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A B S T R A C T

We describe a tool-supported method for the efficient synthesis of parametric continuous-time Markov chains

(pCTMC) that correspond to robust designs of a system under development. The pCTMCs generated by our RObust

DEsign Synthesis (RODES) method are resilient to changes in the system’s operational profile, satisfy strict

reliability, performance and other quality constraints, and are Pareto-optimal or nearly Pareto-optimal with

respect to a set of quality optimisation criteria. By integrating sensitivity analysis at designer-specified tolerance

levels and Pareto optimality, RODES produces designs that are potentially slightly suboptimal in return for less

sensitivity—an acceptable trade-off in engineering practice. We demonstrate the effectiveness of our method and

the efficiency of its GPU-accelerated tool support across multiple application domains by using RODES to design

a producer-consumer system, a replicated file system and a workstation cluster system.

1. Introduction

Robustness is a key characteristic of both natural (Kitano, 2004) and

human-made (Phadke, 1995) systems. Systems that cannot tolerate

change are prone to frequent failures and require regular maintenance.
As such, engineering disciplines like mechanical and electrical en-

gineering treat robustness as a first-class citizen by designing their
systems based on established tolerance standards (e.g. International

Organization for Standardization, 2010; International Organization for
Standardization, 2013). By comparison, software engineering is lagging

far behind. Despite significant advances in software performance and
reliability engineering (Balsamo et al., 2004; Bondy, 2014; Becker et al.,

2009; Fiondella and Puliafito, 2016; Stewart, 2009; Woodside et al.,
2014), the quality attributes of software systems are typically analysed

for point estimates of stochastic system parameters such as component
service rates or failure probabilities. Even the techniques that assess the

sensitivity of quality attributes to parameter changes (e.g. Gokhale and
Trivedi, 2002; Lo et al., 2005; Huang and Lyu, 2005; Kamavaram and

Goseva-Popstojanova, 2003; Filieri et al., 2016) focus on the analysis of
a given design at a time instead of systematically designing robustness

into the system under development (SUD).
To address these limitations, we propose a tool-supported method

for the efficient synthesis of parametric continuous-time Markov chains
(pCTMCs) that correspond to robust SUD designs. Our RObust DEsign

Synthesis (RODES) method generates sets of pCTMCs that:

(i) are resilient to pre-specified tolerances in the SUD parameters, i.e.,

to changes in the SUD’s operational profile;
(ii) satisfy strict performance, reliability and other quality constraints;

(iii) are Pareto-optimal or nearly Pareto optimal with respect to a set of

quality optimisation criteria.

RODES comprises two steps. In the first step, the SUD design space
is modelled as a pCTMC with discrete and continuous parameters cor-

responding to alternative system architectures and to ranges of possible
values for the SUD parameters, respectively. In the second step, a multi-

objective optimisation technique is used to obtain a set of low-sensi-
tivity, Pareto-optimal or nearly Pareto-optimal SUD designs by fixing

the discrete parameters (thus selecting specific architectures) and re-
stricting the continuous parameters to bounded intervals that reflect the

pre-specified tolerances. The designs that are slightly suboptimal have
the advantage of a lower sensitivity than the optimal designs with si-

milar quality attributes, achieving a beneficial compromise between
optimality and sensitivity. A sensitivity-aware Pareto dominance relation

is introduced in the paper to formally capture this trade-off.
Fig. 1 shows the differences between a traditional Pareto front,

which corresponds to a fixed SUD operational profile, and a sensitivity-
aware Pareto front generated by RODES, which corresponds to a SUD

operational profile that can change within pre-specified bounds. Ac-
cordingly, the designs from the RODES sensitivity-aware Pareto front

are bounded regions of quality-attribute values for the system. The size
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and shape of these regions convey the sensitivity of the synthesised

designs to parameter changes within the pre-specified tolerances. Small
quality-attribute regions correspond to particularly robust designs that

cope with variations in the system parameters without exposing users to
significant changes in quality attributes. These designs require reduced

maintenance, and can be implemented using high-variability compo-
nents that are cheaper to develop or obtain off-the-shelf than low-

variability components. Large quality-attribute regions from a RODES
Pareto front—while still the most robust for the quality attribute trade-

offs they correspond to—are associated with designs that are sensitive
to SUD parameters variations. These designs may involve high main-

tenance and/or development costs, so they should only be used if jus-
tified by their other characteristics (e.g. desirable quality attribute

trade-offs).
To the best of our knowledge, RODES is the first solution that in-

tegrates multi-objective stochastic model synthesis and sensitivity
analysis into an end-to-end, tool-supported design method. As we show

in detail in Section 7, the existing research addresses the challenges
associated with design synthesis (e.g. Gerasimou et al., 2015; Martens

et al., 2010) and sensitivity analysis (e.g. Gokhale and Trivedi, 2002; Lo
et al., 2005; Huang and Lyu, 2005; Kamavaram and Goseva-

Popstojanova, 2003; Filieri et al., 2016) separately. The main con-
tributions of our paper are:

1. The extension of the notion of parameter tolerance from other en-

gineering disciplines for application to software architecture.
2. The definitions of the parametric Markov chain synthesis problem

and of the sensitivity-aware Pareto dominance relation for the

synthesis of robust models for stochastic systems.
3. The RODES method for the generation of sensitivity-aware Pareto

fronts by integrating multi-objective probabilistic model synthesis
and precise pCTMC parameter synthesis.

4. A GPU-accelerated tool that implements the RODES method and is
available preinstalled on an easy-to-use VirtualBox instance from

our project website https://www.github.com/gerasimou/RODES/
wiki.

5. A repository of case studies demonstrating the successful application
of RODES to a replicated file system used by Google’s search engine,

a cluster availability management system, and a producer-consumer
system.

These contributions significantly extend our conference paper on

robust model synthesis (Calinescu et al., 2017a) and the prototype
probabilistic model synthesis tool (Calinescu et al., 2017b) in several

ways. First, we provide a more detailed description of our solution,
including a running example and new experimental results. Second, we

greatly improve the scalability of RODES by integrating the GPU-ac-
celerated analysis of candidate designs into our prototype tool

(Calinescu et al., 2017b). Third, we extend the experimental evaluation
to demonstrate the impact of the GPU acceleration. Finally, we present

an additional case study in which we apply RODES to a producer-
consumer system, and we use the systems and models from our ex-

periments to assemble a repository of case studies available on our
project website.

The remainder of the paper is organised as follows. Section 2 in-
troduces the RODES design-space modelling language and the form-

alism to specify quality constraints and optimisation criteria. Section 3
defines the sensitivity-aware dominance relation and introduces the

parametric Markov chain synthesis problem. We then present our
method for synthesising robust designs in the form of a sensitivity-

aware Pareto set, and the GPU-accelerated tool RODES implementing
the method in Sections 4 and 5, respectively. Finally, we evaluate our

method within three case studies in Section 6, discuss related work in
Section 7, and conclude the paper with a summary and future work in

Section 8.

2. Modelling and specification language for probabilistic systems

This section formalises three key elements underpinning the for-
mulation of the robust design problem: 1) the modelling of the design

space of a SUD, 2) the specification of quality attributes and require-

ments, and 3) the sensitivity of a design.

2.1. Design space modelling

We use a parametric continuous-time Markov chain (pCTMC) to define
the design space of a SUD. To this end, we extend the original pCTMC

definition (Han et al., 2008), where only real-valued parameters de-
termining the transition rates of the Markov chain are considered, and

assume that a pCTMC also includes discrete parameters affecting its
state space. Our definition captures the need for both discrete para-

meters encoding architectural structural information (e.g. by selecting
between alternative implementations of a software component) and

continuous parameters encoding configurable aspects of the system
(e.g. network latency or throughput). As such, a candidate system de-

sign corresponds to a fixed discrete parameter valuation and to con-
tinuous parameter values from a (small) region.

Definition 1 ((pCTMC)). Let K be a finite set of real-valued parameters

such that the domain of each parameter k∈ K is a closed interval
�⊂⊥ ⊤k k[ , ] , and D a finite set of discrete parameters such that the

domain of each parameter d∈D is a set �⊂Td . Let also

P=× ∈
⊥ ⊤k k[ , ]k K and Q=× ∈ Td D

d be the continuous and the discrete
parameter spaces induced by K and D, respectively. A pCTMC over K and

D is a tuple

C P Q D D D= L( , ) ( , , , ),S init R (1)

where, for any discrete parameter valuation Q∈q :

• D =q S( )S is a finite set of states, andD ∈q S( )init is the initial state;

• D �× →q S S K( ): [ ]R is a parametric rate matrix, where � K[ ] de-

notes the set of polynomials over the reals with variables in K;

• L(q): S→ 2AP is a labelling function mapping each state s∈ S to the

set L(q)(s)⊆AP of atomic propositions that hold true in s.

A pCTMC P QC ( , ) describes the uncountable set of continuous-time

Markov chains (CTMCs) C P Q∈ ∧ ∈p q p q{ ( , ) }, where each
C D D=p q q q( , ) ( ( ), ( ),S init R(p, q), L(q)) is the instantiated CTMC with

transition matrix R(p, q) obtained by replacing the real-valued para-

meters in D q( )R with their valuation in p.
In our approach we operate with pCTMCs expressed in a high-level

modelling language extending the PRISM language (Kwiatkowska et al.,
2011) which models a system as the parallel composition of a set of

Fig. 1. Traditional Pareto front (a) versus sensitivity-aware Pareto front (b) for

two quality attributes that require minimisation (e.g., response time and

probability of failure).

R. Calinescu et al. The Journal of Systems & Software 143 (2018) 140–158

141

https://www.github.com/gerasimou/RODES/wiki
https://www.github.com/gerasimou/RODES/wiki


modules. The state of a module is encoded by a set of finite-range local
variables, and its state transitions are defined by probabilistic guarded

commands that change these variables, and have the general form:

action guard → +⋯+e update e update[ ] : :n n1 1 (2)

In this command, guard is a Boolean expression over all model
variables. If the guard evaluates to true, the arithmetic expression ei,

1≤ i≤ n, gives the rate with which the updatei change of the module
variables occurs. When action is present, all modules comprising com-

mands with this action have to synchronise (i.e., to carry out one of
these commands simultaneously) and the resulting rate of such syn-

chronised commands is equal to the multiplication of the individual
command rates. Atomic propositions are encoded with label expres-

sions of the form:

label id = b‵‵ "" (3)

where id is a string that identifies the atomic proposition and b is a
Boolean expression over the state variables.

We extend the PRISM language with the following constructs
(adopted from Gerasimou et al., 2015) for specifying the parameters

k∈ K and d∈D from Definition 1:

evolvedouble

evolveint

evolvemodule

k min max

d min max

ComponentName

[ . ]

[ . ]

(4)

where N>1 instances of the last construct (with the same component
name) define N alternative architectures for a component, introducing

the index (between 1 and N) of the selected architecture as an implicit
discrete parameter.

As per Definition 1, continuous parameters can only appear in the

transition rates (expressions …e e, , n1 above).
Explicit discrete variables (declared using evolve int) can instead

appear in any type-consistent expression.
The translation of models expressed in the extended PRISM lan-

guage into the corresponding pCTMC is fully automatic and follows the
probabilistic guarded command semantics described above. The dis-

crete state space Q results from all possible valuations of explicit dis-
crete variables and implicit discrete variables (different implementa-

tions of a module). For a fixed valuation Q∈q , the parametric PRISM
model describes a fixed set of modules with a fixed set of finite-range

variables, and thus the state space D q( )S is given by the Cartesian
product of the value ranges for these variables. In contrast, q determines

also the parametric rate matrix D q( )R and atomic propositions L(q), as
q can affect guards and updates of PRISM commands, as well as label

expressions.

Example 1 (Producer-consumer model). As a running example, we

consider a simple producer-consumer system with a two-way

buffering, illustrated in Fig. 2. The pCTMC PRISM model, extended
with the evolvable constructs from Definition 4 is shown in Fig. 3. The

system comprises a producer generating requests with rate p_rate. Each
request is being transferred to a consumer either via a slow buffer or via

a fast buffer with probabilities 0.6 and 0.4, respectively (lines 14 and 15

in Fig. 3). The fast buffer transmits requests to the consumer faster than
the slow buffer, but it has smaller capacity and is less reliable, as it loses

packets with a 5% probability (line 20).We consider two alternative
designs of the producer-consumer model that differ in the way that the

two buffers manage the pending requests. More specifically we consider

1. a no-redirection design in which once a request is sent to either
buffer, the packet is transmitted by that buffer to the consumer

(lines 9–22);
2. a redirection design that enables the slow buffer to transmit requests

to the fast buffer with a probability proportional to its occupancy
(lines 23–27). In particular, redirection is disabled when the slow

buffer is empty and has maximum rate when it is full and is equal to
s_rate/10, where s_rate is the request transmission rate without

redirection.In addition to these two alternative designs, the model

has two continuous parameters, the packet transmission rate for the
Fig. 2. Two-way producer-consumer system.

Fig. 3. PRISM-RODES encoding of pCTMC model of a producer-consumer

system with two-way buffering and redirection. In the second module only the

commands that differ from the first module are reported.
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slow buffer, r_slow_rate, and delta_rate, i.e. the transmission rate dif-
ference between fast and slow buffers. Notably, the rate of packet loss

by the fast buffer is proportional to its transmission rate, meaning that
the buffer becomes less reliable as its rate increases.We formally cap-

ture the above system model with its continuous parameters and al-
ternative designs by a pCTMC C P Q( , ),PC where P = ×[5, 30] [0, 30]

defines the domains for the continuous parameters r_slow_rate, and
delta_rate, respectively, and Q = {1, 2} defines the domain for the dis-

crete parameter corresponding to the two alternative designs (i.e.
modules).

Definition 2 (Candidate design). A candidate design of the pCTMC
C P Q( , ) from (1) is a pCTMC

C P D D D′ = ′ ′ ′ ′q L( , { }) ( , , , )S init R (5)

where P P′ ′′ = × ⊆∈
⊥ ⊤k k[ , ] ,k K Q∈q , D D′ =q q( ) ( ),S S D D′ =q q( ) ( ),R R

D D′ =q q( ) ( )init init and ′ =L q L q( ) ( ). The tolerance of the candidate

design with respect to the real-valued parameter k∈ K is defined as

=
′ − ′

−

⊤ ⊥

⊤ ⊥
γ

k k

k k2( )
,k

(6)

in line with the fact that the design restricts the value domain

of k to the interval − − + −⊤ ⊥ ⊤ ⊥k γ k k k γ k k[ ( ), ( )],k k = ′ ′+⊥ ⊤

k
k k

2
.1

For convenience, we will use the shorthand notation
C P C P′ ≡ ′q q( , ) ( , { }) in the rest of the paper.

Example 2 (Candidate design). Consider the pCTMC P QC ( , )PC from

Example 1 and a single tolerance value =γ 0.005 for both continuous
parameters r_slow_rate and delta_rate. By (6), candidate designs have

continuous parameter ranges of size − =⊤ ⊥γ k k2 ( ) 0.25 for r_slow_rate
and of size 0.3 for delta_rate. Two examples of valid candidate designs

for the second module (redirection), obtained using our RODES
synthesis method (see also results in Fig. 7), are pCTMCs

C P= ′d ( , 2)PC1 and C P= ″d ( , 2)PC2 where P ′ = ×[15.02, 15.27] [1.93, 2.23],

P″ = ×[13.2, 13.45] [3.51, 3.81]. The pCTMCs C P= ″′d ( , 1)PC3 with is
instead a valid candidate design for the first module (no redirection).

2.2. Quality attribute specification and requirements

We specify quality attributes over pCTMCs-defined design spaces
using continuous stochastic logic (CSL) extended with reward operators

(Kwiatkowska et al., 2007). Our focus is on timed properties of pCTMCs
expressed by the time-bounded fragment of CSL with rewards com-

prising state formulae (Φ) and path formulae (ϕ) with the syntax:

true= ¬ ∧

=

∼ ∼
≤a P ϕ R C

ϕ X U

Φ: : Φ Φ Φ [ ] [ ]

: : Φ Φ Φ
,

r r
t

I (7)

where a is an atomic proposition evaluated over states, ∼ ∈ {< , ≤ ,
≥ , > } is a relational operator, r is a probability (r∈ [0, 1]) or reward

( �∈ ≥r 0) threshold
2, �∈ ≥t 0 is a time bound, and �⊆ ≥I 0 is a bounded

time interval. The ‘future’ operator, F, and ‘globally’ operator, G, are

derived from U in the standard way3. As briefly discussed in Section 4.2,
our approach can be extended to unbounded CSL.

Traditionally, the CSL semantics is defined for CTMCs using a sa-
tisfaction relation ⊨. Intuitively, a state s⊨P∼ r[ϕ] iff the probability of

the set of paths starting in s and satisfying ϕ meets ∼ r. A path
= …ω s t s t0 0 1 1 satisfies the formula ΦUI

Ψ iff there exists a time t∈ I such

that (ω@t⊨Ψ∧∀t′∈ [0, t).ω@t′⊨Φ), where ω@t denotes the state in ω at
time t. A state s⊨R∼ r[C

≤ t] iff the expected rewards over the path

starting in s and cumulated within t time units satisfies ∼ r, where the

rates with which reward is acquired in each state and the reward ac-
quired at each transition are defined by a reward structure.

In line with our previous work (Češka et al., 2017), we introduce a
satisfaction function P Q× →Λ : [0, 1]ϕ that quantifies how the sa-

tisfaction probability associated with a path CSL formula ϕ relates to
the parameters of a pCTMC C P Q( , ), where, for any P Q∈ ×p q( , ) ,

Λϕ(p, q) is the probability that ϕ is satisfied by the set of paths from the
initial state D q( )init of the instantiated CTMC C p q( , ). The satisfaction

function for reward CSL formulae is defined analogously.
Quality requirements. We assume that the quality requirements of

a SUD with design space given by a pCTMC C P Q( , ) are defined in
terms of:

1) A finite set of objective functions {fi}i∈ I corresponding to quality

attributes of the system and defined in terms of a set of CSL path
formulas {ϕi}i∈ I, such that for any i∈ I and P Q∈ ×p q( , ) ,

C =f p q p q( ( , )) Λ ( , );i ϕi (8)

2) A finite set of Boolean constraints {cj}j∈ J corresponding to the set of
CSL path formulas {ψj}j∈ J and thresholds {∼ jrj}j∈ J, such that for

any j∈ J and P Q∈ ×p q( , ) ,

C ⇔ ∼c p q p q r( ( , )) Λ ( , ) .j ψ j jj (9)

Note that quality requirements (8) and (9) are defined over (non-

parametric) CTMCs, but, in order to compare candidate designs with
respect to some objective function, we need to interpret quality re-

quirements over pCTMCs. Indeed, due to the continuous parameter
space, a single candidate design induces an infinite number of objective

function values, from which the designer must choose a representative
value. For a candidate designC P′ q( , ) and objective fi, this is typically

identified as one of the minimum, maximum and mid-range value of
Cf p q( ( , ))i over all P∈ ′p , as illustrated in Table 1.

On the other hand, constraints have a unique interpretation because
they must be met for any parameter value of a candidate design.

Formally, for candidate design C P′ q( , ) and constraint cj, we define

C P P C′ ⇔ ∀ ∈ ′c q p c p q( ( , )) . ( ( , )).j j

Without loss of generality, we will assume that all objective func-
tions {fi}i∈ I in Sections 3 and 4 should be minimised and that all

thresholds {∼ jrj}j∈ J are upper bounds of the form of ≤ rj.

Example 3 (Quality requirements). Below we define quality

requirements for the producer-consumer model of Example 1. We

consider two maximisation objectives and one constraint:

f1: =
<=R consume C{‵‵ ""} [ ],?

25 a cumulative transition reward de-
scribing the number of requests transferred to the consumer within

25 time units (line 21 in Fig. 3);
f2: buffers slowmax bufferf fastmax≥ ≥=P G[ [20, 25](( /2)&( /2))],?

which calculates the probability that the utilisation of both buffers is
at least 50% of their respective capacities;

c1: ≤
<=R lost C{‵‵ "" } [ ],10

25 a cumulative transition reward that limits
the number of packets lost within 25 time units (line 20 in

Fig. 3).With these quality requirements, we seek to maximise the
system throughput (objective f1), expressed as the number of requests

transferred to the consumer, and also to maximize the probability that
both buffers are sufficiently utilised after an initial period (objective f2).

Finally, constraint c1 imposes a reliability requirement by restricting
the number of packets lost to be less than 10 within 25 time units of

operation.

1 In other words, the tolerance of parameter k, γk, measures the extent to which k can

be perturbed from its reference (midpoint) value.
2 For simplicity, we use ∼ r to denote the threshold for both probability and reward

quality attributes.
3 true=∼ ∼P F P U[ Φ] [ Φ]r

I
r

I and = ¬∼ ∼ −P G P F[ Φ] [ Φ].r
I

r
I

1
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2.3. Sensitivity of candidate designs

Quantifying the sensitivity of candidate designs is a crucial step in

our robust synthesis method. Intuitively, the sensitivity of a design
C P′ q( , ) captures how the objective functions {fi}i∈ I change in re-

sponse to variations in the continuous parameters k∈ K. The variation
of each objective fi is measured by the length of the interval

C P′⊥f q[ ( ( , )),
i

C P′⊤f q( ( , )],
i

describing the range of admissible values
for fi and C P′ q( , ) (cf. Table 1). The degree of variation for multiple
objectives is given by the product of interval lengths, i.e., the volume of

the corresponding quality-attribute region. The sensitivity takes also
into account the size of the underlying parameter region, in order to

account for designs with different tolerance values. For instance, a
design with a large quality-attribute volume and high tolerance (large

parameter region volume) must be considered more robust (less sensi-
tive) than another design with comparable quality-attribute volume but

lower tolerance.

Definition 3 (Sensitivity). For a set of objective functions {fi}i∈ I and
tolerances {γk}k∈ K, the sensitivity of a feasible design C P′ q( , ) is

defined as the volume of its quality-attribute region over the volume
of P′:

C P
C P C P

′ =
∏ ′ − ′

∏ −
∈

⊤ ⊥

∈
⊤ ⊥

sens q
f q f q

γ k k
( ( , ))

( ( ( , )) ( ( , )))

2 ( )
.i I i i

k K k (10)

Example 4 (Sensitivity). Consider the candidate designs d1, d2, d3 with

tolerance =γ 0.005 from Example 2, and the objective functions f1
(number of “consumed” packets) and f2 (probability of buffers being

sufficiently used) introduced in Example 3. Assume the following
ranges for f1 and f2:

=

=

=

=

=

=

⊥ ⊤

⊥ ⊤

⊥ ⊤

⊥ ⊤

⊥ ⊤

⊥ ⊤

f d f d

f d f d

f d f d

f d f d

f d f d

f d f d

[ ( ), ( )] [416.94, 439.65]

[ ( ), ( )] [0.8977, 0.9809]

[ ( ), ( )] [407.11, 423.10]

[ ( ), ( )] [0.891, 0.9621]

[ ( ), ( )] [384.81, 413.09]

[ ( ), ( )] [0.7501, 0.8225].

1 1 1 1

2 1 2 1

1 2 1 2

2 2 2 2

1 3 1 3

2 3 2 3

Recall that the three designs have the same tolerance, thus yielding the
same parameter region volume

∏ − = =
∈

⊤ ⊥γ k k2 ( ) 0.25·0.3 0.075
k K

k

The resulting sensitivities are:

= − − =

= − − =

= − − =

sens d

sens d

sens d

( ) (439.65 416.94)(0.9809 0.8977)/0.075 25.19

( ) (423.10 407.11)(0.9621 0.891)/0.075 15.16

( ) (413.09 384.81)(0.8225 0.7501)/0.075 27.3

1

2

3

indicating that d2 is the most robust design (with the smallest sensitivity
value). The three designs can be visualised in the quality-attribute space

(i.e. the objective space), as shown in Fig. 4, providing a direct and
intuitive way to assess robustness.

3. Sensitivity-aware Pareto dominance relation

In this section, we introduce a novel dominance relation that ade-

quately captures tradeoffs between the sensitivity and optimality of
candidate designs with respect to given quality requirements, and that

enables to formulate the robust design problem as an optimisation
problem.

Consider a system with design spaceC P Q( , ), quality requirements
given by objective functions {fi}i∈ I and constraints {cj}j∈ J, and de-

signer-specified tolerances {γk}k∈ K for the continuous parameters of
the system. Also, letF be the set of feasible designs for the system (i.e.,

of candidate designs that meet the tolerances {γk}k∈ K and satisfy the
constraints {cj}j∈ J):

F C P P P Q

C P

X= ′ ′ = ′ ′ ⊂ ∧ ∈ ∧

∀ ∈ ′ − ′ = − ∧ ∀ ∈ ′

∈
⊥ ⊤

⊤ ⊥ ⊤ ⊥

q k k q

k K k k γ k k j J c q

{ ( , ) [ , ]

. 2 ( ) . ( ( , ))}.

k K

k j (11)

Definition 4. A sensitivity-aware Pareto dominance relation over a
feasible design set F and a set of minimisation objective functions

{fi}i∈ I is a relation F F≺ ⊂ × such that for any feasible designs
F′ ∈d d,

≺ ′⇔
∀ ∈ ≤ ′ ∧ ∃ ∈ + < ′ ∨

∀ ∈ ≤ ′ ∧ ∃ ∈ < ′ ∧

≤ ′

d d
i I f d f d i I f d f d

i I f d f d i I f d f d

sens d sens d

( . ( ) ( ) . (1 ϵ ) ( ) ( ))

( . ( ) ( ) . ( ) ( )

( ) ( )).

i i i i i

i i i i

(12)

where the objective functions {fi}i∈ I are calculated using one of the
alternative definitions from Table 1 and ϵi≥ 0 are sensitivity-awareness

parameters.

The parametric Markov chain synthesis problem consists of finding
the Pareto-optimal set PS of candidate designs (5) (i.e. pCTMCs) with

tolerances {γk}k∈ K that satisfy the constraints {cj}j∈ J and are non-
dominated with respect to the objective functions {fi}i∈ I and the sen-

sitivity-aware dominance relation ‘≺’:

C P F C P F C P C P= ′ ∈ ∄ ″ ′ ∈ ″ ′≺ ′PS q q q q{ ( , ) ( , ) . ( , ) ( , )}, (13)

Before discussing the rationale for this definition, we show that the

sensitivity-aware Pareto dominance relation is a strict order like the
classical Pareto dominance.

Theorem 1. The sensitivity-aware Pareto dominance relation is a strict

order.

Proof. See Appendix A □

The classical Pareto dominance definition can be obtained by setting

Table 1

Alternative definitions for objective functions {fi}i∈ I over candidate designs.

Type Notation Definition

Lower bound C P′⊥f q( ( , ))i
P∈ ′ p qinf Λ ( , )p ϕi

Upper bound C P′⊤f q( ( , ))i P∈ ′ p qsup Λ ( , )p ϕi

Mid-range C P′f q( ( , ))i
•

C P C P′ + ′⊥ ⊤f q f q( ( ( , )) ( ( , )))/2i i

Fig. 4. Candidate designs of Example 4 represented in the quality-attribute

space and coloured by sensitivity. Designs d1 and d2 were synthesised using

RODES (full results are reported in Fig. 7 on a different scale).

R. Calinescu et al. The Journal of Systems & Software 143 (2018) 140–158

144



=ϵ 0i for all i∈ I in (12). When ϵi>0 for some i∈ I, dominance with
respect to quality attribute i holds in our generalised definition in two

scenarios:

1) when the quality attribute has a much lower value for the dom-
inating design, i.e. + < ′f d f d(1 ϵ ) ( ) ( )i i i ;

2) when in addition to a (slightly) lower quality attribute value, i.e.
fi(d)< fi(d′), the sensitivity of the dominating design is no worse

than that of the dominated design, i.e. sens(d)≤ sens(d′).

These scenarios are better aligned with the needs of designers than
those obtained by using sensitivity as an additional optimisation cri-

terion, which induces Pareto fronts comprising many designs with low
sensitivity but unsuitably poor quality attributes. Similarly, each ob-

jective function definition from Table 1 captures specific needs of real-
world systems. Thus, using the “upper bound” definition ( ⊤f

i ) in (12)
supports the synthesis of conservative designs by comparing competing

designs based on the worst-case values of their quality attributes. This is
suitable when the worst-case performance, reliability, etc. must be

specified for a system, e.g. in its service-level agreement. In contrast,
the “lower bound” definition from Table 1 ( ⊥f

i ) can be used when de-
sign selection must be based on the best expected quality values of a

system. Finally, the “mid-range” definition ( fi
•) may be useful—in

conjunction with the actual sensitivity (10)—to compare and select

designs based on their reference midpoint quality values.
Importantly, for ϵi>0 our generalised definition induces Pareto

fronts comprising designs with non-optimal (in the classical sense)
objective function values, but with low sensitivity. We call such designs

sub-optimal robust. Thus, ϵi can be finely tuned to sacrifice objective
function optimality (slightly) for better robustness. Below we formally

characterize the set of robust sub-optimal designs and provide an ex-
ample of the sensitivity-aware dominance relation.

Definition 5 (Sub-optimal robust design). Let PS be a Pareto-optimal set

defined as per (13). A design d′∈ PS is called robust sub-optimal if
∃d∈ PS s.t.:

∀ ∈ ≤ ′ ∧ ∃ ∈ < ′i I f d f d i I f d f d( . ( ) ( ) . ( ) ( ))i i i i

Example 5 (Sensitivity-aware Pareto dominance relation). Consider the

quality-attribute regions of Fig. 4 induced by designs d1, d2, d3 of the

producer-consumer model introduced in Examples 1–4, and the
objective functions defined as = ⊥f fi i

for i∈ 1, 2. Visually, ⊥f
i

corresponds to the lower-left corners of the regions in Fig. 4. Since

we maximize both objectives, for clarity, we report below the
dominance relation for maximisation:

≻ ′⇔
∀ ∈ ≥ ′ ∧ ∃ ∈ > + ′ ∨

∀ ∈ ≥ ′ ∧ ∃ ∈ > ′ ∧

≤ ′

d d
i I f d f d i I f d f d

i I f d f d i I f d f d

sens d sens d

( . ( ) ( ) . ( ) (1 ϵ ) ( ))

( . ( ) ( ) . ( ) ( )

( ) ( )).

i i i i i

i i i i

The designs d1, d2, d3 have identical parameter tolerances and thus, same

parameter space volume V. We have that d1≻d2≻d3 when = =ϵ ϵ 01 2

(classical dominance) because for =i 1, 2, >⊥ ⊥ ⊥f d f d f d( ) ( ), ( )
i i i1 2 3 .

Further, we have that ¬ ≺d d1 2 when = =ϵ ϵ 0.05,1 2 implying that d2 is

robust sub-optimal, i.e., is retained in the sensitivity-aware Pareto-optimal
set, because ¬ >⊥ ⊤f d f d( ) 1.05· ( ),

1 1 1 2 ¬ >⊥ ⊥f d f d( ) 1.05· ( ),
2 1 2 2 and sens

¬ ≤d sens d( ) ( )1 2 . Design d3 is not included in the front (d1, d2≻d3)
because >⊥ ⊥ ⊥f d f d f d( ), ( ) 1.05· ( )

i i i1 2 3 for =i 1, 2.

4. Synthesis of sensitivity-aware Pareto sets

In this section, we describe our method for computing sensitivity-
aware Pareto sets. The method employs genetic multi-objective opti-

misation algorithms for generating candidate designs and a precise
parameter analysis of pCTMCs for evaluating the candidate designs. We

start with a method overview, then we describe the two components the
method builds on.

4.1. Method overview

Computing the Pareto-optimal design set (13) using exhaustive

analysis is very expensive and requires a significant amount of com-
putational resources as the design spaceC P Q( , ) is extremely large due

to its real-valued parameters. Also, every candidate design C P′ q( , )

consists of an infinite set of CTMCs that cannot all be analysed to es-

tablish its quality and sensitivity. To address these challenges, our
pCTMC synthesis method combines search-based software engineering

(SBSE) techniques (Harman et al., 2012a) with techniques for effective
pCTMCs analysis (Češka et al., 2017; 2016), producing a close ap-

proximation of the Pareto-optimal design set.
Algorithm 1 presents the high-level steps of our pCTMC synthesis

method. The approximate Pareto-optimal design set PS returned by this
algorithm starts empty (line 2) and is assembled iteratively by the while

loop in lines 5–15 until a termination criterion TERMINATE C P Q PS( ( , ), )

is satisfied. Each iteration of this while loop uses an SBSE metaheuristic

to get a new set of candidate designs (line 4) and then updates the
approximate Pareto-optimal design set PS in the for loop from lines

5–15. This update involves analysing each candidate design
C P= ′d q( , ) to establish its associated objective function and con-

straint values in line 6, where we use the shorthand notation
C P≡ ′⊤ ⊤f f q( ( , )),

i d i,
C P≡ ′⊥ ⊥f f q( ( , ))

i d i, and ≡cj d, P C∀ ∈ ′p c p q. ( ( , ))j

for all i∈ I, j∈ J. If the design satisfies all constraints (line 7), the for
loop in lines 9–12 finds out if the new design d is dominated by, or

dominates, any designs already in PS. Existing designs dominated by d

are removed from PS (line 11), and d is added to the Pareto-optimal

design set if it is not dominated by any existing designs (line 13).
The elements below must be concretised in the synthesis algorithm,

and are described in the next two sections:

1) The ANALYSEDESIGN function for establishing the quality attributes and
constraint compliance of a candidate design;

2) The CANDIDATEDESIGNS SBSE metaheuristic and the associated TERMINATE

criterion.

The time complexity of Algorithm 1 is linear with respect to the

overall number of optimisation objectives and constraints and the time
required to analyse one quality attribute of a candidate design. The

1: function Synthesis(C(P,Q),{fi}i∈I ,{c j} j∈J ,{γk}k∈K)

2: PS ← ∅

3: while ¬Terminate(C(P,Q), PS ) do

4: CD←CandidateDesigns(C(P,Q),{γk}k∈K ,PS )

5: for all d ∈ CD do

6: ({ f ⊤
i,d
}i∈I , { f

⊥
i,d
}i∈I , {c j,d} j∈J)←

AnalyseDesign(d, { fi}i∈I , {c j} j∈J)

7: if
∧

j∈J c j,d then

8: dominated = false

9: for all d′ ∈ PS do

10: if d′ ≺ d then dominated = true; break

11: if d ≺ d′ then PS = PS \ {d′}

12: end for

13: if ¬dominated then PS = PS ∪ {d}

14: end if

15: end for

16: end while

17: return PS

18: end function

Algorithm 1. Parametric Markov chain synthesis.
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complexity is further affected by the SBSE metaheuristic setting,
namely by the number of generations k (i.e. the number of iterations of

the while loop) and the size of the candidate design population
=N CD . Increasing the total number of design evaluations (i.e. k ·N)

typically improves the Pareto optimality of the generated design set,
but also slows down the synthesis process. We provide a detailed

complexity analysis of the synthesis process in Appendix B.

4.2. Computing safe property bounds for pCTMCs

To establish the quality attributes and sensitivity of candidate de-
signs, ANALYSEDESIGN uses precise parameter synthesis techniques

(Češka et al., 2017) to compute safe enclosures of the satisfaction
probability of CSL formulae over pCTMCs. Given a pCTMCC P′ q( , ) and

a CSL path formula ϕ, these techniques provide a safe under-approx-
imation Λq

min and a safe over-approximation Λq
max of the minimal and

maximal probability that C P′ q( , ) satisfies ϕ:

P P

≤ ≥
∈ ′ ∈ ′

p q p qΛ inf Λ ( , ) and Λ supΛ ( , ).q

p
ϕ

q

p
ϕmin max

This supports the safe approximation of the bounds
∈

⊥ ⊤f f{ , }i i i I
of the

objective functions and of the constraints {cj}j∈ J. As shown in

Češka et al. (2017), the over-approximation quality improves as the size

of P′ decreases. Therefore, the precision of the approximation can be
effectively controlled via parameter space decomposition, where P′ is

decomposed into subspaces P′,1 P P′… ′n2 and Λq
min (Λq

max ) is taken as the
minimum (maximum) of the bounds computed for these n subspaces.

Although this refinement step improves the precision of bounds, it also
increases the complexity of ANALYSEDESIGN n-fold (Češka et al., 2017).

The satisfaction function Λϕ is typically non-monotonic (and, for
nested properties, non-continuous), so safe bounds cannot be obtained

by simply evaluating Λϕ at the extrema of parameter region P′.
Accordingly, our technique builds on a parametric backward transient

analysis that computes safe bounds for the parametric transient prob-
abilities in the discrete-time process derived from the pCTMC. This

discretisation is obtained through standard uniformisation, and through
using the Fox and Glynn algorithm (Kwiatkowska et al., 2007) to derive

the required number of discrete steps for a given time bound. Once the
parametric discrete-time process is obtained, the computation of the

bounds reduces to a local and stepwise minimisation/maximisation of
state probabilities in a time non-homogenous Markov process. Pre-

senting the technique in detail as well as the analysis of the approx-
imation error is outside the scope of our paper, but the interested reader

can find a complete description in Češka et al. (2017).
Our approach can be easily extended to also support time-un-

bounded properties by using the method of Quatmann et al. (2016) for
parameter synthesis of discrete-time Markov models and properties

expressed by time-unbounded formulae of probabilistic computation
tree logic.

4.3. Metaheuristic for parametric CTMC synthesis

To ensure that CANDIDATEDESIGNS selects suitable candidate designs,

Algorithm 1 is implemented as a multiobjective optimisation genetic al-

gorithm (MOGA) such as NSGA-II (Deb et al., 2002) or MOCell

(Nebro et al., 2009). MOGAs are genetic algorithms specifically tailored
for the synthesis of close Pareto-optimal set approximations that are

spread uniformly across the search space. As with any genetic algorithm
(Koza, 1992), possible solutions—candidate designs in our case—are

encoded as tuples of genes, i.e. values for the problem variables. In
particular, any candidate design C P′ q( , ) that satisfies a fixed set of

tolerances {γk}k∈ K is uniquely encoded by the gene tuple (p, q), where

P∈p is the centre point of the continuous parameter region P′. The
structure of the gene tuple (p, q) for any pCTMC C P Q( , ) is auto-

matically extracted through parsing the evolvable constructs (4). This
feature enables to conveniently encode the pCTMC parameters into a

representation suitable for the MOGAs.

Example 6 (Candidate design encoding). Consider the candidate designs

d1, d2, d3 with tolerance value =γ 0.005 from Example 2. The gene
tuple (p, q) of a candidate designC P′ q( , ) has the structure rslowrate( ,

deltarate, moduleidx), where moduleidx ∈ {1, 2} is the index of the
Buffer module used by the candidate design. Thus, the designs d1, d2, d3
have gene tuples given by (15.145, 2.08, 2), (13.325, 3.66, 2) and
(17.365, 2.93, 1), respectively.

The first execution of CANDIDATEDESIGNS from Algorithm 1 returns a

randomly generated population (i.e. set) of feasible designs (11). This
population is then iteratively evolved by subsequent CANDIDATEDESIGNS

executions into populations of “fitter” designs through MOGA selection,

crossover and mutation. Selection chooses the population for the next

iteration and a mating pool of designs for the current iteration by using
the objective functions {fi}i∈ I, the sensitivity-aware dominance rela-

tion (12) and the distance in the parameter spaceP between designs to
evaluate each design. Crossover randomly selects two designs from the

mating pool, and generates a new design by combining their genes, and
mutation yields a new design by randomly modifying some of the genes

of a design from the pool.
The evolution of the design population terminates (i.e. the predicate

C P QTerminate PS( ( , ), ) returns true) after a fixed number of design
evaluations or when a predetermined number of successive iterations

generate populations with no significantly fitter designs.
The implementation of the selection, crossover and mutation op-

erations is specific to each MOGA. For instance, Deb et al. (2002)
presents these features for the NSGA-II MOGA used in our experimental

evaluation from Section 6.

5. RODES: a robust-design synthesis tool

Our GPU-accelerated RODES tool synthesises sensitivity-aware

Pareto sets by implementing the process described in Algorithm 1. In
this section, we first present the architecture of RODES, and then de-

scribe how we achieved significant performance and scalability im-
provements through the use of a two-level parallelisation for the

synthesis process.

5.1. RODES architecture

As shown in Fig. 5, the operation of RODES is managed by a Robust-

design synthesis engine. First, a Model parser (built using the Antlr parser

generator, www.antlr.org) preprocesses the design-space pCTMC
model. Next, a Sensitivity-aware synthesiser uses the jMetal Java frame-

work for multi-objective optimisation with metaheuristics (jme-
tal.github.io/jMetal) to evolve an initially random population of can-

didate designs, generating a close approximation of the sensitivity-aware
Pareto front. This involves using a Candidate design analyser, which

invokes the probabilistic model checker PRISM-PSY (Češka et al., 2016)
to obtain the ranges of values for the relevant quality attributes of

candidate designs through precise parameter synthesis. The Pareto
front and corresponding Pareto-optimal set of designs are then plotted

using MATLAB/Octave scripts, as shown in Fig. 7.
A key feature of RODES is its modular architecture. The Sensitivity-

aware synthesiser supports several metaheuristics algorithms, including
variants of genetic algorithms and swarm optimisers. Furthermore, the

sensitivity-aware Pareto dominance relation can be adapted to match
better the needs of the system under development (e.g., by comparing

designs based on the worst, best or average quality attribute values).

Finally, different solvers could be used for the probabilistic model
checker component, including the parameter synthesis solvers for dis-

crete-time Markov chains and time unbounded properties
(Quatmann et al., 2016) implemented in the tools PROPhESY

(Dehnert et al., 2015) and STORM (Dehnert et al., 2017).
The open-source code of RODES is available on our project website
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https://www.github.com/gerasimou/RODES.

5.2. Two-level parallelisation

Synthesising sensitivity-aware Pareto sets is a computationally ex-
pensive process. To mitigate the performance issues that could arise due

to the increased total number of evaluations (k ·N) or the complexity of
evaluating candidate designs (t), we employ a two-level parallelisation.

At the first level, we exploit the fact that the evaluations of parti-
cular candidates within a single population are independent and thus

they can run in parallel (line 6 in Algorithm 1). A synchronisation is
required only after all candidates are evaluated to update the approx-

imate Pareto-optimal set PS and to generate new candidates. This
granularity of parallelism allows us to efficiently utilise both multi-core

and multi-processor architectures. In particular, we can span in parallel
a number of tasks that is equal to the population size N and thus sig-

nificantly alleviate the complexity corresponding to the total number of
design evaluations per MOGA generation. We can further increase the

parallelisation at this level given that the evaluation of quality attri-
butes for each design is independent. Thus, we can span up to

+N I J·( ) tasks to evaluate these attributes in parallel and reduce the
computation time. The current RODES implementation supports par-

allelisation at the population level but not at the level of quality attri-
butes, which we plan to add in future tool releases.

The second level of parallelisation aims at accelerating the evalua-
tion of a single candidate over a single quality attribute. The key factor

affecting the time t required to analyse a quality attribute of a candidate
design is the size of the candidate, namely, the number of non-zero

elements M in the rate matrix of the underlying pCTMC. This number is
proportional to the number of states in the pCTMC, and reflects the

complexity of the candidate designs. To ensure that RODES supports
robust design synthesis for complex systems comprising up to tens

thousands of states, our second-level parallelisation improves scal-
ability with respect to the number of states. In particular, we build on

our previous work (Češka et al., 2016) to integrate a GPU acceleration
of the pCTMC analysis into RODES.

This parallelisation is much more involved, since the computation

for individual states is not independent. As such, the pCTMC analysis is
formulated in terms of matrix-vector operations, making it suitable for

effective data-parallel processing. Accordingly, RODES implements a
state space parallelisation, where a single row of the parametric rate

matrix (corresponding to the processing of a single state) is mapped to a
single computational element. As the underlying pCTMCs typically have

a balanced distribution of the state successors, this mapping yields a

balanced distribution of non-zero elements in the rows of the matrix.
The outcome is a good load balancing within the computation elements,

leading to significant acceleration. In contrast to the parallelisation
proposed in Češka et al. (2016), RODES is designed to leverage the

computational power of modern GPUs, which provide hundreds of
computational elements and can schedule thousands of active threads

in a different way. In particular, RODES can evaluate on a single GPU
several candidate designs (that can differ both in their discrete and in

their continuous parameters) in parallel, provided that the underlying
pCTMCs can fit in the GPU memory. This enables an efficient and

flexible utilisation of the available computation power for complex
robust design synthesis problems (see performance evaluation results in

Section 6.4).

6. Evaluation

We evaluate the effectiveness of RODES using three systems from
different application domains. Also, we assess the performance and

scalability of RODES including the impact of the two-level parallelisa-
tion. We conclude our evaluation with a discussion of threats to va-

lidity.

6.1. Research questions

The aim of our experimental evaluation was to answer the following

research questions.
RQ1 (Decision support): Can RODES support decision making

by identifying effective tradeoffs between the QoS optimality and

the sensitivity of alternative designs? To support decision making,

RODES must provide useful insights into the robustness of alternative
system designs. Therefore, we assessed the optimality-sensitivity tra-

deoffs suggested by RODES for the software systems used in our eva-
luation.

RQ2 (Performance): Does the two-level paralellisation improve

the efficiency of RODES? Since the synthesis of robust models is a

computationally expensive process, we examined the change in per-

formance thanks to the two-level parallelisation architecture described
in Section 5.2.

RQ3 (Metaheuristic effectiveness): How does our RODES ap-

proach perform compared to random search? Following

the standard practice in search-based software engineering
Harman et al. (2012b), we assessed if the stochastic models synthesised

Fig. 5. High-level RODES architecture.
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by RODES “comfortably outperform” those synthesised by a random
search approach.

6.2. Analysed software systems

We performed a wide range of experiments to evaluate our RODES

approach and tool using three software systems from different appli-
cation domains:

• a producer-consumer (PC) software system described in

Examples 1–5;

• a replicated file system used by Google’s search engine

Baier et al. (2013);

• a cluster availability management system Haverkort et al. (2000).

We have already presented the PC system in Examples 1–5. In the

following paragraphs, we introduce the other systems, provide a de-
scription of their stochastic models and present the objectives and

constraints used to synthesise robust Pareto optimal designs. Further
information about these systems are available on our project website at

https://www.github.com/gerasimou/RODES/wiki.

Google file system (GFS). GFS partitions files into chunks of equal size,

and stores copies of each chunk on multiple chunk servers. A master
server monitors the locations of these copies and the chunk servers,

replicating the chunks as needed. During normal operation, GFS stores

CMAX copies of each chunk. However, as servers fail and are repaired,
the number c of copies for a chunk may vary from 0 to CMAX.

Previous work modelled GFS as a CTMC with fixed parameters and
focused on the analysis of its ability to recover from disturbances (e.g.

c<CMAX) or disasters (e.g. master server down) (Baier et al., 2013). In
our work, we adapt the CTMC of the lifecycle of a GFS chunk from

Baier et al. (2013) by considering several continuous and discrete
parameters that a designer of the system has to decide. Fig. 6 shows the

resulting model, encoded in the PRISM modelling language extended
with the evolve constructs from (4). As in Baier et al. (2013), we model

separately the software and hardware failures and repairs, for both the
master server (lines 22–25) and the chunk servers (lines 26–31), and

assume that loss of chunk copies due to chunk server failures leads to
further chunk replications, which is an order of magnitude slower if
=c 0 and a backup of the chunk must be used (line 32).
To evaluate RODES, we assume that GFS designers must select the

hardware failure and repair rates cHardFail and cHardRepair of the
chunk servers, and the maximum number of chunks NC stored on a

chunk server within the ranges indicated in Fig. 6. These parameters
reflect the fact that designers can choose from a range of physical ser-

vers, can select different levels of service offered by a hardware repair
workshop, and can decide a maximum workload for chunk servers. We

consider an initial system state modelling a severe hardware disaster
with all servers down due to hardware failures and all chunk copies

lost, and we formulate a pCTMC synthesis problem for quality re-
quirements given by two maximising objective functions and one con-

straint:

f1: SL1 SL1¬=P U[ ],?
[10,60] where SL1 Mup c 0= ∧ > holds in

states where service level 1 (master up and at least one chunk copy

available) is provided;
f2: =

<=R active C{‵‵ "" } [ ],?
60 where a reward of 1 is assigned to the

states with a number of running chunk servers of at least 0.5M (i.e.,

half of the total number of chunk servers);
c1: ≤

<=R replicates C{‵‵ "" } [ ],5
60 where a transition reward of 1 is as-

signed to each chunk replication transition.

Objective f1 maximises the probability that the system recovers
service level 1 in the time interval [10,60] hours. Objective f2

maximises the expected time the system stays in (optimal) states with at
least 0.5M chunk servers up in the first 60 hours of operation. Finally,

constraint c1 restricts the number of expected chunk replications over
60 h of operations.

Workstation cluster (WC). We extend the CTMC of a cluster
availability management system from Haverkort et al. (2000). This

CTMC models a system comprising two sub-clusters, each with N

workstations and a switch that connects the workstations to a central

backbone. For each component, we consider failure, inspection and
repair rates (where repairs are initiated only after an inspection detects

failures), and we assume that designers must decide these rates for

workstations—i.e., the real-valued parameters wsFail, wsCheck and
wsRepair for our pCTMC, respectively. Additionally, we assume that

designers must select the sub-cluster size N, and must choose between
an expensive repair implementation (i.e., pCTMC module) with a 100%

success probability and a cheaper repair module with 50% success
probability—i.e., two discrete parameters for the pCTMC. We made this

model available on our repository of case studies.
For an initial system state with 5 workstations active in each sub-

cluster and switches and backbone working, we formulate a pCTMC
synthesis problem for quality requirements given by two maximising

objective functions and one constraint:

f1: premium premium¬=P U[ [20, 100] ],? where premium denotes a
system service where at least 1.25N workstations are connected and

operating;
f2: =

≤R operational C{‵‵ "" } [ ],?
100 where a reward of 1 is assigned to

Fig. 6. pCTMC model of the Google file system.
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states with a number of operating clusters between 1.2N and 1.6N;

c1: R{“repair”}≤ 80 [C
≤ 100], where transition rewards are asso-

ciated with repair actions of the workstations, backbone and

switches.

Objective f1 maximises the probability that the system recovers the
premium service in the time interval [20,100] hours. Objective f2
maximises the expected time the system spends in cost-optimal states
during the first 100 hours of operation. Constraint c1 restricts the cost of

repair actions during this time (the definition of the cost is provided on
our project website).

6.3. Evaluation methodology

We used the following configuration to evaluate RODES: NSGA-II
MOGA, 10,000 evaluations, initial population of 20 individuals, and

default values for single-point crossover probability =p 0.9c and single-
point mutation probability = +p K D1/( ),m with +K D the number

of (continuous and discrete) design-space parameters. We examine the
behaviour of the sensitivity-aware Pareto dominance relation using

different combinations of tolerance values γ∈ {0.005, 0.01, 0.025} and

sensitivity-awareness coefficients ϵi∈ {0.00, 0.05, 0.10}.
For each experiment, we report the sensitivity-aware Pareto fronts

(Figs. 7, 9, 12 and 14). The Pareto-optimal designs are depicted as
boxes in the quality-attribute space and coloured by sensitivity, using

the same representation as in Figs. 1 and 4. We also show the synthe-
sised designs in the design space, given by the continuous and discrete

parameters of the system. In this case, designs are represented as boxes

in the continuous parameter space, representing the extent of the
parameter variation under the given tolerance. The third dimension

(vertical axis) in Figs. 10 and 13 gives the value of the discrete para-
meter.

6.4. Results and discussion

RQ1 (Decision support). We analysed the designs synthesised by

RODES in order to identify actionable insights regarding the tradeoffs
between the QoS attributes and sensitivity of alternative architecture

designs. For each system, we present our findings independently.

Producer-consumer system (PC). First, we present the results for the
producer consumer system introduced in Examples 1–5, obtained by

running our RODES tool with tolerances γ∈ {0.005, 0.01, 0.025} for
both continuous parameters (r_slow_rate and delta_rate). The resulting

Pareto fronts are shown in Fig. 7, for objectives f1 (number of requests
transferred to the consumer within 25 minutes) and f2 (probability of

adequate buffer utilization) and sensitivity-awareness parameters
= = ∈ϵ ϵ ϵ {0, 0.05, 0.1}1 2 . The corresponding synthesised designs are

presented in Fig. 8.

These Pareto fronts provide a wealth of information supporting the
evaluation of the optimality and robustness of alternative designs. In

particular, the Pareto front for =ϵ 0 and =γ 0.005 contains several
large (yellow) boxes that correspond to highly sensitive designs.

Fig. 7. Sensitivity-aware Pareto fronts for the producer-consumer model. Boxes represent quality-attribute regions, coloured by sensitivity (yellow: sensitive, blue:

robust). Red-bordered boxes indicate sub-optimal robust designs. Designs are compared based on the worst-case quality attribute value (i.e. lower-left corner of each

box). Statistics are: sens, average sensitivity of the front; suboptSols, number of suboptimal solutions; vol, average volume of the front. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

R. Calinescu et al. The Journal of Systems & Software 143 (2018) 140–158

149



Increasing ϵ produces a number of robust sub-optimal designs (red-

bordered) with slightly sub-optimal quality attributes but improved
robustness. Such designs represent valuable alternatives to the highly

sensitive solutions obtained using the classical, sensitivity-agnostic,
dominance relation. This ability to identify poor (i.e. highly sensitive)

designs and then alternative robust designs with similar quality attri-
butes is a key and unique benefit of our design synthesis method.

Consider for instance the results for =ϵ 0.05 and =γ 0.005. There are
several sensitive designs at high f1 values (see Fig. 7), which correspond

to designs with rslowrate above 15 and low values deltarate (below
2.5), see Fig. 8. Through our method, we found that there exist alter-

native sub-optimal designs with improved robustness (highlighted
green boxes), corresponding to higher deltarate and lower rslowrate
values, i.e, to designs with a slower slow buffer and a faster fast buffer.

Furthermore, we observe that the overall sensitivity improves as the

tolerance γ increases, meaning that the uncertainty (volume) of the
quality attribute regions grows proportionally smaller than the un-

certainty of the corresponding parameter regions, see (10). This ex-
plains why we observe fewer sub-optimal robust designs for higher

tolerances ( =γ 0.01, 0.025). Increasing parameter tolerances also affects
the quality attribute profiles as it leads to larger ranges for objective f1
(i.e., more sensitive) and to smaller ranges for f2 (i.e., more robust). As a
consequence, RODES tends to favour Pareto-optimal solutions with

better f2 and worse f1 values as the tolerance increases. In particular, for
=γ 0.025 all designs with ≥⊥f 300

1 are excluded (corresponding to the
most sensitive designs for =γ 0.005, 0.01), which yields regions with

average volume comparable to those for =γ 0.025.
The synthesised parameter regions (Fig. 8) indicate that redirection

(second module – ‘mod2’) is always preferred to non-redirection. Also,
the generated designs select values for the continuous parameters from

the lower-end of their respective range, with rslowrate ∈ [5.00, 15.650]

and deltarate ∈ [0.242, 4.489]. In other words, our algorithm found

Pareto-optimal designs where both buffers have slow transmission rates

(with the fast buffer being slightly faster), while solutions where the

fast buffer has a sensibly higher transmission rate, but a proportional
packet loss rate, are excluded. In particular, configurations with slow

transmission rates have associated good robustness, with very little
ranges for objective f2.

We also observe an interesting relationship between the Pareto-
optimal fronts and the Pareto-optimal designs for different values of the

sensitivity-awareness parameter ϵ∈ {0, 0.05, 0.1}. The average values
for both objectives f1 and f2 experience only little variation as ϵ in-

creases for a fixed tolerance value. For instance, when =γ 0.01, on
average f1∈ [369.37, 372.40] and f2∈ [0.974, 0.98], and when
=γ 0.05, f1∈ [284.94, 285.48] and f2∈ [0.995, 0.996]. Conversely, the

average values for the continuous parameters rslowrate and deltarate
experience more significant variation and present an interesting nega-
tive relationship. More specifically, for any γ value and as the ϵ para-

meter becomes larger, rslowrate shows a decreasing trend while
deltarate shows an increasing trend. We used the Pearson correlation

test to analyse this observation and received a strong negative corre-
lation with the coefficient ∈ − −R [ 0.992, 0.988]4. This result indicates

that as ϵ increases, the sensitivity-aware Pareto-optimal set includes
designs in which the transmission rate difference between the slow and

fast buffers grows. Although unexpected, this observation is very useful.

Producer-consumer variant. We further analyze a variant of the

producer-consumer model, illustrated in Fig. 11. In this version, we
assume a different redirection strategy (lines 10 and 11) that yields a

100% probability of redirection when the slow buffer is full, while in
the original variant the maximum redirection probability is limited to

0.1. We also consider different continuous parameters: the request

Fig. 8. Synthesised Pareto-optimal designs for the producer-consumer model and experiments from Fig. 7. Rectangles in x-y plane correspond to the continuous

parameter regions. The discrete parameter (module - ‘mod’) is omitted since RODES synthesised solutions using only the redirection module (‘mod2’). Boxes are

coloured by sensitivity.

4 This result should not be confused with the correlation between the continuous

parameters rslowrate and deltarate for fixed γ and ϵ values which ranges from zero to

weak, i.e., R∈ [0, 0.3].
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production rate (p_rate) and the packet transmission rate for the fast

buffer (r_fast_rate). The synthesized Pareto fronts and designs are
reported in Figs. 9 and 10, respectively.

We observe that the obtained Pareto-optimal set is substantially
different from the one obtained in the first variant of the model (Fig. 7).

Solutions in this variant are generally more robust, demonstrated by the
fact that at most one suboptimal solution is synthesised for each con-

figuration. A common trait is that favouring objective f2 leads to robust
designs, while robustness is penalized for high f1 values. Comparing the

two PC variants, whose pCTMC models are shown Figs. 3 and 11, we
observe that most of the solutions of the second variant are dominated

by the Pareto front of the first variant for γ∈ {0.005, 0.01} and all ϵ
values, which therefore provides the best performance.

The synthesized parameter regions (Fig. 10) confirm the results of
the first variant: redirection is always preferred (for all but one design),

and the fast buffer rate is not too far from that of the slow buffer
(rfastrate = 13.03). Similarly, all synthesized values for parameter

p_rate are very close to the fixed value (40) used for the same parameter
in the first variant of the model. In the Pareto front, we can observe an

outlier yielding the highest system throughput (f1). This design is ob-
tained when redirection is disabled (see Fig. 10). Notably, no other

designs with no redirection are present in the Pareto front which pro-
vides evidence that redirection is essential to achieve a well-balanced

utilisation of the buffers.

Google file system (GFS). Given the pCTMC model, the two

maximisation objectives and one constraint of the GFS system, we
used RODES to generate Pareto-optimal design sets with tolerances

γ∈ {0.005, 0.01, 0.025} for both continuous parameters (cHardFail and

cHardRepair) of our pCTMC. Fig. 12 shows the Pareto fronts obtained
using the “lower bound” definition from Table 1 for the objective

functions f1 and f2 over candidate designs, and parameters
= = ∈ϵ ϵ ϵ {0, 0.05, 0.1}1 2 for the sensitivity-aware Pareto dominance

relation (12). The design-space representation is given in Fig. 13. We
observe that the Pareto front for =ϵ 0 and =γ 0.005 contains several

large (yellow) boxes that correspond to highly sensitive designs. For
ϵ∈ {0.05, 0.1} and =γ 0.005, these poor designs are “replaced” by

robust designs – surrounded by red borders – with very similar quality
attributes but slightly sub-optimal. The same pattern occurs for =γ 0.01

and (to a lesser extent because of the overall lower sensitivity) for
=γ 0.025. For instance, consider the sensitive design obtained for
=ϵ 0.1 and =γ 0.005 characterized by low hardware fail and repair

rates and high number of chunks (yellow bar on Fig. 13). Our method

found that a more robust solution is possible (highlighted green region),
with lower NC and higher cHardFail and cHardRepair .

We also observe that favouring objective f1 over f2 generally yields
more robust designs (i.e., smaller quality-attribute regions towards the

right end of the Pareto fronts) for all combinations of ϵ and γ.
The design-space view of Fig. 13 evidences a trade-off between

cHardFail and cHardRepair, i.e., optimal designs tend to have either
high failure rates and high repair rates, or low failure and repair rates.

Results for =γ 0.025 reveal that there is actually an ideal ratio between

the two parameters as the corresponding optimal design appear to keep
a relatively constant proportion between cHardFail and cHardRepair.

This result was unexpected, yet very useful, since it indicates that de-
signs not satisfying this trade-off yield excessively fast or slow recovery

Fig. 9. Sensitivity-aware Pareto fronts for the second variant of the producer-consumer model. Legend and colour code are as in Fig. 7. Designs are compared based

on the worst-case quality attribute value (i.e. lower-left corner of each box).
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times, and thus are far from the optimal f1 values.

Further, we observe that the maximum number of chunks per
server, NC, has a major influence on the design robustness, with high

NC values leading to highly sensitive designs. These designs should be
avoided in favour of the alternative designs with low NC values de-

picted in Fig. 13 (for ϵ>0).

Workstation cluster (WC). Fig. 14 depicts the Pareto fronts obtained for
all γ, ϵ combinations of the WC pCTMC model. These Pareto fronts show

again how the large quality-attribute regions (corresponding to high-
sensitivity designs) obtained for =ϵ 0 are “replaced” by much smaller

quality-attribute regions on the Pareto fronts obtained for both ϵ>0
values. For instance, the fronts produced for =γ 0.005 and ϵ∈ {0.05,

0.10}, include sub-optimal robust designs in the objective space [0.6,
0.8]× [40, 50] that do not exist for =ϵ 0. Further, the Pareto front for
= =γ 0.005, ϵ 0.10 includes a sub-optimal robust design in the objective

space [0.3, 0.5]× [45, 70] to support the Pareto-optimal but volatile

(i.e., highly sensitive) designs within that space. Similar observations
can be made for other γ values.

With respect to the system dynamics, our sensitivity-aware synthesis
method reveals that the most robust solutions correspond to the ob-

jective-function “extrema” from the Pareto front, i.e., to quality-attri-
bute regions in which either f1 is very high and f2 is very low, or vice

versa. In particular, solutions in the middle of quality-attribute regions
are highly sensitive as indicated by the yellow-green boxes for =γ 0.005

and ϵ∈ {0.00, 0.05, 0.10}. The equivalent solutions are absent from the
Pareto fronts for =γ 0.01 indicating that they are replaced by more

robust solutions whose quality attributes are close to the low- and high-
end of their respective ranges. Thus, if designers seek robust solutions

they need to select designs that favour one of the quality attributes,

since solutions with balanced trade-off between the quality attributes
lead to either sensitive or sub-optimal robust designs.

We also identified an interesting property of the synthesized de-
signs. Although they cover the entire design space for the real-valued

parameters wsFail, wsCheck and wsRepair, the synthesized designs
select very few values for the sub-cluster size N. In particular, in more

Fig. 10. Synthesised Pareto-optimal designs for the second variant of the producer-consumer model and experiments from Fig. 9. Rectangles in x-y plane correspond

to the continuous parameter regions Boxes are coloured by sensitivity.

Fig. 11. Variant of the producer-consumer model introduced in Section 2.
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than 95% of the experiments N∈ {10, 15} and in the remaining N∈ {9,
12}. We analysed further this observation and ran another experiment

by setting the possible range for sub-cluster size N∈ {11, .., 14}. Table 2
compares the average sensitivity between these two experiments for all

γ, ϵ combinations. Our results validate that the ‘ideal’ values of the
parameter N for the synthesised robust designs are 10 or 15. This

finding demonstrates an unexpected and interesting relationship be-
tween the size of the cluster and robustness, impossible to derive

through existing analysis methods.

RQ2 (Performance). Since the synthesis process is computationally
demanding (see Appendix B), we evaluated the performance of RODES

to analyse multiple candidate designs in parallel using the two-level
parallelisation architecture described in Section 5.2. By employing the

two-level parallelisation, we are able to partially alleviate the CPU
overheads incurred not only due to the complexity of evaluating a

candidate design but also due to the high number of evaluations. All
experiments were run on a CentOS Linux 6.5 64bit server with two

2.6GHz Intel Xeon E5-2670 processors and 64GB memory. For the ex-
periments involving GPU parallelisation, we used two nodes using ei-

ther an nVidia K40 GPGPU card or an nVidia K80 GPGPU card.
The key results of our performance evaluation are described in

Tables 3 and 4. The tables show the design synthesis run-times for
=k 500 and =N 20 (i.e. for =kN 10, 000 design evaluations), for our

three case studies. Run-time statistics are computed over more than 30
independent runs, obtained using all combinations of ϵ∈ {0, 0.05, 0.1}

and γ∈ {0.005, 0.01, 0.025}. Note that 10,000 evaluations, for which
we obtained high quality sensitivity-aware Pareto fronts, are still

negligible with respect to the size of the design space that an exhaustive
search would need to explore (theoretically the design space is un-

countable). To demonstrate this difference, we list the number of can-
didate designs required to “cover” the design space for a given tolerance

value γ (this number is indeed much smaller than the total number of
candidate designs). For PC model ( =γ 0.005) it is around 20,000 de-

signs, but for WC and GFS ( =γ 0.01) it is more than 3 millions designs.
Results in Table 3 confirm that performance of the synthesis process

is affected mainly by the size of the underlying pCTMC and by the

average number of the discretisation steps required to evaluate parti-
cular quantitative attributes (around 4000 steps are required for WC

and PC, 160,000 for GFS v1, and 46,000 for GFS v2). Note that this
number depends on the highest time bound appearing in the properties

and on the highest rate appearing in the transition matrix. This ob-
servation also explains the significant slowdown of the synthesis pro-

cess when switching from v1 to v2 of GFS.
First, we evaluate the performance of CPU-only paralellisation at

different numbers of cores. The results clearly confirm the scalability
with respect to the number of cores. We can also observe that a better

scalability is obtained for more complicated synthesis problems (i.e.
5.5-times speed for 10 cores on GFS v1 versus 7.9-times speed up for 10

core on GFS v2).
Second, we evaluate the performance of the two-level parallelisa-

tion. Table 4 compares the run-times for different number of CPU cores
and GPU devices. In this configuration, we obtain a significant reduc-

tion of runtimes, e.g. for GFS v2 we obtain 8.4-times speedup with one
GPU and one CPU core, and 7.6-times speedup with two GPUs and two

Fig. 12. Sensitivity-aware Pareto fronts for the GFS model. Legend and colour code are as in Fig. 7. Designs are compared based on the worst-case quality attribute

value (i.e. lower-left corner of each box).
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CPU cores. The slightly worse speedup observed in the latter case is due

to the increased CPU-GPU communication overhead when more devices
are employed.

Finally, we see that evaluating more that one candidate solutions
(generated using several CPU cores) on a single GPU further improves

the performance until the GPU is fully utilised (i.e. the maximal number
of active threads that can be dispatched is reached and thus some

parallel evaluations has to be serialised). The performance is also af-
fected by the memory access pattern that depends on the concrete

candidate solutions evaluated in parallel. In particular, the performance
degrades when the memory access locality is decreased. Note that the

maximal number of candidate solutions that can be evaluated in par-
allel on a single GPU is also limited by the GPU memory that has to

accommodate the underlying pCTMC.
RQ3 (Metaheuristic effectiveness). To answer this research

question, we analysed the goodness of the Pareto-optimal designs of the
GFS model obtained with our NSGA-II-based RODES against a variant

that uses random search (RS). For each variant and combination of
ϵ∈ {0, 0.05, 0.10} and γ∈ {0.005, 0.01} we carried out 30 independent

runs, in line with standard SBSE practice (Harman et al., 2012b). As
building the actual Pareto front for large design spaces is challenging

and computationally expensive (GFS has P Q× > E24 10 assuming a

three-decimal precision for continuous parameters), we again followed
the standard practice and combined the sensitivity-aware Pareto fronts

from all 60 RODES and RS runs for each ϵ, γ combination into a re-

ference Pareto front (Zitzler et al., 2003). We then compared the Pareto

fronts achieved by each variant against this reference front by using the
metrics

= + −M wI w sens(1 ) norm1 ϵnorm

and

= + −M wI w sens(1 )IGD norm2 norm

which use a weight w∈ [0, 1] to combine normalised versions of the

established (but sensitivity-agnostic) Pareto-front quality metrics Iϵ and
IIGD (Zitzler et al., 2003) with the normalised design sensitivity. The

unary additive epsilon (Iϵ) gives the minimum additive term by which

the objectives of a particular design from a Pareto front must be altered
to dominate the respective objectives from the reference front. The

inverted generational distance (IIGD) measures the shortest Euclidean
distance from each design in the Pareto front to the closest design in the

reference front. These indicators show convergence and diversity to the
reference front (smaller is better).

Fig. 15 compares RODES and RS across our ϵ, γ combinations using
metrics M1 and M2 with =w 0.5. The RODES median is consistently

lower than that of RS for all ϵ, γ combinations with the exception of
= =γϵ 0, 0.01 (which ignores design sensitivity) for M2. For a given γ,

RODES results improve as ϵ increases, unlike the corresponding RS
results. Thus, the difference between RODES and RS increases with

larger ϵ for both metrics. This shows that RODES drives the search using
sensitivity (10), and thus it can identify more robust designs. We con-

firmed these visual inspection findings using the non-parametric Man-
n–Whitney test with 95% confidence level =α( 0.05). We obtained sta-

tistical significance (p-value <0.05) for all ϵ, γ combinations except for
= =γϵ 0, 0.005, with p-value in the range [1.71E-06, 0.0026] and

[1.086E-10, 0.00061] for M1 and M2, respectively.
Considering these results, we have sufficient empirical evidence that

RODES synthesises significantly more robust designs than RS. These

results are also in line with our previous work which demonstrated
through extensive evaluation that probabilistic model synthesis using

MOGAs achieves significantly better results that RS (Gerasimou et al.,
2015). Hence, the problem of synthesising sensitivity-aware Pareto

optimal sets (13) is challenging, as expected for any well-defined SBSE
problem.

6.5. Threats to validity

Construct validity threats may arise due to assumptions made when

modelling the three systems. To mitigate these threats, we used models
and quality requirements based on established case studies from the

literature (Ghemawat et al., 2003; Haverkort et al., 2000).
Internal validity threats may correspond to bias in establishing cause-

Fig. 13. Synthesised Pareto-optimal designs for the GFS model and experiments from Fig. 12. Rectangles in x-y plane correspond to the continuous parameter

regions.
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effect relationships in our experiments. We limit them by examining
instantiations of the sensitivity-aware Pareto dominance relation (12)

for multiple values of the sensitivity-awareness ϵi and tolerance level γk.
To alleviate further the risk of biased results due to the MOGAs being

stuck at local optimum and not synthesising a global optimum Pareto

front, we performed multiple independent runs. Although this scenario
never occurred in our experiments, when detected, it can be solved by

re-initialising the sub-population outside the Pareto front. Also,
Algorithm 1 ensures that the Pareto front monotonically improves at

each iteration. Finally, we enable replication by making all

Fig. 14. Sensitivity-aware Pareto fronts for the workstation cluster model. Legend and colour code are as in Fig. 7. Designs are compared based on the worst-case

quality attribute value (i.e. lower-left corner of each box).

Table 2

Average design sensitivity for two variants of the workstation cluster synthesis problem, given by different ranges for parameter N. Sensitivity-aware designs (i.e.

where ϵ>0) for N∈ {10..15} have lower sensitivity than for N∈ {11..14}.

Average sensitivity

=γ 0.005, =γ 0.005, =γ 0.005, =γ 0.01, =γ 0.01, =γ 0.01, =γ 0.025, =γ 0.025, s =γ 0.025,

N =ϵ 0.00 =ϵ 0.05 =ϵ 0.10 =ϵ 0.00 =ϵ 0.05 =ϵ 0.10 =ϵ 0.00 =ϵ 0.05 =ϵ 0.10

{10.15} 1.6E6 7.86E5 6.58E5 2.1E5 2.49E5 2.19E5 6.45E4 6.68E4 7.56E4

{11.14} 1.33E6 1.3E6 1.22E6 5.2E5 5.28E5 4.77E5 2E5 1.93E5 1.87E5

Table 3

Time (mean ± SD) in minutes for the synthesis using 10,000 evaluations for one-level CPU parallelisation. #states (#trans.): number of states (transitions) of the

underlying pCTMC. |K|: number of continuous parameters.

Model #states #trans. CPU (#cores)

1 2 5 10

WC (|K| = 3) 3440–8960 18,656–49424 394 ± 25 217 ± 29 118 ± 14 68 ± 8

PC (|K| = 2) 5632 21,968–24572 251 ± 46 131 ± 33 50 ± 2 31 ± 5

GFS v1 (|K| = 2) 1323–2406 7825–15545 390 ± 27 267 ± 49 125 ± 19 71 ± 10

GFS v2 (|K| = 2) 21,606 145,335–148245 19,011 ± 400 8207 ± 361 4562 ± 36 2399 ± 9

R. Calinescu et al. The Journal of Systems & Software 143 (2018) 140–158

155



experimental results publicly available on the project webpage.

External validity threats might exist if the search for robust designs
for other systems cannot be expressed as a pCTMC synthesis problem

using objective functions (8) and constraints (9). We limit these threats
by specifying pCTMCs in an extended variant of the widely used mod-

elling language of PRISM (Kwiatkowska et al., 2011), with objective
functions and constraints specified in the established temporal logic

CSL. PRISM parametric Markov models are increasingly used to model
software architectures, e.g. in the emerging field of self-adaptive soft-

ware (Calinescu and Kwiatkowska, 2009; Calinescu et al., 2015;
Moreno et al., 2015; Gerasimou et al., 2014). Another threat might

occur if our method generated a Pareto front that approached the actual
Pareto front insufficiently, producing only low quality designs or de-

signs that did not satisfy the required quality constraints. We mitigated
this threat by using established Pareto-front performance indices to

confirm the quality of the Pareto fronts from our case studies. Never-
theless, additional experiments are needed to establish the applicability

and feasibility of the method in domains with characteristics different
from those used in our evaluation.

7. Related work

RODES builds on the significant body of software performance and

reliability engineering research that employs formal models to analyse
the quality attributes of alternative software designs (e.g. Balsamo

et al., 2004; Bondy, 2014; Becker et al., 2009; Fiondella and Puliafito,
2016; Stewart, 2009; Woodside et al., 2014). Approaches based on

formal models such as queueing networks (Balsamo et al., 2003), Petri
nets (Lindemann, 1998), stochastic models (Calinescu et al., 2016;

Sharma and Trivedi, 2007) and timed automata (Hessel et al., 2008;
Larsen, 2014), and tools for their simulation (e.g. Palladio

(Becker et al., 2009)) and verification (e.g. PRISM (Kwiatkowska et al.,
2011) and UPPAAL (Hessel et al., 2008)) have long been used for this

analysis. However, unlike RODES, these approaches can only analyse
alternative models through a tedious iterative process carried out

manually by experts.
Performance antipatterns can be used to speed up this process by

avoiding the analysis of poor designs (Arcelli et al., 2012; Smith and

Williams, 2000; Cortellessa et al., 2010), but approaches that automate
the search for correct or optimal designs have only been proposed re-

cently. Three types of such approaches are related to RODES. Given a
Markov model that violates a quality requirement, the first ap-

proach—called probabilistic model repair (Bartocci et al., 2011; Chen
et al., 2013)—automatically adjusts its transition probabilities to

produce a “repaired” model that meets the requirement. The second
approach is called precise parameter synthesis (Češka et al., 2017), and

works by identifying transition rates that enable continuous-time
Markov models to satisfy a quality requirement or to optimise a quality

attribute of the system under development. Finally, our previous work

on probabilistic model synthesis (Gerasimou et al., 2015) applies multi-
objective optimisation and genetic algorithms to a design template that

captures alternative system designs, and generates the Pareto-optimal
set of Markov models associated with the quality optimisation criteria

of the system. While these approaches represent a significant advance
over the previously manual methods of alternative design analysis, they

do not take into account the robustness of their repaired or synthesised
models. Likewise, the approach from Martens et al. (2010) employs

evolutionary algorithms to search the configuration space of Palladio
Component Models, but the synthesis process does not reflect the sen-

sitivity of the candidate models.
Syntax-guided synthesis has been used to find probabilistic programs

that best match the available data (Nori et al., 2015), including
synthesis from “sketches”, i.e. partial programs with incomplete details

(Solar-Lezama et al., 2005). In Solar-Lezama et al. (2006), counter-ex-
ample guided inductive synthesis (CEGIS) has been introduced as an

SMT-based synthesiser for sketches and, due to the enormous im-
provement of SMT solvers in the last decade, CEGIS is currently able to

find deterministic programs for a variety of challenging problems
(Solar-Lezama et al., 2005; 2008). Very recently, the concept of meta-

sketches introducing the “optimal synthesis problem” has been pro-
posed (Bornholt et al., 2016) and adapted for synthesis of stochastic

reaction networks (Cardelli et al., 2017). These solutions are com-
plementary to RODES, as they explore other aspects of design alter-

natives, and do not take robustness into account.
Methods that rigorously evaluate how the transition probabilities

affect the satisfiability of temporal properties (expressed as probabil-
istic temporal logic formulae) have been studied in the context of

parameter synthesis. The methods either construct symbolic expres-
sions describing the satisfaction probability as a function of the model

parameters (Dehnert et al., 2015; Hahn et al., 2011), or compute—for
given intervals of parameter values—safe bounds on the satisfaction

probability (Quatmann et al., 2016). In contrast to this work, our robust

design synthesis directly integrates sensitivity analysis into the auto-
mated design process.

Another research area related to RODES is sensitivity analysis, which
analyses the impact of parameter changes on the performance, relia-

bility, cost and other quality attributes of the system under develop-
ment (e.g. Gokhale and Trivedi, 2002; Lo et al., 2005; Huang and Lyu,

2005). However, sensitivity analysis typically operates by sampling the
parameter space and evaluating the system quality attributes for the

sampled values. As such, the result is not guaranteed to reflect the
whole range of quality-attribute values for the parameter region of in-

terest. RODES does not have this drawback, as it operates with close
over-approximations of the quality-attribute regions for the synthesised

robust designs. The perturbation theory for Markov processes has been
applied to analysing the sensitivity of software operational profiles

(Kamavaram and Goseva-Popstojanova, 2003). However, this approach
quantifies the effect of variations in model transition probabilities

without synthesising the analysed solutions. Furthermore, RODES
supports a wide range of continuous and discrete parameters that

cannot be used with the approach from Kamavaram and Goseva-
Popstojanova (2003). Stochastic analysis of architectural models was

Table 4

Time (mean ± SD) in minutes for the synthesis using 10,000 evaluations for two-level CPU+GPU parallelisation.

CPU (#cores) CPU (#cores)/GPU (#devices)

Model 1 2 5 1/1 2/1 5/1 2/2 5/2

GFS v2 19,011 ± 400 8207 ± 361 4562 ± 36 2264 ± 33 1736 ± 8 1625 ± 16 1082 ± 3 1043 ± 22

Fig. 15. RODES vs. random search (RS) comparison for combinations of

γ∈ {0.005, 0.01} and ϵ∈ {0, 0.05, 0.10}, over 30 independent GFS runs. For

both metrics – Iϵ indicator and sensitivity (left) and IIGD indicator and sensitivity

(right) – smaller is better.
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used for early predictions of system component reliability and sensi-
tivity with respect to different operational profiles (Cheung et al.,

2008). Unlike RODES, the research from Cheung et al. (2008) focuses
on exploiting different architectural models and associated analysis

techniques, and is therefore complementary to the work presented in
our paper.

The smoothed model checking technique from Bortolussi
et al. (2016a) computes an analytical approximation of the satisfaction

probability of a formula over a parametric CTMC. While not providing
the same guarantees as the safe over-approximation method from

RODES, the technique was experimentally shown to be highly accurate,
so it can be used to estimate the sensitivity of a probabilistic temporal

logic property to variations in the CTMC parameters.
Finally, the problem of parameter synthesis of stochastic reaction

networks with respect to multi-objective specification has been recently
considered in Bortolussi et al. (2016b). The authors employ statistical

methods to estimate how kinetic parameters affect the satisfaction
probability and average robustness of Signal Temporal Logic

properties. In contrast to our approach, a candidate solution from
Bortolussi et al. (2016b) has all parameters fixed and the robustness

captures how far the candidate is from violating the particular prop-
erties.

8. Conclusion

Robustness is a key and yet insufficiently explored characteristic of

software designs, as it can mitigate the unavoidable discrepancies be-
tween real systems and their models. We presented RODES, a tool-

supported method for the automated synthesis of Pareto-optimal
probabilistic models corresponding to robust software designs.

RODES integrates for the first time search-based synthesis and
parameter analysis for parametric Markov chains. Our RODES tool

automates the application of the method, and provides multi-core as
well as GPU-based parallelisation that significantly speeds up the design

synthesis process. We performed an extensive experimental evaluation
of RODES on three case studies from different application domains.

These experiments showed that the sensitivity-aware Pareto-optimal
design sets synthesised by RODES enable the selection of robust designs

with a wide range of quality-attribute values and provide insights into
the system dynamics. The experiments also demonstrate that the par-

allelisation ensures scalability with respect to the complexity of the
systems under development.

In our future work, we will assess the effectiveness of Pareto-dom-
inance relations defined over intervals, and we will augment RODES

with alternative multiobjective optimisation techniques such as particle
swarm optimisation Reyes-Sierra and Coello (2006). In addition, we are

planning to extend the RODES modelling language (and the under-
pinning search method) with support for syntax-based synthesis

Alur et al. (2013) of robust designs from partial pCTMC specifications,
including sketches of chemical reaction networks Cardelli et al. (2017).

Appendix A. Proof of theorem 1

We show that the sensitivity-aware Pareto dominance relation defined in Definition 4 is a strict order.

Proof. We need to show that relation ≺ from (12) is irreflexive and transitive. For any F∈d , d≺d would require that < +f d f d( ) (1 ϵ ) ( )i i i or
fi(d)< fi(d) for some i∈ I, which is impossible. Thus, ≺ is irreflexive. To show that ≺ is transitive, consider three designs F′ ″ ∈d d d, , such that d≺d′

and d′≺d′′. According to (12), we have ∀i∈ I.fi(d)≤ fi(d′) and ∀i∈ I.fi(d′)≤ fi(d′′), so ∀i∈ I.fi(d)≤ fi(d′′) due to the transitivity of ≤ . Furthermore, at
least one half of the disjunction from definition (12) must hold for each of d′≺d′′ and d′≺d′′. We have three cases. Assume first that the left half holds

for d≺d′, i.e. that + < ′f d f d(1 ϵ ) ( ) ( )i i i1 1 1
for some i1∈ I; as ′ ≤ ″f d f d( ) ( ),i i1 1

we also have + < ″f d f d(1 ϵ ) ( ) ( ),i i i1 1 1
so d≺d′′ in this case. Assume now that

left half of disjunction (12) holds for d′≺d′′, i.e., that + ′ < ″f d f d(1 ϵ ) ( ) ( )i i i1 1 1
for some i1∈ I; as ≤ ′f d f d( ) ( ),i i1 1

we again have + < ″f d f d(1 ϵ ) ( ) ( )i i i1 1 1
and

d≺d′′. Finally, consider that only the right half of disjunction (12) holds for both d≺d′ and d≺d′. In this last case, sens(d)≤ sens(d′)≤ sens(d′′) and
there is an i1∈ I such that < ′ ≤ ″f d f d f d( ) ( ) ( ),i i i1 1 1

so also d≺d′′, and therefore ≺ is transitive. □

Appendix B. Complexity analysis

The time complexity of Algorithm 1 representing the synthesis process is

O + +k N I J t k I N( · ·( )· · · ),2

where k is the number of iterations of the (MOGA) while loop (i.e. the number of generations); =N CD is the size of the candidate design

population; +I J is the overall number of objective functions and constraints; and t is the time required to analyse a quality attribute of a candidate
design. The term +k N I J t· ·( )· quantifies the overall complexity of evaluating candidate designs, while k · |I| ·N2 corresponds to comparing designs

and building the front in lines 7–14 of Algorithm 1.
The factor t depends on the size of the underlying state space and on the number of discrete-time steps required to evaluate the particular quality

attributes. As shown in Češka et al. (2017), O=t t t( · )CSL pCSL . The factor =t ϕ M q t· · ·CSL max is the worst-case time complexity of time-bounded CSL
model checking Kwiatkowska et al. (2007), where |ϕ| is the length of the input CSL formula ϕ, tmax is the highest time bound occurring in it, M is the

number of non-zero elements in the rate matrix and q is the highest rate in the matrix. The factor tpCSL is due to the parametric analysis of the design
and depends on the form of polynomials appearing in the parametric rate matrix D ′R . Models of software systems typically include only linear

polynomials, for which O=t n( ),pCSL where n is the number of continuous parameters.
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