both occurring at codons 141/142 within              

exon 2  (​Fig 2D​), were used to generate homozygous zebrafish lines for further analyses. 

 

qRT-PCR showed a significant 10-fold reduction in ​ky ​transcript levels in 5bp deletion fish              

muscle at 3 months compared to WT ( ​Fig 2D​), indicating degradation of mutant transcript by               
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non-sense mediated decay. No significant difference was observed in the transcript levels of             

3bp deletion and WT ( ​Fig 2D ​). The disruptive allele was given the ZFIN designation ​ky​yo1​. 

 

Upregulation of some CASA components in ky ​yo1​/ky​yo1 ​ zebrafish 

Development of muscle in ​ky​yo1​/ky​yo1 ​zebrafish embryos is normal, consistent with the            

late-embryonic onset of ​ky ​expression, and adults are viable and fertile. No morphological             

differences were observed in ​ky​yo1​/ky​yo1 juvenile fish (2 - 4 months old), with length, height at                

anterior of anal fin (HAA) and tail area (area between HAA line and anterior boundary of the                 

tail fin) no different to that of WT fish ​(Fig 3A)​. Skeletal muscle is morphologically normal on                 

H&E stained cross sections ​(Fig 3B​). Given that ​ky/ky mice show a progressive shift towards               

expression of slower fibre types ​(Marechal et al., 1996) ​, we analyzed the expression of type I                

fibres in ​ky​yo1​/ky​yo1 juvenile fish muscles by immunofluorescence. Fibre typing showed that            

slow muscle remained exclusively in the lateral region of skeletal muscle both in WT and               

ky​yo1​/ky​yo1 fish (​Fig 3B)​. We conclude that the absence of KY in zebrafish does not have the                 

same impact on muscle morphology or fibre type as seen in ky mutant mice ​(Blanco et al.,                 

2001) or in patients with ky associated myopathy ​(Hedberg-Oldfors et al., 2016)​. However,             

an analysis into the molecular effects of KY deficiency provided some evidence of functional              

conservation. We showed that C2C12 derived myotubes expressed higher levels of CASA            

factors in the absence of KY ( ​see Fig 1​), therefore we tested whether the zebrafish orthologs                

of ​bag3 and ​flnc (​flnca and ​flncb ​) were similarly regulated by KY. In ​Figure 4​, we show                 

transcriptional up-regulation of ​bag3 ​and ​flncb in ​ky​yo1​/​ky​yo1 zebrafish. qRT-PCR analysis of            

ky​yo1​/​ky​yo1 mutant zebrafish compared to wildtype siblings reveals a significant increase of            

bag3 ​(at 3 months), and ​flncb ​ (at 7dpf and 9 months).  

 

Embryos lacking ky show impaired mechanotransduction 
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To increase mechanical tension, 3dpf embryos were moved into E3 media supplemented            

with 1% methylcellulose (ME) which increases viscosity and makes it more difficult for the              

fish to swim. Compared to unmodified E3 media, WT embryos show a significant increase in               

bag3 ​and ​flnca ​expression when raised in viscous media, demonstrating a robust induction             

of a stress response involving CASA components using this method ( ​Fig 5A​). ​ky​yo1 ​/​ky​yo1             

embryos show a significantly higher baseline of ​bag3, flnca ​and ​flncb expression than WT              

when swimming in normal media and no further upregulation when raised in viscous media              

(Fig 5A​). These findings suggest that the KY-deficiency induces a constitutive stress            

response in zebrafish larvae and reveals an inability of ​ky​yo1 ​/​ky​yo1 muscle to further adapt              

cellular stress responses to the challenge of additional mechanical load. Examination of            

transverse muscle sections shows no difference in fast/slow muscle distribution between           

treatment groups, with slow muscle remaining as a peripheral cell layer ( ​Fig 5B​). This              

indicates that transcriptional changes cannot be accounted for by a shift in muscle fibre type.               

Additionally, birefringence analysis shows no evidence of gross muscle damage or           

deformation in any treatment group ( ​Fig 5C​), meaning that these transcriptional changes,            

and the inability of ​ky​yo1​/ky​yo1 ​embryos to further upregulate CASA components, are not             

secondary to gross structural damage. 

 

BAG3 turnover in the ky/ky mouse 

Since the ​ky/ky ​mutant mouse model demonstrates overt pathology with marked similarity to             

the human myopathy, we sought to examine whether similar evidence of CASA disruption             

was apparent in this model. The EDL and soleus muscles were selected for these analyses.               

The EDL is relatively non-pathological compared to the severely dystrophic soleus ​(Bridges            

et al., 1992)​, allowing a distinction between primary, baseline effects of KY-deficiency in the              

EDL and secondary effects observed at high tension and in the context of muscle pathology               

in the soleus. 

https://paperpile.com/c/Ix6t5r/FBJAl
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Initial experiments were unable to detect a difference in BAG3 protein levels between WT              

and ​ky/ky muscle lysates extracted using RIPA buffer (data not shown). This extraction was              

only capable of extracting soluble proteins, and thus did not allow the detection of elevated               

amounts of insoluble or cytoskeleton-associated proteins. Since impairments to CASA are           

likely to result in elevated levels of these latter proteins, the total muscle extract sample was                

processed to obtain a cytoskeletal fraction (see Methods for details). In this analysis,             

elevated levels of cytoskeleton-associated BAG3 were observed in the soleus muscle of            

ky/ky mice compared to WT (​Fig 6 A-B​). Consistent with the initial observations using RIPA               

buffer, there was no significant increase in the amount of soluble BAG3 in the soleus. This                

suggests that an increased proportion of BAG3 protein is associated with the cytoskeleton in              

the ​ky/ky soleus compared to WT. The non-atrophic EDL showed no indication of elevated              

soluble or cytoskeletal BAG3 ( ​Fig 6 A-B​). 
Examination of ​Bag3 mRNA levels shows a significant increase in the EDL, but not in the                

soleus (​Fig 6C​). This indicates that the elevated amount of cytoskeletal BAG3 protein in the               

soleus may not be accounted for by elevated mRNA levels, but is instead indicative of               

reduced or inefficient turnover. In contrast, the comparable BAG3 protein levels between            

ky/ky and WT EDL (​Fig 6A​) combined with elevated mRNA in ​ky/ky EDL (​Fig 6C​) indicates                

that BAG3 turnover is elevated in the mutant EDL tissue. 

 

Increased immunoreactivity for BAG3 and FLNC in the ky/ky soleus 

Immunofluorescence experiments were performed to visualise the levels and localisation of           

BAG3 and FLNC in ​ky/ky and WT soleus longitudinal sections. Both BAG3 and FLNC              

showed increased reactivity in a subset of fibers in the ​ky/ky mutant. Those fibres showing               

particularly high levels of BAG3 also showed similarly elevated FLNC ( ​Fig 7A​). The proteins              

remained primarily co-localised in a striated pattern, presumably the Z-disc. This is            



consistent with an increased proportion of cytoskeletal-associated BAG3 ( ​Fig 6A​). qRT-PCR           

was performed to explore whether this increased immunoreactivity represented an increase           

in ​Flnc transcription. No significant increase in ​Flnc transcript was detected between WT and              

ky/ky tissues (​Fig 7B​). The unchanged Flnc transcript levels in contrast to the increased              

reactivity of FLNC antibodies on ​ky/ky soleus sections could be explained by a lower              

turnover of FLNC protein in the ​ky/ky soleus. However, this could not be confirmed on               

western blots with the same flnc antibodies (RR90) due to inconsistent performance of these              

antibodies on this application.  

 

DISCUSSION 

Disruptive mutations in the ​Ky gene result in overt muscle pathology in mice ​(Bridges et al.,                

1992) and humans ​(Hedberg-Oldfors et al., 2016; Straussberg et al., 2016; Yogev et al.,              

2017)​. Impaired FLNC turnover is a common reported molecular phenotype in mice and             

human, which potentially implicate CASA in the pathogenic mechanism. In this study we             

have described the generation of novel C2C12 derived myoblast and zebrafish models of             

Ky​-deficiency. ​Significant ​Bag3 upregulation was observed in the ky homozygous zebrafish           

at 3 months and in the 5dpf embryos and in the soleus ​of the ​ky/ky ​mice ​. Evidence of CASA                    

upregulation was also apparent in the EDL muscle of the ​ky/ky ​mice, with elevated              

transcription of ​Bag3 ​with no increase in protein levels indicating elevated BAG3 turnover.  

 

The disruption to ​ky expression in zebrafish alone was not sufficient to induce overt signs of                

pathology in adult or embryonic tissue, either under normal conditions or after            

methylcellulose challenge. Given that KY-deficient pathology in mice and humans occurs           

primarily in muscles which experience consistent levels of high tension, this disparity may be              

at least partly explained by the fact that zebrafish muscles do not experience the same               

gravitational stresses. However, unchallenged ​ky​yo1​/​ky​yo1 embryos showed a transcriptional         
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profile comparable to methylcellulose treated WT controls, suggesting the constitutive          

transcriptional upregulation of CASA components when deficient in ​ky even in the absence             

of sustained tension or indicators of structural damage. This phenotype is particularly            

remarkable considering that the onset of ​ky ​expression occurs only approximately 48 hours             

prior to this analysis. We cannot rule out t​hat other tests (e.g., electron microscopy,              

expression of embryonic myosin isoform in adult muscle, as observed in human patients             

(Hedberg-Oldfors et al., 2016) ​) might reveal myopathic phenotypes in the embryonic           

zebrafish model. Likewise, experiments challenging adult ​ky​yo1​/​ky​yo1 ​zebrafish muscle may          

also reveal myopathic phenotypes. 

 

This lack of overt myopathy in the ​ky​yo1 ​/​ky​yo1 model is somewhat mirrored by the fact that the                 

ky/ky ​mouse EDL, a fast twitch muscle which only experiences tension sporadically, is             

largely spared by the pathology. ​This suggests that upregulation of CASA components in the              

zebrafish and spared ​ky/ky ​mouse EDL and the trend of upregulation in the myoblasts              

models represent a primary effect of the absence of KY rather than a downstream              

consequence of myopathy​. In contrast to the EDL muscle, the ​ky/ky ​mouse soleus             

experiences consistent high tension and displays the most overt pathology, including           

atrophy, dystrophic changes and sarcomeric damage ​(Bridges et al., 1992)​. The apparent            

accumulation of cytoskeletal BAG3 with no evident increase in ​Bag3 ​transcription would            

suggest that in the absence of KY protein turnover in the tonically active soleus is impaired.                

Accumulation of ubiquitinated proteins in mouse ​ky/ky muscles ( ​Figure S3​) is also consistent             

with the notion of a role for KY in facilitating protein turnover. ​Our results do not distinguish                 

whether the absence of KY affects CASA complex solubilisation or the CASA mechanism is              

simply overwhelmed by the overarching pathological damage. This phenotype is mirrored by            

the inability of ​ky​yo1​/ky​yo1 ​zebrafish embryos to further upregulate ​bag3, flnca ​and ​flncb in              

response to mechanical challenge in viscous media, indicating either that the constitutive            
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upregulation of these genes is already maximised, preventing the translation of increased            

mechanical challenge into this pathway, or that the mechanotransduction mechanism itself is            

impaired. A role for KY in mechanotransduction has already been proposed based on an              

inability of ​ky/ky ​mice to undergo compensatory hypertrophy in response to surgical            

overloading ​(Blanco et al., 2001)​.  

 

Though transcriptional upregulation of CASA components appears to be a consistent early            

molecular hallmark across the models examined, exactly how this relates to the molecular             

function of KY and the pathogenic mechanism is unclear. The relationship between            

autophagy and muscle integrity is complex, with upregulation and downregulation of           

autophagy contributing to myopathy in different contexts (for a review on autophagy            

disruption impacting muscle integrity, see ​(Jokl and Blanco, 2016) ​). How much the CASA             

mechanism contributes overall to skeletal muscle macroautophagy remains uncharacterised,         

particularly given FLNC is the only client identified in this context. Examination of             

macroautophagy flow and signalling in the absence of KY would be highly informative in this               

regard. Elevated autophagy in ​ky/ky muscles may account for the reduced muscle to body              

mass ratios observed in ​ky/ky ​mice, and subsequently the susceptibility of tonically active             

muscles to structural damage and atrophy. Additionally, BAG3 is proposed to have a role in               

cytoskeletal stabilisation by facilitating correct localisation of CAPZ, an actin-capping protein           

(​(Hishiya et al., 2010)​). If KY has a function in this process, reduced structural stability in its                 

absence may account for the induction of cell stress.  

 

Our data are consistent with the hypothesis that upregulation of CASA component            

transcription is a primary compensatory mechanism in response to KY deficiency. This            

allows low-tension muscles to effectively manage endogenous levels of tension without the            

emergence of pathology, but is insufficient to meet the demands of high-tension, tonically             
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active muscle. However, further evidence is required to link KY directly to the CASA              

mechanism or to demonstrate some other function in skeletal muscle maintenance.  

 

MATERIALS AND METHODS 

Animal research ethics 

All animal procedures have been carried with approval from the University of York Ethics              

committee and followed the UK Animals (Scientific Procedures) Act 1986 Amendment           

Regulations 2012, performed by under project licenses PPL 70/6827 (mice) and PPL            

60/4460 (zebrafish) within an approved establishment (licence 5002510). 

 
Ky-deficient cell line generation 

Px459 plasmid (pSpCas9(BB)-2A-Puro; Addgene; ​(Ran et al., 2013) was modified by the            

insertion of annealed, phosphorylated oligonucleotides (F: ​cacctcatcgtgcactccgagaag and        

R: ​aaaccttctcggagtgcacgatga ​) containing the ​Ky ​target sequence into the site created by            

AgeI digestion of the plasmid. C2C12 myoblasts were transfected with the modified Px459             

plasmid using GenJet In Vitro DNA Transfection reagent for C2C12 cells following            

manufacturer's instructions (SL100489-C2C12). To test construct mutagenic capacity,        

puromycin resistant cells selected ​en masse were harvested, lysed, and the target region             

amplified by PCR (F: ​ggggccatttgcagccta and R: ​cggagaggttcggattagcc​). PCR products were           

incubated at 37 ​°​C for 1hr with T7 Endonuclease I, with cleavage at the target site indicating                

successful mutagenesis. Individual clones were isolated by dilution following another round           

of construct transfection and puromycin selection. Clones were tested for mutagenesis by            

screening for heteroduplex formation in annealed WT and clone PCR amplicons run on 15%              

PAGE (​(Zhu et al., 2014)​). Alleles were then characterised by TA-cloning of PCR products              

using a TA Cloning kit (Thermo Scientific) and Sanger sequencing. Clones predicted to have              

two disruptive alleles (D, I and K) were carried forward for analysis and ​validated by               

qRT-PCR (Fig S1)​. 
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qRT-PCR 

For myotubes clones were grown to confluency in 6 well plates before switching to              

differentiation media (2% serum, 100 U/ml Penicillin, 100μg/ml Streptomycin, 0.5μg/ml          

Fungizone (Gibco) in DMEM). Cells were allowed to differentiate for 10 days. Progress             

through differentiation was confirmed visually by light microscopy. Myotubes were washed           

three times in ice cold PBS before the addition of TRIZOL (Invitrogen) and harvesting by               

scraping, pooling 2 wells per biological replicate for a total of three biological replicates. For               

zebrafish and mice, tissues were snap frozen and ground under liquid nitrogen prior to              

addition of TRIZOL. ​ky/ky ​and control C3H/HeH mice were 7-8 week old males, but not all                

littermates. Zebrafish embryos were mechanically homogenised in a dounce homogeniser          

directly in TRIZOL. RNA was extracted using the manufacturer’s protocol and converted to             

cDNA using ReadyScript cDNA synthesis mix (Sigma). qRT-PCR was performed on an ABI             

StepOnePlus qPCR machine using 2 x SYBR Green qPCR master mix (Applied            

Biosystems). Fold change was calculated using the DDCt method ​(Livak and Schmittgen,            

2001) using either ​hprt ​or ​myh7 ​(mice, C2C12s) or ​ef1a (zebrafish) as the control gene.               

Mouse primers used were: ​Hprt ​F:​gttggatacaggccagactttgtt ​and R: ​gattcaacttgcgctcatcttagg         

(Cassel et al., 2008) ​; Flnc ​F: ​ccttactcgcccttccgcatccat and R: ​ctcgggagctgtgtagtagatgtc          

(Chevessier et al., 2015) ​; Bag3 ​F: atggacctgagcgatctca and R: ​cacggggatggggatgta          

(Rusmini et al., 2015)​; ​Myh7 ​F: ​accctcaggtggctccgaga and R: ​tgcagccccaaatgcagcca          

(Anderson et al., 2015) ​; Chip/Stub1 ​F: ​cgcaaggacattgaggagca and R: ​tagtcctctacccagccgtt​;          

Hspb8 F: ​gcaatgaaatcatcagctggc and R: ​gggttgcagactttctccagt​; ​Ky ​F:        

acagcatgtaccacaagagtgaa ​and R: ​tctcgatggtgattgtggcttt​. Zebrafish primers used were ​ef1a         

F: ​ctggaggccagctcaaacat and R: ​atcaagaagagtagtaccgctagcat ​(Tang et al., 2007)​; ​bag3 ​F:           

tgcccattcagattcaacag and R: ggctgctgtgtaggttgttg; flnca F: ​ccttcgtgggtcagaagaac and R:         

ggagttctaggaccgtggac ​(Solchenberger et al., 2015) ​; ​flncb ​F:​ggccctacaaagtggacatc and R:         

https://paperpile.com/c/Ix6t5r/SmWjS
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cttcaaaccaggcccataag ​(Solchenberger et al., 2015) ​; ​ky ​F: ​tgaccctcatacatcccaagc and R:          

gagctcctgtctggggatca ​. 
 

Generation of the ky​yo1 ​ zebrafish line 

sgRNA targeting the ​ky ​orthologue synthesised ​in vitro ​using an annealed oligonucleotide            

template (as in ​(Nakayama et al., 2013)​) with a MEGAshortscript SP6 transcription kit             

(Ambion) F: ​taatacgactcactatagggaggggtttcacaatctcctctgttttagagctagaaatagcaa ​and R:     

aaaagcaccgactcggtgccactttttcaagttgataacggactagccttattttaacttgctatttctagctctaaaac ​. London  

Wild-Type (LWT) zebrafish embryos were co-injected with 1ng recombinant Cas9 protein           

and 250pg sgRNA at the 1-16 cell stage into the yolk proximal to the cell body. The ​ky                  

target region from embryos and fin clips was amplified by PCR (F: agccaccaatcagaagaagca             

and R: ​gtgttagcacagagtgcacaa ​) and screened via the high percentage PAGE assay as            

described above, and by Sanger sequencing. This same assay was performed for            

genotyping in the mutant lines. Off-target screening using ​agpat3 ​- identified as the closest              

match to the ​ky ​target sequence by BLAST alignment - showed no evidence of mutagenesis               

in the same assays from PCR products amplified around the potential off-target site (F:              

tggaccatgattcaactgccc and R: ​agctacactgttctgctccg ​). F0 fish were outcrossed to WT LWTs           

to produce heterozygous fish, allowing determination of mutant alleles by subtraction of the             

WT allele from Sanger sequencing basecalls. Heterozygotes carrying the 3bp deletion or the             

5bp deletion (​ky​yo1 allele) were incrossed to produce homozygous mutants. For the            

methylcellulose experiments, incrossing of homozygous mutant fish was performed to          

produce all ​ky​yo1 ​/ky​yo1​ offspring with a parallel WT incross for the control cohort,  

  

Western Blots 

Mice used were 7-8 weeks old. Paired ​ky/ky ​and controls were gender-matched littermates.             

Protein fractions were isolated from freshly dissected muscle tissue using a Subcellular            

https://paperpile.com/c/Ix6t5r/CaRQn
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Protein Fractionation Kit For Tissues (Thermo Scientific; 87790) following the manufacturer’s           

protocol. Samples were combined with 4x NuPAGE LDS buffer (Invitrogen; NP0008) and            

10x NuPAGE sample reducing agent (Invitrogen; NP004) and heated to 70​°​C for 10 minutes              

prior to loading onto a 10% Tris-Glycine gel. Transfer was performed using the iBlot gel               

transfer system (Invitrogen) and nitrocellulose stacks (Invitrogen; IB301002). Ponceau S          

staining was used to check for adequate transfer of proteins to the membrane prior to               

blocking for 1hr at RT in 5% dried skimmed milk in PBST. Membranes were incubated               

overnight at 4 ​°​C with BAG3 antibody (10599; Proteintech; 1:1000) prior to three ten minute              

washes in PBST and incubation with HRP-conjugated secondary antibody (anti-rabbit IgG;           

sc-2030; Santa Cruz Biotechnology, 1:10,000) or HRP-conjugated GAPDH (G9295; Sigma;          

1:30,000) at RT for 1hr with shaking. Three further washes were performed to remove              

unbound secondary antibody. The membrane was incubated in Lumisensor HRP substrate           

(Genscript; L00221V60) for 1 minute prior to detection using X-ray film. Levels of protein              

were determined by band intensity relative to the loading control as calculated by             

densitometry using ImageJ software. Blots used with anti-ubiquitin antibodies (P4D1, Cell           

Signaling, 1:200) required boiling for 2-5 minutes for detection of ubiquitinated proteins.            

P4D1 mouse monoclonal antibody was then detected with a donkey anti-mouse IgG-HRP            

(Santa Cruz, sc-2314; 1:5000) as described above.  

 

Methylcellulose challenge 

Embryos were raised to 3dpf in normal E3 media (5mM NaCl, 0.17mM KCl, 0.33mM CaCl ​2​,               

0.33mM MgSO​4​, 0.0001% Methylene Blue), dechorionated and split between unchallenged          

groups (remaining in normal media) and challenged groups (transferred to media enriched            

with 1% w/w methylcellulose). Embryos were left for 48 hours before harvesting for             

downstream analyses. Three biological replicates of 15 pooled embryos were used for each             

treatment.  



 

Sectioning and histology 

Muscle tissue was dissected from sacrificed fish or mice and snap-frozen in liquid N ​2​-cooled              

isopentane and stored at -80​°​C. 10 micron sections were generated using a cryostat. For              

Hematoxylin and Eosin (H&E) staining of tissue sections, the following protocol was            

observed: Fixation in acetone for 5 seconds, air drying, 1 minute incubation in Gill’s              

Hematoxylin, washing with running water on the back of the slide until clear, one dip in eosin                 

(no more than 10 seconds), twenty dips in 100% alcohol (for 6 alcohol changes), 5 dips in                 

Histoclear, 30 second incubation in clean Histoclear, mounting under glass coverslips with            

DPX mounting media. 

 

Immunofluorescence  

Sections were cut at 12 microns. For mice, control and mutant sections were arranged side               

by side on the same to share the same antibody pools. Sections were permeablised and               

blocked using 3% BSA in PBS + 0.3% Triton X100 for 1hr. Sections were incubated for 2h                 

at RT or overnight at 4 ​0​C with primary antibodies against BAG3 (described previously,             

1:200), FLNC (RR90; mouse IgA monoclonal, kind gift from Peter van der Ven; 1:20), S58               

(mouse IgA monoclonal against slow myosin MYH7B, DSHB; 1:10), F59 (mouse IgG            

monoclonal against all fast isoforms, DSHB; 1:10) or ubiquitin (P4D1, a mouse IgG             

monoclonal, Cell Signaling; 1:200) in blocking buffer followed by three washes with PBS for              

5 minutes. Slides were then incubated for 1hr incubation with appropriate combinations of             

compatible secondary at RT in the dark (e.g., anti Rabbit IgG TRITC; ab6718; 1:70 and anti                

Mouse IgA FITC; ab97234; Abcam; 1:70) before three washes with PBS for 5 minutes.              

Slides were mounted with Mowiol (Sigma) plus DAPI to stain nuclei. Images were obtained              

with exposure times of 20 ms (DAPI), 200 ms (FITC) and 300 ms (TRITC), using a Leica                 



DMIL LED microscope plus a Leica DFC 3000 G camera and the Leica LAS X software. 

Statistical analysis 

Statistical analysis of data was performed using Graphpad Prism 7 (Graphpad Software).            

Data were tested for normality using the Shapiro-Wilk test. If normality could be assumed,              

unpaired two-tailed Student’s T-tests were used for single comparisons and ANOVA for            

multiple comparisons with Dunnett’s multiple comparison test for post-hoc identification of           

significantly different means from control. Where normality could not be assumed,           

Kruskal-Wallace was used for multiple comparisons with Dunnett’s multiple comparison          

post-hoc test.  
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FIGURE LEGENDS 

Figure 1. Transcriptional upregulation of CASA in ​Ky ​-deficient differentiated         

myotubes. 

Chip, Bag3, Hspb8 ​and ​Flnc qRT-PCR results show consistent upward trends in expression             

in ​Ky-​deficient myotubes relative to WT, reaching significance for CASA components ​Bag3,            

Hspb8 or ​Flnc in two of the KY deficient clones. ​(One-way ANOVA/Dunnett’s for ​Bag3 and               

Hspb8 ​; Kruskal-Wallace/Dunnett’s for ​Chip ​and ​Flnc​, * = p<0.05; ** = p<0.01, n≥6). Error              

bars indicate SEM for ​Bag3 and Hspb8 and median and interquartile range for ​Chip ​and               

Flnc. 

Figure 2. Generation and validation of a ​ky ​ knockout zebrafish line ​ky ​yo1​/ky ​yo1​. 

A) RT-PCR of the identified ​ky​ ortholog shows no expression in the early embryonic stages 

or in adult fin and gut tissue. Robust expression is seen in skeletal muscle (white arrow), 

consistent with the expression profile reported in mice. Embryonic time points (hpf, hours 

post fertilization) and tissues, as indicated. E, positive control ​ef1a​; K, ​ky​. 
B) Quantitative RT-PCR shows that the onset of ​ky​ expression is around 3dpf, with 

expression appearing to increase between 3 and 5dpf. Expression at these stages is much 

lower than in adult skeletal muscle, but this may partially be accounted for by the relative 
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contribution of muscle specific transcripts to the whole embryo. Error bars indicate standard 

deviation of three technical replicates. 

C) Full exon intron structure of zebrafish​ ky​ (XM_001335276.5, verified by RT-PCR) at scale 

with the CRISPR/Cas9 target sequence highlighted in grey in the exon 2 sequence. 

D) Quantitative RT-PCR of ​ky​ shows that fish homozygous for a 3bp deletion (i), modelled to 

result in the deletion of a single E residue, show no decrease in transcript expression but fish 

homozygous for a 5bp deletion (ii), modelled to result in a frameshift and premature stop 

codon, show a significant decrease in transcript (Student’s T-test, p<0.01, n=3), indicating 

disruption at the mRNA level presumably by nonsense mediated decay. Error bars indicate 

SEM. 

 

Figure 3 – Organism and tissue level characterisation of the ​ky ​yo1​/ky ​yo1 zebrafish            

shows no overt pathology. 

A) Longitudinal growth study shows no difference in ​ky​yo1 ​/ky​yo1​ zebrafish morphology. Three 

metrics were assessed in WT and ​ky​yo1 ​/ky​yo1​ zebrafish at 2, 3 and 4 months post-fertilisation: 

length (blue) from the jaw to the anterior of the tail fin, height (green) at the anterior of the 

anal fin, and tail area (red) measured between the anterior of the anal fin and the anterior of 

the tail fin. No differences were seen between WT and ​ky​yo1 ​/ky​yo1 ​ zebrafish. 

B) Representative transverse sections of 3 month old zebrafish show muscle fibres in cross 

section. A small number of very small fibres and fibres with centralised nuclei can be seen 

with similar frequency in both WT and ​ky​yo1​/ky​yo1 fish (examples indicated by yellow arrows),              

indicating that these are not pathological changes. 

C) Slow muscle distribution is preserved in the ​ky​yo1​/ky​yo1​ zebrafish. Immunofluorescence 

against the slow muscle marker (s58) on transverse sections shows that slow muscle 

remains restricted laterally in the ​ky​yo1 ​/ky​yo1 zebrafish. Image representative of sections from            

2 WT and 2 ​ky​yo1​/ky​yo1 fish at 6 months post fertilisation. Since sections are derived from                



different positions on the anterior-posterior axis, slow muscle area and cell number cannot             

be directly compared. 

 

 

Figure 4. Transcriptional analysis of CASA components in the ​ky ​yo1​/ky ​yo1 zebrafish           

line. 

Quantitative RT-PCR of ​bag3, flnca ​ and​ flncb ​ at 7 days, 3 months and 9 months post- 

fertilisation shows a persistent trend of increased ​bag3​ transcription, though this only 

achieves significance at the 3 month stage (One-way ANOVA/Dunnett’s, p<0.01, n=3). flnca             

shows no apparent differences, and ​flncb ​shows a significant increase at 7dpf and 9 months               

(One-way ANOVA/Dunnett’s, p<0.05, n=3). Error bars indicate SEM. 

 

 

Figure 5. Methylcellulose challenge does not increase transcriptional upregulation of          

CASA in ​ky ​yo1​/ky​yo1 ​ embryos. 

A) Quantitative RT-PCR of ​bag3, flnca ​and ​flncb ​shows significantly increased transcription            

in 5dpf ​ky​yo1​/ky​yo1 embryos compared to WT controls when grown in normal (E3) media              

(One-way ANOVA/Dunnett’s, * = p<0.05, ** = p<0.01, n=3). Swimming in media enriched             

with 1% methylcellulose from 3dpf to 5dpf induces significant increases in ​bag3 ​and ​flnca              

transcription, and a trend towards increased ​flncb transcription, in WT embryos (One-way            

ANOVA/Dunnett’s, * = p<0.05, ** = p<0.01, n=3). No significant changes in transcription are              

observed between challenged and unchallenged ​ky​yo1​/ky​yo1 ​embryos. Error bars indicate          

SEM. 

B) Fibre-typing of embryonic zebrafish muscle shows no changes to slow (green) or fast              

(red) muscle distribution. Images are representative of 5 WT and 4 ​ky​yo1​/ky​yo1 ​embryo per              

treatment group (see figure ​ S4​ for full panel). 



C) Representative images of birefringence analysis of whole zebrafish embryos, showing no            

gross muscle damage or deformation in any treatment group, indicating the transcriptional            

changes are not secondary to gross muscle damage. 

 

Figure 6. Altered BAG3 turnover in the ​ky/ky ​mouse. 

A) Representative WB images of BAG3 in cytoskeletal and soluble fractions of muscle             

protein extracted from the soleus and the EDL. 

B) Quantification of BAG3 protein levels by densitometry shows significantly higher levels of             

cytoskeletal-associated BAG3 in the ​ky/ky ​soleus compared to WT sibling controls (paired            

Student’s t-test, p<0.05, n=8). No differences are observed at the protein level in the EDL.               

Error bars indicate SEM. 

C) Quantitative RT-PCR of ​Bag3 shows no significant difference in transcript level between             

WT and ​ky/ky ​soleus, indicating that the increase in protein may not be accounted for by                

elevated transcription. Significant upregulation of transcript levels is seen in the EDL (paired             

Student’s t-test, p<0.05, n=3). Since no commensurate increase in protein level is observed,             

this suggests BAG3 turnover may be elevated in the EDL. Error bars indicate SEM. 

 

Figure 7. Increase in BAG3 and FLNC immunoreactivity in ​ky/ky ​soleus muscle. 

A) Representative images of immunofluorescence against BAG3 and FLNC on longitudinal           

sections of WT and ​ky/ky ​soleus. Higher reactivity for BAG3 and FLNC is observed in the                

ky/ky ​soleus consistent with the increased cytoskeletal BAG3 observed on WB in the mutant              

(see figure 6). Amplified insets (squares) show that BAG3 and FLNC appear to remain              

primarily co-localised to striations, presumed to be the z-disc. Antibody pools were shared             

between WT and ​ky/ky​ sections and camera settings were maintained. 

B) Quantitative RT-PCR of ​Flnc shows no significant increases comparing WT and ​ky/ky             

tissue between siblings (paired student’s T-test, p>0.05, n=3). This suggests the apparent            



increase in FLNC protein may not be accounted for by increased transcription. Error bars              

indicate SEM. 


