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ABSTRACT

In this paper, we propose two novel local-global nested graph kernels, namely the nested aligned kernel

and the nested reproducing kernel, drawing on depth-based complexity traces. Both of the nested ker-

nels gauge the nested depth complexity trace through a family of K-layer expansion subgraphs rooted

at the centroid vertex, i.e., the vertex with minimum shortest path length variance to the remaining

vertices. Specifically, for a pair of graphs, we commence by computing the centroid depth-based com-

plexity traces rooted at the centroid vertices. The first nested kernel is defined by measuring the global

alignment kernel, which is based on the dynamic time warping framework, between the complexity

traces. Since the required global alignment kernel incorporates the whole spectrum of alignment cost-

s between the complexity traces, this nested kernel can provide rich statistic measures. The second

nested kernel, on the other hand, is defined by measuring the basic reproducing kernel between the

complexity traces. Since the associated reproducing kernel only requires time complexity O(1), this

nested kernel has very low computational complexity. We theoretically show that both of the proposed

nested kernels can simultaneously reflect the local and global graph characteristics in terms of the

nested complexity traces. Experiments on standard graph datasets abstracted from bioinformatics and

computer vision databases demonstrate the effectiveness and efficiency of the proposed graph kernels.

Keywords: Graph Kernels, Depth-based Complexity Traces, Nested Kernels
c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In pattern recognition, graph kernels are powerful tools for

analyzing structured data represented by graphs Riesen and

Bunke (2010). This is because graph kernels not only preserve

structural information by implicitly mapping graphs to a high

dimensional Hilbert space, but also provide a way of directly

applying standard kernel methods for vectorial data (e.g., Sup-

port Vector Machines, kernel Principle Component Analysis) to

graph structures.

E-mail: bailu69@hotmail.com; bailucs@cufe.edu.cn
E-mail: cuilixin@cufe.edu.cn (Corresponding Author)
E-mail: l.rossi@aston.ac.uk (Co-corresponding Author)
E-mail: baixiao@huaa.edu.cn
E-mail: erh@cs.york.ac.uk
∗These authors are co-first authors

1.1. Literature Review

The idea underpinning most existing graph kernels is that of

decomposing graphs into substructures and comparing pairs of

specific isomorphic substructures, e.g., walks Urry and Sollich

(2013), paths Alvarez et al. (2011), and restricted subgraph or

subtree substructures Costa and De Grave (2010). Under this

scenario, Bach (2008) have developed a family of kernels for

comparing point clouds. These kernels are based on a local

tree-walk kernel between subtrees, which is defined by a fac-

torization on suitably defined graphical models of the subtrees.

Wang and Sahbi (2013), on the other hand, have defined a graph

kernel for action recognition. They first describe actions in the

videos using directed acyclic graphs (DAGs). The resulting ker-

nel is defined as an extending random walk kernel by counting

the number of isomorphic walks of DAGs. Harchaoui and Bach

(2007) have proposed a segmentation graph kernel for images

by counting the inexact isomorphic subtree patterns between
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image segmentation graphs. Other state-of-the-art graph ker-

nels based on substructures include the aligned subtree kernel

proposed by Bai et al. (2015b), the subgraph matching kernel

proposed by Kriege and Mutzel (2012), the fast depth-based

subgraph kernel proposed by Bai and Hancock (2016), the op-

timal assignment kernel proposed by Kriege et al. (2016), and

the random walk kernel proposed by Kashima et al. (2003).

Unfortunately, all the aforementioned graph kernels tend to

only capture local characteristics of graphs, since they usual-

ly use substructures of limited sizes. As a result, these kernels

may fail to reflect global graph characteristics. To overcome

this shortcoming, a number of graph kernels based on using the

adjacency matrix to capture global graph characteristics have

been developed by Johansson et al. (2014); Xu et al. (2015);

Bai and Hancock (2013). For instance, Johansson et al. (2014)

have developed a family of global graph kernels based on the

Lovász number and its associated orthonormal representation

through the adjacency matrix. Xu et al. (2015) have proposed

a local-global mixed reproducing kernel based on the approxi-

mate von Neumann entropy through the adjacency matrix. Bai

and Hancock (2013) have defined an information theoretic ker-

nel based on the classical Jensen-Shannon divergence between

the steady state random walk probability distributions obtained

through the adjacency matrix. Recently, there has been increas-

ing interests in continuous-time quantum walks for the analy-

sis of global graph structures Farhi and Gutmann (1998). The

continuous-time quantum walk is the quantum analogue of the

classical continuous-time random walk. Unlike the classical

random walk that is governed by a doubly stochastic matrix,

the quantum walk is governed by an unitary matrix and is not

dominated by the low frequencies of the Laplacian spectrum.

Thus, the continuous-time quantum walk is able to better dis-

criminate different graph structures.

There have been a number of graph kernels developed us-

ing the continuous-time quantum walk. For instance, Bai et al.

(2015a) have developed a quantum kernel by measuring the

similarity between two continuous-time quantum walks evolv-

ing on a pair of graphs. Specifically, they associate each graph

with a mixed quantum state that represents the evolution of the

quantum walk. The resulting kernel is computed by measuring

the quantum Jensen-Shannon divergence between the associat-

ed density matrices. Rossi et al. (2015) have developed a quan-

tum kernel by exploiting the relation between the continuous-

time quantum walk interferences and the symmetries of a pair

of graphs, in terms of the quantum Jensen-Shannon divergence.

Both of these quantum kernels employ the Laplacian matrix as

the required Hamiltonian operator, and thus can naturally re-

flect global graph characteristics.

1.2. Contributions

The aim of this work is to overcome the gap between lo-

cal kernels (i.e., kernels based on local substructures of limited

sizes) and the global kernels (i.e., global kernels based on either

the adjacency matrix or the continuous-time quantum walk). To

this end, we propose two novel local-global nested graph ker-

nels, namely the nested aligned kernel and the nested reproduc-

ing kernel, drawing on depth-based complexity traces Bai and

Hancock (2016). Both of the nested kernels gauge the nest-

ed depth complexity trace through a family of K-layer expan-

sion subgraphs rooted at the centroid vertex, that has minimum

shortest path length variance to the remaining vertices. Specifi-

cally, for a pair of graphs, we commence by computing the cen-

troid depth-based complexity traces rooted at the centroid ver-

tices. The first nested kernel is defined by measuring the glob-

al alignment kernel, which is developed through the dynamic

time warping framework, between the complexity traces Cuturi

(2011). Since the required global alignment kernel incorporates

the whole spectrum of alignment costs between the complexi-

ty traces, this nested kernel can provide rich statistic measures.

The second nested kernel, on the other hand, is defined by mea-

suring the reproducing kernel between the complexity traces X-

u et al. (2015, 2017). Since the associated reproducing kernel

only requires time complexity O(1), this nested kernel has ef-

ficient computational complexity. We theoretically show that

both of the proposed nested kernels can simultaneously reflect

the local and global graph characteristics in terms of the nest-

ed complexity traces. Experiments on standard graph datasets

abstracted from bioinformatics and computer vision databas-

es demonstrate the effectiveness and efficiency of the proposed

graph kernels.

1.3. Paper Outline

The remainder of this paper is organized as follows. Sec-

tion 2 reviews the preliminary concepts that will be used in this

work. Specifically, we introduce the global alignment kernel

through the dynamic time warping framework, the reproduc-

ing kernel, the approximate von Neumann entropy, the Shan-

non entropy associated with steady state random walks, and the

centroid depth-based complexity trace. Section 3 defines the

proposed local-global nested graph kernels. Section 4 provides

the experimental evaluation. Section 5 concludes this work.

2. Preliminary Concepts

In this section, we review some preliminary concepts that

will be used in this work. We commence by reviewing the dy-

namic time warping framework. Specifically, we introduce the

global alignment kernel based on this framework Cuturi (2011).

Moreover, we review a reproducing kernel that is an extension

of the H1-reproducing kernel to the graph kernel realm. Final-

ly, we review the concept of the depth-based complexity trace

that naturally forms a nested sequence of a graph in terms of

the entropy measure.

2.1. Global Alignment Kernels from the Dynamic Time Warp-

ing Framework

In this subsection, we review the global alignment ker-

nel based on the dynamic time warping framework proposed

by Cuturi (2011). Let T be a set of discrete time series that

take values in a space X. For a pair of discrete time series

P = (p1, . . . , pm) ∈ T and Q = (q1, . . . , qn) ∈ T with length-

s m and n respectively, the alignment π between P and Q is
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defined as a pair of increasing integral vectors (πp, πq) of length

l ≤ m + n − 1, where

1 = πp(1) ≤ · · · ≤ πp(l) = m

and

1 = πq(1) ≤ · · · ≤ πq(l) = n

such that (πp, πq) is defined to have unitary increments and no

simultaneous repetitions. For any index 1 ≤ i ≤ l − 1, the

increment vector of π = (πp, πq) satisfies
(

πp(i + 1) − πp(i)

πq(i + 1) − πq(i)

)

∈

{(

0

1

)

,

(

1

0

)

,

(

1

1

)}

. (1)

In the dynamic time warping framework, the coordinates πp and

πq of the alignment π define the warping function Cuturi (2011).

LetA(m, n) be the set of all possible alignments between P and

Q. The dynamic time warping distance between P and Q is

defined as

DTW(P,Q) = minπ∈A(m,n)DP,Q(π), (2)

where the cost

DP,Q(π) =

|π|
∑

i=1

ϕ(pπp(i), qπq(i)), (3)

is defined by a local divergence ϕ that measures the discrepancy

between any pair of elements pi ∈ P and qi ∈ Q. Generally, ϕ

can be defined as the squared Euclidean distance, i.e., ϕ(p, q) =

∥p − q∥2.

Based on the dynamic time warping distance defined in

Eq.(2), Haasdonk and Bahlmann (2004) have defined a dynam-

ic time warping kernel kDTW between P and Q as

kDTW(P,Q) = e−DTW(P,Q). (4)

Unfortunately, this kernel is not positive definite. This is be-

cause the optimal alignment required by the dynamic time

warping cannot guarantee transitivity. To overcome the short-

coming, Cuturi (2011) considers all possible alignments in

A(m, n) and proposes another dynamic time warping inspired

kernel, i.e., the global alignment kernel, as

kGA(P,Q) =
∑

π∈A(m,n)

e−DP,Q(π), (5)

where kGA is positive definite, since it quantifies the quality

of both the optimal alignment and all other alignments π ∈

A(m, n). The kernel kGA elaborates on the dynamic time warp-

ing distance by considering the same set of elementary opera-

tions Cuturi et al. (2007). However kGA not only generalizes

the dynamic time warping kernel kDTW, but also provides rich-

er statistic measures by incorporating the whole spectrum of

alignment costs {DP,Q(π), π ∈ A(m, n)}.

Intuitively, the global alignment kernel kGA allows one to de-

fine a new graph kernel, by measuring the warping alignment π

between any types of graph characteristic sequences that have

certain element orders with increasing structural variables, e.g,

the graph embedding vectors proposed by Conte et al. (2013),

the depth-based complexity traces from expansion subgraphs of

increasing sizes proposed by Bai and Hancock (2016) , or cycle

characteristics with increasing lengths identified from the Ihara

zeta function proposed by Ren et al. (2011).

2.2. The Reproducing Kernel

In mathematics, a Hilbert Space is an inner product space that

is complete and separable with respect to the norm defined by

the inner product. If the Hilbert space contains complex-valued

functions associated with a reproducing kernel, we call it as a

reproducing kernel Hilbert space (RKHS) or a proper Hilbert

space. Generally speaking, an RKHS has nice properties if a

function f (x) in the RKHS is close to a function g(x) in the

sense of the distance derived from the inner product.

Definition 1. (The reproducing kernel) A function K : E ×

E → C, (s, t) (→ K(s, t) is a reproducing kernel of the Hilbert

space H if and only if

(i) ∀t ∈ E, K(., t) ∈ H;

(ii) ∀t ∈ E, ∀φ ∈ H ⟨φ,K(., t)⟩ = φ(t).

The last condition (ii) is called the reproducing property, i.e.,

the value of the function φ at the point t is reproduced by the

inner product of φ with K(., t). ✷

In this subsection, we review how to compute a basic repro-

ducing kernel for graphs based on the work of Xu et al. (2018).

We start with the concept of the H1-reproducing kernel in H1(R)

space, which can be seen as an extension of the H1-reproducing

kernel to the graph kernel realm. Specifically, in the following

Lemma 1, we obtain the basic solution of the generalized differ-

ential operator using the Delta function based on the work of Xu

et al. (2015, 2017). The Delta function σ(x) physically repre-

sents the density of an idealized point mass or a point charge.

In practice, the Delta function plays an important role in partial

differential equations, mathematical physics, Fourier analysis,

and theory of probability Aronszajn (1950). Assume the real

number set and the integer set are denoted by R and Z, respec-

tively. Let Hn(R) = {u(x)|u(x), u
′

(x), u
′′

(x), . . . , u(n−1)} are abso-

lutely continuous functions in {R, u
′

(x), u
′′

(x), . . . , u(n) ∈ L2(R)},

where n ∈ Z+. The inner product in Hn(R) space is defined as

⟨u, v⟩Hn(R) =

∫

R

(

n
∑

i=1

ciu
(i)v(i))dx,∀u, v ∈ Hn(R), (6)

where Ci(i = 0, 1, 2, . . . , n) is the coefficient of

(a + b)n
=

n
∑

i=0

cia
ibn−i. (7)

Lemma 1. Let K1(x) be the basic solution of the operator L =

1− d2

dx2 , then the basic reproducing kernel of H1(R) is K1(x− y).

By Xu et al. (2015), we know the function

K1(x, y) = K1(x − y) =
1

2
e−|x−y|, (8)

which obviously satisfies condition (i) and (ii) of Definition 1.

So K1(x, y) = K1(x − y) is a H1-reproducing kernel in H1(R)

space. ✷

Intuitively, the basic reproducing kernel K1 allows one to

define a new basic reproducing graph kernel associated with

any type of graph characteristics values, e.g., the graph entropy

measures suggested Bai and Hancock (2014). Moreover, since

the computation of the basic reproducing kernel K1 only re-

quires time complexity O(1) and the computation of some en-

tropy measures are only quadratic in the number of vertices.
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The basic reproducing kernel K1 provides us a way of defining

new fast graph kernel associated with graph entropy measures.

For instance, Xu et al. (2018) have proposed a hybrid repro-

ducing kernel by measuring the basic reproducing kernel K1

between the entropies of global graphs. Since the associated

entropy measures only require time complexity O(n2) where n

is the vertex number of the graph, their hybrid reproducing ker-

nel only requires time complexity O(n2
+ 1). Unfortunately, the

hybrid reproducing kernel between global graph entropies can-

not reflect local characteristics from the global graph structure.

2.3. The Entropy Measure of A Graph

We review the concepts of two state-of-the-art graph en-

tropy measures, namely the approximate von Neumann en-

tropy and the Shannon entropy associated with the steady s-

tate random walk proposed by Han et al. (2012) and Bai and

Hancock (2014) respectively. Assume we have a sample undi-

rected graph denoted as G(V, E) where V is the vertex set and

E ⊆ V × V is the undirected edge set. The adjacency matrix A

of the graph G(V, E) is a |V | × |V | symmetric matrix and each

element satisfies

A(i, j) =

{

1 if(vi, v j) ∈ E;

0 otherwise.
(9)

The vertex degree matrix D of G is a diagonal matrix whose

elements are defined by

D(vi, vi) = d(i) =
∑

v j∈V

A(i, j). (10)

Definition 2. (The Approximate Von Neumann Entropy)

Based on the definition in the work of Han et al. (2012), we

can compute a fast approximate von Neumann entropy for the

graph G(V, E) in terms of its degree matrix D as

HVN(G) = 1 −
1

|V |
−
∑

(vi,v j)∈E

1

|V |2d(i)d( j)
, (11)

where each edge (vi, v j) ∈ E is indicated by the adjacency ma-

trix A defined by Eq.(9). ✷

Definition 3. (The Shannon Entropy) For each vertex vi ∈ V

of the graph G(V, E), the probability of a steady state random

walk on G(V, E) visiting vi is

P(i) = d(i)/
∑

v j∈V

d( j). (12)

From this probability distribution P, we can straightforwardly

compute the Shannon entropy as

HS (G) = −

|V |
∑

i=1

P(i) log P(i). (13)

✷

Both the approximate von Neumann entropy and the Shan-

non entropy require computational complexity O(n2), where n

is the vertex number. This is because both the entropy measures

rely on the vertex degree statistics computed from the pairs of

vertices connected by edges, and the number of such edges is

at most n(n−1)
2

. This observation indicates that both the entropy

measures can be efficiently computed. Finally, note that, based

on the observations by Bai and Hancock (2013), the approxi-

mate von Neumann entropy and the Shannon entropy also have

different properties. Eq.(11) indicates that the approximate von

Neumann entropy is computed through the reciprocals of con-

nected vertex degrees and is thus sensitive to edges connected

by vertices with low degrees. Because such edges usually form

bridges between vertex clusters, the von Neumann entropy is

sensitive to the interconnections between vertex clusters within

a graph. On the other hand, Eq.(13) indicates that the Shan-

non entropy is dominated by vertices with large degrees. As a

result, this entropy measure responds most to graph structures

consisting of groups with highly intra-connected vertices.

2.4. Centroid Depth-based Complexity Traces

We review the concept of the centroid depth-based complexi-

ty trace of a graph rooted at the centroid vertex proposed by Bai

and Hancock (2014). Let G(V, E) be an undirected graph with

vertex set V and edge set E. Based on Dijkstra’s algorithm, we

commence by computing the shortest path matrix S G, where

each element S G(v, u) of S G represents the length of the short-

est path between vertices v ∈ V and u ∈ V . For each vertex

v ∈ V , let S (v) be the average length of the shortest paths from

v to the remaining vertices, i.e.,

S (v) =
1

|V |

∑

u∈V

S G(v, u). (14)

As discussed by Bai and Hancock (2014), the centroid vertex

v̂C of G(V, E) can be identified by selecting the vertex that has

the minimum variance of shortest path lengths to the remaining

vertices, i.e., the index of v̂C is

v̂C = arg min
v

∑

u∈V

[S G(v, u) − S V (v)]2. (15)

Let NK
v̂C

be a vertex subset of G(V, E) satisfying

NK
v̂C
= {u ∈ V | S G(v̂C , u) ≤ K}. (16)

For G(V, E) and its centroid vertex v̂C , we construct a family of

K-layer centroid expansion subgraphs GK(VK ;EK) as

{

VK = {u ∈ NK
v̂C
};

EK = {(u, v) ⊂ NK
v̂C
× NK

v̂C
| (u, v) ∈ E}.

(17)

Note that the number of expansion subgraphs is equal to the

greatest length L of the shortest paths from the centroid vertex

to the remaining vertices of G(V, E). Moreover, the L-layer ex-

pansion subgraph is G(V, E) itself. An example of constructing

a K-layer expansion subgraph is shown in Fig.1.

Definition 4. (Centroid Depth-based complexity traces) For

a graph G(V, E), let {G1, · · · ,GK , · · · ,GL} be the family of K-

layer centroid expansion subgraphs rooted at the centroid vertex

of G(V, E). Based on Bai and Hancock (2016), the centroid

depth-based complexity trace DB(G) of G(V, E) is computed

by measuring the entropies of the subgraphs, i.e.,

DB(G) = {H(G1), · · · ,H(GK), · · · ,H(GL)}, (18)
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Fig. 1. The left-most figure shows the determination of K-layer centroid expansion subgraphs for a graph G(V, E) which hold |N1
v̂C
| = 6 and |N2

v̂C
| = 10

vertices. While the middle and the right-most figure show the corresponding 1-layer and 2-layer subgraphs regarding the centroid vertex v̂C , and are

depicted by red-colored edges. In this example, the vertices of different K-layer subgraphs regarding the centroid vertex v̂C are calculated by Eq.(15), and

pairwise vertices possess the same connection information in the original graph G(V, E).

where H(GK) is the entropy measure of the K-layer expansion

subgraphGK , and it can be either the approximate von Neuman-

n entropy defined by Eq.(11) or the Shannon entropy defined by

Eq.(13). ✷

Based on Bai and Hancock (2016), the centroid depth-

based complexity trace has a number of interesting proper-

ties. First, it encapsulates the entropy-based information con-

tent flow through the family of K-layer centroid expansion sub-

graphs rooted at the centroid vertex, and thus reflects rich in-

trinsic depth topology information of a graph. Second, it can

be efficiently computed on large graphs. This is because it is

computed on a small set of expansion subgraphs rooted at the

centroid vertex, and the computational complexity is polynomi-

al.

Furthermore, we observe that the centroid depth-based com-

plexity trace DB(G) = {H(G1), · · · ,H(GK), · · · ,H(GL)} of each

graph G also preserves nest property, i.e., the entropy-based

complexity information of each K-layer expansion subgraph

encapsulates the information of the 1-layer to K−1-layer expan-

sion subgraphs. This follows the fact that the family of K-layer

expansion subgraphs rooted at the centroid vertex v̂C of G con-

structs a nested sequence. Specifically, based on Eq.(17), we

observe that the family of expansion subgraphs satisfies

v̂C ∈ G1 · · · ⊆ GK ⊆ · · · ⊆ GL ⊆ G.

In other words, it represents a sequence of subgraphs that grad-

ually expand from the centroid vertex to the global graph struc-

ture, and each K-layer expansion subgraph completely encap-

sulates the structure information from the lower layer expansion

graphs, i.e., the 1-layer to K − 1-layer expansion subgraphs. As

a result of its nested nature, the centroid depth-based complex-

ity trace can be seen as a nested complexity traces that natural-

ly reflects both the local and global structure information of a

graph.

In a summary, the centroid depth-based complexity trace pro-

vides an elegant way of developing novel fast graph kernels that

simultaneously consider local and global graph structures.

3. The Local-Global Nested Graph Kernel

In this section, we introduce two novel local-global nested

graph kernels, namely the nested aligned kernel and the nest-

ed reproducing kernel, that can reflect both the local and global

graph characteristics through the centroid depth-based repre-

sentations. Specifically, the first nested graph kernel is based on

the dynamic time warping measure between the centroid depth-

based complexity traces. On the other hand, the second nested

graph kernel is based on the basic reproducing kernel between

the centroid depth-based complexity traces. We show that both

of the kernels can be computed in polynomial time.

3.1. The Nested Graph Kernels

Let GP(VP, EP) and GQ(VQ, EQ) be a pair of graphs, from a

graph set G. We commence by computing the centroid depth-

based complexity traces of GP and GQ rooted at their centroid

vertices as

DB(GP) = {H(GP;1), · · · ,H(GP;K), · · · ,H(GP;Lmax
)}

and

DB(GQ) = {H(GQ;1), · · · ,H(GQ;K), · · · ,H(GQ;Lmax
)},

respectively, where GP;K and GQ;K are the K-layer expansion

subgraphs rooted at the centroid vertices of GP and GQ, Lmax is

the greatest length of the shortest paths rooted at the centroid

vertices over all graphs in G, and the entropy measure H(.) of a

K-layer expansion subgraph can be either the approximate von

Neumann entropy defined in Eq.(11) or the Shannon entropy

defined in Eq.(13). Note that, for GP and GQ, if their greatest

lengths M and N of the shortest paths rooted at their centroid

vertices satisfy K ≥ M and K ≥ N, their K-layer expansion

subgraphs are their global structures. We consider two alterna-

tive ways to define nested graph kernels based on the centroid

depth-based representations.

Definition 5. (The Nested Aligned Kernel) Based on the glob-

al alignment kernel defined in Section 2.1, we develop a new
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nested aligned graph kernel kNAK between GP and GQ as

kNAK(GP,GQ) = kGA{DB(GP),DB(GQ)}

=

∑

π∈A(Lmax,Lmax)

e−DP,Q(π), (19)

where π denotes the warping alignment between DB(GP) and

DB(GQ), A(Lmax, Lmax) denotes all possible alignments, and

DP,Q(π) is the alignment cost defined in Eq.(3). Note that, al-

though our kernel is based on the global alignment kernel kGA

that is a positive definite kernel, the time series compared by

kNAK are not defined over the same underlying space but on two

different graphs. Thus, we cannot prove that the the proposed

kernel kNAK is positive definite. In our future work, we will fur-

ther explore the possibility of creating a positive definite kernel

by computing the depth-based complexity traces over a com-

mon structure obtained by combining the input graphs, e.g.,

a union graph that preserves the structural information of all

graphs.

Assume we have a pair of graphs each having n vertices and

m edges, computing the nested aligned kernel kNAK requires

time complexity O(m log n + L2
max). This is because identi-

fying the centroid vertex and computing the centroid depth-

based complexity trace of a graph rely on the computation of

the shortest path matrix and both of the two processes require

time complexity O(m log n). Furthermore, computing all possi-

ble alignments between the depth-based complexity traces has

time complexity O(L2
max), where Lmax is the greatest length of

the shortest paths rooted at the centroid vertices of all graphs

(note that Lmax is usually much lower than the vertex number n

and the edge number m). As a result, the proposed kernel kNAK

has polynomial time complexity O(m log n + L2
max).

Definition 6. (The Nested Reproducing Kernel) Based on the

basic reproducing kernel K1 defined in Section 2.2, we develop

a new nested reproducing graph kernel kNRK between GP and

GQ as

kNRK(GP,GQ) = kNRK{DB(GP),DB(GQ)}

=

Lmax
∑

K=1

K1{H(GP;K),H(GQ;K)}

=

1

2

Lmax
∑

K=1

e−|H(GP;K )−H(GQ;K )|. (20)

The entropy measure H(.) can be either the approximate von

Neumann entropy or the Shannon entropy. Moreover, unlike

kNAK, we can guarantee that the proposed nested reproducing

kernel kNRK is positive definite (pd). This is because the as-

sociated basic reproducing kernel K1{HS (GP;K),HS (GQ;K)} be-

tween each pair of K-layer expansion subgraphs is pd, and the

resulting nested reproducing kernel kNRK(GP,GQ) can be seen

as the sum of the pd kernel K1 between Lmax pairs of K-layer

expansion subgraphs.

Assume we have a pair of graphs each having n vertices and

m edges. Computing the nested reproducing kernel kNRK re-

quires time complexity O(m log n + Lmax). This is because, as

we have stated, computing the centroid depth-based complex-

ity trace of each graph requires time complexity O(m log n).

Moreover, computing the reproducing kernel K1 between the

entropies of the L pairs of K-layer expansion subgraphs requires

time complexity O(Lmax). As a result, the proposed kernel kNRK

has polynomial time complexity O(m log n + Lmax). Compar-

ing to the proposed nested aligned kernel kNAK that has time

complexity O(m log n+ L2
max), the proposed nested reproducing

kernel kNRK has more efficient computational complexity.

3.2. Discussions and Related Works

As we have stated in Section 2.4, the required centroid depth-

based complexity trace for the proposed nested kernels gauges

the entropy-based complexities on the K-layer expansion sub-

graphs rooted at the centroid vertex. Since the family of these

expansion subgraphs gradually lead the centroid vertex to the

global graph structure, the centroid depth-based complexity

trace can be seen as a nested complexity trace that naturally re-

flects both the local and global structure information of a graph.

As a result, either of the proposed graph kernels can be seen

as a local-global nested graph kernel that simultaneously cap-

tures local and global graph characteristics. Our proposed ker-

nels overcome the gap between the local kernels (i.e., kernels

based on local substructures of limited sizes proposed by Har-

chaoui and Bach (2007); Kriege and Mutzel (2012); Kriege

et al. (2016)) and the global kernels (i.e., global kernels based

on either the adjacency matrix or the continuous-time quantum

walk proposed by Johansson et al. (2014); Xu et al. (2015); Bai

and Hancock (2013)). Furthermore, our proposed local-global

nested graph kernels are based on a small number of dominant

K-layer expansion subgraphs rooted at the centroid vertex, and

thus have more efficient computational complexity than state-

of-the-art graph kernels based on a large number of substruc-

tures.

The proposed local-global nested graph kernels are related to

some state-of-the-art methods. Specifically, the proposed nest-

ed aligned kernel is related to the global alignment kernel de-

veloped by Cuturi (2011), since they are both based on the dy-

namic time wrapping framework. On the other hand, the nested

reproducing kernel is related to the hybrid reproducing kernel

developed by Xu et al. (2018), since both of the kernels are

based on the basic reproducing kernel proposed by Xu et al.

(2018). However, the proposed nested kernels are still theoret-

ically different from these existing methods. First, the original

global alignment kernel is designed for vectorial time series and

thus is not available for graphs. By contrast, the proposed nest-

ed aligned kernel transforms each graph structure into a nested

centroid depth-based complexity trace, and measures the align-

ment score between the traces of pairwise graphs. The nest-

ed aligned kernel thus bridges the gap between graph kernels

and the dynamic time wrapping framework. Second, the hy-

brid reproducing kernel is based on both the Shannon and von

Neumann entropies of global graph structures, and is only re-

stricted to reflecting global graph characteristics. By contrast,

the proposed nested reproducing kernel is based on the nested

centroid depth-based complexity trace that gradually leads the

entropy measures from the local centroid vertex to the global

graph structure, and thus overcomes the restriction of the origi-

nal hybrid reproducing kernel. Furthermore, as we have stated,
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the largest layer expansion subgraph of a graph rooted at the

centroid vertex is just the global structure of the graph, thus the

hybrid reproducing kernel can be seen as the basic reproducing

kernel between both the von Neumann and Shannon entropies

of the largest layer expansion subgraphs. As a result, the o-

riginal hybrid reproducing kernel is just a special case of the

proposed nested reproducing kernel and only reflects a part of

information of the proposed nested reproducing kernel.

Finally, note that, both the proposed local-global nested

graph kernels are also related to the fast Jensen-Shannon sub-

graph kernel developed by Bai and Hancock (2016), since they

are all based on the similarity measure between the nested cen-

troid depth-based complexity traces. However, the fast Jensen-

Shannon subgraph kernel is based on the Jensen-Shannon di-

vergence measure between each pair of K-layer expansion sub-

graphs, and this divergence measure does not encapsulate the

alignment information between the probability distributions of

the subgraphs. As a result, unlike the proposed nested graph k-

ernels, this subgraph kernel cannot reflect precise kernel based

similarity measures between the centroid depth-based complex-

ity traces of graphs. These above observations indicate the the-

oretical advantages of the proposed local-global nested graph

kernels.

4. Experimental Evaluations

In this section, we evaluate the performance of the proposed

local-global nested graph kernels. We commence the by ex-

hibiting the nest property of the centroid depth-based complex-

ity traces. Finally, we perform the proposed kernels on graph

classification tasks.

4.1. Graph Datasets

We evaluate our kernels on standard graph datasets. These

datasets include: MUTAG, PTC, COIL5, Shock, CATH2, Reeb

and D&D. Details of these datasets are shown in Table 1.

MUTAG: The MUTAG dataset consists of graphs representing

188 chemical compounds labeled according to whether or not

they affect the frequency of genetic mutations in the bacteri-

um Salmonella typhimuriums and aims to predict whether each

compound is associated with mutagenicity.

PTC: The PTC (The Predictive Toxicology Challenge) dataset

records the carcinogenicity of several hundred chemical com-

pounds for male rats (MR), female rats (FR), male mice (MM)

and female mice (FM). These graphs are very small, i.e., 20−30

vertices, and sparsem, i.e., 25 − 40 edges. We select the graphs

of male rats (MR) for evaluation. There are 344 test graphs in

the MR class.

COIL5: The COIL5 dataset is abstracted from the COIL im-

age database. The COIL database consists of images of 100

3D objects. In our experiments, we use the images for the first

five objects. For each of these objects we employ 72 images

captured from different viewpoints. For each image we first ex-

tract corner points using the Harris detector, and then establish

Delaunay graphs based on the corner points as vertices. Each

vertex is used as the seed of a Voronoi region, which expand-

s radially with a constant speed. The linear collision fronts of

the regions delineate the image plane into polygons, and the

Delaunay graph is the region adjacency graph for the Voronoi

polygons.

Shock: The Shock dataset consists of graphs from the Shock

2D shape database. Each graph is a skeletal-based representa-

tion of the differential structure of the boundary of a 2D shape.

There are 150 graphs divided into 10 classes.

CATH2: The CATH2 dataset is harder to classify, since the

proteins in the same topology class are structurally similar. The

protein graphs are 10 times larger in size than chemical com-

pounds, with 200 . 300 vertices. There is 190 testing graphs in

the dataset.

Reeb: The SHREC 3D Shape database consists of 15 classes

and 20 individuals per class, that is 300 shapes Biasotti et al.

(2003). This is a standard benchmark in 3D shape recogni-

tion. From the SHREC 3D Shape database, we establish a Reeb

graph datasets through a mapping functions. This functions is

ERG barycenter that computes the distance from the center of

mass/barycenter. Details of the three mapping function can be

found in Biasotti et al. (2003). The number of maximum, mini-

mum and average vertices for the three datasets are 220, 41 and

95.42 respectively.

D&D: The D&D dataset contains 1178 protein structures. Each

protein is represented by a graph, in which the vertices are

amino acids and two vertices are connected by an edge if they

are less than 6 Angstroms apart. The prediction task is to clas-

sify the protein structures into enzymes and non-enzymes. The

maximum, minimum and average number of vertices are 5748,

30 and 284.32 respectively.

4.2. Evaluations of the Nested Centroid Depth-based Complex-

ity Traces

In this subsection, we investigate the nest property of the cen-

troid depth-based complexity trace. In the experiment, we u-

tilize the testing graphs in the MUTAG and COIL5 datasets.

Based on Table 1, the MUTAG and COIL5 datasets represent

the testing graphs with low and high average degrees (i.e., 1.10

versus 2.89) respectively. For each testing graph, we commence

by identifying the centroid vertex and establish a family of K-

layer expansion subgraphs rooted at the vertex. Moreover, we

compute the approximate von Neumann entropy or the Shan-

non entropy associated with the steady state random walk on

each of the expansion subgraphs, as the centroid depth-based

complexity trace of the graph. For each dataset, we compute

the mean centroid depth-based complexity trace of the graphs

from the same class. We draw the mean complexity trace and

the experimental results are shown in Fig. 2.

The subfigures of Fig. 2 exhibit the mean centroid depth-

based complexity trace, and each colorized line represents the

mean complexity trace of the graphs belonging to the same

class in a dataset. Here, the subfigures (a) and (b) are for the

MUTAG dataset using the Shannon and von Neumann entropies

respectively. The subfigures (c) and (d) are for the COIL5

dataset using the Shannon and von Neumann entropies respec-

tively. For each subfigure, the x-axis shows the order of the

K-layer centroid expansion subgraph for each individual graph,

while the y-axis shows the mean entropy value as a function of

the expansion order.
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Table 1. Information on the selected graph based bioninformatics datasets

Datasets MUTAG PTC COIL Shock CATH2 Reeb D&D

Max # vertices 28 109 241 33 568 220 5748
Min # vertices 10 2 72 4 143 41 30
Mean # vertices 17.93 25.60 144.90 109.63 308.03 95.42 284.3

Max # edges 33 108 702 32 2220 219 14267
Min # edges 10 1 206 3 556 40 63
Mean # edges 19.79 25.96 419 12.16 1254.80 94.59 715.65

# graphs 188 344 360 150 190 300 1178

# classes 2 2 5 5 2 15 2

Mean#edges/Mean#vertices 1.10 1.00 2.89 0.92 4.07 0.99 2.52
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Fig. 2. Evaluation of the nest property of the centroid depth-based complexity trace).
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From Fig. 2, we observe that the mean entropy values tend

to be larger with the increasing layer size K of the expansion

subgraphs. This is because the family of the K-layer expan-

sion subgraphs rooted at the centroid vertex tend to gradual-

ly lead the local centroid vertex to the global graph structure,

and each K-layer expansion subgraph encapsulates the struc-

ture information of the 1-layer to K − 1-layer expansion sub-

graphs. As a result, Fig. 2 demonstrates the nest property of

the centroid depth-based complexity traces, i.e., the entropy-

based complexity information of each K-layer expansion sub-

graph encapsulates the information of the 1-layer to K−1-layer

expansion subgraphs. Furthermore, it is clear that the mean

centroid depth-based complexity traces of graphs from differ-

ent classes are dissimilar. This indicates that the centroid depth-

based complexity traces have good ability to distinguish graphs

from different classes. Finally, we observe that, for the COIL5

dataset the complexity traces using the Shannon entropy can

better distinguish the graphs from different classes than that us-

ing the von Neumann entropy. On the other hand, for the MU-

TAG dataset the complexity traces using either the Shannon en-

tropy or the von Neumann entropy can both well distinguish

the graphs from different classes. This is because the average

vertex degree of the COIL5 dataset is obviously larger than that

of the MUTAG dataset. As we have stated in Section 2.3, the

von Neumann entropy is sensitive to graphs having low vertex

degrees, while the Shannon entropy is suited to characterizing

graphs with high vertex degrees. As a result, the centroid depth-

based complexity trace using the Shannon entropy is more suit-

able to the dataset having graphs with high vertex degrees than

that using the von Neumann entropy.

4.3. Experiments on Graph Classification

In this subsection, we investigate the performance of the pro-

posed local-global nested graph kernels. Specifically, we evalu-

ate the classification accuracies of the nested aligned kernel as-

sociated with the von Neumann entropy (NAKV) and the Shan-

non entropy (NAKS), and those of the nested reproducing ker-

nel associated with the von Neumann entropy (NRKV) and the

Shannon entropy (NRKS) on a number of graph classification

tasks. Furthermore, we also compare our proposed nested graph

kernels with seven state-of-the-art graph kernels, including 1)

the Jensen-Shannon graph kernel (JSGK) Bai and Hancock

(2013), 2) the random walk graph kernel (RWGK) Kashima

et al. (2003), 3) the unaligned quantum Jensen-Shannon graph

kernel (QJSK) Bai et al. (2015a), 4) the Lovász graph ker-

nel (LGK) Johansson et al. (2014), 5) the fast Jensen-Shannon

subgraph kernel Bai and Hancock (2016), 6) the Weisfeiler-

Lehman subtree kernel (WLSK) Shervashidze et al. (2010), and

7) the reproducing graph kernel (RGK) Xu et al. (2018). For the

WLSK kernel, we set the largest iteration of the required vertex

label strengthening methods as 10, and we use the vertex degree

as the original vertex label.

We compute the kernel matrix associated with each kernel

on each dataset. We perform 10-fold cross-validation using a

C-Support Vector Machine (C-SVM) to compute the classifica-

tion accuracies, using LIBSVM software library Chang and Lin

(2011). We use nine samples for training and one for testing.

The parameters of the C-SVMs are optimized on each training

set using cross-validation. We report the average classification

accuracy and the runtime for each kernel in Table 2 and Ta-

ble 3. The runtime is measured under Matlab R2015a running

on a 2.5GHz Intel 2-Core processor (i.e., i5-3210m).

In terms of classification accuracies on different graph

datasets, Table 2 indicates that the proposed local-global nest-

ed graph kernels outperform or are competitive to most alter-

native graph kernels. Especially, the proposed NRKV kernel

significantly outperforms all alternative graph kernels on most

datasets. Only the classification accuracy of the WLSK kernel

on the Reeb dataset and that of the JSSK kernel on the D&D

dataset are a little higher than the proposed NRKV kernel, but

our NRKV kernel is still competitive. The reason of the effec-

tiveness is that, as we have stated, our proposed nested graph

kernels can simultaneously capture the local and global graph

characteristics. By contrast, the local graph kernels RWGK and

WLSK can only reflect local characteristics of graphs based on

substructures, while the global graph kernels JSGK, QJSK, L-

GK and RGK can only capture global characteristics based on

global matrix representations of graphs (e.g., the Laplacian or

the adjacency matrix). On the other hand, similar to the pro-

posed nested graph kernel the JSSK can also reflect both the lo-

cal and global graph characteristics, relying on the depth-based

representation. Unfortunately, as we have stated in Section 3.2,

the required Jensen-Shannon divergence measure of the JSSK

kernel does not establish the alignment information between the

probability distributions of pairwise graphs. As a result, the

JSSK kernel cannot reflect the precise kernel based similarity

information between graphs.

Overall, the classification accuracies of the nested reproduc-

ing kernels (i.e., the NRKS and NRKV kernels) are significant-

ly better than those of the nested aligned kernels (i.e., the NAKS

and NAKV kernels), especially on the PTC, Shock and Reeb

datasets. Through Table 1, we observe that the average vertex

degrees of the PTC, Shock and Reeb datasets are smaller than

1. On the other hand, the average vertex degrees of the COIL5,

CATH2 and D&D datasets are significantly higher, and the clas-

sification accuracies of the nested reproducing kernels and the

nested aligned kernels on these datasets are competitive. This

observation indicates that the nested aligned kernel is not suit-

able for graph datasets have low average vertex degrees, and

the nested reproducing kernels has better applicability on any

dataset.

Furthermore, we observe that either of the proposed nested

kernels associated with the von Neumann entropy significant-

ly outperforms that associated with the von Shannon entropy

on the MUTAG, PTC, Shock and Reeb datasets. This is be-

cause the graphs from these datasets have lower average vertex

degrees than the remaining datasets. As we have stated in Sec-

tion 2.3, the von Neumann entropy is suitable to graphs having

low vertex degrees. This suggests that for graph datasets having

low vertex degrees the proposed nested kernels associated with

the von Neumann entropy are more preferable.

In terms of runtime, the proposed nested kernels are not the

fastest kernel. However, we can observe that the proposed nest-

ed aligned kernels NAKS and NAKV kernels can always com-
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Table 2. Classification Accuracy (In % ± Standard Error) Runtime in Second.

Datasets MUTAG PTC COIL5 Shock CATH2 Reeb D&D

NAKS 84.22 ± .50 58.00 ± .64 69.75 ± .65 37.60 ± .62 74.00 ± .83 45.20 ± .33 75.52 ± .31

NAKV 83.83 ± .61 57.67 ± .72 52.50 ± .61 37.65 ± .60 70.52 ± .90 48.43 ± .78 75.30 ± .17

NRKS 82.25 ± .63 55.05 ± .77 71.41 ± .49 43.60 ± .65 74.21 ± .81 52.67 ± .36 75.44 ± .33

NRKV 84.37 ± .78 59.26 ± .75 69.44 ± .40 44.26 ± .99 75.57 ± .62 55.96 ± .34 75.37 ± .33

JSGK 83.11 ± .80 57.29 ± .41 69.13 ± .79 21.73 ± .76 72.26 ± .76 21.73 ± .76 72.26 ± .76

RWGK 80.77 ± .75 53.97 ± .31 14.21 ± .65 0.33 ± .37 − 43.23 ± .30 −

QJSK 82.72 ± .44 56.70 ± .49 70.11 ± .61 40.60 ± .92 71.11 ± .88 30.80 ± .61 −

LGK 80.83 ± .43 56.29 ± .47 − 31.80 ± .89 − − −

JSSK 82.77 ± .74 56.94 ± .43 67.75 ± .67 37.66 ± .80 75.42 ± .76 52.76 ± .47 76.32 ± .46

WLSK 82.05 ± .57 56.85 ± .52 33.16 ± 1.01 36.40 ± .99 67.36 ± .63 58.53 ± .53 73.52 ± .20

RGK 84.35 ± .51 58.23 ± .55 70.66 ± .49 37.93 ± .70 71.15 ± .68 27.40 ± .35 75.36 ± .54

Table 3. Runtime for Various Kernels.
Datasets MUTAG PTC COIL5 Shock CATH2 Reeb D&D

NAKS 8.6 · 102 2.3 · 103 3.3 · 103 3.8 · 102 9.4 · 102 1.3 · 101 4.6 · 101

NAKV 8.6 · 102 2.3 · 103 3.3 · 103 3.8 · 102 9.4 · 102 1.3 · 101 4.6 · 101

NRKS 4.0 · 100 1.3 · 101 1.6 · 101 2.0 · 100 8.0 · 100 1.1 · 101 2.1 · 102

NRKV 4.0 · 100 1.3 · 101 1.6 · 101 2.0 · 100 8.0 · 100 1.1 · 101 2.1 · 102

JSGK 1.0 · 100 1.0 · 100 1.0 · 100 1.0 · 100 1.0 · 100 1.0 · 100 1.0 · 100

RWGK 4.6 · 101 6.7 · 101 1.1 · 103 2.3 · 101 − 1.2 · 103 −

QJSK 2.0 · 101 1.0 · 102 1.0 · 103 1.4 · 101 4.4 · 103 6.3 · 103 −

LGK 1.0 · 103 7.4 · 103 − 1.0 · 103 − − −

JSSK 1.0 · 100 4.0 · 100 3.0 · 100 1.0 · 100 4.0 · 100 1.0 · 100 4.5 · 101

WLSK 3.0 · 100 9.0 · 101 6.5 · 101 3.0 · 100 5.3 · 101 3.0 · 101 4.6 · 102

RGK 3.0 · 100 1.3 · 101 1.5 · 101 2.0 · 100 4.0 · 100 9.0 · 100 1.5 · 102

plete the computation of the kernel matrices. By contrast, some

alternative graph kernels (e.g., the LGK and RWGK kernels)

fail to complete the computation in a reasonable time. On the

other hand, the proposed nested reproducing kernels have com-

petitive computational efficiency to the fast alternative JSGK

and JSSK kernels.

5. Conclusion

In this paper, we have proposed two novel local-global nested

graph kernels, namely the nested aligned kernel and the nested

reproducing kernel. Both of the nested kernels are based on the

centroid depth-based complexity traces, that gauge the nested

depth complexity trace through a family of K-layer expansion

subgraphs rooted at the centroid vertex. Unlike most existing

state-of-the-art graph kernels that only probe local or global

graph characteristics, the proposed nested kernels simultane-

ously consider the local and global graph characteristics and

thus reflect the presence of richer structural patterns. The ex-

periments have demonstrated the effectiveness and efficiency

of the proposed nested kernels.

Our future work is to extend the proposed kernel to attributed

graphs that encapsulate vertex and edge labels. Moreover, we

would also like to further develop novel graph kernels through

the dynamic time warping framework associated with other

types of (hyper)graph characteristic sequences, e.g., the cycle

numbers identified by the Ihara zeta function, the time-varying

entropies computed from the continuous-time or discrete-time

quantum walk Bai et al. (2015a, 2017). Finally, we are also

interested in developing novel graph kernels for time-varying

financial market networks Ye et al. (2015), using the dynamic

time warping framework.
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